EP3616471B1 - Method and system for controlling the electric current within a semiconductor light source defining at least two distinct light emission regions - Google Patents

Method and system for controlling the electric current within a semiconductor light source defining at least two distinct light emission regions Download PDF

Info

Publication number
EP3616471B1
EP3616471B1 EP18719209.1A EP18719209A EP3616471B1 EP 3616471 B1 EP3616471 B1 EP 3616471B1 EP 18719209 A EP18719209 A EP 18719209A EP 3616471 B1 EP3616471 B1 EP 3616471B1
Authority
EP
European Patent Office
Prior art keywords
light
light source
value
emitting region
luminous flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18719209.1A
Other languages
German (de)
French (fr)
Other versions
EP3616471A1 (en
Inventor
Pierre Albou
Vincent Godbillon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Vision SAS
Original Assignee
Valeo Vision SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Vision SAS filed Critical Valeo Vision SAS
Publication of EP3616471A1 publication Critical patent/EP3616471A1/en
Application granted granted Critical
Publication of EP3616471B1 publication Critical patent/EP3616471B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/151Light emitting diodes [LED] arranged in one or more lines
    • F21S41/153Light emitting diodes [LED] arranged in one or more lines arranged in a matrix
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/155Surface emitters, e.g. organic light emitting diodes [OLED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/65Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources
    • F21S41/663Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources by switching light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/32Pulse-control circuits
    • H05B45/325Pulse-width modulation [PWM]

