EP3617081B1 - Verfahren zur abfüllung einer partikel- und tensid-haltigen flüssigkeit - Google Patents

Verfahren zur abfüllung einer partikel- und tensid-haltigen flüssigkeit Download PDF

Info

Publication number
EP3617081B1
EP3617081B1 EP19177131.0A EP19177131A EP3617081B1 EP 3617081 B1 EP3617081 B1 EP 3617081B1 EP 19177131 A EP19177131 A EP 19177131A EP 3617081 B1 EP3617081 B1 EP 3617081B1
Authority
EP
European Patent Office
Prior art keywords
container
particle
filling
disodium
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19177131.0A
Other languages
English (en)
French (fr)
Other versions
EP3617081A1 (de
Inventor
Alexander Tollkoetter
Bernhard Orlich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP3617081A1 publication Critical patent/EP3617081A1/de
Application granted granted Critical
Publication of EP3617081B1 publication Critical patent/EP3617081B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B39/00Nozzles, funnels or guides for introducing articles or materials into containers or wrappers
    • B65B39/12Nozzles, funnels or guides for introducing articles or materials into containers or wrappers movable towards or away from container or wrapper during filling or depositing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B29/00Packaging of materials presenting special problems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B3/00Packaging plastic material, semiliquids, liquids or mixed solids and liquids, in individual containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, or jars
    • B65B3/04Methods of, or means for, filling the material into the containers or receptacles
    • B65B3/10Methods of, or means for, filling the material into the containers or receptacles by application of pressure to material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B57/00Automatic control, checking, warning, or safety devices
    • B65B57/10Automatic control, checking, warning, or safety devices responsive to absence, presence, abnormal feed, or misplacement of articles or materials to be packaged
    • B65B57/14Automatic control, checking, warning, or safety devices responsive to absence, presence, abnormal feed, or misplacement of articles or materials to be packaged and operating to control, or stop, the feed of articles or material to be packaged
    • B65B57/145Automatic control, checking, warning, or safety devices responsive to absence, presence, abnormal feed, or misplacement of articles or materials to be packaged and operating to control, or stop, the feed of articles or material to be packaged for fluent material
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0004Non aqueous liquid compositions comprising insoluble particles
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0008Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
    • C11D17/0013Liquid compositions with insoluble particles in suspension
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/041Compositions releasably affixed on a substrate or incorporated into a dispensing means
    • C11D17/046Insoluble free body dispenser

Definitions

  • the present invention relates to a method for filling a liquid containing particles and surfactants, in particular a liquid cleaning agent containing particles and surfactants, using a movable filling nozzle.
  • the filling of liquid products in transport or use containers usually leads to the entry of air into the filled liquid and possibly even to foaming of the liquid.
  • the entrained gas or the foam formed can affect the performance or aesthetics of the liquid product. Depending on the other properties of the liquid, these impairments do not regress, even under the conditions of subsequent storage. Liquids with a correspondingly high yield point degas only very slowly.
  • Particle-containing liquid cleaning agents are described in the German patent application DE 102 48 313 A1 described.
  • the German patent application discloses a particle-containing liquid cleaning agent with a yield point DE 10 2012 222 186 A1 .
  • EP 2 810 877 A1 describes processes for filling liquids in the course of which the liquid is cooled.
  • the object of the application was to provide a method for filling particle-containing liquids, in particular particle-containing cleaning agents, which is suitable for gas entry and to minimize the foaming of the liquid during filling in a container, to limit the mechanical stress on the particles to a harmless level and to ensure a homogeneous distribution of the particles in the volume of liquid in the container.
  • a container is provided.
  • the process described in more detail below is suitable in principle for any container size, but for containers with a height of 5 to 40 cm, preferably 7 to 30 cm and in particular 10 to 25 cm, the expenditure on equipment is particularly good to the technical benefit achieved, which is why such container heights are particularly preferred.
  • the containers used preferably have a maximum horizontal cross-sectional area of 8 to 60 cm 2 , preferably 10 to 50 cm 2 and in particular 12 to 40 cm 2 .
  • the procedure according to the invention has proven particularly advantageous when filling containers with a horizontal cross-sectional area that varies over their height.
  • the horizontal cross-sectional area of the container varies over its height by 15 to 35%, and more preferably by 20 to 30%.
  • Transparent with regard to the container wall means a light transmission of at least 40%, preferably at least 80%, measured according to ASTM D1003 with a test piece thickness of 1 mm.
  • the container wall can be fully or partially transparent. Within the scope of this application, portions of the container wall that are covered by applied non-transparent labels, for example adhesive labels or sleeves, are also referred to as non-transparent.
  • the labeling can take place before or after the filling of the liquid containing particles and surfactants. It is preferred if at least 10%, preferably at least 30%, particularly preferably at least 60% and in particular at least 90% of the container wall is transparent.
  • the outlet opening of the filler neck for example the outlet opening of a long-tube filler, to be as wide as possible.
  • the limits of the cross-sectional area of this outlet opening are naturally set by the cross-sectional area of the lid opening and the wall thickness of the filling support.
  • the ratio of the cross-sectional area of the lid opening to the cross-sectional area of the outlet opening to be from 0.4 to 0.99, preferably from 0.7 to 0.95 and in particular from 0.7 to 0.9.
  • the lid opening of the container preferably has an ellipsoidal, particularly preferably a circular, cross-sectional area. The same applies to the outlet opening of the filler neck.
  • Variants a) and b), in particular variant a), are preferably implemented in the process according to the invention.
  • the filler neck is therefore inserted into the container over a length of at least 50% of the height of the container, preferably at least 80% of the height of the container and in particular at least 90% of the height of the container.
  • step c) of the method liquid containing particles and surfactants is introduced into the container.
  • Surfactants used are primarily anionic surfactants, nonionic surfactants, amphoteric surfactants, betaines and, if appropriate, cationic surfactants.
  • the total amount of surfactant in the liquid containing particles and surfactant can vary within a wide range and can be, for example, 3 to 70% by weight, preferably 5 to 50% by weight and in particular 10 to 40% by weight.
  • the anionic surfactants are usually added in situ as the alkali metal, alkaline earth metal and/or mono-, di- or trialkanolammonium salt and/or in the form of them with the corresponding alkali metal hydroxide, alkaline earth metal hydroxide and/or mono-, di- or trialkanolamine neutralizing corresponding acid used.
  • Potassium and in particular sodium are preferred as alkali metals, calcium and in particular magnesium as alkaline earth metals, and mono-, di- or triethanolamine as alkanolamines.
  • the sodium salts are particularly preferred.
  • the anionic surfactants preferably used include, in particular, alkyl ether sulfates and alkyl sulfonates.
  • Alkyl ether sulfates are products of sulfation reactions on alkoxylated alcohols.
  • alkoxylated alcohols to mean the reaction products of alkylene oxide, preferably ethylene oxide, with alcohols, in the context of the present invention preferably with longer-chain alcohols, ie with aliphatic, straight-chain or one or more times branched, acyclic or cyclic, saturated or one or more times unsaturated, preferably straight-chain, acyclic, saturated, alcohols having 6 to 22, preferably 8 to 18, in particular 10 to 16 and particularly preferably 12 to 14 carbon atoms.
  • a further embodiment of the alkoxylation consists in using mixtures of the alkylene oxides, preferably the mixture of ethylene oxide and propylene oxide.
  • Very particularly preferred for the purposes of the present invention are low-ethoxylated fatty alcohols having 1 to 4 ethylene oxide units (EO), in particular 1 to 2 EO, for example 2 EO, such as Na-C 12-14 fatty alcohol+2EO sulfate.
  • the agent according to the invention contains at least one alkyl ether sulfate.
  • the alkyl sulfonates usually have an aliphatic straight-chain or mono- or polybranched, acyclic or cyclic, saturated or mono- or polyunsaturated, preferably branched, acyclic, saturated, alkyl radical with 6 to 22, preferably 9 to 20, in particular 11 to 18 and more preferably 14 to 17 carbon atoms.
  • suitable alkyl sulfonates are the saturated alkane sulfonates, the unsaturated olefin sulfonates and the ether sulfonates, which are formally derived from the alkoxylated alcohols on which the alkyl ether sulfates are also based, in which terminal ether sulfonates (n-ether sulfonates) with a sulfonate function bonded to the polyether chain and internal ether sulfonates (i-ether sulfonates) with the alkyl radical linked sulfonate function differs.
  • alkanesulfonates in particular alkanesulfonates having a branched, preferably secondary, alkyl radical, for example the secondary alkanesulfonate sec. Na-C 13-17 alkanesulfonate (INCI Sodium C14-17 Alkyl Sec Sulfonate).
  • anionic surfactants that can be used are known to the person skilled in the art from the relevant prior art relating to detergents or cleaning agents. These include in particular aliphatic sulfates such as fatty alcohol sulfates, monoglyceride sulfates and ester sulfonates (sulfofatty acid esters), lignin sulfonates, alkylbenzene sulfonates, fatty acid cyanamides, anionic sulfosuccinic acid surfactants, fatty acid isethionates, acylaminoalkane sulfonates (fatty acid taurides), fatty acid sarcosinates, ether carboxylic acids and alkyl (ether) phosphates.
  • aliphatic sulfates such as fatty alcohol sulfates, monoglyceride sulfates and ester sulfonates (sulfofatty acid esters), lignin sulfonates
  • anionic surfactants are also anionic gemini surfactants with a basic diphenyl oxide structure, 2 sulfonate groups and an alkyl radical on one or both benzene rings of the formula --O 3 S(C 6 H 3 R)O(C 6 H 3 R')SO 3 - , in which R is an alkyl radical having, for example, 6, 10, 12 or 16 carbon atoms and R' is R or H (Dowfax ® Dry Hydrotrope Powder with C 16 alkyl radical(s); INCI sodium hexyldiphenyl ether sulfonate, disodium decyl phenyl ether Disodium Lauryl Phenyl Ether Disulfonate, Disodium Cetyl Phenyl Ether Disulfonate).
  • anionic surfactants are the anionic sulfosuccinic acid surfactants sulfosuccinates, sulfosuccinamates and sulfosuccinamides, in particular sulfosuccinates and sulfosuccinamates, most preferably sulfosuccinates.
  • the sulfosuccinates are the salts of the mono- and diesters of sulfosuccinic acid HOOCCH(SO 3 H)CH 2 COOH, while the sulfosuccinamates are the salts of the monoamides of sulfosuccinic acid and the sulfosuccinamides are the salts of the diamides of sulfosuccinic acid.
  • the salts are preferably alkali metal salts, ammonium salts and mono-, di- or trialkanolammonium salts, for example mono-, di- or triethanolammonium salts, in particular lithium, sodium, potassium or ammonium salts, particularly preferably sodium or ammonium salts , most preferably sodium salts.
  • one or both carboxyl groups of the sulfosuccinic acid are preferably substituted with one or two identical or different unbranched or branched, saturated or unsaturated, acyclic or cyclic, optionally alkoxylated alcohols with 4 to 22, preferably 6 to 20, in particular 8 to 18 , more preferably 10 to 16, most preferably 12 to 14 carbon atoms.
  • the esters are particularly preferably unbranched and/or saturated and/or acyclic and/or alkoxylated alcohols, in particular unbranched, saturated fatty alcohols and/or unbranched, saturated fatty alcohols alkoxylated with ethylene and/or propylene oxide, preferably ethylene oxide, with a degree of alkoxylation of 1 to 20, preferably 1 to 15, in particular 1 to 10, particularly preferably 1 to 6, extremely preferably 1 to 4.
  • the monoesters are preferred over the diesters in the context of the present invention.
  • a particularly preferred sulfosuccinate is sulfosuccinic acid lauryl polyglycol ester disodium salt (lauryl EO sulfosuccinate, di-Na salt; INCI Disodium Laureth Sulfosuccinate), which is commercially available, for example, as Tego® sulfosuccinate F 30 (Goldschmidt) with a sulfosuccinate content of 30% by weight is available.
  • one or both carboxyl groups of the sulfosuccinic acid form, preferably with a primary or secondary amine, which forms one or two identical or different, unbranched or branched, saturated or unsaturated, acyclic or cyclic, optionally alkoxylated alkyl radicals with 4 to 22 , preferably 6 to 20, in particular 8 to 18, particularly preferably 10 to 16, most preferably 12 to 14 carbon atoms, a carboxamide.
  • sulfosuccinates and sulfosuccinamates designated according to INCI, which are described in more detail in the International Cosmetic Ingredient Dictionary and Handbook: ammonium dinonyl sulfosuccinate, ammonium lauryl sulfosuccinate, diammonium dimethicone copolyol sulfosuccinate, diammonium lauramido-MEA sulfosuccinate, diammonium lauryl sulfosuccinate, diammonium oleamido PEG-2 Sulfosuccinate, Diamyl Sodium Sulfosuccinate, Dicapryl Sodium Sulfosuccinate, Dicyclohexyl Sodium Sulfosuccinate, Diheptyl Sodium Sulfosuccinate, Dihexyl Sodium Sulfosuccinate, Diisobutyl Sodium Sulfosuccinate, Diocty
  • Preferred anionic sulfosuccinic acid surfactants are imidosuccinate, mono-Na-sulfosuccinic acid di-isobutyl ester ( Monawet® MB 45), mono-Na-sulfosuccinic acid di-octyl ester ( Monawet® MO-84 R2W, Rewopol® SB DO 75), mono-Na- di-tridecyl sulfosuccinate (Monawet ® MT 70), fatty alcohol polyglycol sulfosuccinate Na-NH 4 salt (Sulfosuccinate S-2), di-Na-sulfosuccinic acid mono-C 12/14 -3EO ester (Texapon ® SB- 3), sodium sulfosuccinic acid diisooctyl ester (Texin ® DOS 75) and di-Na-sulfosuccinic acid mono-C 12/18 ester (Texin
  • amphoteric surfactants (amphoteric surfactants, zwitterionic surfactants) that can be used according to the invention include alkylamidoalkylamines, alkyl-substituted amino acids, acylated amino acids or biosurfactants, of which the betaines are preferred within the scope of the teaching according to the invention.
  • Preferred betaines are the alkyl betaines of the formula (Ia), the alkylamidobetaines of the formula (Ib), the sulfobetaines of the formula (Ic) and the amidosulfobetaines of the formula (Id), R 1 -N + (CH 3 ) 2 -CH 2 COO - (Ia) R 1 -CO-NH-(CH 2 ) 3 -N + (CH 3 ) 2 -CH 2 COO - (Ib) R 1 -N + (CH 3 ) 2 -CH 2 CH(OH)CH 2 SO 3 - (Ic) R 1 -CO-NH-(CH 2 ) 3 -N + (CH 3 ) 2 -CH 2 CH(OH)CH 2 SO 3 - (Id) in which R 1 has the same meaning as in formula I.
  • betaines are the carbobetaines, in particular the carbobetaines of the formula (Ia) and (Ib), most preferably the alkylamidobetaines of the formula (Ib).
  • betaines and sulfobetaines are the following compounds named according to INCI: Almondamidopropyl Betaine, Apricotamidopropyl Betaine, Avocadamidopropyl Betaine, Babassuamidopropyl Betaine, Behenamidopropyl Betaine, Behenyl Betaine, Betaine, Canolamidopropyl Betaine, Capryl/Capramidopropyl Betaine, Carnitine, Cetyl Betaine, Cocamidoethyl Betaine, Cocamidopropyl Betaine, Cocamidopropyl Hydroxysultaine, Coco-Betaine, Coco-Hydroxysultaine, Coco/Oleamidopropyl Betaine, Coco-Sultaine, Decyl Betaine, Dihydroxyethyl Oleyl Glycinate, Dihydroxyethyl Soy Glycinate, Dihydroxyethyl Stearyl Glycinate, Dihydroxyethyl Tallow Glycinate,
  • alkylamidoalkylamines are the following compounds named according to INCI: Cocoamphodipropionic Acid, Cocobetainamido Amphopropionate, DEA-Cocoamphodipropionate, Disodium Caproamphodiacetate, Disodium Caproamphodipropionate, Disodium Capryloamphodiacetate, Disodium Capryloamphodipropionate, Disodium Cocoamphocarboxyethylhydroxypropylsulfonate, Disodium Cocoamphodiacetate, Disodium Cocoamphodipropion ate, Disodium Isostearoamphodiacetate, Disodium Isostearoamphodipropionate, Disodium Laureth- 5 Carboxyamphodiacetate, Disodium Lauroamphodiacetate, Disodium Lauroamphodipropionate, Disodium Oleoamphodipropionate, Disodium PPG-2-Isodeceth-7 Carboxyamphodia
  • alkyl-substituted amino acids are the aminopropionates of the formula (IVa), R 13 -NH-CH 2 CH 2 COOM' (IVa) in which R 13 and M' have the same meaning as in formula (IV).
  • alkyl-substituted amino acids are the following compounds named according to INCI: Aminopropyl Laurylglutamine, Cocaminobutyric Acid, Cocaminopropionic Acid, DEA-Lauraminopropionate, Disodium Cocaminopropyl Iminodiacetate, Disodium Dicarboxyethyl Cocopropylenediamine, Disodium Lauriminodipropionate, Disodium Steariminodipropionate, Disodium Tallowiminodipropionate, Lauraminopropionic Acid, Lauryl Aminopropylglycine, Lauryl Diethylenediaminoglycine, Myristaminopropionic Acid, Sodium C12-15 Alkoxypropyl Iminodipropionate, Sodium Cocaminopropionate, Sodium Lauraminopropionate , Sodium Lauriminodipropionate, Sodium Lauroyl Methylaminopropionate, TEA -Lauraminoprop
  • Acylated amino acids are amino acids, in particular the 20 natural ⁇ -amino acids which carry the acyl radical R 19 CO of a saturated or unsaturated fatty acid R 19 COOH on the amino nitrogen atom, where R 19 is a saturated or unsaturated C 6-22 alkyl radical, preferably C 8-18 alkyl, especially saturated C 10-16 alkyl, for example saturated C 12-14 alkyl.
  • the acylated amino acids can also be used as an alkali metal salt, alkaline earth metal salt or alkanolammonium salt, for example mono-, di- or triethanolammonium salt.
  • acylated amino acids are the acyl derivatives summarized under Amino Acids according to INCI, eg sodium cocoyl glutamate, lauroyl glutamic acid, capryloyl glycine or myristoyl methylalanine.
  • a combination of two or more different amphoteric surfactants in particular a binary amphoteric surfactant combination, is used.
  • the amphoteric surfactant combination preferably contains at least one betaine, in particular at least one alkylamidobetaine, particularly preferably cocoamidopropyl betaine.
  • amphoteric surfactant combination preferably contains at least one amphoteric surfactant from the group consisting of sodium carboxyethyl coconut phosphoethylimidazoline ( Phosphoteric® TC-6), C 8/10 amidopropyl betaine (INCI Capryl/Capramidopropyl Betaine; Tego® Betaine 810), N-2-hydroxyethyl-N-carboxymethyl -fatty acid amido-ethylamine-Na (Rewoteric ® AMV) and N-caprylic/caprine-amidoethyl-N-ethylether-propionate-Na (Rewoteric ® AMVSF) as well as the betaine 3-(3-cocoamido-propyl)-dimethylammonium-2-hydroxypropanesulfonate (INCI Sultaine; Rewoteric ® AM CAS) and the alkylamidoalkylamine N-[N'(N"-2-
  • the agent according to the invention contains a surfactant combination of at least one anionic surfactant and at least one amphoteric surfactant.
  • These surfactants are preferably present in a mass ratio of 10:1 to 1:5, preferably 5:1 to 2:1, particularly preferably 4:1.
  • the at least one anionic surfactant comprises at least one alkyl ether sulfate and the at least one amphoteric surfactant comprises at least one betaine surfactant.
  • Preferred nonionic surfactants are alkoxylated, advantageously ethoxylated, in particular primary alcohols preferably having 8 to 18 carbon atoms and an average of 1 to 12 mol Ethylene oxide (EO) is used per mole of alcohol, in which the alcohol radical can be linear or preferably methyl-branched in the 2-position or can contain a mixture of linear and methyl-branched radicals, such as are usually present in oxo alcohol radicals.
  • EO Ethylene oxide
  • alcohol ethoxylates with linear radicals from alcohols of natural origin with 12 to 18 carbon atoms, for example from coconut, palm, tallow or oleyl alcohol, and an average of 2 to 8 EO per mole of alcohol are preferred.
  • Preferred ethoxylated alcohols include, for example, C 12-14 alcohols with 3 EO, 4 EO or 7 EO, C 9-11 alcohol with 7 EO, C 13-15 alcohols with 3 EO, 5 EO, 7 EO or 8 EO, C 12-18 alcohols with 3 EO, 5 EO or 7 EO and mixtures of these, such as mixtures of C 12-14 alcohol with 3 EO and C 12-18 alcohol with 7 EO.
  • the degrees of ethoxylation given represent statistical averages, which can be an integer or a fraction for a specific product.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow range ethoxylates, NRE).
  • fatty alcohols with more than 12 EO can also be used. Examples of this are tallow fatty alcohol with 14 EO, 25 EO, 30 EO or 40 EO.
  • Nonionic surfactants which contain EO and PO groups together in the molecule can also be used according to the invention. Particularly preferably, the liquid contains a C 12-18 fatty alcohol with 7 EO or a C 13-15 oxo alcohol with 7 EO as nonionic surfactant.