Definitions

  • the present invention relates to the field of light methods and assemblies comprising a system for controlling an electric current within a semiconductor light source provided with a substrate.
  • the present invention relates to a method for controlling an electric current within a semiconductor light source as defined by claim 1, a light assembly as defined by claim 4, and light device vehicle comprising at least one such light assembly.
  • a method of controlling an electric current within a semiconductor light source provided with a substrate, making it possible to modify the luminous flux of the light source, is known. Such a process is disclosed in the document WO2017/025441 A1 .
  • the method is implemented by a control system comprising a member for adjusting the average value of an electrical quantity relating to the electric current received by the light source, as well as a device for connecting the light source to the member adjustment.
  • the electrical quantity is for example the voltage, intensity or electrical power of the electric current.
  • Such a method comprises a step consisting of adjusting, via the adjustment member, the average value of the electrical quantity relating to the electrical current received by the light source as a function of a setpoint of current, electrical voltage or average electrical power (born). Setpoint current, electrical voltage or average electrical power then corresponds to the desired luminous flux for the light source.
  • the adjustment member is generally a chopper connected to a switching power supply, and the adjustment carried out by the chopper is a pulse width modulation type regulation.
  • the minimum duty cycle of this regulation below which one must not go below without seriously harming the precision of current control, is generally between 5 and 7%. More precisely, if the duty cycle applied during this regulation by pulse width modulation is less than the value of 5%, “soft” fronts may appear in the control of the electrical quantity relating to the electric current received by the light source.
  • the minimum duty cycle that should be applied during pulse width modulation regulation to achieve such flow dynamics should be less than or equal to 5%.
  • Such a situation is for example known in the field of vehicles, when the light source is intended to be used both in a “daytime running light” function and in a “position light” function.
  • a known solution consists of adding a resistance to the control system previously described, and connecting this resistance in series with the light source whose current we are trying to control.
  • the value of this resistance is chosen so as to allow thermal dissipation of the energy linked to “soft” fronts.
  • such a solution is extremely expensive, due to the cost of such resistance.
  • such a resistance does not make it possible to improve the precision of current control.
  • the technical problem that the invention aims to solve is therefore to propose a method and a system for controlling an electric current within a semiconductor light source provided with a substrate, making it possible to increase the dynamics of flow of the source, in particular to obtain a ratio between the extreme flux values greater than or equal to 100, and this in a simple manner, at reduced cost, and without loss of efficiency or electromagnetic disturbance in the system.
  • a first object of the invention is a method of controlling an electric current within a semiconductor light source as defined in claim 1.
  • the light source defines on its substrate at least two selectively activatable light emission zones, it is possible to adjust separately and independently, via the adjustment member, the luminous flux values associated respectively with each of the zones d light emission. It is thus possible, via this setting as well as the addition or selective activation of luminous zones, to obtain a greater range of adjustment of the luminous flux, without sacrificing the precision of current control, nor causing problems of efficiency or electromagnetic compatibility at the within the system. Furthermore, this increase in the adjustment range of possible values for the luminous flux is obtained without modification of the other physical characteristics of the light source, such as the hue for example. Furthermore, the control method according to the invention uses only one adjustment member, this member being a conventional adjustment member. Thus, the control method according to the invention makes it possible to increase the flow dynamics of the light source, in a simple manner, at reduced cost, and without loss of efficiency or electromagnetic disturbance in the system.
  • control method according to the invention may optionally present one or more of the characteristics defined by dependent claims 2 to 3.
  • the invention also relates to a light assembly as defined by claim 4.
  • the light assembly according to the invention may optionally have one or more of the characteristics defined in dependent claims 5 to 8.
  • the light source comprises a plurality of photo-emitting elements, the photo-emitting elements being distributed into several groups of distinct photo-emitting elements, each group of photo-emitting elements corresponding to one of said light zones, the photo-emitting elements of the groups corresponding to said at least two light emitting zones being interleaved so that said groups of photo-emitting elements form interlaced matrices of discrete photo-emitting elements.
  • This embodiment of the invention advantageously makes it possible to maintain an almost uniform appearance in the visual rendering of the light source, whatever the value of the luminous flux emitted by this source.
  • the vehicle lighting device according to the invention is a road lighting device, in particular a projector, or a signaling device, in particular a traffic light, or a signaling device. lighting of a vehicle interior.
  • the invention also relates to a vehicle comprising at least one vehicle lighting device as described above.
  • FIG. 1 illustrates a vehicle lighting device 10, comprising a lighting assembly 12.
  • the lighting device 10 is for example a road lighting device, in particular a projector.
  • the light device 10 is a signaling device, in particular a traffic light.
  • the light device 10 is a vehicle passenger compartment lighting device.
  • the light assembly 12 comprises a semiconductor light source 13, and a system 16 for controlling an electric current within the light source 13.
  • the light assembly 12 also comprises an optical module, such a module does not not being shown in the figures for reasons of clarity.
  • the light source 13 comprises a substrate 18 and defines, on its substrate 18, at least two distinct light emission zones 20.
  • the substrate 18 is for example essentially composed of silicon.
  • the light source 13 further comprises several photo-emitting elements 22.
  • the photo-emitting elements 22 are distributed into several groups 24A, 24B, 24C of elements separate photoemitters. Each group 24A, 24B, 24C of photoemitting elements 22 corresponds to one of the distinct light emission zones 20.
  • the photoemitting elements 22 are distributed into three groups 24A, 24B, 24C of distinct photoemitting elements, and the light source 13 defines on its substrate 18 three corresponding light emission zones 20A, 20B, 20C.
  • the photoemitting elements 22 of the groups 24A, 24B, 24C are interleaved so that these groups 24A, 24B, 24C of photoemitting elements form interlaced matrices of discrete photoemitting elements 22.
  • matrix of discrete photoemitting elements we mean a network of photo-emitting elements interconnected and forming a group of discrete photo-emitting elements, whether this network is regular or not.
  • each photoemitting element 22 comprises at least one electroluminescent rod 26.
  • each light-emitting element 22 comprises at least one electroluminescent rod 26 and one photoluminescent element 28.
  • each light-emitting element 22 comprises several electroluminescent rods 26 and one photoluminescent element 28.
  • the electroluminescent rods 26 are thus distributed into several groups of electroluminescent rods 26 , each group corresponding here to a photoemitting element 22.
  • the electroluminescent rods 26 within the same photoemitting element 22 are electrically connected to each other. More preferably, the electroluminescent rods 26 within the same photoemitting element 22 are electrically connected in parallel.
  • Each electroluminescent rod 26 extends from the substrate 18.
  • each electroluminescent rod 26 has submillimeter dimensions.
  • Each stick electroluminescent 26 extends for example in a preferred direction from the substrate 18.
  • the electroluminescent rods 26 of the light source 13 extend in the same preferred direction from the substrate 18.
  • Each electroluminescent rod 26 comprises for example a nitride of metal, in particular gallium nitride.
  • Each photoluminescent element 28 is for example formed of a layer of photoluminescent material.
  • Each photoluminescent element 28 designates a light converter comprising at least one luminescent material designed to absorb at least a portion of at least one excitation light emitted by a light source and to convert at least a portion of said absorbed excitation light into emission light having a wavelength different from that of the excitation light.
  • the material of the photoluminescent element is for example one of the following components: Y 3 A 15 O 12 :Ce 3+ (YAG), (Sr,Ba) 2 SiO 4 :Eu 2+ , Ca x (Si,Al) 12 (O,N) 16 :Eu 2+
  • the light source 13 is a two-dimensional monolithic source, for example of the two-dimensional monolithic light-emitting diode type, and each photoemitting element 22 is an element of this monolithic source.
  • the photo-emitting elements are distributed into several groups of distinct photo-emitting elements on this source, each group corresponding to one of the distinct light emission zones.
  • the light emitting elements of the groups are interleaved such that these groups of light emitting elements form interleaved arrays of discrete light emitting elements. This is the case where the photoemitting elements take the form of a pad. In an exemplary embodiment, the light is emitted from the top of the pads.
  • FIG. 3 represents the light source 13, according to a second embodiment of the invention, alternative to the embodiment illustrated in the figure 2 .
  • the light source 13 defines on its substrate 18 several concentric light emission zones 20D, 20E, 20F.
  • the light source 13 defines on its substrate 18 three concentric light emission zones: a first light emission zone 20D, a second light emission zone 20E surrounding the first zone 20D, and a third light emission zone 20F surrounding the second zone 20E.
  • the light source 13 when the first light emission zone 20D is activated, the light source 13 is used in the vehicle according to a “position light” function; when at least the second light zone 20E is activated, the light source 13 is used in the vehicle according to a “daytime running light” function; and when at least the third light zone 20F is activated, the light source 13 is used in the vehicle according to a “high beam” function.
  • the light source 13 comprises several electroluminescent rods 26.
  • the electroluminescent rods 26 are thus distributed into several groups 29D, 29E, 29F of electroluminescent rods 26, each group corresponding to one of the light emission zones 20D, 20E, 20F.
  • the electroluminescent sticks 26 within the same group 29D, 29E, 29F are electrically connected to each other. More preferably, the electroluminescent sticks 26 within the same group 29D, 29E, 29F are electrically connected in parallel.
  • Each electroluminescent rod 26 extends from the substrate 18.
  • each electroluminescent rod 26 has submillimeter dimensions.
  • Each electroluminescent stick 26 extends for example in one direction privileged from the substrate 18.
  • the electroluminescent rods 26 of the light source 13 extend in the same preferred direction from the substrate 18.
  • Each electroluminescent rod 26 comprises for example a metal nitride, in particular a gallium nitride.
  • the light source 13 is a high definition light source.
  • high definition light source is meant a light source comprising a high number, typically greater than or equal to 1000, of electroluminescent elements capable of being powered separately.
  • the light source 13 defines on its substrate two concentric light emission zones: a first light emission zone and a second light emission zone surrounding the first zone.
  • the surface of the second light emission zone is greater than that of the first light emission zone, for example such that the ratio between this surface and the surface of the first light emission zone light emission is greater than or equal to 9, and is preferably greater than or equal to 10.
  • the density of the electroluminescent rods of the group corresponding to the second light emission zone is greater than that of the group corresponding to the first light emission zone, for example such that the ratio between this density and the density of the electroluminescent rods of the group corresponding to the first light emission zone is greater than or equal to 9, and is preferably greater than or equal to 10.
  • control system 16 comprises a member 30 for adjusting the average value of an electrical quantity relating to the electric current received by the light source 13, and a device 32 for connecting the light source 13 to the adjustment member 30
  • control system 16 further comprises a member 34 for measuring an electrical quantity relating to an electric current circulating within the light source 13.
  • connection device 32 is connected to the distinct light emission zones 20 of the light source 13 and is capable of selectively activating these light emission zones 20, as illustrated in the figure 2 And 3 .
  • the connection device 32 comprises for example a semiconductor electronic switching component 38, such as a transistor for example.
  • the electronic component 38 comprises two conduction electrodes and a control electrode, not shown in the figures for reasons of clarity.
  • One of the conduction electrodes forms, for example, a 40A negative terminal.
  • the other conduction electrode is for example capable of being connected to one or more positive terminals 40B.
  • the negative terminal 40A is connected to a cathode 42A arranged on the substrate 18.
  • each positive terminal 40B is connected to anodes 42B belonging to the same group 24A, 24B, 24C of photoemitting elements, each anode 42B being arranged on a photoemitting element 22. More precisely, each anode 42B is for example formed by a layer conductive deposited above the substrate 18, on the side of the rods 26 of the photoemitting element 22 on which the anode 42B is arranged. Preferably, each anode 42B electrically joins the rods 26 of the photoemitting element 22 on which it is arranged.
  • each positive terminal 40B is connected to an anode 43B arranged within a group 29D, 29E, 29F of electroluminescent sticks 26. More precisely, each anode 43B is for example formed by a conductive layer deposited above the substrate 18, on the side of the sticks 26 of the group 29D, 29E, 29F within which the anode 43B is arranged. Preferably, each anode 43B electrically joins the rods 26 of the group 29D, 29E, 29F within which it is arranged.
  • the control electrode is able to receive a signal 44 for controlling activation of one of the light emission zones 20.
  • the adjustment member 30 is connected to a source 36 of supplying current or electrical input voltage, in particular direct current or electrical input voltage.
  • the power source 36 is for example arranged within the light assembly 12.
  • the power source 36 is arranged within the vehicle and forms for example the vehicle battery.
  • the power source 36 is for example connected via a distributor, also located within the vehicle.
  • the power source 36 is a DC input electrical voltage supply source, providing a substantially constant input electrical voltage U 0 .
  • the adjustment member 30 is configured to adjust, for each activated light zone 20, the average value of the electrical quantity relating to the electric current received by the light source 13, as a function of a current setpoint 46A, 46B, 46C, of electrical voltage or average electrical power associated with this activation.
  • the current, electrical voltage or average electrical power setpoint 46A, 46B, 46C is for example stored in a memory internal or external to the light device 10, not shown in the figures.
  • the setpoint 46A, 46B, 46C can be dynamically updated in the memory, in particular as a function of the temperature, by a control module connected to the memory. Such a control module is not shown in the figures for reasons of clarity.
  • the adjustment member 30 is a chopper capable of supplying an electrical output current intended to circulate within the light source 13.
  • the electrical quantity to be adjusted is the electrical voltage
  • the adjustment member setting 30 is configured to adjust the average value of the output voltage U1 as a function of an average current setpoint 46A, 46B, 46C.
  • the chopper forming the adjustment member 30 has a switching frequency of between 50 Hz and 1 kHz, preferably between 200 Hz and 1 kHz so that the human eye does not distinguish oscillations, more preferably substantially equal to 400 Hz.
  • control system 16 implements a voltage supply and current control of the light source 13.
  • the measuring member 34 is connected to the adjusting member 30.
  • the measuring member 34 is capable of providing at least one Ism data measurement of an electrical quantity relating to the electric current received by the light source 13.
  • the measured electrical quantity is an electric current
  • the measuring member 34 is able to provide Ism data measuring the average value of the electric current received by the light source 13.
  • the adjusting member 30 is advantageously configured to regulate, for each activated light zone 20, the average value of the electrical output current as a function of the value of measurement data Ism supplied by the measuring device 34, and of the average current setpoint 46A, 46B, 46C.
  • the measuring member 34 comprises for example a resistor 48, connected in series with the light source 13, and a signal amplification module 50 intended to amplify the voltage value taken by the resistor 48.
  • control system can be integrated, that is to say mounted, on the light source.
  • control unit may further comprise a central processing unit coupled with a memory on which a computer program is stored which includes instructions allowing the processor to carry out steps generating signals allowing control of the light source.
  • the control unit can be an integrated circuit, for example an ASIC (acronym for “Application-Specific Integrated Circuit”) or an ASSP (acronym for “Application Specific Standard Product”).
  • control system 16 receives a control signal for activation of a first light emission zone 20A; 20D of the light source 13.
  • the connection device 32 then receives a corresponding activation control signal 44, and consequently activates the first light emission zone 20A; 20D.
  • the adjustment member 30 adjusts the average value of the electrical output voltage U1 which it supplies to the light source 13, as a function of a first average current setpoint 46A. A first value of a first luminous flux is thus obtained for the light source 13. This first luminous flux corresponds to the flux emitted by the first light emission zone 20A; 20D.
  • the chopper forming the adjustment member 30 regulates the average value of the electric current which it supplies to the light source 13, by modifying the cyclical ratio of application of the input electric voltage U 0 to the terminals of the first zone bright 20A; 20D.
  • the duty cycle, modified by the chopper however remains greater than a value equal to 5%.
  • the adjustment step 62 comprises a first sub-step of measuring, by the measuring member 34, the average current received by the light source 13; and a second sub-step of supplying, by the measuring member 34 to the adjusting member 30, data Ism measuring this average current.
  • the chopper forming the adjustment member 30 then regulates the average value of the output electric current as a function of the value of the average current measurement data Ism provided by the measuring member 34, and of the first current setpoint 46A AVERAGE.
  • control system 16 receives a control signal for activation of a second light emission zone 20B; 20E of the light source 13.
  • the connection device 32 then receives a corresponding activation control signal 44, and consequently activates the second light emission zone 20B; 20E.
  • the adjustment member 30 adjusts the average value of the electrical output voltage U1 which it supplies to the light source 13, as a function of a second average current setpoint 46B.
  • a second value of a second luminous flux is thus obtained for the light source 13.
  • This second luminous flux corresponds to the flux emitted by at least the second light emission zone 20B; 20E.
  • the second luminous flux corresponds to the flux emitted by the first light emission zone 20A; 20D and by the second light emission zone 20B; 20E.
  • the second light flux corresponds to the flux emitted only by the second light emission zone 20B; 20E.
  • the method comprises, prior to step 66, an additional step of deactivating the first light emission zone 20A; 20D by the connection device 32.
  • the chopper forming the adjustment member 30 regulates the average value of the electric current which it supplies to the light source 13, by modifying the cyclical ratio of application of the input electric voltage U 0 to the terminals by at least the second light zone 20B; 20E.
  • the duty cycle, modified by the chopper however remains greater than a value equal to 5%.
  • the adjustment member 30 adjusts the average value of the electrical output voltage U1 which it supplies to the light source 13, so that the ratio between the second value of the second flux luminous flux obtained at the end of this step 66, and the first value of the first luminous flux obtained at the end of the adjustment step 64 is greater than or equal to 100, and preferably between 100 and 1000.
  • the duty cycle value must be greater than 5%, and
  • the method further comprises a following step 68 during which the control system 16 receives a control signal for activation of a third light emission zone 20C; 20F of the light source 13.
  • the connection device 32 then receives a control signal corresponding activation 44, and consequently activates the third light emission zone 20C; 20F.
  • the adjustment member 30 adjusts the average value of the electrical output voltage U1 which it supplies to the light source 13, as a function of a third current setpoint 46C AVERAGE.
  • a third value of a third luminous flux is thus obtained for the light source 13.
  • This third luminous flux corresponds to the flux emitted by at least the third light emission zone 20C; 20F.
  • the third light flux corresponds to the flux emitted by the first light emission zone 20A; 20D, by the second light emission zone 20B; 20E and by the third light emission zone 20C; 20F.
  • the third light flux corresponds to the flux emitted by one of the first and second light emission zones 20A, 20B; 20D, 20E and by the third light emission zone 20C; 20F, or to the flux emitted only by the third light emission zone 20C; 20F.
  • the method comprises, prior to step 70, an additional step of deactivation of the first light emission zone 20A; 20D and/or the second light emission zone 20B; 20E by the connection device 32.
  • the chopper forming the adjustment member 30 regulates the average value of the electric current which it supplies to the light source 13, by modifying the cyclical ratio of application of the input electric voltage U 0 to the terminals by at least the third light zone 20C; 20F.
  • the duty cycle, modified by the chopper however remains greater than a value equal to 5%.
  • the adjustment member 30 adjusts the average value of the electrical voltage of output U1 which it supplies to the light source 13, so that the ratio between the third value of the third luminous flux obtained at the end of this step 70, and the second value of the second luminous flux obtained at the end from adjustment step 66 is greater than or equal to 4, and preferably between 4 and 100; and that the ratio between the second value of the second luminous flux obtained at the end of the adjustment step 66, and the first value of the first luminous flux obtained at the end of the adjustment step 64 is greater or equal to 3, and preferably between 3 and 30.
  • the adjustment carried out by the chopper forming the adjustment member 30 during the adjustment steps 62, 66, 70 is a pulse width modulation type regulation.
  • FIG. 5 is an example of controlling the duty cycle of application of the input electrical voltage U 0 , illustrating steps 60 to 70 of the method of controlling a current described above, for a light source 13 according to the example of particular achievement represented on the Figure 3 . More precisely, the Figure 5 is a set of three diagrams 72D, 72E, 72F each representing the evolution of the cyclic ratio R of application of the input electrical voltage U 0 to the terminals respectively of one of the light zones 20D, 20E, 20F, as a function of the total luminous flux ⁇ emitted by the light source 13.
  • the maximum luminous flux emitted by the third light emission zone 20F is greater than the maximum luminous flux emitted by the second light emission zone 20E, which is -even greater than the maximum luminous flux emitted by the first light emission zone 20D.
  • the total luminous flux ⁇ emitted by the light source 13 has for example a minimum value ⁇ min .
  • connection device 32 activates the first light emission zone 20D, as shown in diagram 72D.
  • the duty cycle R of application of the input electrical voltage U 0 across the first light zone 20D has for example a minimum value R min .
  • the adjustment member 30 regulates the average value of the electrical output voltage U1 which it supplies to the light source 13, by modifying the cyclical ratio R of application of the electrical voltage d input U 0 across the first light zone 20D. This regulation is done by progressive increase in the duty cycle R between the minimum value R min and a maximum value R max , as illustrated in diagram 72D.
  • the R min value is greater than a value equal to 5%, and the R max value is for example substantially equal to 100%.
  • the connection device 32 activates the second light emission zone 20E, as illustrated in diagram 72E.
  • the duty cycle R of application of the input electrical voltage U 0 across the second light zone 20E has for example a minimum value R min .
  • the cyclic ratio R of application of the input electrical voltage U 0 across the first light zone 20D is switched from its maximum value R max to its minimum value R min .
  • R max ⁇ R min . ⁇ min 20D R min . ⁇ min 20E ; with ⁇ min 20D , respectively ⁇ min 20E , the value of the luminous flux emitted by the first light zone 20D, respectively by the second light zone 20E, when the duty cycle R presents its minimum value R min .
  • the adjustment member 30 regulates the average value of the electrical output voltage U1 which it supplies to the light source 13, by modifying the cyclic ratio R of application of the electrical voltage d input U 0 across the first and second light zones 20D, 20E.
  • This regulation is done by progressive increase of the duty cycle R between the minimum value R min and the maximum value R max , as illustrated in diagrams 72D, 72E.
  • the connection device 32 activates the third light emission zone 20F, as illustrated in diagram 72F.
  • the duty cycle R of application of the input electrical voltage U 0 across the third light zone 20F has for example a minimum value R min .
  • the cyclic ratio R of application of the input electrical voltage U 0 across the first light zone 20D and the cyclic ratio R of application of the input electrical voltage U 0 across the second light zone 20E are each switched from their maximum value R max to their minimum value R min . For this continuity of total luminous flux to be obtained, the following condition must be verified: R max ⁇ R min .
  • ⁇ min 20D + ⁇ min 20E R min . ⁇ min 20F ; with ⁇ min 20D , ⁇ min 20E , respectively ⁇ min 20F , the value of the luminous flux emitted by the first light zone 20D, by the second light zone 20E, respectively by the third light zone 20F, when the cyclic ratio R presents its value minimum R min .
  • the adjustment member 30 regulates the average value of the electrical output voltage U1 which it supplies to the light source 13, by modifying the cyclical ratio R of application of the electrical voltage d input U 0 across the first, second and third light zones 20D, 20E, 20F. This regulation is done by progressive increase in the duty cycle R between the minimum value R min and the maximum value R max , as illustrated in diagrams 72D, 72E, 70F.
  • the total luminous flux ⁇ emitted by the light source 13 reaches a maximum value ⁇ max .
  • a principle for controlling the duty cycle identical or similar to that described above can be implemented in the case where the light source 13 defines on its substrate a number of light emission zones greater than or equal to two. The same principle of switching the duty cycle is then implemented, in order to ensure the continuity of the total luminous flux emitted by the light source 13 at the time of activation of new light zones.
  • the values of R min and R max may be different from one zone of the source to another. They can also be different for a given zone, from one stage of ignition to another.
  • the duty cycle R max is advantageously 100%, in particular for obtaining ⁇ max .