  • Nonionic surfactants within the scope of the invention are alkoxylates, but also alkylphenol polyglycol ethers, end-capped polyglycol ethers, mixed ethers and hydroxy mixed ethers and fatty acid polyglycol esters. Also suitable are block polymers of ethylene oxide and propylene oxide and fatty acid alkanolamides and fatty acid polyglycol ethers. Important classes of nonionic surfactants according to the invention are also the amine oxides and the sugar surfactants, in particular the alkyl polyglucosides.
  • Suitable amine oxides are the following compounds named according to INCI: Almondamidopropylamine Oxide, Babassuamidopropylamine Oxide, Behenamine Oxide, Cocamidopropyl Amine Oxide, Cocamidopropylamine Oxide, Cocamine Oxide, Coco-Morpholine Oxide, Decylamine Oxide, Decyltetradecylamine Oxide, Diaminopyrimidine Oxide, Dihydroxyethyl C8-10 Alkoxypropylamine Oxide, Dihydroxyethyl C9-11 Alkoxypropylamine Oxide, Dihydroxyethyl C12-15 Alkoxypropylamine Oxide, Dihydroxyethyl Cocamine Oxide, Dihydroxyethyl Lauramine Oxide, Dihydroxyethyl Stearamine Oxide, Dihydroxyethyl Tallowamine Oxide, Hydrogenated Palm Kernel Amine Oxide, Hydrogenated Tallowamine Oxide, Hydroxyethyl Hydroxypropyl C12-15 Alkoxy
  • Preferred amine oxides are, for example, cocamidopropylamine oxide (cocoamidopropylamine oxide), but also N-cocoalkyl-N,N-dimethylamine oxide, N-tallowalkyl-N,N-dihydroxyethylamine oxide, myristylcetyldimethylamine oxide or lauryldimethylamine oxide.
  • Sugar surfactants are known surface-active compounds, which include, for example, the sugar surfactant classes of the alkyl glucose esters, aldobionamides, gluconamides (sugar acid amides), glycerol amides, glycerol glycolipids, polyhydroxy fatty acid amide sugar surfactants (sugar amides) and alkyl polyglycosides.
  • preferred sugar surfactants are the alkyl polyglycosides and the sugar amides and their derivatives, in particular their ethers and esters.
  • the ethers are the products of the reaction of one or more, preferably one, sugar hydroxy group with a compound containing one or more hydroxy groups, for example C 1-22 alcohols or glycols such as ethylene and/or propylene glycol, the sugar hydroxy group also being polyethylene glycol - Can wear and / or polypropylene glycol residues.
  • the esters are the reaction products of one or more, preferably one, sugar hydroxy group with a carboxylic acid, especially a C 6-22 fatty acid.
  • Particularly preferred sugar amides satisfy the formula R'C(O)N(R")[Z], in which R' is a linear or branched, saturated or unsaturated acyl radical, preferably a linear unsaturated acyl radical, having 5 to 21, preferably 5 to 17, in particular 7 to 15, particularly preferably 7 to 13 carbon atoms, R" is a linear or branched, saturated or unsaturated alkyl radical, preferably a linear unsaturated alkyl radical, having 6 to 22, preferably 6 to 18, in particular 8 to 16, particularly preferably 8 to 14 carbon atoms, C 1-5 alkyl, especially methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tert-butyl or n-pentyl, or hydrogen and Z is one sugar residue, ie a monosaccharide residue.
  • Particularly preferred sugar amides are the amides of glucose, the glucamides, for example lauroyl-methyl-gluc
  • alkyl polyglycosides are particularly preferred sugar surfactants in the context of the teaching according to the invention and preferably satisfy the general formula R i O (AO) a [G] x , in which R i is a linear or branched, saturated or unsaturated alkyl radical with 6 to 22 , preferably 6 to 18, in particular 8 to 16, particularly preferably 8 to 14 carbon atoms, [G] for a glycosidically linked sugar radical and x for a number from 1 to 10 and AO for an alkyleneoxy group, for example an ethyleneoxy or propyleneoxy group, and a stand for the average degree of alkoxylation from 0 to 20.
  • R i is a linear or branched, saturated or unsaturated alkyl radical with 6 to 22 , preferably 6 to 18, in particular 8 to 16, particularly preferably 8 to 14 carbon atoms
  • [G] for a glycosidically linked sugar radical and x for a number from 1 to 10
  • AO for an alkyleneoxy group
  • the group (AO) a can also contain different alkyleneoxy units, for example ethyleneoxy or propyleneoxy units, in which case a is the average overall degree of alkoxylation, ie the sum of the degree of ethoxylation and degree of propoxylation.
  • alkyl radicals R i of the APG are linear unsaturated radicals having the stated number of carbon atoms.
  • APG are nonionic surfactants and are known substances that can be obtained by the relevant methods of preparative organic chemistry.
  • alkyl glycosides whose degree of oligomerization is less than 1.7 and in particular is between 1.2 and 1.6.
  • Xylose is preferably used as the glycosidic sugar, but glucose is used in particular.
  • the alkyl or alkenyl radical R i can be derived from primary alcohols having 8 to 18, preferably 8 to 14, carbon atoms. Typical examples are caproic alcohol, caprylic alcohol, capric alcohol and undecyl alcohol and the technical mixtures thereof obtained, for example, in the course of the hydrogenation of technical fatty acid methyl esters or in the course of the hydrogenation of aldehydes from ROELEN's oxosynthesis.
  • the alkyl or alkenyl radical R i is preferably derived from lauryl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol or oleyl alcohol. Mention should also be made of elaidyl alcohol, petroselinyl alcohol, arachidyl alcohol, gadoleyl alcohol, behenyl alcohol, erucyl alcohol and technical mixtures thereof.
  • alkyl polyglycosides are, for example, C 8-10 - and a C 12-14 -alkyl polyglucoside with a DP degree of 1.4 or 1.5, in particular C 8-10 - alkyl-1,5-glucoside and C 12-14 -alkyl-1,4-glucoside.
  • the agent according to the invention can additionally contain one or more cationic surfactants (cationic surfactants; INCI Quaternary Ammonium Compounds).
  • cationic surfactants cationic surfactants; INCI Quaternary Ammonium Compounds.
  • Preferred cationic surfactants are the quaternary surface-active compounds, in particular with an ammonium, sulfonium, phosphonium, iodonium or arsonium group, which are also known as antimicrobial agents.
  • the agent can be designed with an antimicrobial effect or its antimicrobial effect, which may already be present due to other ingredients, can be improved.
  • Particularly preferred cationic surfactants are the quaternary ammonium compounds (QAV; INCI Quaternary Ammonium Compounds) of the general formula ( RI )( RII ( RIII )( RIV )N + X- , in which RI to RIV are the same or different C 1-22 -alkyl radicals, C 7-28 -aralkyl radicals or heterocyclic radicals, where two or, in the case of an aromatic bond as in pyridine, even three radicals together with the nitrogen atom form the heterocycle, e.g.
  • QAV quaternary ammonium compounds
  • At least one of the radicals preferably has a chain length of 8 to 18, in particular 12 to 16, carbon atoms.
  • QAC can be produced by reacting tertiary amines with alkylating agents such as methyl chloride, benzyl chloride, dimethyl sulfate, dodecyl bromide, but also ethylene oxide.
  • alkylating agents such as methyl chloride, benzyl chloride, dimethyl sulfate, dodecyl bromide, but also ethylene oxide.
  • alkylation of tertiary amines with one long alkyl radical and two methyl groups is particularly easy, and the quaternization of tertiary amines with two long radicals and one methyl group can also be carried out under mild conditions using methyl chloride.
  • Amines that have three long alkyl groups or hydroxy-substituted alkyl groups are not very reactive and are preferably quaternized with dimethyl sulfate.
  • Suitable QAC are benzalkonium chloride (N-alkyl-N,N-dimethyl-benzylammonium chloride, CAS no. 8001-54-5 ), benzalkon B (m,p-dichlorobenzyl-dimethyl-C 12 -alkylammonium chloride, CAS no. 58390-78-6 ), benzoxonium chloride (benzyl-dodecyl-bis-(2-hydroxyethyl)-ammonium chloride), cetrimonium bromide (N-hexadecyl-N,N-trimethyl-ammonium bromide, CAS no.
  • benzetonium chloride N,N-dimethyl-N-[2-[2-[p-(1,1,3,3-tetramethylbutyl)phenoxy]ethoxy]ethyl]-benzylammonium chloride, CAS no. 121-54-0
  • dialkyldimethylammonium chlorides such as di-n-decyldimethyl-ammonium chloride ( CAS no. 7173-51-5-5 ), didecyldimethylammonium bromide ( CAS no. 2390-68-3 ), dioctyldimethylammonium chloride, 1-cetylpyridinium chloride ( CAS no.
  • QAVs are the benzalkonium chlorides with C 8 -C 18 -alkyl radicals, in particular C 12 -C 14 -alkyl-benzyl-dimethylammonium chloride.
  • a particularly preferred QAV is coconut pentaethoxymethylammonium methosulfate (INCI PEG-5 Cocomonium Methosulfate; Rewoquat® CPEM).
  • anionic surfactant-compatible surfactants and/or as few cationic surfactants as possible can be used or, in a particular embodiment of the invention, cationic surfactants can be dispensed with entirely.
  • the agent according to the invention is free from cationic and nonionic surfactants.
  • the liquid containing particles and surfactants to be filled as a hand dishwashing detergent in particular as a hand dishwashing detergent with a foaming capacity of at least 250 mL, measured according to DIN method 53 902, part 2 (Ross Miles test), preferably at least 300 mL educated.
  • the foaming behavior of the liquid can be influenced, for example, by its surfactant content.
  • the liquid to be filled contains particles as a further component. These particles can be, for example, abrasive particles or active substance particles.
  • the liquid containing particles and surfactants preferably has a particle concentration of 0.1 to 10% by volume, preferably 0.2 to 5% by volume and in particular 0.3 and 2.0% by volume.
  • liquids whose particles have at least 50% by weight, preferably at least 70% by weight and in particular at least 90% by weight, a maximum diameter of 10 to 2000 ⁇ m, preferably 50 to 1500 ⁇ m and in particular of 100 to 1200 ⁇ m.
  • Preferred abrasive particles have a specific density of 0.1 to 4, preferably 0.5 to 2. This comparatively low specific density facilitates the uniform and stable distribution of the particles in the liquid and thus contributes to an attractive visual appearance of the finished liquid.
  • the specific density which is also referred to as relative density, describes the quotient of two densities as a dimensionless size ratio.
  • the density specifications are usually related to the density of pure water in the standard state at 3.98 °C.
  • the specific density of the abrasive is preferably greater than 0.1, in particular from 0.1 to 4, preferably from 0.2 to 3.5, preferably from 0.3 to 3, particularly preferably from 0.4 to 2.5 and very particularly preferably 0 .5 to 2.
  • the Mohs hardness of the particles is preferably 4 to 6, in particular 5 to 6.
  • Particularly preferred abrasive particles consist of expanded glass, preferably expanded volcanic glass, in particular expanded obsidian, which in expanded form is referred to as perlite.
  • the abrasive particle is pumice, a porous glassy volcanic rock. It was found that pumice has very good abrasive properties and as a natural substance has a high level of environmental compatibility. Due to its high porosity, pumice stone is also an excellent carrier for fragrances and dyes.
  • the abrasive particles preferably do not have a round shape. If one determines a particle shape factor, which defines the aspect ratio of particles to one another, a value of 1 would represent a perfectly round shape and a value of 0 would represent a linear shape.
  • Preferred abrasive particles have a particle shape factor of from 0.1 to 0.97, in particular from 0.15 to 0.9, in particular from 0.20 to 0.80, preferably from 0.3 to 0.70 or up to 0.60, in particular values of 0.30 or 0.40 to 0.50 are preferred.
  • encapsulated active substances preferably fragrance capsules
  • Encapsulated active ingredients are particularly susceptible to mechanical stress and the method according to the invention is particularly relevant for them.
  • the fragrance capsules can be water-soluble and/or water-insoluble capsules.
  • melamine-urea-formaldehyde microcapsules, melamine-formaldehyde microcapsules, urea-formaldehyde microcapsules or starch microcapsules can be used.
  • Transparency of the liquid in the context of the present invention is understood to mean a turbidity value of the compositions according to the invention of not more than 150 NTU, more preferably not more than 100 NTU and in particular not more than 50 NTU.
  • the transparency of a composition can be determined by known methods from its turbidity, the NTU value determined (nephelometric turbidity unit) indicating the degree of turbidity.
  • a transparency of the liquid of 5 to 50 NTU, in particular 10 to 25 NTU, is preferred.
  • Turbidity measurements can be carried out with a turbidimeter (for example from Hach) at 20°C to 25°C.
  • the visual impression of the agent containing particles is preferably that of individual, opaque particles stably suspended in a clear liquid. These particles, like the liquid surrounding them, can take on any color, with the liquid and particles being able to be colored the same or different.
  • the particle-free liquid has a yield point of 0.1 and 10 Pa, preferably 0.3 and 5 Pa and in particular 1 and 3 Pa.
  • the yield point of the liquid can be measured, for example, using a rotary rheometer from TA-Instruments, type AR G2 (shear stress-controlled rheometer, cone-plate measuring system with a diameter of 40 mm, 2° cone angle, 20° C.).
  • the method according to the invention has proven itself with regard to the avoidance of gas entry and particle abrasion as well as with regard to the homogeneous particle distribution in the liquid volume Filling for those particle-free liquids proven to be advantageous that have a viscosity (20 ° C, Texas Instruments AR-G2 rheometer; plate / plate, 4 cm diameter, 1100 ⁇ m gap; shear rate 10/1sec) above 2000 mPas, in particular above 3000 mPas and very particularly preferably above 4000 mPas.
  • liquid containing particles has a temperature of 5 and 60°C, preferably 12 and 40°C and in particular 20 and 30°C at the time of filling in steps c) and d).
  • Characteristic of step c) of the method is the at least partial immersion of the outlet opening of the filler neck into the liquid containing particles and surfactants inside the container. This is achieved by first inserting the filler neck into the container through the lid opening and then introducing a first volume of the liquid containing particles and surfactants into the container through the outlet opening of the filler neck. Due to the at least partial immersion of the filler neck in the liquid, the entry of gas and the mechanical stress are reduced and, furthermore, the homogeneous distribution of the particles within the liquid volume of the filled container is ensured. To further increase these technical effects, it is preferred that the particle-containing liquid is introduced in step c) up to a level of particle- and surfactant-containing liquid in the container at which the outlet opening of the filler neck completely into the particle-containing liquid is immersed.
  • the filling pressure by means of which the liquid containing particles and surfactants is filled into the container in steps c) and/or d) is preferably from 0.01 to 5 bar, preferably from 0.1 to 3 bar and in particular from 0 , 2 and 2 bars. Using these particularly suitable filling pressures, it is possible to further minimize the entry of gas into the liquid and the mechanical stress on the particles during filling.
  • the particle-containing liquid is preferably filled into the container at a filling rate of 0.05 to 10 l/s, preferably 0.1 to 2 l/s and in particular 0.12 to 0.4 l/s.
  • the filling rate is preferably kept constant, ie the filling rate preferably does not fluctuate by more than 20%, particularly preferably by no more than 10%, around the average filling rate.
  • the filling speed can also vary during the course of the process. In terms of gas entry, mechanical stress on the particles, homogeneous particle distribution and process efficiency, it has proven to be advantageous to increase the filling speed after the outlet opening of the filling nozzle has been completely immersed in the particle-containing liquid.
  • the outlet opening of the filler neck is at least partially, preferably completely, immersed in the liquid containing particles and surfactants.
  • the end point of the filling is preferably determined by measuring the filling weight and/or by measuring the filling volume.
  • a drip tray is inserted between the outlet opening of the filling spout and the lid opening of the container.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Cosmetics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Abfüllung einer Partikel- und Tensid-haltigen Flüssigkeit, insbesondere eines Partikel- und Tensid-haltigen flüssigen Reinigungsmittels unter Einsatz eines beweglichen Füllstutzens.
  • Die Abfüllung flüssiger Produkte in Transport- oder Gebrauchsbehälter führt in der Regel zum Eintrag von Luft in die abgefüllte Flüssigkeit eventuell sogar zum Aufschäumen der Flüssigkeit. Das eingetragene Gas oder der gebildete Schaum können die Gebrauchseigenschaften oder die Ästhetik des flüssigen Produktes beeinträchtigen. Diese Beeinträchtigungen bilden sich in Abhängigkeit von den weiteren Eigenschaften der Flüssigkeit auch unter den Bedingungen der nachfolgenden Lagerung nicht zurück. So entgasen Flüssigkeit mit einer entsprechend hohen Fließgrenze nur sehr langsam.
  • In all jenen Fällen, in denen die Flüssigkeit unter den Bedingungen der nachfolgenden Lagerung entgast, führt dies hingegen notwendigerweise zu einer Absenkung des Füllstandes. Durch den übermäßigen Eintrag eines im Rahmen der Lagerung austretenden Gases wird auf diese Weise eine reproduzierbare und/oder ausreichende Befüllung eines Behälters verunmöglicht.
  • Bei der Abfüllung Partikel-haltiger Flüssigkeiten ergeben sich im Hinblick auf die Produktästhetik und die Produkteigenschaften weitere technische Herausforderungen. Bei einer Abfüllung der Partikel- und Tensid-haltigen Flüssigkeit mit einer zu niedrigen Abfüllgeschwindigkeit führt zu einer inhomogenen Partikelverteilung während eine zu hohe Abfüllgeschwindigkeit aufgrund der auftretenden mechanischen Belastung eine Schädigung der Partikel bewirkt.
  • Zur Lösung der zuvor beschriebenen technischen Probleme, insbesondere zur Vermeidung des Gaseintrags in die Flüssigkeit und des Aufschäumens des flüssigen Füllguts wird im Stand der Technik insbesondere der Einsatz so genannter Langrohrfüller beschrieben, bei welchem die in einen Behälter abzufüllende Flüssigkeit mittels eines tief in den Behälter eingeführten Füllstutzens eingebracht wird.