Description

La présente invention se rapporte au domaine des procédés et ensembles lumineux comportant un système de pilotage d'un courant électrique au sein d'une source lumineuse à semi-conducteur munie d'un substrat. En particulier la présente invention a trait à un procédé de pilotage d'un courant électrique au sein d'une source lumineuse à semi-conducteur tel que défini par la revendication 1,un ensemble lumineux tel que défini par la revendication 4, et dispositif lumineux de véhicule comprenant au moins un tel ensemble lumineux.The present invention relates to the field of light methods and assemblies comprising a system for controlling an electric current within a semiconductor light source provided with a substrate. In particular, the present invention relates to a method for controlling an electric current within a semiconductor light source as defined by claim 1, a light assembly as defined by claim 4, and light device vehicle comprising at least one such light assembly.

Un procédé de pilotage d'un courant électrique au sein d'une source lumineuse à semi-conducteur munie d'un substrat, permettant de modifier le flux lumineux de la source lumineuse, est connu. Un tel procédé est divulgué dans le document WO2017/025441 A1 .A method of controlling an electric current within a semiconductor light source provided with a substrate, making it possible to modify the luminous flux of the light source, is known. Such a process is disclosed in the document WO2017/025441 A1 .

Le procédé est mis en œuvre par un système de pilotage comprenant un organe de réglage de la valeur moyenne d'une grandeur électrique relative au courant électrique reçu par la source lumineuse, ainsi qu'un dispositif de connexion de la source lumineuse à l'organe de réglage. La grandeur électrique est par exemple la tension, l'intensité ou la puissance électrique du courant électrique. Un tel procédé comprend une étape consistant à régler, via l'organe de réglage, la valeur moyenne de la grandeur électrique relative au courant électrique reçu par la source lumineuse en fonction d'une consigne de courant, de tension électrique ou de puissance électrique moyen(ne). La consigne de courant, de tension électrique ou de puissance électrique moyen(ne) correspond alors au flux lumineux désiré pour la source lumineuse.The method is implemented by a control system comprising a member for adjusting the average value of an electrical quantity relating to the electric current received by the light source, as well as a device for connecting the light source to the member adjustment. The electrical quantity is for example the voltage, intensity or electrical power of the electric current. Such a method comprises a step consisting of adjusting, via the adjustment member, the average value of the electrical quantity relating to the electrical current received by the light source as a function of a setpoint of current, electrical voltage or average electrical power (born). Setpoint current, electrical voltage or average electrical power then corresponds to the desired luminous flux for the light source.

Toutefois, un inconvénient d'un tel procédé de pilotage d'un courant est qu'il ne permet pas d'obtenir une dynamique de flux lumineux élevée. En effet, l'organe de réglage est généralement un hacheur relié à une alimentation électrique à découpage, et le réglage effectué par le hacheur est une régulation de type modulation de largeur d'impulsions. Or, le rapport cyclique minimal de cette régulation, en-dessous duquel il ne faut pas descendre sous peine de nuire fortement à la précision du pilotage de courant, est généralement compris entre 5 et 7 %. Plus précisément, si le rapport cyclique appliqué au cours de cette régulation par modulation de largeur d'impulsions est inférieur à la valeur de 5 %, des fronts «mous» peuvent apparaître dans la commande de la grandeur électrique relative au courant électrique reçu par la source lumineuse. De tels fronts « mous », qui peuvent aller jusqu'à un crénelage triangulaire au lieu du crénelage rectangulaire recommandé, nuisent à la précision du pilotage du courant, et introduisent des pertes importantes de rendement, voire des problèmes de compatibilité électromagnétique au sein du système. En effet, la tolérance sur la largeur de l'impulsion est absolue et ne dépend pas de cette largeur. Autrement dit, lorsque cette largeur diminue la tolérance est de plus en plus importante en relatif.However, a disadvantage of such a method of controlling a current is that it does not make it possible to obtain high luminous flux dynamics. Indeed, the adjustment member is generally a chopper connected to a switching power supply, and the adjustment carried out by the chopper is a pulse width modulation type regulation. However, the minimum duty cycle of this regulation, below which one must not go below without seriously harming the precision of current control, is generally between 5 and 7%. More precisely, if the duty cycle applied during this regulation by pulse width modulation is less than the value of 5%, “soft” fronts may appear in the control of the electrical quantity relating to the electric current received by the light source. Such “soft” fronts, which can go as far as triangular aliasing instead of the recommended rectangular aliasing, harm the precision of current control, and introduce significant losses in efficiency, or even electromagnetic compatibility problems within the system. . In fact, the tolerance on the width of the pulse is absolute and does not depend on this width. In other words, when this width decreases the tolerance is increasingly important in relative terms.

Ceci s'avère particulièrement problématique dans le cas où la source lumineuse est destinée à être utilisée selon plusieurs fonctions présentant chacune une valeur de flux lumineux distincte, et où le rapport entre les valeurs extrêmes des flux est notamment supérieur ou égal à 20. Dans ce cas en effet, le rapport cyclique minimal qui devrait être appliqué au cours de la régulation par modulation de largeur d'impulsions pour atteindre une telle dynamique de flux devrait être inférieur ou égal à 5%. Une telle situation est par exemple connue dans le domaine des véhicules, lorsque la source lumineuse est destinée à être utilisée aussi bien dans une fonction de « feu de circulation diurne » que dans une fonction de « feu de position ».This proves particularly problematic in the case where the light source is intended to be used according to several functions each presenting a distinct luminous flux value, and where the ratio between the extreme values of the fluxes is in particular greater than or equal to 20. In this Indeed, the minimum duty cycle that should be applied during pulse width modulation regulation to achieve such flow dynamics should be less than or equal to 5%. Such a situation is for example known in the field of vehicles, when the light source is intended to be used both in a “daytime running light” function and in a “position light” function.

Afin de résoudre l'inconvénient précité, une solution connue consiste à ajouter une résistance au système de pilotage précédemment décrit, et à connecter cette résistance en série de la source lumineuse dont on cherche à piloter le courant. La valeur de cette résistance est choisie de sorte à permettre une dissipation thermique de l'énergie liée aux fronts « mous ». Toutefois, une telle solution est extrêmement coûteuse, du fait du coût d'une telle résistance. En outre, une telle résistance ne permet pas d'améliorer la précision du pilotage du courant.In order to resolve the aforementioned drawback, a known solution consists of adding a resistance to the control system previously described, and connecting this resistance in series with the light source whose current we are trying to control. The value of this resistance is chosen so as to allow thermal dissipation of the energy linked to “soft” fronts. However, such a solution is extremely expensive, due to the cost of such resistance. Furthermore, such a resistance does not make it possible to improve the precision of current control.

Le problème technique que vise à résoudre l'invention est donc de proposer un procédé et un système de pilotage d'un courant électrique au sein d'une source lumineuse à semi-conducteur munie d'un substrat, permettant d'augmenter la dynamique de flux de la source, notamment d'obtenir un rapport entre les valeurs extrêmes de flux supérieur ou égal à 100, et ce de manière simple, à coût réduit, et sans perte de rendement ni perturbation électromagnétique dans le système.The technical problem that the invention aims to solve is therefore to propose a method and a system for controlling an electric current within a semiconductor light source provided with a substrate, making it possible to increase the dynamics of flow of the source, in particular to obtain a ratio between the extreme flux values greater than or equal to 100, and this in a simple manner, at reduced cost, and without loss of efficiency or electromagnetic disturbance in the system.

A cet effet, un premier objet de l'invention est un procédé de pilotage d'un courant électrique au sein d'une source lumineuse à semi-conducteur tel que défini dans la revendication 1.For this purpose, a first object of the invention is a method of controlling an electric current within a semiconductor light source as defined in claim 1.

Grâce au fait que la source lumineuse définit sur son substrat au moins deux zones d'émission lumineuses activables sélectivement, il est possible de régler séparément et indépendamment, via l'organe de réglage, les valeurs de flux lumineux associées respectivement à chacune des zones d'émission lumineuses. Il est ainsi possible, via ce réglage ainsi que l'addition ou l'activation sélective des zones lumineuses, d'obtenir une plus grande plage de réglage du flux lumineux, et ce sans sacrifier à la précision du pilotage du courant, ni entraîner de problèmes de rendement ou de compatibilité électromagnétique au sein du système. En outre, cette augmentation de la plage de réglage des valeurs possibles pour le flux lumineux s'obtient sans modification des autres caractéristiques physiques de la source lumineuse, telle que la teinte par exemple. En outre, le procédé de pilotage selon l'invention ne met en œuvre qu'un seul organe de réglage, cet organe étant un organe de réglage classique. Ainsi, le procédé de pilotage selon l'invention permet d'augmenter la dynamique de flux de la source lumineuse, et ce de manière simple, à coût réduit, et sans perte de rendement ni perturbation électromagnétique dans le système.Thanks to the fact that the light source defines on its substrate at least two selectively activatable light emission zones, it is possible to adjust separately and independently, via the adjustment member, the luminous flux values associated respectively with each of the zones d light emission. It is thus possible, via this setting as well as the addition or selective activation of luminous zones, to obtain a greater range of adjustment of the luminous flux, without sacrificing the precision of current control, nor causing problems of efficiency or electromagnetic compatibility at the within the system. Furthermore, this increase in the adjustment range of possible values for the luminous flux is obtained without modification of the other physical characteristics of the light source, such as the hue for example. Furthermore, the control method according to the invention uses only one adjustment member, this member being a conventional adjustment member. Thus, the control method according to the invention makes it possible to increase the flow dynamics of the light source, in a simple manner, at reduced cost, and without loss of efficiency or electromagnetic disturbance in the system.

Le procédé de pilotage selon l'invention peut optionnellement présenter une ou plusieurs des caractéristiques définies par les revendications dépendantes 2 à 3.The control method according to the invention may optionally present one or more of the characteristics defined by dependent claims 2 to 3.

L'invention a également pour objet un ensemble lumineux tel que défini par la revendication 4.The invention also relates to a light assembly as defined by claim 4.

L'ensemble lumineux selon l'invention peut optionnellement présenter une ou plusieurs des caractéristiques définies dans les revendications dépendantes 5 à 8.The light assembly according to the invention may optionally have one or more of the characteristics defined in dependent claims 5 to 8.

Selon le mode de réalisation de l'invention, la source lumineuse comprend une pluralité d'éléments photoémetteurs, les éléments photoémetteurs étant répartis en plusieurs groupes d'éléments photoémetteurs distincts, chaque groupe d'éléments photoémetteurs correspondant à une desdites zones lumineuses, les éléments photoémetteurs des groupes correspondant auxdites au moins deux zones d'émission lumineuse étant entrelacés de sorte à ce que lesdits groupes d'éléments photoémetteurs forment des matrices entrelacés d'éléments photoémetteurs discrets.According to the embodiment of the invention, the light source comprises a plurality of photo-emitting elements, the photo-emitting elements being distributed into several groups of distinct photo-emitting elements, each group of photo-emitting elements corresponding to one of said light zones, the photo-emitting elements of the groups corresponding to said at least two light emitting zones being interleaved so that said groups of photo-emitting elements form interlaced matrices of discrete photo-emitting elements.

Ce mode de réalisation de l'invention permet avantageusement de conserver un aspect quasi uniforme dans le rendu visuel de la source lumineuse, quelle que soit la valeur du flux lumineux émis par cette source.This embodiment of the invention advantageously makes it possible to maintain an almost uniform appearance in the visual rendering of the light source, whatever the value of the luminous flux emitted by this source.

Dans un mode de réalisation particulier de l'invention, le dispositif lumineux de véhicule selon l'invention est un dispositif d'éclairage de la route, notamment un projecteur, ou un dispositif de signalisation, notamment un feu de signalisation, ou un dispositif d'éclairage d'un habitacle de véhicule.In a particular embodiment of the invention, the vehicle lighting device according to the invention is a road lighting device, in particular a projector, or a signaling device, in particular a traffic light, or a signaling device. lighting of a vehicle interior.