  • Partikel-haltige flüssige Reinigungsmittel werden in der deutschen Patentanmeldung DE 102 48 313 A1 beschrieben. Ein Partikel-haltiges flüssiges Reinigungsmittels mit Fließgrenze offenbart die deutsche Patentanmeldung DE 10 2012 222 186 A1 .
  • Die europäische Patentanmeldung EP 2 810 877 A1 beschreibt Verfahren zur Abfüllung von Flüssigkeiten, in deren Verlauf die Flüssigkeit abgekühlt werden.
  • In der europäischen Patentanmeldung 2 987 622 A1 wird ein Verfahren zum Einfüllen von Flüssigkeiten oder Feststoffen in Kunststoffbehälter beschrieben.
  • Die Aufgabe der Anmeldung bestand darin, ein Verfahren zur Abfüllung Partikel-haltiger Flüssigkeiten, insbesondere Partikel-haltiger Reinigungsmittel bereitzustellen, welches geeignet ist, den Gaseintrag und das Aufschäumen der Flüssigkeit bei der Abfüllung in einem Behälter zu minimieren, die mechanische Belastung der Partikel auf ein unschädliches Maß zu beschränken und eine homogene Verteilung der Partikel in dem im Behälter befindlichen Flüssigkeitsvolumen sicherzustellen.
  • Diese Aufgabe wurde durch ein Verfahren mit den folgenden Teilschritten gelöst:
    1. a) Bereitstellen eines Behälters mit einer Deckelöffnung;
    2. b) Einführen eines, mit einer Austrittsöffnung versehenen Füllstutzens durch die Deckelöffnung in den Behälter;
    3. c) Einbringen einer Partikel- und Tensid-haltigen Flüssigkeit durch die Austrittsöffnung des Füllstutzens in den Behälter bis zu einem Füllstand der Partikel- und Tensid-haltigen Flüssigkeit in dem Behälter, bei welchem die Austrittsöffnung des Füllstutzens wenigstens anteilsweise in die Partikel-haltige Flüssigkeit eintaucht;
    4. d) Einbringen weiterer Partikel- und Tensid-haltiger Flüssigkeit durch die Austrittsöffnung des Füllstutzens in den Behälter und gleichzeitiges Ausführen des Füllstutzens durch die Deckelöffnung aus dem Behälter, wobei die Austrittsöffnung des Füllstutzens während des Einbringens weiterer Partikel-haltiger Flüssigkeit wenigstens anteilsweise in der Partikel- und Tensid-haltigen Flüssigkeit eintaucht;
    5. e) Beenden der Befüllung des Behälters bei einem Füllstand unterhalb der Deckelöffnung des Behälters;
    6. f) vollständiges Ausführen des Füllstutzens aus dem Behälter;
    wobei
    • die Partikel-freie Flüssigkeit eine Fließgrenze von 0,1 bis 10 Pa aufweist und
    • der Behälter eine über seine Höhe variierende horizontale Querschnittsfläche aufweist,
    • wobei die horizontale Querschnittsfläche des Behälters über seine Höhe um 10 bis 40%, variiert, und die Ausführgeschwindigkeit des Füllstutzens in Schritt d) in Abhängigkeit von der Querschnittsfläche des Behälters auf Höhe des Flüssigkeitspegels variiert.
  • In Schritt a) des Verfahrens wird ein Behälter bereitgestellt. Das in der Folge in größerem Detail beschriebene Verfahren eignet sich grundsätzlich für jedwede Behältergröße, bei Behältern mit einer Höhe von 5 bis 40 cm, vorzugsweise von 7 bis 30 cm und insbesondere von 10 bis 25 cm steht der apparative Aufwand jedoch in einem besonders guten Verhältnis zu dem erzielten technischen Nutzen, weshalb derartige Behälterhöhen besonders bevorzugt sind.
  • Aus dem gleichen Grund weisen die eingesetzten Behälter vorzugsweise eine maximale horizontale Querschnittsfläche von 8 bis 60 cm2, bevorzugt von 10 bis 50 cm2 und insbesondere von 12 bis 40 cm2 auf.
  • Als besonders vorteilhaft hat sich erfindungsgemäße Verfahrensweise bei der Befüllung von Behältern mit einer über ihre Höhe variierende horizontale Querschnittsfläche erwiesen. Bei beispielhaften und bevorzugten Behältern variiert die horizontale Querschnittsfläche des Behälters über seine Höhe um 15 bis 35% und insbesondere um 20 bis 30%.
  • Die eingangs beschriebenen technischen Effekte haben neben produktionstechnischen Implikationen weiterhin auch eine Bedeutung für die Vermarktung der abgefüllten Partikel- und Tensid-haltigen Flüssigkeiten, da sowohl der Gaseintrag, beispielsweise durch Trübung, als auch der Partikelabrieb das ästhetische Erscheinungsbild der Flüssigkeit beeinträchtigen. Die zuvor beschriebenen technischen Effekte kommen daher insbesondere bei einer Abfüllung in wenigstens anteilsweise transparente Behälter zur Geltung, deren Einsatz im Rahmen des Verfahrens aus diesem Grunde bevorzugt ist. Transparent in Bezug auf die Behälterwand bedeutet hierbei eine Lichttransmission gemessen nach ASTM D1003 bei einer Prüfkörperdicke von 1 mm von mindestens 40 %, bevorzugt von mindestens 80 %.
  • Die Behälterwand kann vollständig oder anteilsweise transparent sein. Als nicht transparent werden im Rahmen dieser Anmeldung dabei auch solche Anteile der Behälterwand bezeichnet, die durch aufgebrachte intransparente Etiketten, beispielsweise Klebeetiketten oder Sleeves, bedeckt sind. Die Etikettierung kann dabei vor oder nach der Abfüllung der Partikel- und Tensid-haltigen Flüssigkeit erfolgen. Bevorzugt ist es, wenn wenigstens 10%, vorzugsweise wenigstens 30%, besonders bevorzugt wenigstens 60% und insbesondere wenigstens 90% der Behälterwand transparent ist.
  • Für die Verminderung des Gasteintrags und der mechanischen Belastung der Partikel hat sich die Einhaltung einiger weiterer technischer Parameter als vorteilhaft erwiesen. So ist es von Vorteil, die Austrittsöffnung des Füllstutzens, beispielsweise die Austrittsöffnung eines Langrohrfüllers, möglichst weit auszuführen. Die Grenzen der Querschnittsfläche dieser Austrittsöffnung werden dabei naturgemäß durch die Querschnittsfläche der Deckelöffnung und die Wanddicke des Füllstützens gesetzt. Bevorzugt ist es, das Verhältnis der Querschnittsfläche der Deckelöffnung zur Querschnittsfläche der Austrittsöffnung von 0,4 bis 0,99, vorzugsweise von 0,7 bis 0,95 und insbesondere von 0,7 bis 0,9 auszuführen.
  • Die Deckelöffnung des Behälters weist vorzugsweise eine ellipsoide, besonders bevorzugt eine kreisrunde Querschnittsfläche auf. Gleiches gilt für die Austrittsöffnung des Füllstutzens.
  • In Schritt b) des Verfahrens wird ein mit einer Austrittsöffnung versehener Füllstutzen durch die Deckelöffnung in einen Behälter eingebracht. Entscheidend für das Einführen des Füllstutzens in den Behälter ist die Relativbewegung von Füllstutzen und Behälter zueinander. Mit anderen Worten kann
    1. a) der Füllstutzen bewegt werden, während der Behälter unbewegt bleibt,
    2. b) der Behälter bewegt werden, während der Füllstutzen unbewegt bleibt oder
    3. c) können Behälter und Füllstutzen relativ zueinander bewegt werden.
  • In dem erfindungsgemäßen Verfahren werden bevorzugt die Varianten a) und b), insbesondere die Variante a) realisiert.
  • Zur Minimierung des Gasteintrags und der mechanischen Belastung der Partikel hat es sich als vorteilhaft erwiesen, die Zeitdauer, während derer der Füllstutzen bei der Befüllung des Behälters wenigstens anteilsweise in die Partikel- und Tensid-haltige Flüssigkeit eintaucht, zu maximieren. In einer bevorzugten Verfahrensvariante wird der Füllstutzen daher auf einer Länge von mindestens 50% der Höhe des Behälters, vorzugsweise von mindestens 80% der Höhe des Behälters und insbesondere von mindestens 90% der Höhe des Behälters in den Behälter eingeführt.
  • In Schritt c) des Verfahrens wird Partikel- und Tensid-haltige Flüssigkeit in den Behälter eingebracht.
  • Als Tenside werden vor allem anionische Tenside, nichtionische Tenside, amphotere Tenside, Betaine sowie gegebenenfalls kationische Tenside eingesetzt. Die Gesamtmenge des Tensids in der Partikel- und Tensid-haltigen Flüssigkeit kann in einem breiten Rahmen variieren und beispielsweise 3 bis 70 Gew.-%, vorzugsweise 5 bis 50 Gew.-% und insbesondere 10 bis 40 Gew.-% betragen.
  • Die anionischen Tenside werden üblicherweise als Alkalimetall-, Erdalkalimetall- und/oder Mono-, Di- bzw. Trialkanolammoniumsalz und/oder aber auch in Form ihrer mit dem entsprechenden Alkalimetallhydroxid, Erdalkalimetallhydroxid und/oder Mono-, Di- bzw. Trialkanolamin in situ zu neutralisierenden korrespondierenden Säure eingesetzt. Bevorzugt sind hierbei als Alkalimetalle Kalium und insbesondere Natrium, als Erdalkalimetalle Calcium und insbesondere Magnesium, sowie als Alkanolamine Mono-, Di- oder Triethanolamin. Besonders bevorzugt sind die Natriumsalze.
  • Zu den bevorzugt eingesetzten Aniontensiden zählen vor allem Alkylethersulfate und Alkylsulfonate.
  • Alkylethersulfate (Fettalkoholethersulfate, INCI Alkyl Ether Sulfates) sind Produkte von Sulfatierreaktionen an alkoxylierten Alkoholen. Dabei versteht der Fachmann allgemein unter alkoxylierten Alkoholen die Reaktionsprodukte von Alkylenoxid, bevorzugt Ethylenoxid, mit Alkoholen, im Sinne der vorliegenden Erfindung bevorzugt mit längerkettigen Alkoholen, d.h. mit aliphatischen geradkettigen oder ein oder mehrfach verzweigten, acyclischen oder cyclischen, gesättigten oder ein oder mehrfach ungesättigten, vorzugsweise geradkettigen, acyclischen, gesättigten, Alkoholen mit 6 bis 22, vorzugsweise 8 bis 18, insbesondere 10 bis 16 und besonders bevorzugt 12 bis 14 Kohlenstoffatomen. In der Regel entsteht aus n Molen Ethylenoxid und einem Mol Alkohol, abhängig von den Reaktionsbedingungen, ein komplexes Gemisch von Additionsprodukten unterschiedlicher Ethoxylierungsgrade (n = 1 bis 30, vorzugsweise 1 bis 20, insbesondere 1 bis 10, besonders bevorzugt 2 bis 4). Eine weitere Ausführungsform der Alkoxylierung besteht im Einsatz von Gemischen der Alkylenoxide, bevorzugt des Gemisches von Ethylenoxid und Propylenoxid. Ganz besonders bevorzugt im Sinne der vorliegenden Erfindung sind niederethoxylierte Fettalkohole mit 1 bis 4 Ethylenoxideinheiten (EO), insbesondere 1 bis 2 EO, beispielsweise 2 EO, wie Na-C12-14-Fettalkohol+2EO-sulfat. In einer bevorzugten Ausführungsform enthält das erfindungsgemäße Mittel mindestens ein Alkylethersulfat.
  • Die Alkylsulfonate (INCI Sulfonic Acids) weisen üblicherweise einen aliphatischen geradkettigen oder ein- oder mehrfach verzweigten, acyclischen oder cyclischen, gesättigten oder ein- oder mehrfach ungesättigten, vorzugsweise verzweigten, acyclischen, gesättigten, Alkylrest mit 6 bis 22, vorzugsweise 9 bis 20, insbesondere 11 bis 18 und besonders bevorzugt 14 bis 17 Kohlenstoffatomen auf.
  • Geeignete Alkylsulfonate sind dementsprechend die gesättigten Alkansulfonate, die ungesättigten Olefinsulfonate und die - sich formal von den auch den Alkylethersulfaten zugrunde liegenden alkoxylierten Alkoholen ableitenden - Ethersulfonate, bei denen man endständige Ethersulfonate (n-Ethersulfonate) mit an die Polyether-Kette gebundener Sulfonat-Funktion und innenständige Ethersulfonate (i-Ethersulfonate) mit mit dem Alkylrest verknüpfter Sulfonat-Funktion unterscheidet.
  • Erfindungsgemäß bevorzugt sind die Alkansulfonate, insbesondere Alkansulfonate mit einem verzweigten, vorzugsweise sekundären, Alkylrest, beispielsweise das sekundäre Alkansulfonat sek. Na-C13-17-Alkansulfonat (INCI Sodium C14-17 Alkyl Sec Sulfonate).
  • Weitere mögliche einsetzbare Aniontenside sind dem Fachmann aus dem einschlägigen Stand der Technik zu Wasch- oder Reinigungsmitteln bekannt. Hierzu zählen insbesondere aliphatische Sulfate wie Fettalkoholsulfate, Monoglyceridsulfate sowie Estersulfonate (Sulfofettsäureester), Ligninsulfonate, Alkylbenzolsulfonate, Fettsäurecyanamide, anionische Sulfobernsteinsäuretenside, Fettsäureisethionate, Acylaminoalkansulfonate (Fettsäuretauride), Fettsäuresarcosinate, Ethercarbonsäuren und Alkyl(ether)phosphate.
  • Geeignete weitere anionische Tenside sind auch anionische Gemini-Tenside mit einer Diphenyloxid-Grundstruktur, 2 Sulfonatgruppen und einem Alkylrest an einem oder beiden Benzolringen gemäß der Formel -O3S(C6H3R)O(C6H3R')SO3- , in der R für einen Alkylrest mit beispielsweise 6, 10, 12 oder 16 Kohlenstoffatomen und R' für R oder H steht (Dowfax® Dry Hydrotrope Powder mit C16-Alkylrest(en); INCI Sodium Hexyldiphenyl Ether Sulfonate, Disodium Decyl Phenyl Ether Disulfonate, Disodium Lauryl Phenyl Ether Disulfonate, Disodium Cetyl Phenyl Ether Disulfonate).
  • Besonders bevorzugte weitere anionische Tenside sind die anionischen Sulfobernsteinsäuretenside Sulfosuccinate, Sulfosuccinamate und Sulfosuccinamide, insbesondere Sulfosuccinate und Sulfosuccinamate, äußerst bevorzugt Sulfosuccinate. Bei den Sulfosuccinaten handelt es sich um die Salze der Mono- und Diester der Sulfobernsteinsäure HOOCCH(SO3H)CH2COOH, während man unter den Sulfosuccinamaten die Salze der Monoamide der Sulfobernsteinsäure und unter den Sulfosuccinamiden die Salze der Diamide der Sulfobernsteinsäure versteht. Bei den Salzen handelt es sich bevorzugt um Alkalimetallsalze, Ammoniumsalze sowie Mono-, Di- bzw. Trialkanolammoniumsalze, beispielsweise Mono-, Di- bzw. Triethanolammoniumsalze, insbesondere um Lithium-, Natrium-, Kalium- oder Ammoniumsalze, besonders bevorzugt Natrium- oder Ammoniumsalze, äußerst bevorzugt Natriumsalze.
  • In den Sulfosuccinaten ist eine bzw. sind beide Carboxylgruppen der Sulfobernsteinsäure vorzugsweise mit einem bzw. zwei gleichen oder verschiedenen unverzweigten oder verzweigten, gesättigten oder ungesättigten, acyclischen oder cyclischen, optional alkoxylierten Alkoholen mit 4 bis 22, vorzugsweise 6 bis 20, insbesondere 8 bis 18, besonders bevorzugt 10 bis 16, äußerst bevorzugt 12 bis 14 Kohlenstoffatomen verestert. Besonders bevorzugt sind die Ester unverzweigter und/oder gesättigter und/oder acyclischer und/oder alkoxylierter Alkohole, insbesondere unverzweigter, gesättigter Fettalkohole und/oder unverzweigter, gesättigter, mit Ethylen- und/oder Propylenoxid, vorzugsweise Ethylenoxid, alkoxylierter Fettalkohole mit einem Alkoxylierungsgrad von 1 bis 20, vorzugsweise 1 bis 15, insbesondere 1 bis 10, besonders bevorzugt 1 bis 6, äußerst bevorzugt 1 bis 4. Die Monoester werden im Rahmen der vorliegenden Erfindung gegenüber den Diestern bevorzugt. Ein besonders bevorzugtes Sulfosuccinat ist Sulfobernsteinsäurelaurylpolyglykolester-di-Natrium-Salz (Lauryl-EOsulfosuccinat, Di-Na-Salz; INCI Disodium Laureth Sulfosuccinate), das beispielsweise als Tego® Sulfosuccinat F 30 (Goldschmidt) mit einem Sulfosuccinatgehalt von 30 Gew.-% kommerziell erhältlich ist.
  • In den Sulfosuccinamaten bzw. Sulfosuccinamiden bildet eine bzw. bilden beide Carboxylgruppen der Sulfobernsteinsäure vorzugsweise mit einem primären oder sekundären Amin, das einen oder zwei gleiche oder verschiedene, unverzweigte oder verzweigte, gesättigte oder ungesättigte, acyclische oder cyclische, optional alkoxylierte Alkylreste mit 4 bis 22, vorzugsweise 6 bis 20, insbesondere 8 bis 18, besonders bevorzugt 10 bis 16, äußerst bevorzugt 12 bis 14 Kohlenstoffatomen trägt, ein Carbonsäureamid. Besonders bevorzugt sind unverzweigte und/oder gesättigte und/oder acyclische Alkylreste, insbesondere unverzweigte, gesättigte Fettalkylreste.
  • Weiterhin geeignet sind beispielsweise die folgenden gemäß INCI bezeichneten Sulfosuccinate und Sulfosuccinamate, die im International Cosmetic Ingredient Dictionary and Handbook näher beschrieben sind: Ammonium Dinonyl Sulfosuccinate, Ammonium Lauryl Sulfosuccinate, Diammonium Dimethicone Copolyol Sulfosuccinate, Diammonium Lauramido-MEA Sulfosuccinate, Diammonium Lauryl Sulfosuccinate, Diammonium Oleamido PEG-2 Sulfosuccinate, Diamyl Sodium Sulfosuccinate, Dicapryl Sodium Sulfosuccinate, Dicyclohexyl Sodium Sulfosuccinate, Diheptyl Sodium Sulfosuccinate, Dihexyl Sodium Sulfosuccinate, Diisobutyl Sodium Sulfosuccinate, Dioctyl Sodium Sulfosuccinate, Disodium Cetearyl Sulfosuccinate, Disodium Cocamido MEA-Sulfo-succinate, Disodium Cocamido MIPA-Sulfosuccinate, Disodium Cocamido PEG-3 Sulfosuccinate, Disodium Coco-Glucoside Sulfosuccinate, Disodium Cocoyl Butyl Gluceth-10 Sulfosuccinate, Disodium C12-15 Pareth Sulfosuccinate, Disodium Deceth-5 Sulfosuccinate, Disodium Deceth-6 Sulfosuccinate, Disodium Dihydroxyethyl Sulfosuccinylundecylenate, Disodium Dimethicone Copolyol Sulfosuccinate, Disodium Hydrogenated Cottonseed Glyceride Sulfosuccinate, Disodium Isodecyl Sulfosuccinate, Disodium Isostearamido MEA-Sulfosuccinate, Disodium Isostearamido MIPA-Sulfosuccinate, Disodium Isostearyl Sulfosuccinate, Disodium Laneth-5 Sulfosuccinate, Disodium Lauramido MEA-Sulfosuccinate, Disodium Lauramido PEG-2 Sulfosuccinate, Disodium Lauramido PEG-5 Sulfosuccinate, Disodium Laureth-6 Sulfosuccinate, Disodium Laureth-9 Sulfosuccinate, Disodium Laureth-12 Sulfosuccinate, Disodium Lauryl Sulfosuccinate, Disodium Myristamido MEA-Sulfosuccinate, Disodium Nonoxynol-10 Sulfosuccinate, Disodium Oleamido MEA-Sulfosuccinate, Disodium Oleamido MIPA-Sulfosuccinate, Disodium Oleamido PEG-2 Sulfosuccinate, Disodium Oleth-3 Sulfosuccinate, Disodium Oleyl Sulfosuccinate, Disodium Palmitamido PEG-2 Sulfosuccinate, Disodium Palmitoleamido PEG-2 Sulfosuccinate, Disodium PEG-4 Cocamido MIPA-Sulfo-succinate, Disodium PEG-5 Laurylcitrate Sulfosuccinate, Disodium PEG-8 Palm Glycerides Sulfosuccinate, Disodium Ricinoleamido MEA-Sulfosuccinate, Disodium Sitostereth-14 Sulfosuccinate, Disodium Stearamido MEA-Sulfosuccinate, Disodium Stearyl Sulfosuccinamate, Disodium Stearyl Sulfosuccinate, Disodium Tallamido MEA-Sulfosuccinate, Disodium Tallowamido MEA-Sulfo-succinate, Disodium Tallow Sulfosuccinamate, Disodium Tridecylsulfosuccinate, Disodium Undecylenamido MEA-Sulfosuccinate, Disodium Undecylenamido PEG-2 Sulfosuccinate, Disodium Wheat Germamido MEA-Sulfosuccinate, Disodium Wheat Germamido PEG-2 Sulfosuccinate, Di-TEA-Oleamido PEG-2 Sulfosuccinate, Ditridecyl Sodium Sulfosuccinate, Sodium Bisglycol Ricinosulfosuccinate, Sodium/MEA Laureth-2 Sulfosuccinate und Tetrasodium Dicarboxyethyl Stearyl Sulfosuccinamate. Noch ein weiteres geeignetes Sulfosuccinamat ist Dinatrium-C16-18-alkoxypropylen-sulfosuccinamat.
  • Bevorzugte anionische Sulfobernsteinsäuretenside sind Imidosuccinat, Mono-Na-sulfobernsteinsäure-di-isobutylester (Monawet® MB 45), Mono-Na-sulfobernsteinsäure-di-octylester (Monawet® MO-84 R2W, Rewopol® SB DO 75), Mono-Na-sulfobernsteinsäure-di-tridecylester (Monawet® MT 70), Fettalkoholpolyglykolsulfosuccinat-Na-NH4-Salz (Sulfosuccinat S-2), Di-Na-sulfobernstein-säure-mono-C12/14-3EO-ester (Texapon® SB-3), Natruimsulfobernsteinsäurediisooctylester (Texin® DOS 75) und Di-Na-Sulfobernsteinsäure-mono-C12/18-ester (Texin® 128-P), insbesondere der mit der erfindungsgemäßen ternären Tensidkombination hinsichtlich des Ablauf- und/oder Trocknungsverhaltens synergistisch zusammenwirkende Mono-Na-sulfobernsteinsäure-di-octylester.
  • Zu den Amphotensiden (amphoteren Tensiden, zwitterionischen Tensiden), die erfindungsgemäß eingesetzt werden können, zählen Alkylamidoalkylamine, alkylsubstituierte Aminosäuren, acylierte Aminosäuren bzw. Biotenside, von denen die Betaine im Rahmen der erfindungsgemäßen Lehre bevorzugt werden.
  • Geeignete Betaine, welche vor allem in manuellen Geschirrspülmitteln Einsatz finden, sind die Alkylbetaine, die Alkylamidobetaine, die Imidazoliniumbetaine, die Sulfobetaine (INCI Sultaines) sowie die Phosphobetaine und genügen vorzugsweise Formel I,