L'invention a également pour objet un véhicule comprenant au moins un dispositif lumineux de véhicule tel que décrit ci-dessus.The invention also relates to a vehicle comprising at least one vehicle lighting device as described above.

D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée des exemples non limitatifs qui suivent, pour la compréhension de laquelle on se reportera aux dessins annexés, parmi lesquels :

  • La figure 1 est une représentation schématique d'un dispositif lumineux de véhicule muni d'un ensemble lumineux, l'ensemble lumineux comprenant une source lumineuse et un système de pilotage d'un courant électrique selon l'invention ;
  • La figure 2 est une vue en perspective de la source lumineuse de la figure 1 selon un premier mode de réalisation ;
  • La figure 3 est une vue analogue à celle de la figure 2 selon un deuxième mode de réalisation de la source lumineuse ;
  • La figure 4 un organigramme représentant le procédé de pilotage d'un courant électrique selon l'invention, mis en œuvre par le système de pilotage de la figure 1 ;
  • La figure 5 est un ensemble de trois diagrammes représentant chacun l'évolution d'un rapport cyclique d'application d'une tension électrique d'entrée aux bornes d'une zone lumineuse de la source lumineuse, telle que représentée sur la figure 3, en fonction du flux lumineux total émis par la source lumineuse.
Other characteristics and advantages of the invention will appear on reading the detailed description of the non-limiting examples which follow, for an understanding of which reference will be made to the appended drawings, among which:
  • There figure 1 is a schematic representation of a vehicle lighting device provided with a light assembly, the light assembly comprising a light source and a system for controlling an electric current according to the invention;
  • There figure 2 is a perspective view of the light source of the figure 1 according to a first embodiment;
  • There Figure 3 is a view analogous to that of the figure 2 according to a second embodiment of the light source;
  • There Figure 4 a flowchart representing the method of controlling an electric current according to the invention, implemented by the control system of the figure 1 ;
  • There Figure 5 is a set of three diagrams each representing the evolution of a cyclical ratio of application of an electrical input voltage to the terminals of a light zone of the light source, as represented on the Figure 3 , depending on the total luminous flux emitted by the light source.

La figure 1 illustre un dispositif lumineux 10 de véhicule, comprenant un ensemble lumineux 12. Le dispositif lumineux 10 est par exemple un dispositif d'éclairage de la route, notamment un projecteur. En variante non représentée, le dispositif lumineux 10 est un dispositif de signalisation, notamment un feu de signalisation. Dans une autre variante non représentée, le dispositif lumineux 10 est un dispositif d'éclairage d'un habitacle de véhicule.There figure 1 illustrates a vehicle lighting device 10, comprising a lighting assembly 12. The lighting device 10 is for example a road lighting device, in particular a projector. In a variant not shown, the light device 10 is a signaling device, in particular a traffic light. In another variant not shown, the light device 10 is a vehicle passenger compartment lighting device.

L'ensemble lumineux 12 comprend une source lumineuse à semi-conducteur 13, et un système 16 de pilotage d'un courant électrique au sein de la source lumineuse 13. L'ensemble lumineux 12 comprend également un module optique, un tel module n'étant pas représenté sur les figures pour des raisons de clarté.The light assembly 12 comprises a semiconductor light source 13, and a system 16 for controlling an electric current within the light source 13. The light assembly 12 also comprises an optical module, such a module does not not being shown in the figures for reasons of clarity.

Comme illustré sur les figures 2 et 3, la source lumineuse 13 comporte un substrat 18 et définit, sur son substrat 18, au moins deux zones d'émission lumineuse distinctes 20. Le substrat 18 est par exemple essentiellement composé de silicium.As illustrated on the figure 2 And 3 , the light source 13 comprises a substrate 18 and defines, on its substrate 18, at least two distinct light emission zones 20. The substrate 18 is for example essentially composed of silicon.

Dans le mode de réalisation de l'invention représenté sur la figure 2, la source lumineuse 13 comporte en outre plusieurs éléments photoémetteurs 22. Les éléments photoémetteurs 22 sont répartis en plusieurs groupes 24A, 24B, 24C d'éléments photoémetteurs distincts. Chaque groupe 24A, 24B, 24C d'éléments photoémetteurs 22 correspond à une des zones d'émission lumineuse distinctes 20. Ainsi, dans l'exemple de réalisation particulier illustré sur la figure 2, les éléments photoémetteurs 22 sont répartis en trois groupes 24A, 24B, 24C d'éléments photoémetteurs distincts, et la source lumineuse 13 définit sur son substrat 18 trois zones d'émission lumineuse 20A, 20B, 20C correspondantes.In the embodiment of the invention shown in the figure 2 , the light source 13 further comprises several photo-emitting elements 22. The photo-emitting elements 22 are distributed into several groups 24A, 24B, 24C of elements separate photoemitters. Each group 24A, 24B, 24C of photoemitting elements 22 corresponds to one of the distinct light emission zones 20. Thus, in the particular embodiment illustrated in the figure 2 , the photoemitting elements 22 are distributed into three groups 24A, 24B, 24C of distinct photoemitting elements, and the light source 13 defines on its substrate 18 three corresponding light emission zones 20A, 20B, 20C.

Comme illustré sur la figure 2, les éléments photoémetteurs 22 des groupes 24A, 24B, 24C sont entrelacés de sorte à ce que ces groupes 24A, 24B, 24C d'éléments photoémetteurs forment des matrices entrelacées d'éléments photoémetteurs discrets 22. Par « matrice d'éléments photoémetteurs discrets », on entend un réseau d'éléments photoémetteurs interconnectés et formant un groupe d'éléments photoémetteurs discrets, que ce réseau soit régulier ou non.As illustrated on the figure 2 , the photoemitting elements 22 of the groups 24A, 24B, 24C are interleaved so that these groups 24A, 24B, 24C of photoemitting elements form interlaced matrices of discrete photoemitting elements 22. By “matrix of discrete photoemitting elements” , we mean a network of photo-emitting elements interconnected and forming a group of discrete photo-emitting elements, whether this network is regular or not.

De préférence, chaque élément photoémetteur 22 comprend au moins un bâtonnet électroluminescent 26. Dans un exemple de réalisation particulier illustré sur la figure 2, chaque élément photoémetteur 22 comprend au moins un bâtonnet électroluminescent 26 et un élément photoluminescent 28. De préférence, chaque élément photoémetteur 22 comprend plusieurs bâtonnets électroluminescents 26 et un élément photoluminescent 28. Les bâtonnets électroluminescents 26 sont ainsi répartis en plusieurs groupes de bâtonnets électroluminescents 26, chaque groupe correspondant ici à un élément photoémetteur 22. De préférence, les bâtonnets électroluminescents 26 au sein d'un même élément photoémetteur 22 sont reliés électriquement entre eux. De préférence encore, les bâtonnets électroluminescents 26 au sein d'un même élément photoémetteur 22 sont reliés électriquement en parallèle.Preferably, each photoemitting element 22 comprises at least one electroluminescent rod 26. In a particular embodiment illustrated in the figure 2 , each light-emitting element 22 comprises at least one electroluminescent rod 26 and one photoluminescent element 28. Preferably, each light-emitting element 22 comprises several electroluminescent rods 26 and one photoluminescent element 28. The electroluminescent rods 26 are thus distributed into several groups of electroluminescent rods 26 , each group corresponding here to a photoemitting element 22. Preferably, the electroluminescent rods 26 within the same photoemitting element 22 are electrically connected to each other. More preferably, the electroluminescent rods 26 within the same photoemitting element 22 are electrically connected in parallel.

Chaque bâtonnet électroluminescent 26 s'étend depuis le substrat 18. De préférence, chaque bâtonnet électroluminescent 26 présente des dimensions submillimétriques. Chaque bâtonnet électroluminescent 26 s'étend par exemple selon une direction privilégiée depuis le substrat 18. De préférence, les bâtonnets électroluminescents 26 de la source lumineuse 13 s'étendent selon une même direction privilégiée depuis le substrat 18. Chaque bâtonnet électroluminescent 26 comprend par exemple un nitrure de métal, notamment un nitrure de gallium.Each electroluminescent rod 26 extends from the substrate 18. Preferably, each electroluminescent rod 26 has submillimeter dimensions. Each stick electroluminescent 26 extends for example in a preferred direction from the substrate 18. Preferably, the electroluminescent rods 26 of the light source 13 extend in the same preferred direction from the substrate 18. Each electroluminescent rod 26 comprises for example a nitride of metal, in particular gallium nitride.