            R1-[CO-X-(CH2)n]x-N+(R2)(R3)-(CH2)m-[CH(OH)-CH2]y-Y-     (I)

    in der
  • R1
    ein gesättigter oder ungesättigter C6-22-Alkylrest, vorzugsweise C8-18-Alkylrest, insbesondere ein gesättigter C10-16-Alkylrest, beispielsweise ein gesättigter C12-14-Alkylrest,
    X
    NH, NR4 mit dem C1-4-Alkylrest R4, O oder S,
    n
    eine Zahl von 1 bis 10, vorzugsweise 2 bis 5, insbesondere 3,
    x
    0 oder 1, vorzugsweise 1,
    R2, R3
    unabhängig voneinander ein C1-4-Alkylrest, ggf. hydroxysubstituiert wie z.B. ein Hydroxyethylrest, insbesondere aber ein Methylrest,
    m
    eine Zahl von 1 bis 4, insbesondere 1, 2 oder 3,
    y
    0 oder 1 und
    Y
    COO, SO3, OPO(OR5)O oder P(O)(OR5)O, wobei R5 ein Wasserstoffatom H oder ein C1-4-Alkylrest ist.
  • Die Alkyl- und Alkylamidobetaine, Betaine der Formel I mit einer Carboxylatgruppe (Y-= COO-), heißen auch Carbobetaine.
  • Bevorzugte Betaine sind die Alkylbetaine der Formel (la), die Alkylamidobetaine der Formel (Ib), die Sulfobetaine der Formel (Ic) und die Amidosulfobetaine der Formel (Id),

            R1-N+(CH3)2-CH2COO-     (Ia)

            R1-CO-NH-(CH2)3-N+(CH3)2-CH2COO-     (Ib)

            R1-N+(CH3)2-CH2CH(OH)CH2SO3 -     (Ic)

            R1-CO-NH-(CH2)3-N+(CH3)2-CH2CH(OH)CH2SO3 -     (Id)

    in denen R1 die gleiche Bedeutung wie in Formel I hat.
  • Besonders bevorzugte Betaine sind die Carbobetaine, insbesondere die Carbobetaine der Formel (la) und (Ib), äußerst bevorzugt die Alkylamidobetaine der Formel (Ib).
  • Beispiele geeigneter Betaine und Sulfobetaine sind die folgenden gemäß INCI benannten Verbindungen: Almondamidopropyl Betaine, Apricotamidopropyl Betaine, Avocadamidopropyl Betaine, Babassuamidopropyl Betaine, Behenamidopropyl Betaine, Behenyl Betaine, Betaine, Canolamidopropyl Betaine, Capryl/Capramidopropyl Betaine, Carnitine, Cetyl Betaine, Cocamidoethyl Betaine, Cocamidopropyl Betaine, Cocamidopropyl Hydroxysultaine, Coco-Betaine, Coco-Hydroxysultaine, Coco/Oleamidopropyl Betaine, Coco-Sultaine, Decyl Betaine, Dihydroxyethyl Oleyl Glycinate, Dihydroxyethyl Soy Glycinate, Dihydroxyethyl Stearyl Glycinate, Dihydroxyethyl Tallow Glycinate, Dimethicone Propyl PG-Betaine, Erucamidopropyl Hydroxysultaine, Hydrogenated Tallow Betaine, Isostearamidopropyl Betaine, Lauramidopropyl Betaine, Lauryl Betaine, Lauryl Hydroxysultaine, Lauryl Sultaine, Milkamidopropyl Betaine, Minkamidopropyl Betaine, Myristamidopropyl Betaine, Myristyl Betaine, Oleamidopropyl Betaine, Oleamidopropyl Hydroxysultaine, Oleyl Betaine, Olivamidopropyl Betaine, Palmamidopropyl Betaine, Palmitamidopropyl Betaine, Palmitoyl Carnitine, Palm Kernelamidopropyl Betaine, Polytetrafluoroethylene Acetoxypropyl Betaine, Ricinoleamidopropyl Betaine, Sesamidopropyl Betaine, Soyamidopropyl Betaine, Stearamidopropyl Betaine, Stearyl Betaine, Tallowamidopropyl Betaine, Tallowamidopropyl Hydroxysultaine, Tallow Betaine, Tallow Dihydroxyethyl Betaine, Undecylenamidopropyl Betaine und Wheat Germamidopropyl Betaine. Ein bevorzugtes Betain ist beispielsweise Cocamidopropyl Betaine (Cocoamidopropylbetain).
  • Die Alkylamidoalkylamine (INCI Alkylamido Alkylamines) sind Amphotenside der Formel (III),

            R9-CO-NR10-(CH2)i-N(R11)-(CH2CH2O)j-(CH2)k-[CH(OH)]l-CH2-Z-OM     (III)

    in der
  • R9
    ein gesättigter oder ungesättigter C6-22-Alkylrest, vorzugsweise C8-18-Alkylrest, insbesondere ein gesättigter C10-16-Alkylrest, beispielsweise ein gesättigter C12-14-Alkylrest,
    R10
    ein Wasserstoffatom H oder ein C1-4-Alkylrest, vorzugsweise H,
    i
    eine Zahl von 1 bis 10, vorzugsweise 2 bis 5, insbesondere 2 oder 3,
    R11
    ein Wasserstoffatom H oder CH2COOM (zu M s.u.),
    j
    eine Zahl von 1 bis 4, vorzugsweise 1 oder 2, insbesondere 1,
    k
    eine Zahl von 0 bis 4, vorzugsweise 0 oder 1,
    I
    0 oder 1, wobei k = 1 ist, wenn I = 1 ist,
    Z
    CO, SOz, OPO(OR12) oder P(O)(OR12), wobei R12 ein C1-4-Alkylrest oder M (s.u.) ist, und
    M
    ein Wasserstoff, ein Alkalimetall, ein Erdalkalimetall oder ein protoniertes Alkanolamin, z.B. protoniertes Mono-, Di- oder Triethanolamin, ist.
  • Bevorzugte Vertreter genügen den Formeln Illa bis Illd,

            R9-CO-NH-(CH2)2-N(R11)-CH2CH2O-CH2-COOM     (IIIa)

            R9-CO-NH-(CH2)2-N(R11)-CH2CH2O-CH2CH2-COOM     (IIIb)

            R9-CO-NH-(CH2)2-N(R11)-CH2CH2O-CH2CH(OH)CH2-SO3M     (IIIc)

            R9-CO-NH-(CH2)2-N(R11)-CH2CH2O-CH2CH(OH)CH2-OPO3HM     (IIId)

    in denen R11 und M die gleiche Bedeutung wie in Formel (III) haben.
  • Beispielhafte Alkylamidoalkylamine sind die folgenden gemäß INCI benannten Verbindungen: Cocoamphodipropionic Acid, Cocobetainamido Amphopropionate, DEA-Cocoamphodipropionate, Disodium Caproamphodiacetate, Disodium Caproamphodipropionate, Disodium Capryloamphodiacetate, Disodium Capryloamphodipropionate, Disodium Cocoamphocarboxyethylhydroxypropylsulfonate, Disodium Cocoamphodiacetate, Disodium Cocoamphodipropionate, Disodium Isostearoamphodiacetate, Disodium Isostearoamphodipropionate, Disodium Laureth-5 Carboxyamphodiacetate, Disodium Lauroamphodiacetate, Disodium Lauroamphodipropionate, Disodium Oleoamphodipropionate, Disodium PPG-2-Isodeceth-7 Carboxyamphodiacetate, Disodium Stearoamphodiacetate, Disodium Tallowamphodiacetate, Disodium Wheatgermamphodiacetate, Lauroamphodipropionic Acid, Quaternium-85, Sodium Caproamphoacetate, Sodium Caproamphohydroxypropylsulfonate, Sodium Caproamphopropionate, Sodium Capryloamphoacetate, Sodium Capryloamphohydroxypropylsulfonate, Sodium Capryloamphopropionate, Sodium Cocoamphoacetate, Sodium Cocoamphohydroxypropylsulfonate, Sodium Cocoamphopropionate, Sodium Cornamphopropionate, Sodium Isostearoamphoacetate, Sodium Isostearoamphopropionate, Sodium Lauroamphoacetate, Sodium Lauroamphohydroxypropylsulfonate, Sodium Lauroampho PG-Acetate Phosphate, Sodium Lauroamphopropionate, Sodium Myristoamphacetate, Sodium Oleoamphoacetate, Sodium Oleoamphohydroxypropylsulfonate, Sodium Oleoamphopropionate, Sodium Ricinoleoamphoacetate, Sodium Stearoamphoacetate, Sodium Stearoamphohydroxypropylsulfonate, Sodium Stearoamphopropionate, Sodium Tallamphopropionate, Sodium Tallowamphoacetate, Sodium Undecylenoamphoacetate, Sodium Undecylenoamphopropionate, Sodium Wheat Germamphoacetate und Trisodium Lauroampho PG-Acetate Chloride Phosphate.
  • Erfindungsgemäß bevorzugte alkylsubstituierte Aminosäuren (INCI Alkyl-Substituted Amino Acids) sind monoalkylsubstituierte Aminosäuren gemäß Formel (IV),

            R13-NH-CH(R14)-(CH2)u-COOM'     (IV)

    in der
  • R13
    ein gesättigter oder ungesättigter C6-22-Alkylrest, vorzugsweise C8-18-Alkylrest, insbesondere ein gesättigter C10-16-Alkylrest, beispielsweise ein gesättigter C12-14-Alkylrest,
    R14
    ein Wasserstoffatom H oder ein C1-4-Alkylrest, vorzugsweise H,
    u
    eine Zahl von 0 bis 4, vorzugsweise 0 oder 1, insbesondere 1, und
    M'
    ein Wasserstoff, ein Alkalimetall, ein Erdalkalimetall oder ein protoniertes Alkanolamin, z.B. protoniertes Mono-, Di- oder Triethanolamin, ist,
    alkylsubstituierte Iminosäuren gemäß Formel (V),