Chaque élément photoluminescent 28 est par exemple formé d'une couche de matériau photoluminescent. Chaque élément photoluminescent 28 désigne un convertisseur de lumière comprenant au moins un matériau luminescent conçu pour absorber au moins une partie d'au moins une lumière d'excitation émise par une source lumineuse et pour convertir au moins une partie de ladite lumière d'excitation absorbée en une lumière d'émission ayant une longueur d'onde différente de celle de la lumière d'excitation. Dans le cas d'une lumière jaune, le matériau de l'élément photoluminescent est par exemple l'un des composants suivants : Y3A15O12:Ce3+ (YAG), (Sr,Ba)2SiO4:Eu2+, Cax(Si,Al)12(O,N)16:Eu2+ Each photoluminescent element 28 is for example formed of a layer of photoluminescent material. Each photoluminescent element 28 designates a light converter comprising at least one luminescent material designed to absorb at least a portion of at least one excitation light emitted by a light source and to convert at least a portion of said absorbed excitation light into emission light having a wavelength different from that of the excitation light. In the case of yellow light, the material of the photoluminescent element is for example one of the following components: Y 3 A 15 O 12 :Ce 3+ (YAG), (Sr,Ba) 2 SiO 4 :Eu 2+ , Ca x (Si,Al) 12 (O,N) 16 :Eu 2+

En variante à ce mode de réalisation de l'invention illustré sur la figure 2, et non couvert par le jeu de revendications, la source lumineuse 13 est une source monolithique à deux dimensions, par exemple de type diode électroluminescente monolithique à deux dimensions, et chaque élément photoémetteur 22 est un élément de cette source monolithique. Les éléments photoémetteurs sont répartis en plusieurs groupes d'éléments photoémetteurs distincts sur cette source, chaque groupe correspondant à une des zones d'émission lumineuse distinctes. Les éléments photoémetteurs des groupes sont entrelacés de sorte à ce que ces groupes d'éléments photoémetteurs forment des matrices entrelacés d'éléments photoémetteurs discrets. C'est le cas où les éléments photoémetteurs prennent la forme d'un plot. Dans un exemple de réalisation le lumière est émise par le sommet des plots.As a variant of this embodiment of the invention illustrated in the figure 2 , and not covered by the set of claims, the light source 13 is a two-dimensional monolithic source, for example of the two-dimensional monolithic light-emitting diode type, and each photoemitting element 22 is an element of this monolithic source. The photo-emitting elements are distributed into several groups of distinct photo-emitting elements on this source, each group corresponding to one of the distinct light emission zones. The light emitting elements of the groups are interleaved such that these groups of light emitting elements form interleaved arrays of discrete light emitting elements. This is the case where the photoemitting elements take the form of a pad. In an exemplary embodiment, the light is emitted from the top of the pads.

La figure 3 représente la source lumineuse 13, selon un deuxième mode de réalisation de l'invention, alternatif au mode de réalisation illustré sur la figure 2. Dans ce deuxième mode de réalisation, la source lumineuse 13 définit sur son substrat 18 plusieurs zones d'émission lumineuse concentriques 20D, 20E, 20F. Dans l'exemple de réalisation particulier illustré sur la figure 3, la source lumineuse 13 définit sur son substrat 18 trois zones d'émission lumineuse concentriques : une première zone d'émission lumineuse 20D, une deuxième zone d'émission lumineuse 20E entourant la première zone 20D, et une troisième zone d'émission lumineuse 20F entourant la deuxième zone 20E. Par exemple, lorsque la première zone d'émission lumineuse 20D est activée, la source lumineuse 13 est utilisée dans le véhicule selon une fonction de « feu de position » ; lorsqu'au moins la deuxième zone lumineuse 20E est activée, la source lumineuse 13 est utilisée dans le véhicule selon une fonction de « feu de circulation diurne » ; et lorsqu'au moins la troisième zone lumineuse 20F est activée, la source lumineuse 13 est utilisée dans le véhicule selon une fonction de « feu de route ».There Figure 3 represents the light source 13, according to a second embodiment of the invention, alternative to the embodiment illustrated in the figure 2 . In this second embodiment, the light source 13 defines on its substrate 18 several concentric light emission zones 20D, 20E, 20F. In the particular embodiment illustrated on the Figure 3 , the light source 13 defines on its substrate 18 three concentric light emission zones: a first light emission zone 20D, a second light emission zone 20E surrounding the first zone 20D, and a third light emission zone 20F surrounding the second zone 20E. For example, when the first light emission zone 20D is activated, the light source 13 is used in the vehicle according to a “position light” function; when at least the second light zone 20E is activated, the light source 13 is used in the vehicle according to a “daytime running light” function; and when at least the third light zone 20F is activated, the light source 13 is used in the vehicle according to a “high beam” function.

De préférence, comme illustré sur la figure 3, la source lumineuse 13 comprend plusieurs bâtonnets électroluminescents 26. Les bâtonnets électroluminescents 26 sont ainsi répartis en plusieurs groupes 29D, 29E, 29F de bâtonnets électroluminescents 26, chaque groupe correspondant à une des zones d'émission lumineuse 20D, 20E, 20F. De préférence, les bâtonnets électroluminescents 26 au sein d'un même groupe 29D, 29E, 29F sont reliés électriquement entre eux. De préférence encore, les bâtonnets électroluminescents 26 au sein d'un même groupe 29D, 29E, 29F sont reliés électriquement en parallèle.Preferably, as illustrated in the Figure 3 , the light source 13 comprises several electroluminescent rods 26. The electroluminescent rods 26 are thus distributed into several groups 29D, 29E, 29F of electroluminescent rods 26, each group corresponding to one of the light emission zones 20D, 20E, 20F. Preferably, the electroluminescent sticks 26 within the same group 29D, 29E, 29F are electrically connected to each other. More preferably, the electroluminescent sticks 26 within the same group 29D, 29E, 29F are electrically connected in parallel.

Chaque bâtonnet électroluminescent 26 s'étend depuis le substrat 18. De préférence, chaque bâtonnet électroluminescent 26 présente des dimensions submillimétriques. Chaque bâtonnet électroluminescent 26 s'étend par exemple selon une direction privilégiée depuis le substrat 18. De préférence, les bâtonnets électroluminescents 26 de la source lumineuse 13 s'étendent selon une même direction privilégiée depuis le substrat 18. Chaque bâtonnet électroluminescent 26 comprend par exemple un nitrure de métal, notamment un nitrure de gallium.Each electroluminescent rod 26 extends from the substrate 18. Preferably, each electroluminescent rod 26 has submillimeter dimensions. Each electroluminescent stick 26 extends for example in one direction privileged from the substrate 18. Preferably, the electroluminescent rods 26 of the light source 13 extend in the same preferred direction from the substrate 18. Each electroluminescent rod 26 comprises for example a metal nitride, in particular a gallium nitride.

En variante à ce mode de réalisation de l'invention illustré sur la figure 3, et non couvert par le jeu de revendications, la source lumineuse 13 selon ce deuxième mode de réalisation est une source lumineuse à haute définition. Par « source lumineuse à haute définition » on entend une source lumineuse comprenant un nombre élevé, typiquement supérieur ou égal à 1000, d'éléments électroluminescents susceptibles d'être alimentés séparément.As a variant of this embodiment of the invention illustrated in the Figure 3 , and not covered by the set of claims, the light source 13 according to this second embodiment is a high definition light source. By “high definition light source” is meant a light source comprising a high number, typically greater than or equal to 1000, of electroluminescent elements capable of being powered separately.

La source lumineuse 13 selon ce deuxième mode de réalisation définit sur son substrat deux zones d'émission lumineuse concentriques : une première zone d'émission lumineuse et une deuxième zone d'émission lumineuse entourant la première zone. De préférence, selon cet exemple de réalisation, la surface de la deuxième zone d'émission lumineuse est supérieure à celle de la première zone d'émission lumineuse, par exemple telle que le rapport entre cette surface et la surface de la première zone d'émission lumineuse est supérieur ou égal à 9, et est de préférence supérieur ou égal à 10. Alternativement ou en complément, lorsque la source lumineuse 13 comprend en outre plusieurs bâtonnets électroluminescents répartis en groupes de bâtonnets, la densité des bâtonnets électroluminescents du groupe correspondant à la deuxième zone d'émission lumineuse est supérieure à celle du groupe correspondant à la première zone d'émission lumineuse, par exemple telle que le rapport entre cette densité et la densité des bâtonnets électroluminescents du groupe correspondant à la première zone d'émission lumineuse est supérieur ou égal à 9, et est de préférence supérieur ou égal à 10.The light source 13 according to this second embodiment defines on its substrate two concentric light emission zones: a first light emission zone and a second light emission zone surrounding the first zone. Preferably, according to this exemplary embodiment, the surface of the second light emission zone is greater than that of the first light emission zone, for example such that the ratio between this surface and the surface of the first light emission zone light emission is greater than or equal to 9, and is preferably greater than or equal to 10. Alternatively or in addition, when the light source 13 further comprises several electroluminescent rods distributed into groups of rods, the density of the electroluminescent rods of the group corresponding to the second light emission zone is greater than that of the group corresponding to the first light emission zone, for example such that the ratio between this density and the density of the electroluminescent rods of the group corresponding to the first light emission zone is greater than or equal to 9, and is preferably greater than or equal to 10.

En revenant à la figure 1, le système de pilotage 16 comprend un organe 30 de réglage de la valeur moyenne d'une grandeur électrique relative au courant électrique reçu par la source lumineuse 13, et un dispositif 32 de connexion de la source lumineuse 13 à l'organe de réglage 30. De préférence, le système de pilotage 16 comprend en outre un organe 34 de mesure d'une grandeur électrique relative à un courant électrique circulant au sein de la source lumineuse 13.Returning to the figure 1 , the control system 16 comprises a member 30 for adjusting the average value of an electrical quantity relating to the electric current received by the light source 13, and a device 32 for connecting the light source 13 to the adjustment member 30 Preferably, the control system 16 further comprises a member 34 for measuring an electrical quantity relating to an electric current circulating within the light source 13.