            R15-N-[(CH2)v-COOM"]2     (V)

    in der
    R15
    ein gesättigter oder ungesättigter C6-22-Alkylrest, vorzugsweise C8-18-Alkylrest, insbesondere ein gesättigter C10-16-Alkylrest, beispielsweise ein gesättigter C12-14-Alkylrest,
    v
    eine Zahl von 1 bis 5, vorzugsweise 2 oder 3, insbesondere 2, und
    M"
    ein Wasserstoff, ein Alkalimetall, ein Erdalkalimetall oder ein protoniertes Alkanolamin, z.B. protoniertes Mono-, Di- oder Triethanolamin, wobei M" in den beiden Carboxygruppen die gleiche oder zwei verschiedene Bedeutungen haben kann, z.B. Wasserstoff und Natrium oder zweimal Natrium sein kann, ist,
    und mono- oder dialkylsubstituierte natürliche Aminosäuren gemäß Formel (VI),

            R16-N(R17)-CH(R18)-COOM‴     (VI)

    in der
    R16
    ein gesättigter oder ungesättigter C6-22-Alkylrest, vorzugsweise C8-18-Alkylrest, insbesondere ein gesättigter C10-16-Alkylrest, beispielsweise ein gesättigter C12-14-Alkylrest,
    R17
    ein Wasserstoffatom oder ein C1-4-Alkylrest, ggf. hydroxy- oder aminsubstituiert, z.B. ein Methyl-, Ethyl-, Hydroxyethyl- oder Aminpropylrest,
    R18
    den Rest einer der 20 natürlichen α-Aminosäuren H2NCH(R18)COOH, und
    M‴
    ein Wasserstoff, ein Alkalimetall, ein Erdalkalimetall oder ein protoniertes Alkanolamin, z.B. protoniertes Mono-, Di- oder Triethanolamin, ist.
  • Besonders bevorzugte alkylsubstituierte Aminosäuren sind die Aminopropionate gemäß Formel (IVa),

            R13-NH-CH2CH2COOM'     (IVa)

    in der R13 und M' die gleiche Bedeutung wie in Formel (IV) haben.
  • Beispielhafte alkylsubstituierte Aminosäuren sind die folgenden gemäß INCI benannten Verbindungen: Aminopropyl Laurylglutamine, Cocaminobutyric Acid, Cocaminopropionic Acid, DEA-Lauraminopropionate, Disodium Cocaminopropyl Iminodiacetate, Disodium Dicarboxyethyl Cocopropylenediamine, Disodium Lauriminodipropionate, Disodium Steariminodipropionate, Disodium Tallowiminodipropionate, Lauraminopropionic Acid, Lauryl Aminopropylglycine, Lauryl Diethylenediaminoglycine, Myristaminopropionic Acid, Sodium C12-15 Alkoxypropyl Iminodipropionate, Sodium Cocaminopropionate, Sodium Lauraminopropionate, Sodium Lauriminodipropionate, Sodium Lauroyl Methylaminopropionate, TEA-Lauraminopropionate und TEA-Myristaminopropionate.
  • Acylierte Aminosäuren sind Aminosäuren, insbesondere die 20 natürlichen α-Aminosäuren, die am Aminostickstoffatom den Acylrest R19CO einer gesättigten oder ungesättigen Fettsäure R19COOH tragen, wobei R19 ein gesättigter oder ungesättigter C6-22-Alkylrest, vorzugsweise C8-18-Alkylrest, insbesondere ein gesättigter C10-16-Alkylrest, beispielsweise ein gesättigter C12-14-Alkylrest ist. Die acylierten Aminosäuren können auch als Alkalimetallsalz, Erdalkalimetallsalz oder Alkanolammoniumsalz, z.B. Mono-, Di- oderTriethanolammoniumsalz, eingesetzt werden. Beispielhafte acylierte Aminosäuren sind die gemäß INCI unter Amino Acids zusammengefassten Acylderivate, z.B. Sodium Cocoyl Glutamate, Lauroyl Glutamic Acid, Capryloyl Glycine oder Myristoyl Methylalanine.
  • In einer besonderen Ausführungsform der Erfindung wird eine Kombination aus zwei oder mehr verschiedenen Amphotensiden, insbesondere eine binäre Amphotensidkombination eingesetzt.
  • Die Amphotensidkombination enthält vorzugsweise mindestens ein Betain, insbesondere mindestens ein Alkylamidobetain, besonders bevorzugt Cocoamidopropylbetain.
  • Weiterhin enthält die Amphotensidkombination vorzugsweise mindestens ein amphoteres Tensid aus der Gruppe umfassend Natriumcarboxyethylkokosphosphoethylimidazolin (Phosphoteric® TC-6), C8/10-Amidopropylbetain (INCI Capryl/Capramidopropyl Betaine; Tego® Betaine 810), N-2-Hydroxyethyl-N-carboxymethyl-fettsäureamido-ethylamin-Na (Rewoteric® AMV) und N-Capryl/Caprin-amidoethyl-N-ethylether-propionat-Na (Rewoteric® AMVSF) sowie das Betain 3-(3-Cocoamido-propyl)-dimethylammonium-2-hydroxypropansulfonat (INCI Sultaine; Rewoteric® AM CAS) und das Alkylamidoalkylamin N-[N'(N"-2-Hydroxyethyl-N"-carboxyethylaminoethyl)-essigsäureamido]-N,N-dimethyl-N-cocos-ammoniumbetain (Rewoteric® QAM 50), insbesondere zusammen mit Cocoamidopropylbetain.
  • In einer bevorzugten Ausführungsform enthält das erfindungsgemäße Mittel eine Tensidkombination aus mindestens einem anionischen Tensid und mindestens einem, amphoteren Tensid. Dabei liegen diese Tenside vorzugsweise in einem Massenverhältnis von 10:1 bis 1:5, vorzugsweise von 5:1 bis 2:1, insbesondere bevorzugt von 4:1 vor. Vorzugsweise umfasst das mindestens eine anionische Tensid mindestens ein Alkylethersulfat und das mindestens eine amphotere Tensid mindestens ein Betain-Tensid.
  • Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, zum Beispiel aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-14-Alkohole mit 3 EO, 4 EO oder 7 EO, C9-11-Alkohol mit 7 EO, C13-15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-14-Alkohol mit 3 EO und C12-18-Alkohol mit 7 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Talgfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO. Auch nichtionische Tenside, die EO- und PO-Gruppen zusammen im Molekül enthalten, sind erfindungsgemäß einsetzbar. Insbesondere bevorzugt enthält die Flüssigkeit einen C12-18-Fettalkohol mit 7 EO oder einen C13-15-Oxoalkohol mit 7 EO als nichtionisches Tensid.
  • Nichtionische Tenside im Rahmen der Erfindung sind Alkoxylate, aber auch Alkylphenolpolyglykolether, endgruppenverschlossene Polyglykolether, Mischether und Hydroxymischether und Fettsäurepolyglykolester. Ebenfalls geeignet sind Blockpolymere aus Ethylenoxid und Propylenoxid sowie Fettsäurealkanolamide und Fettsäurepolyglykolether. Wichtige Klassen erfindungsgemäßer nichtionischer Tenside sind weiterhin die Aminoxide und die Zuckertenside, insbesondere die Alkylpolyglucoside.
  • Zu den erfindungsgemäß geeigneten Aminoxiden gehören Alkylaminoxide, insbesondere Alkyldimethylaminoxide, Alkylamidoaminoxide und Alkoxyalkylaminoxide. Bevorzugte Aminoxide genügen Formel II,

            R6R7R8N+-O-     (II)

            R6-[CO-NH-(CH2)w]z-N+(R7)(R8)-O-     (II)

    in der
  • R6
    ein gesättiger oder ungesättigter C6-22-Alkylrest, vorzugsweise C8-18-Alkylrest, insbesondere ein gesättigter C10-16-Alkylrest, beispielsweise ein gesättigter C12-14-Alkylrest, der in den Alkylamidoaminoxiden über eine Carbonylamidoalkylengruppe -CO-NH-(CH2)z- und in den Alkoxyalkylaminoxiden über eine Oxaalkylengruppe -O-(CH2)z- an das Stickstoffatom N gebunden ist, wobei z jeweils für eine Zahl von 1 bis 10, vorzugsweise 2 bis 5, insbesondere 3,
    R7, R8
    unabhängig voneinander ein C1-4-Alkylrest, ggf. hydroxysubstituiert wie z.B. ein Hydroxyethylrest, insbesondere ein Methylrest, ist.
  • Beispiele geeigneter Aminoxide sind die folgenden gemäß INCI benannten Verbindungen: Almondamidopropylamine Oxide, Babassuamidopropylamine Oxide, Behenamine Oxide, Cocamidopropyl Amine Oxide, Cocamidopropylamine Oxide, Cocamine Oxide, Coco-Morpholine Oxide, Decylamine Oxide, Decyltetradecylamine Oxide, Diaminopyrimidine Oxide, Dihydroxyethyl C8-10 Alkoxypropylamine Oxide, Dihydroxyethyl C9-11 Alkoxypropylamine Oxide, Dihydroxyethyl C12-15 Alkoxypropylamine Oxide, Dihydroxyethyl Cocamine Oxide, Dihydroxyethyl Lauramine Oxide, Dihydroxyethyl Stearamine Oxide, Dihydroxyethyl Tallowamine Oxide, Hydrogenated Palm Kernel Amine Oxide, Hydrogenated Tallowamine Oxide, Hydroxyethyl Hydroxypropyl C12-15 Alkoxypropylamine Oxide, Isostearamidopropylamine Oxide, Isostearamidopropyl Morpholine Oxide, Lauramidopropylamine Oxide, Lauramine Oxide, Methyl Morpholine Oxide, Milkamidopropyl Amine Oxide, Minkamidopropylamine Oxide, Myristamidopropylamine Oxide, Myristamine Oxide, Myristyl/Cetyl Amine Oxide, Oleamidopropylamine Oxide, Oleamine Oxide, Olivamidopropylamine Oxide, Palmitamidopropylamine Oxide, Palmitamine Oxide, PEG-3 Lauramine Oxide, Potassium Dihydroxyethyl Cocamine Oxide Phosphate, Potassium Trisphosphonomethylamine Oxide, Sesamidopropylamine Oxide, Soyamidopropylamine Oxide, Stearamidopropylamine Oxide, Stearamine Oxide, Tallowamidopropylamine Oxide, Tallowamine Oxide, Undecylenamidopropylamine Oxide und Wheat Germamidopropylamine Oxide. Bevorzugte Aminoxide sind beispielsweise Cocamidopropylamine Oxide (Cocoamidopropylaminoxid), aber auch N-Kokosalkyl-N,N-dimethylaminoxid, N-Talgalkyl-N,N-dihydroxyethylaminoxid, Myristylcetyldimethylaminoxid oder Lauryldimethylaminoxid.
  • Zuckertenside sind bekannte oberflächenaktive Verbindungen, zu denen beispielsweise die Zuckertensidklassen der Alkylglucoseester, Aldobionamide, Gluconamide (Zuckersäureamide), Glycerinamide, Glyceringlykolipide, Polyhydroxyfettsäureamidzuckertenside (Zuckeramide) und Alkylpolyglykoside zählen. Im Rahmen der erfindungsgemäßen Lehre bevorzugte Zuckertenside sind die Alkylpolyglykoside und die Zuckeramide sowie deren Derivate, insbesondere ihre Ether und Ester. Bei den Ethern handelt es sich um die Produkte der Reaktion einer oder mehrerer, vorzugsweise einer, Zuckerhydroxygruppe mit einer eine oder mehrere Hydroxygruppen enthaltenden Verbindung, beispielsweise C1-22-Alkoholen oder Glykolen wie Ethylen- und/oder Propylenglykol, wobei die Zuckerhydroxygruppe auch Polyethylenglykol- und/oder Polypropylenglykolreste tragen kann. Die Ester sind die Reaktionsprodukte einer oder mehrerer, vorzugsweise einer, Zuckerhydroxygruppe mit einer Carbonsäure, insbesondere einer C6-22-Fettsäure.
  • Besonders bevorzugte Zuckeramide genügen der Formel R'C(O)N(R")[Z], in der R' für einen linearen oder verzweigten, gesättigten oder ungesättigten Acylrest, vorzugsweise einen linearen ungesättigten Acylrest, mit 5 bis 21, vorzugsweise 5 bis 17, insbesondere 7 bis 15, besonders bevorzugt 7 bis 13 Kohlenstoffatomen, R" für einen linearen oder verzweigten, gesättigten oder ungesättigten Alkylrest, vorzugsweise einen linearen ungesättigten Alkylrest, mit 6 bis 22, vorzugsweise 6 bis 18, insbesondere 8 bis 16, besonders bevorzugt 8 bis 14 Kohlenstoffatomen, einen C1-5-Alkylrest, insbesondere einen Methyl-, Ethyl-, Propyl-, Isopropyl-, n-Butyl-, Isobutyl-, tert-Butyl- oder n-Pentylrest, oder Wasserstoff und Z für einen Zuckerrest, d.h. einen Monosaccharidrest, stehen. Besonders bevorzugte Zuckeramide sind die Amide der Glucose, die Glucamide, beispielsweise Lauroyl-methyl-glucamid.
  • Die Alkylpolyglykoside (APG) sind im Rahmen der erfindungsgemäßen Lehre besonders bevorzugte Zuckertenside und genügen vorzugsweise der allgemeinen Formel RiO(AO)a[G]x, in der Ri für einen linearen oder verzweigten, gesättigten oder ungesättigten Alkylrest mit 6 bis 22, vorzugsweise 6 bis 18, insbesondere 8 bis 16, besonders bevorzugt 8 bis 14 Kohlenstoffatomen, [G] für einen glykosidisch verknüpften Zuckerrest und x für eine Zahl von 1 bis 10 sowie AO für eine Alkylenoxygruppe, z.B. eine Ethylenoxy- oder Propylenoxygruppe, und a für den mittleren Alkoxylierungsgrad von 0 bis 20 stehen. Hierbei kann die Gruppe (AO)a auch verschiedene Alkylenoxyeinheiten enthalten, z.B. Ethylenoxy- oder Propylenoxyeinheiten, wobei es sich dann bei a um den mittleren Gesamtalkoxylierungsgrad, d.h. die Summe aus Ethoxylierungs- und Propoxylierungsgrad, handelt. Soweit nachfolgend nicht näher bzw. anders ausgeführt, handelt es sich bei den Alkylresten Ri der APG um lineare ungesättigte Reste mit der angegebenen Zahl an Kohlenstoffatomen.
  • APG sind nichtionische Tenside und stellen bekannte Stoffe dar, die nach den einschlägigen Verfahren der präparativen organischen Chemie erhalten werden können. Die Indexzahl x gibt den Oligomerisierungsgrad (DP-Grad) an, d.h. die Verteilung von Mono- und Oligoglykosiden, und steht für eine Zahl zwischen 1 und 10. Während x in einer gegebenen Verbindung stets ganzzahlig sein muss und hier vor allem die Werte x = 1 bis 6 annehmen kann, ist der Wert x für ein bestimmtes Alkylglykosid eine analytisch ermittelte rechnerische Größe, die meistens eine gebrochene Zahl darstellt. Vorzugsweise werden Alkylglykoside mit einem mittleren Oligomerisierungsgrad x von 1,1 bis 3,0 eingesetzt. Aus anwendungstechnischer Sicht sind solche Alkylglykoside bevorzugt, deren Oligomerisierungsgrad kleiner als 1,7 ist und insbesondere zwischen 1,2 und 1,6 liegt. Als glykosidischer Zucker wird vorzugsweise Xylose, insbesondere aber Glucose verwendet.
  • Der Alkyl- bzw. Alkenylrest Ri kann sich von primären Alkoholen mit 8 bis 18, vorzugsweise 8 bis 14 Kohlenstoffatomen ableiten. Typische Beispiele sind Capronalkohol, Caprylalkohol, Caprinalkohol und Undecylalkohol sowie deren technische Gemische, wie sie beispielsweise im Verlauf der Hydrierung von technischen Fettsäuremethylestern oder im Verlauf der Hydrierung von Aldehyden aus der ROELENschen Oxosynthese anfallen.
  • Vorzugsweise leitet sich der Alkyl- bzw. Alkenylrest Ri aber von Laurylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol oder Oleylalkohol ab. Weiterhin sind Elaidylalkohol, Petroselinylalkohol, Arachidylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol sowie deren technische Gemische zu nennen.
  • Besonders bevorzugte APG sind nicht alkoxyliert (a = 0) und genügen Formel RO[G]x, in der R wie zuvor für einen linearen oder verzweigten, gesättigten oder ungesättigten Alkylrest mit 4 bis 22 Kohlenstoffatomen, [G] für einen glykosidisch verknüpften Zuckerrest, vorzugsweise Glucoserest, und x für eine Zahl von 1 bis 10, bevorzugt 1,1 bis 3, insbesondere 1,2 bis 1,6, stehen. Dementsprechend bevorzugte Alkylpolyglykoside sind beispielsweise C8-10- und ein C12-14-Alkylpolyglucosid mit einem DP-Grad von 1,4 oder 1,5, insbesondere C8-10- Alkyl-1,5-glucosid und C12-14-Alkyl-1,4-glucosid.
  • Das erfindungsgemäße Mittel kann zusätzlich ein oder mehrere kationische Tenside (Kationtenside; INCI Quaternary Ammonium Compounds) enthalten.
  • Bevorzugte kationische Tenside sind die quaternären oberflächenaktiven Verbindungen, insbesondere mit einer Ammonium-, Sulfonium-, Phosphonium-, Jodonium- oder Arsoniumgruppe, die auch als antimikrobielle Wirkstoffe bekannt sind. Durch den Einsatz von quaternären oberflächenaktiven Verbindungen mit antimikrobieller Wirkung kann das Mittel mit einer antimikrobiellen Wirkung ausgestaltet werden bzw. dessen gegebenenfalls aufgrund anderer Inhaltsstoffe bereits vorhandene antimikrobielle Wirkung verbessert werden.
  • Besonders bevorzugte kationische Tenside sind die quaternären Ammoniumverbindungen (QAV; INCI Quaternary Ammonium Compounds) gemäß der allgemeinen Formel (RI)(RII(RIII)(RIV)N+ X-, in der RI bis RIV gleiche oder verschiedene C1-22-Alkylreste, C7-28-Aralkylreste oder heterozyklische Reste, wobei zwei oder im Falle einer aromatischen Einbindung wie im Pyridin sogar drei Reste gemeinsam mit dem Stickstoffatom den Heterozyklus, z.B. eine Pyridinium- oder Imidazoliniumverbindung, bilden, darstellen und X- Halogenidionen, Sulfationen, Hydroxidionen oder ähnliche Anionen sind. Für eine optimale antimikrobielle Wirkung weist vorzugsweise wenigstens einer der Reste eine Kettenlänge von 8 bis 18, insbesondere 12 bis 16, C-Atomen auf.
  • QAV sind durch Umsetzung tertiärer Amine mit Alkylierungsmitteln, wie z.B. Methylchlorid, Benzylchlorid, Dimethylsulfat, Dodecylbromid, aber auch Ethylenoxid herstellbar. Die Alkylierung von tertiären Aminen mit einem langen Alkyl-Rest und zwei Methyl-Gruppen gelingt besonders leicht, auch die Quaternierung von tertiären Aminen mit zwei langen Resten und einer Methyl-Gruppe kann mit Hilfe von Methylchlorid unter milden Bedingungen durchgeführt werden. Amine, die über drei lange Alkyl-Reste oder Hydroxy-substituierte Alkyl-Reste verfügen, sind wenig reaktiv und werden bevorzugt mit Dimethylsulfat quaterniert.
  • Geeignete QAV sind beispielsweise Benzalkoniumchlorid (N-Alkyl-N,N-dimethyl-benzylammoniumchlorid, CAS No. 8001-54-5), Benzalkon B (m,p-Dichlorbenzyl-dimethyl-C12-alkylammoniumchlorid, CAS No. 58390-78-6), Benzoxoniumchlorid (Benzyl-dodecyl-bis-(2-hydroxyethyl)-ammoniumchlorid), Cetrimoniumbromid (N-Hexadecyl-N,N-trimethyl-ammoniumbromid, CAS No. 57-09-0), Benzetoniumchlorid (N,N-Dimethyl-N-[2-[2-[p-(1,1,3,3-tetramethylbutyl)phenoxy]ethoxy]ethyl]-benzylammoniumchlorid, CAS No. 121-54-0), Dialkyldimethylammoniumchloride wie Di-n-decyldimethyl-ammoniumchlorid (CAS No. 7173-51-5-5), Didecyldimethylammoniumbromid (CAS No. 2390-68-3), Dioctyl-dimethyl-ammoniumchlorid, 1-Cetylpyridiniumchlorid (CAS No. 123-03-5) und Thiazolinjodid (CAS No. 15764-48-1) sowie deren Mischungen. Bevorzugte QAV sind die Benzalkoniumchloride mit C8-C18-Alkylresten, insbesondere C12-C14-Alkyl-benzyl-dimethylammoniumchlorid. Eine besonders bevorzugte QAV ist das Kokospentaethoxymethylammoniummethosulfat (INCI PEG-5 Cocomonium Methosulfate; Rewoquat® CPEM).
  • Zur Vermeidung möglicher Inkompatibilitäten der kationischen Tenside mit den anionischen Tensiden können aniontensidverträgliches und/oder möglichst wenig kationisches Tensid eingesetzt oder in einer besonderen Ausführungsform der Erfindung gänzlich auf kationische Tenside verzichtet. In einer bevorzugten Ausführungsform ist das erfindungsgemäße Mittel frei von kationischen und nichtionischen Tensiden.
  • Vorteilhafterweise ist die abzufüllende Partikel- und Tensid-haltige Flüssigkeit als Handgeschirrspülmittel, insbesondere als ein Handgeschirrspülmittel mit einem Schaumvermögen von mindestens 250 mL, gemessen nach der DIN-Methode 53 902, Teil 2 (Ross-Miles-Test), vorzugsweise von mindestens 300 mL ausgebildet. Das Schaumverhalten der Flüssigkeit kann beispielsweise durch deren Tensidgehalt beeinflusst werden.
  • Die abzufüllende Flüssigkeit enthält als weiteren Bestandteil Partikel. Bei diesen Partikeln kann es sich beispielsweise um Abrasivpartikel oder Wirkstoffpartikel handeln. Vorzugsweise weist die Partikel- und Tensid-haltige Flüssigkeit eine Partikelkonzentration von 0,1 bis 10 Vol.-%, vorzugsweise von 0,2 bis 5 Vol.-% und insbesondere von 0,3 und 2,0 Vol.-% auf.
  • Aus ästhetischen Gesichtspunkten sind Flüssigkeiten bevorzugt, deren Partikel zu mindestens 50 Gew.-%, bevorzugt mindestens 70 Gew.-% und insbesondere mindestens 90 Gew.-% einen maximalen Durchmesser von 10 bis 2000 µm, vorzugsweise von 50 bis 1500 µm und insbesondere von 100 bis 1200 µm aufweisen.
  • Bevorzugte Abrasivpartikel weisen eine spezifische Dichte von 0,1 bis 4, vorzugsweise von 0,5 bis 2 auf. Diese vergleichsweise geringe spezifische Dichte erleichtert die gleichmäßige und stabile Verteilung der Partikel in der Flüssigkeit und trägt damit zu einem attraktiven optischen Erscheinungsbild der fertig konfektionierten Flüssigkeit bei. Die spezifische Dichte, welche auch als relative Dichte bezeichnet wird, beschreibt als dismensionsloses Größenverhältnis den Quotienten zweier Dichten. Dabei werden die Dichteangaben üblicherweise bezogen auf die Dichte von reinem Wasser im Normzustand bei 3,98 °C. Die spezifische Dichte des Abrasivstoffs beträgt bevorzugt größer 0,1, insbesondere von 0,1 bis 4, vorzugsweise 0,2 bis 3,5, bevorzugt 0, 3 bis 3, besonders bevorzugt 0,4 bis 2,5 und ganz besonders bevorzugt 0,5 bis 2.
  • Die Mohshärte der Partikel beträgt vorzugsweise 4 bis 6, insbesondere 5 bis 6.
  • Besonders bevorzugte Abrasivpartikel bestehen aus geblähtem Glas, vorzugsweise geblähtem vulkanischem Glas, insbesondere aus geblähtem Obsidian, welches in geblähter Form als Perlit bezeichnet wird.
  • In einer besonders bevorzugten Ausführungsform besteht der Abrasivpartikel Bimsstein, ein poröses glasiges Vulkangestein. Es wurde festgestellt, dass Bimsstein sehr gute Abrasiveigenschaften aufweist und als Naturstoff eine hohe Umweltverträglichkeit aufweist. Ferner dient Bimsstein durch seine hohe Porosität als ausgezeichneter Träger für Duftstoffe und Farbstoffe.
  • Die Abrasivpartikel weisen vorzugsweise keine runde Form auf. Bestimmt man einen Partikelformfaktor, der das Seitenverhältnis von Partikeln zueinander definiert, so würde ein Wert von 1 für eine perfekte runde Form und ein Wert von 0 für eine Linearform stehen. Bevorzugte Abrasivpartikel weisen einen Partikelformfaktor von 0,1 bis 0,97, insbesondere von 0,15 bis 0,9, insbesondere von 0,20 bis 0,80, vorzugsweise von 0,3 bis 0,70 oder bis 0,60 auf, insbesondere Werte von 0,30 oder 0,40 bis 0,50 sind bevorzugt.
  • Als Wirkstoffpartikel werden vorzugsweise insbesondere verkapselte Wirkstoffe, vorzugsweise Duftstoffkapseln eingesetzt. Verkapselte Wirkstoffe sind gegenüber mechanischer Belastung in besonderer Weise anfällig und für sie hat das erfindungsgemäße Verfahren besondere Relevanz. Bei den Duftstoffkapseln kann es sich um wasserlösliche und/oder wasserunlösliche Kapseln handeln. Es können beispielsweise Melamin-Harnstoff-Formaldehyd-Mikrokapseln, Melamin-Formaldehyd-Mikrokapseln, Harnstoff-Formaldehyd-Mikrokapseln oder Stärke-Mikrokapseln eingesetzt werden.
  • Die technischen Vorteile des erfindungsgemäßen Verfahrens kommen insbesondere bei der Konfektionierung transparenter Partikel- und Tensid-haltiger Flüssigkeiten zum Tragen. Unter "Transparenz der Flüssigkeit" im Sinne der vorliegenden Erfindung wird dabei ein Trübungswert der erfindungsgemäßen Zusammensetzungen von maximal 150 NTU, mehr bevorzugt von maximal 100 NTU und insbesondere von maximal 50 NTU verstanden. Die Transparenz einer Zusammensetzung kann nach bekannten Verfahren durch ihre Trübung bestimmt werden, wobei der ermittelte NTU-Wert (nephelometric turbidity unit) das Maß der Trübung angibt. Bevorzugt ist eine Transparenz der Flüssigkeit von 5 bis 50 NTU, insbesondere 10 bis 25 NTU. Trübungsmessungen können mit einem Turbidimeter (beispielsweise der Firma Hach) bei 20°C bis 25°C durchgeführt werden.
  • Bevorzugt ist der optische Eindruck des Partikel-haltigen Mittel derjenige von einzelnen in einer klaren Flüssigkeit stabil suspendierten, undurchsichtigen Partikeln. Diese Partikel können dabei ebenso wie das sie umgebende Flüssigkeit beliebige Farben annehmen, wobei Flüssigkeit und Partikel gleich oder unterschiedlich gefärbt sein können.
  • Zur physikalischen Stabilisierung der Partikel in der Flüssigkeit und zur Gewährleistung eines attraktiven Erscheinungsbildes weist die Partikel-freie Flüssigkeit eine Fließgrenze von 0,1 und 10 Pa, bevorzugt von 0,3 und 5 Pa und insbesondere von 1 und 3 Pa auf. Die Fließgrenze der Flüssigkeit kann beispielsweise mittels eines Rotationsrheometer der Firma TA-Instruments, Typ AR G2 (schubspannungskontrolliertes Rheometer, Kegel-Platte Messsystem mit 40 mm Durchmesser, 2° Kegelwinkel, 20°C) gemessen werden.
  • Das erfindungsgemäße Verfahren hat sich im Hinblick auf die Vermeidung des Gaseintrags und des Partikelabriebs sowie in Bezug auf die homogene Partikelverteilung im Flüssigkeitsvolumen nach Abfüllung für solche Partikel-freien Flüssigkeiten als vorteilhaft erwiesen, die eine Viskosität (20°C, Texas Instruments AR-G2 Rheometer; Platte/Platte, 4cm Durchmesser, 1100µm Spalte; Scherrate 10/1sec) oberhalb 2000 mPas, insbesondere oberhalb 3000 mPas und ganz besonders bevorzugt oberhalb 4000 mPas aufweisen.
  • Verfahren nach einem der vorherigen Punkte, wobei die Partikel-haltige Flüssigkeit zum Zeitpunkt der Abfüllung in den Schritten c) und d) eine Temperatur von 5 und 60°C, vorzugsweise von 12 und 40°C und insbesondere von 20 und 30°C aufweist.
  • Kennzeichnend für den Schritt c) des Verfahrens ist das wenigstens anteilsweise Eintauchen der Austrittsöffnung des Füllstutzens in die Partikel- und Tensid-haltige Flüssigkeit im Inneren des Behälters. Dies wird erreicht, indem der Füllstutzen zuvor durch die Deckelöffnung in den Behälter eingeführt und nachfolgend ein erstes Volumen der Partikel- und Tensid-haltigen Flüssigkeit durch die Austrittsöffnung des Füllstutzens in den Behälter eingebracht wird. Durch das wenigstens anteilsweise Eintauchen des Füllstutzens in die Flüssigkeit wird der Gaseintrag und die mechanische Belastung vermindert und weiterhin die homogene Verteilung der Partikel innerhalb des Flüssigkeitsvolumens des befüllten Behälters gewährleistet. Zur weiteren Steigerung dieser technischen Effekte ist es bevorzugt, dass die Partikel-haltige Flüssigkeit in Schritt c) bis zu einem Füllstand der Partikel- und Tensid-haltigen Flüssigkeit in dem Behälter eingebracht wird, bei welchem die Austrittsöffnung des Füllstutzens vollständig in die Partikel-haltige Flüssigkeit eintaucht.
  • Der Fülldruck mittels dessen die Partikel- und Tensid-haltige Flüssigkeit in den Schritten c) und/oder d) in den Behälter eingefüllt wird, beträgt bevorzugt von 0,01 bis 5 bar, vorzugsweise von 0,1 bis 3 bar und insbesondere von 0, 2 und 2 bar. Mittels dieser besonders geeigneten Fülldrucke ist es möglich, den Gaseintrag in die Flüssigkeit und die mechanische Belastung der Partikel bei der Abfüllung noch weiter zu minimieren.
  • Die Partikel-haltige Flüssigkeit wird vorzugsweise mit einer Füllgeschwindigkeit von 0,05 bis 10 l/s, bevorzugt von 0,1 bis 2 l/s und insbesondere von 0,12 bis 0,4 l/s in den Behälter eingefüllt. Die Füllgeschwindigkeit wird vorzugsweise konstant gehalten, das heißt, die Füllgeschwindigkeit schwankt vorzugsweise um nicht mehr als 20%, besonders bevorzugt um nicht mehr als 10% um die durchschnittliche Füllgeschwindigkeit.
  • Ebenso wie der Fülldruck kann auch die Füllgeschwindigkeit im Verlaufe des Verfahrens variieren. Als in Bezug auf den Gaseintrag, die mechanische Belastung der Partikel, die homogene Partikelverteilung und die Verfahrenseffizienz vorteilhaft hat es sich erwiesen, die Füllgeschwindigkeit zu erhöhen, nachdem die Austrittsöffnung des Füllstutzens vollständig in die Partikel-haltige Flüssigkeit eintaucht ist.
  • In Schritt d) des Verfahrens wird weitere Partikel- und Tensid-haltige Flüssigkeit durch die Austrittsöffnung des Füllstutzens in den Behälter eingebracht, während gleichzeitig der Füllstutzen durch die Deckelöffnung aus dem Behälter ausgeführt wird. Die relative Aufwärtsgeschwindigkeit oder Ausführgeschwindigkeit des Füllstutzens variiert. Die Variation der Ausführgeschwindigkeit bietet insbesondere bei Behältern mit einer über die Höhe des Behälters variierende Querschnittsfläche Vorteile. Verfahren, bei denen die Ausführgeschwindigkeit des Füllstutzens in Schritt d) in Abhängigkeit von der Querschnittsfläche des Behälters auf Höhe des Flüssigkeitspegels variiert, bieten weitere Vorteile in Bezug auf die Minderung des Gaseintrags, die mechanische Belastung der Partikel und deren homogene Verteilung im Flüssigkeitsvolumen. Besonders bevorzugt sind insbesondere solche Verfahrensvarianten, bei denen
    1. a) die Ausführgeschwindigkeit des Füllstutzens in Schritt d) bei abnehmender Querschnittsfläche des Behälters auf Höhe des Flüssigkeitspegels zunimmt;
    2. b) die Ausführgeschwindigkeit des Füllstutzens in Schritt d) bei zunehmender Querschnittsfläche des Behälters auf Höhe des Flüssigkeitspegels abnimmt.
  • Im Verlaufe der relativen Aufwärtsbewegung oder Ausführbewegung des Füllstutzens ist die Austrittsöffnung des Füllstutzens wenigstens anteilsweise, vorzugsweise vollständig in der Partikel- und Tensid-haltigen Flüssigkeit eingetaucht.
  • Entsprechende Verfahren, bei denen die Austrittsöffnung des Füllstutzens in der Weise aus dem Behälter ausgeführt wird, dass die Austrittsöffnung des Füllstutzens während des Einbringens weiterer Partikel-haltiger Flüssigkeit vollständig in der Partikel- und Tensid-haltigen Flüssigkeit eintaucht, sind aufgrund ihrer Vorteile bei Gaseintrag, mechanischer Partikelbelastung und homogener Partikelverteilung bevorzugt.
  • Der Endpunkt der Befüllung wird vorzugsweise durch Messung des Füllgewichts und/oder durch Messung des Füllvolumens bestimmt.
  • Um nach der Befüllung des Behälters ein Nachtropfen der Flüssigkeit aus dem Füllstutzen zu verhindern wird in einer bevorzugten Ausführungsform des Verfahrens in einem weiteren Schritt g) zwischen die Austrittsöffnung des Füllstutzens und die Deckelöffnung des Behälters ein Tropfblech eingefahren.