Le dispositif de connexion 32 est relié aux zones d'émission lumineuse distinctes 20 de la source lumineuse 13 et est propre à activer sélectivement ces zones d'émission lumineuse 20, comme illustré sur les figures 2 et 3.The connection device 32 is connected to the distinct light emission zones 20 of the light source 13 and is capable of selectively activating these light emission zones 20, as illustrated in the figure 2 And 3 .

Comme représenté sur la figure 1, le dispositif de connexion 32 comporte par exemple un composant électronique semi-conducteur de commutation 38, tel qu'un transistor par exemple. Le composant électronique 38 comprend deux électrodes de conduction et une électrode de commande, non représentées sur les figures pour des raisons de clarté. L'une des électrodes de conduction forme par exemple une borne négative 40A. L'autre électrode de conduction est par exemple apte à être connectée à une ou plusieurs bornes positives 40B. Dans les modes de réalisation de la source lumineuse 13 illustrés sur les figures 2 et 3, la borne négative 40A est connectée à une cathode 42A agencée sur le substrat 18. Dans le mode de réalisation illustré sur la figure 2, chaque borne positive 40B est connectée à des anodes 42B appartenant à un même groupe 24A, 24B, 24C d'éléments photoémetteurs, chaque anode 42B étant agencée sur un élément photoémetteur 22. Plus précisément, chaque anode 42B est par exemple formée par une couche conductrice déposée au-dessus du substrat 18, du côté des bâtonnets 26 de l'élément photoémetteur 22 sur lequel l'anode 42B est agencée. De préférence, chaque anode 42B joint électriquement les bâtonnets 26 de l'élément photoémetteur 22 sur lequel elle est agencée. Dans le mode de réalisation illustré sur la figure 3, chaque borne positive 40B est connectée à une anode 43B agencée au sein d'un groupe 29D, 29E, 29F de bâtonnets électroluminescents 26. Plus précisément, chaque anode 43B est par exemple formée par une couche conductrice déposée au-dessus du substrat 18, du côté des bâtonnets 26 du groupe 29D, 29E, 29F au sein duquel l'anode 43B est agencée. De préférence, chaque anode 43B joint électriquement aux uns aux autres les bâtonnets 26 du groupe 29D, 29E, 29F au sein duquel elle est agencée.As shown on the figure 1 , the connection device 32 comprises for example a semiconductor electronic switching component 38, such as a transistor for example. The electronic component 38 comprises two conduction electrodes and a control electrode, not shown in the figures for reasons of clarity. One of the conduction electrodes forms, for example, a 40A negative terminal. The other conduction electrode is for example capable of being connected to one or more positive terminals 40B. In the embodiments of the light source 13 illustrated on the figure 2 And 3 , the negative terminal 40A is connected to a cathode 42A arranged on the substrate 18. In the embodiment illustrated on the figure 2 , each positive terminal 40B is connected to anodes 42B belonging to the same group 24A, 24B, 24C of photoemitting elements, each anode 42B being arranged on a photoemitting element 22. More precisely, each anode 42B is for example formed by a layer conductive deposited above the substrate 18, on the side of the rods 26 of the photoemitting element 22 on which the anode 42B is arranged. Preferably, each anode 42B electrically joins the rods 26 of the photoemitting element 22 on which it is arranged. In the embodiment illustrated on the Figure 3 , each positive terminal 40B is connected to an anode 43B arranged within a group 29D, 29E, 29F of electroluminescent sticks 26. More precisely, each anode 43B is for example formed by a conductive layer deposited above the substrate 18, on the side of the sticks 26 of the group 29D, 29E, 29F within which the anode 43B is arranged. Preferably, each anode 43B electrically joins the rods 26 of the group 29D, 29E, 29F within which it is arranged.

L'électrode de commande est apte à recevoir un signal 44 de commande d'activation d'une des zones d'émission lumineuse 20.The control electrode is able to receive a signal 44 for controlling activation of one of the light emission zones 20.

L'organe de réglage 30 est relié à une source 36 d'alimentation en courant ou en tension électrique d'entrée, notamment en courant ou en tension électrique continu(e) d'entrée. La source d'alimentation 36 est par exemple agencée au sein de l'ensemble lumineux 12. En variante, la source d'alimentation 36 est agencée au sein du véhicule et forme par exemple la batterie du véhicule. Dans ce cas, la source d'alimentation 36 est par exemple connectée via un répartisseur, situé lui aussi au sein du véhicule. Dans l'exemple de réalisation particulier illustré sur la figure 1, la source d'alimentation 36 est une source d'alimentation en tension électrique continue d'entrée, fournissant une tension électrique d'entrée sensiblement constante U0.The adjustment member 30 is connected to a source 36 of supplying current or electrical input voltage, in particular direct current or electrical input voltage. The power source 36 is for example arranged within the light assembly 12. Alternatively, the power source 36 is arranged within the vehicle and forms for example the vehicle battery. In this case, the power source 36 is for example connected via a distributor, also located within the vehicle. In the particular embodiment illustrated on the figure 1 , the power source 36 is a DC input electrical voltage supply source, providing a substantially constant input electrical voltage U 0 .

L'organe de réglage 30 est configuré pour régler, pour chaque zone lumineuse 20 activée, la valeur moyenne de la grandeur électrique relative au courant électrique reçu par la source lumineuse 13, en fonction d'une consigne 46A, 46B, 46C de courant, de tension électrique ou de puissance électrique moyen(ne) associée à cette activation. La consigne 46A, 46B, 46C de courant, de tension électrique ou de puissance électrique moyen(ne) est par exemple stockée dans une mémoire interne ou externe au dispositif lumineux 10, non représentée sur les figures. La consigne 46A, 46B, 46C peut être mise à jour dynamiquement dans la mémoire, notamment en fonction de la température, par un module de commande relié à la mémoire. Un tel module de commande n'est pas représenté sur les figures pour des raisons de clarté.The adjustment member 30 is configured to adjust, for each activated light zone 20, the average value of the electrical quantity relating to the electric current received by the light source 13, as a function of a current setpoint 46A, 46B, 46C, of electrical voltage or average electrical power associated with this activation. The current, electrical voltage or average electrical power setpoint 46A, 46B, 46C is for example stored in a memory internal or external to the light device 10, not shown in the figures. The setpoint 46A, 46B, 46C can be dynamically updated in the memory, in particular as a function of the temperature, by a control module connected to the memory. Such a control module is not shown in the figures for reasons of clarity.

Dans le mode de réalisation de l'invention illustré sur la figure 1, l'organe de réglage 30 est un hacheur propre à fournir un courant électrique de sortie destiné à circuler au sein de la source lumineuse 13. Selon ce mode de réalisation, la grandeur électrique à régler est la tension électrique, et l'organe de réglage 30 est configuré pour régler la valeur moyenne de la tension U1 de sortie en fonction d'une consigne 46A, 46B, 46C de courant moyen. De préférence, le hacheur formant l'organe de réglage 30 présente une fréquence de découpage comprise entre 50 Hz et 1 kHz, de préférence comprise entre 200 Hz et 1 kHz pour que l'œil humain ne distingue pas d'oscillations, de préférence encore sensiblement égale à 400 Hz.In the embodiment of the invention illustrated in the figure 1 , the adjustment member 30 is a chopper capable of supplying an electrical output current intended to circulate within the light source 13. According to this embodiment, the electrical quantity to be adjusted is the electrical voltage, and the adjustment member setting 30 is configured to adjust the average value of the output voltage U1 as a function of an average current setpoint 46A, 46B, 46C. Preferably, the chopper forming the adjustment member 30 has a switching frequency of between 50 Hz and 1 kHz, preferably between 200 Hz and 1 kHz so that the human eye does not distinguish oscillations, more preferably substantially equal to 400 Hz.

Selon l'exemple de réalisation particulier illustré sur la figure 1, le système de pilotage 16 met en œuvre une alimentation en tension et un pilotage en courant de la source lumineuse 13.According to the particular embodiment illustrated on the figure 1 , the control system 16 implements a voltage supply and current control of the light source 13.

L'organe de mesure 34 est relié à l'organe de réglage 30. L'organe de mesure 34 est apte à fournir au moins une donnée Ism de mesure d'une grandeur électrique relative au courant électrique reçu par la source lumineuse 13. Selon l'exemple de réalisation particulier de la figure 1, la grandeur électrique mesurée est un courant électrique, et l'organe de mesure 34 est apte à fournir une donnée Ism de mesure de la valeur moyenne du courant électrique reçu par la source lumineuse 13. Ainsi, l'organe de réglage 30 est avantageusement configuré pour réguler, pour chaque zone lumineuse 20 activée, la valeur moyenne du courant électrique de sortie en fonction de la valeur d'une donnée de mesure Ism fournie par l'organe de mesure 34, et de la consigne 46A, 46B, 46C de courant moyen.The measuring member 34 is connected to the adjusting member 30. The measuring member 34 is capable of providing at least one Ism data measurement of an electrical quantity relating to the electric current received by the light source 13. According to the particular embodiment of the figure 1 , the measured electrical quantity is an electric current, and the measuring member 34 is able to provide Ism data measuring the average value of the electric current received by the light source 13. Thus, the adjusting member 30 is advantageously configured to regulate, for each activated light zone 20, the average value of the electrical output current as a function of the value of measurement data Ism supplied by the measuring device 34, and of the average current setpoint 46A, 46B, 46C.