Claims (8)

  1. Verfahren, umfassend:
    a) Bereitstellen eines Behälters mit einer Deckelöffnung;
    b) Einführen eines, mit einer Austrittsöffnung versehenen Füllstutzens durch die Deckelöffnung in den Behälter;
    c) Einbringen einer Partikel- und Tensid-haltigen Flüssigkeit durch die Austrittsöffnung des Füllstutzens in den Behälter bis zu einem Füllstand der Partikel- und Tensid-haltigen Flüssigkeit in dem Behälter, bei welchem die Austrittsöffnung des Füllstutzens wenigstens anteilsweise in die Partikel-haltige Flüssigkeit eintaucht;
    d) Einbringen weiterer Partikel- und Tensid-haltiger Flüssigkeit durch die Austrittsöffnung des Füllstutzens in den Behälter und gleichzeitiges Ausführen des Füllstutzens durch die Deckelöffnung aus dem Behälter, wobei die Austrittsöffnung des Füllstutzens während des Einbringens weiterer Partikel- und Tensid-haltiger Flüssigkeit wenigstens anteilsweise in der Partikel- und Tensid-haltigen Flüssigkeit eintaucht;
    e) Beenden der Befüllung des Behälters bei einem Füllstand unterhalb der Deckelöffnung des Behälters;
    f) vollständiges Ausführen des Füllstutzens aus dem Behälter;
    wobei
    - die Partikel-freie Flüssigkeit eine Fließgrenze von 0,1 bis 10 Pa aufweist und
    - der Behälter eine über seine Höhe variierende horizontale Querschnittsfläche aufweist,
    - wobei die horizontale Querschnittsfläche des Behälters über seine Höhe um 10 bis 40%, variiert,
    - und die Ausführgeschwindigkeit des Füllstutzens in Schritt d) in Abhängigkeit von der Querschnittsfläche des Behälters auf Höhe des Flüssigkeitspegels variiert.
  2. Verfahren nach einem der vorherigen Ansprüche, wobei der Füllstutzen auf einer Länge von mindestens 50% der Höhe des Behälters, vorzugsweise von mindestens 80% der Höhe des Behälters und insbesondere von mindestens 90% der Höhe des Behälters in den Behälter eingeführt wird.
  3. Verfahren nach einem der vorherigen Ansprüche, wobei mindestens 50 Gew.-%, bevorzugt mindestens 70 Gew.-% und insbesondere mindestens 90 Gew.-% der Partikel einen maximalen Durchmesser von 10 bis 2000 µm, vorzugsweise von 50 bis 1500 µm und insbesondere von 100 bis 1200 µm aufweisen.
  4. Verfahren nach einem der vorherigen Ansprüche, wobei die Partikel-haltige Flüssigkeit eine Partikelkonzentration von 0,1 bis 10 Vol.-%, vorzugsweise von 0,2 bis 5 Vol.-% und insbesondere von 0,3 und 2,0 Vol.-% aufweist.
  5. Verfahren nach einem der vorherigen Ansprüche, wobei die Füllgeschwindigkeit erhöht wird, nachdem die Austrittsöffnung des Füllstutzens vollständig in die Partikel-haltige Flüssigkeit eintaucht ist.
  6. Verfahren nach einem der vorherigen Ansprüche, wobei die Ausführgeschwindigkeit des Füllstutzens in Schritt d) bei abnehmender Querschnittsfläche des Behälters auf Höhe des Flüssigkeitspegels zunimmt.
  7. Verfahren nach einem der vorherigen Ansprüche, wobei die Ausführgeschwindigkeit des Füllstutzens in Schritt d) bei zunehmender Querschnittsfläche des Behälters auf Höhe des Flüssigkeitspegels abnimmt.
  8. Verfahren nach einem der vorherigen Ansprüche, wobei die Austrittsöffnung des Füllstutzens in der Weise aus dem Behälter ausgeführt wird, dass die Austrittsöffnung des Füllstutzens während des Einbringens weiterer Partikel-haltiger Flüssigkeit vollständig in der Partikel- und Tensid-haltigen Flüssigkeit eintaucht.
EP19177131.0A 2018-08-27 2019-05-28 Verfahren zur abfüllung einer partikel- und tensid-haltigen flüssigkeit Active EP3617081B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018214471.0A DE102018214471A1 (de) 2018-08-27 2018-08-27 Verfahren zur Abfüllung einer Partikel- und Tensid-haltigen Flüssigkeit

Publications (2)

Publication Number Publication Date
EP3617081A1 EP3617081A1 (de) 2020-03-04
EP3617081B1 true EP3617081B1 (de) 2023-05-31

Family

ID=66676284

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19177131.0A Active EP3617081B1 (de) 2018-08-27 2019-05-28 Verfahren zur abfüllung einer partikel- und tensid-haltigen flüssigkeit

Country Status (2)

Country Link
EP (1) EP3617081B1 (de)
DE (1) DE102018214471A1 (de)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100210501A1 (en) * 2008-02-15 2010-08-19 Marco Caggioni Liquid detergent composition comprising an external structuring system comprising a bacterial cellulose network

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10248313A1 (de) 2002-10-16 2004-05-06 Henkel Kgaa Transparentes abrasives Reinigungsmittel, insbesondere Handgeschirrspülmittel
KR200467995Y1 (ko) * 2011-09-16 2013-07-23 (주)아모레퍼시픽 화장품 용기의 다색 내용물 충진장치
DE102012222186A1 (de) 2012-12-04 2014-06-05 Henkel Ag & Co. Kgaa Strukturiertes Reinigungsmittel mit Fließgrenze
EP2810877A1 (de) * 2013-06-04 2014-12-10 The Procter & Gamble Company Waschmittelverpackungsprozess
EP2987622B1 (de) * 2014-08-20 2018-02-21 Krones AG Formfüllmaschine und Verfahren zum Ausformen und Füllen von Behältern

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100210501A1 (en) * 2008-02-15 2010-08-19 Marco Caggioni Liquid detergent composition comprising an external structuring system comprising a bacterial cellulose network

Also Published As

Publication number Publication date
DE102018214471A1 (de) 2020-02-27
EP3617081A1 (de) 2020-03-04

Similar Documents

Publication Publication Date Title
EP3230428B1 (de) Handgeschirrspülmittel mit verbesserter wirkung gegen stärke
EP1941020B1 (de) Hautpflegendes handgeschirrspülmittel
EP1564283B1 (de) Tensidkombination
EP1317522A1 (de) Schnell trocknendes wasch- und reinigungsmittel, insbesondere handgeschirrspülmittel
DE102009002262A1 (de) Präbiotische Handgeschirrspülmittel
DE102006049673A1 (de) Handgeschirrspülmittel mit verbesserter Ölsolubilisierung
DE102009001186A1 (de) Handgeschirrspülmittel
WO2009007166A1 (de) Wasch- oder reinigungsmittel mit tensiden auf basis nachwachsender rohstoffe
DE102006017315A1 (de) Wässriges Reinigungsmittel
WO2007003302A1 (de) Viskositätseinstellung bei handgeschirrspülmitteln
WO2015120990A1 (de) Saure reiniger für harte oberflächen
DE102007030109A1 (de) Handgeschirrspülmittel mit feinem Schaum
WO2010130563A1 (de) Probiotisches handgeschirrspülmittel
DE10153047A1 (de) Wässriges tensidhaltiges Reinigungsmittel mit verbessertem Trocknungsverhalten für die Reinigung harter Oberflächen, insbesondere von Geschirr
WO2004035720A1 (de) Transparentes abrasives reinigungsmittel, insbesondere handgeschirrspülmittel
EP3559191B1 (de) Reinigungsmittel mit abrasiven vulkanischem glas
EP3617081B1 (de) Verfahren zur abfüllung einer partikel- und tensid-haltigen flüssigkeit
DE10162648A1 (de) Sprühbares, schnelltrocknendes Reinigungsmittel
DE102007005942A1 (de) Handgeschirrspülmittel mit nativer Tensidkombination
DE10162649A1 (de) Reinigungsmittel mit Mikrokapseln
DE102006017311A1 (de) Parfümhaltiges wässriges Reinigungsmittel
DE102013224454A1 (de) Handgeschirrspülmittel mit verbesserter Reichweite
DE102014204352A1 (de) Schaumstabilisierung von LAS-Formulierungen in hartem Wasser

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190528

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210209

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C11D 17/04 20060101ALI20221220BHEP

Ipc: C11D 17/00 20060101ALI20221220BHEP

Ipc: C11D 1/00 20060101ALI20221220BHEP

Ipc: A61K 8/00 20060101ALI20221220BHEP

Ipc: B65B 57/14 20060101ALI20221220BHEP

Ipc: B65B 29/00 20060101ALI20221220BHEP

Ipc: B65B 3/10 20060101ALI20221220BHEP

Ipc: B65B 39/12 20060101AFI20221220BHEP

INTG Intention to grant announced

Effective date: 20230124

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019007798

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1570819

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230531

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230831

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230930

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231002

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019007798

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

26N No opposition filed

Effective date: 20240301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531