L'organe de mesure 34 comporte par exemple une résistance 48, connectée en série avec la source lumineuse 13, et un module 50 d'amplification de signal destiné à amplifier la valeur de tension prélevée par la résistance 48.The measuring member 34 comprises for example a resistor 48, connected in series with the light source 13, and a signal amplification module 50 intended to amplify the voltage value taken by the resistor 48.

Dans un mode de réalisation non représenté, le système de pilotage peut être intégré, c'est-à-dire monté, sur la source lumineuse. Dans ce cas, l'unité de contrôle peut comporter en outre une unité centrale de traitement couplée avec une mémoire sur laquelle est stockée un programme d'ordinateur qui comprend des instructions permettant au processeur de réaliser des étapes générant des signaux permettant le contrôle de la source lumineuse. L'unité de contrôle peut être un circuit intégré, par exemple un ASIC (acronyme de l'anglais « Application-Specific Integrated Circuit ») ou un ASSP (acronyme de l'anglais « Application Specific Standard Product »)In an embodiment not shown, the control system can be integrated, that is to say mounted, on the light source. In this case, the control unit may further comprise a central processing unit coupled with a memory on which a computer program is stored which includes instructions allowing the processor to carry out steps generating signals allowing control of the light source. The control unit can be an integrated circuit, for example an ASIC (acronym for “Application-Specific Integrated Circuit”) or an ASSP (acronym for “Application Specific Standard Product”).

Le procédé de pilotage d'un courant électrique selon l'invention, mis en œuvre par le système de pilotage 16, va maintenant être décrit en référence à la figure 4.The method of controlling an electric current according to the invention, implemented by the control system 16, will now be described with reference to the Figure 4 .

Au cours d'une étape initiale 60, le système de pilotage 16 reçoit un signal de commande d'activation d'une première zone d'émission lumineuse 20A ; 20D de la source lumineuse 13. Le dispositif de connexion 32 reçoit alors un signal de commande d'activation 44 correspondant, et active en conséquence la première zone d'émission lumineuse 20A ; 20D.During an initial step 60, the control system 16 receives a control signal for activation of a first light emission zone 20A; 20D of the light source 13. The connection device 32 then receives a corresponding activation control signal 44, and consequently activates the first light emission zone 20A; 20D.

Au cours d'une étape suivante 62, l'organe de réglage 30 règle la valeur moyenne de la tension électrique de sortie U1 qu'il fournit à la source lumineuse 13, en fonction d'une première consigne 46A de courant moyen. Une première valeur d'un premier flux lumineux est ainsi obtenue pour la source lumineuse 13. Ce premier flux lumineux correspond au flux émis par la première zone d'émission lumineuse 20A ; 20D. Selon le mode de réalisation de l'invention illustré sur la figure 1, le hacheur formant l'organe de réglage 30 régule la valeur moyenne du courant électrique qu'il fournit à la source lumineuse 13, en modifiant le rapport cyclique d'application de la tension électrique d'entrée U0 aux bornes de la première zone lumineuse 20A ; 20D. Au cours de cette étape de réglage 62, le rapport cyclique, modifié par le hacheur, reste toutefois supérieur à une valeur égale à 5%.During a following step 62, the adjustment member 30 adjusts the average value of the electrical output voltage U1 which it supplies to the light source 13, as a function of a first average current setpoint 46A. A first value of a first luminous flux is thus obtained for the light source 13. This first luminous flux corresponds to the flux emitted by the first light emission zone 20A; 20D. According to the embodiment of the invention illustrated on the figure 1 , the chopper forming the adjustment member 30 regulates the average value of the electric current which it supplies to the light source 13, by modifying the cyclical ratio of application of the input electric voltage U 0 to the terminals of the first zone bright 20A; 20D. During this adjustment step 62, the duty cycle, modified by the chopper, however remains greater than a value equal to 5%.

Dans l'exemple de réalisation préférentiel selon lequel le système de pilotage 16 comporte en outre un organe de mesure 34, l'étape de réglage 62 comprend une première sous-étape de mesure, par l'organe de mesure 34, du courant moyen reçu par la source lumineuse 13 ; et une deuxième sous-étape de fourniture, par l'organe de mesure 34 à l'organe de réglage 30, d'une donnée Ism de mesure de ce courant moyen. Le hacheur formant l'organe de réglage 30 régule alors la valeur moyenne du courant électrique de sortie en fonction de la valeur de la donnée Ism de mesure de courant moyen fournie par l'organe de mesure 34, et de la première consigne 46A de courant moyen.In the preferred embodiment according to which the control system 16 further comprises a measuring member 34, the adjustment step 62 comprises a first sub-step of measuring, by the measuring member 34, the average current received by the light source 13; and a second sub-step of supplying, by the measuring member 34 to the adjusting member 30, data Ism measuring this average current. The chopper forming the adjustment member 30 then regulates the average value of the output electric current as a function of the value of the average current measurement data Ism provided by the measuring member 34, and of the first current setpoint 46A AVERAGE.

Au cours d'une étape suivante 64, le système de pilotage 16 reçoit un signal de commande d'activation d'une deuxième zone d'émission lumineuse 20B ; 20E de la source lumineuse 13. Le dispositif de connexion 32 reçoit alors un signal de commande d'activation 44 correspondant, et active en conséquence la deuxième zone d'émission lumineuse 20B ; 20E.During a following step 64, the control system 16 receives a control signal for activation of a second light emission zone 20B; 20E of the light source 13. The connection device 32 then receives a corresponding activation control signal 44, and consequently activates the second light emission zone 20B; 20E.

Au cours d'une étape suivante 66, l'organe de réglage 30 règle la valeur moyenne de la tension électrique de sortie U1 qu'il fournit à la source lumineuse 13, en fonction d'une deuxième consigne 46B de courant moyen. Une deuxième valeur d'un deuxième flux lumineux est ainsi obtenue pour la source lumineuse 13. Ce deuxième flux lumineux correspond au flux émis par au moins la deuxième zone d'émission lumineuse 20B ; 20E. En effet, selon un premier exemple de mise en œuvre du procédé, le deuxième flux lumineux correspond au flux émis par la première zone d'émission lumineuse 20A ; 20D et par la deuxième zone d'émission lumineuse 20B ; 20E. En variante, le deuxième flux lumineux correspond au flux émis uniquement par la deuxième zone d'émission lumineuse 20B ; 20E. Dans ce cas, le procédé comprend, préalablement à l'étape 66, une étape additionnelle de désactivation de la première zone d'émission lumineuse 20A ; 20D par le dispositif de connexion 32. Selon l'exemple de réalisation préférentiel illustré sur la figure 1, le hacheur formant l'organe de réglage 30 régule la valeur moyenne du courant électrique qu'il fournit à la source lumineuse 13, en modifiant le rapport cyclique d'application de la tension électrique d'entrée U0 aux bornes d'au moins la deuxième zone lumineuse 20B ; 20E. Au cours de cette étape de réglage 66, le rapport cyclique, modifié par le hacheur, reste toutefois supérieur à une valeur égale à 5%.During a following step 66, the adjustment member 30 adjusts the average value of the electrical output voltage U1 which it supplies to the light source 13, as a function of a second average current setpoint 46B. A second value of a second luminous flux is thus obtained for the light source 13. This second luminous flux corresponds to the flux emitted by at least the second light emission zone 20B; 20E. Indeed, according to a first example of implementation of the method, the second luminous flux corresponds to the flux emitted by the first light emission zone 20A; 20D and by the second light emission zone 20B; 20E. Alternatively, the second light flux corresponds to the flux emitted only by the second light emission zone 20B; 20E. In this case, the method comprises, prior to step 66, an additional step of deactivating the first light emission zone 20A; 20D by the connection device 32. According to the preferred embodiment illustrated on the figure 1 , the chopper forming the adjustment member 30 regulates the average value of the electric current which it supplies to the light source 13, by modifying the cyclical ratio of application of the input electric voltage U 0 to the terminals by at least the second light zone 20B; 20E. During this adjustment step 66, the duty cycle, modified by the chopper, however remains greater than a value equal to 5%.

Lors de l'étape de réglage 66, l'organe de réglage 30 règle la valeur moyenne de la tension électrique de sortie U1 qu'il fournit à la source lumineuse 13, de sorte à ce que le rapport entre la deuxième valeur du deuxième flux lumineux obtenu à l'issue de cette étape 66, et la première valeur du premier flux lumineux obtenu à l'issue de l'étape de réglage 64 soit supérieur ou égal à 100, et de préférence compris entre 100 et 1000. Pour obtenir une valeur de rapport égal à 1000, la valeur du rapport cyclique doit être supérieure à 5%, etDuring the adjustment step 66, the adjustment member 30 adjusts the average value of the electrical output voltage U1 which it supplies to the light source 13, so that the ratio between the second value of the second flux luminous flux obtained at the end of this step 66, and the first value of the first luminous flux obtained at the end of the adjustment step 64 is greater than or equal to 100, and preferably between 100 and 1000. To obtain a ratio value equal to 1000, the duty cycle value must be greater than 5%, and

il est possible de jouer sur les première et deuxième zones d'émission lumineuses concentriques, de sorte à ce que le ratio entre les surfaces de ces zones et/ou entre les densités de bâtonnets électroluminescents de ces zones soit égal à 50.it is possible to play on the first and second concentric light emission zones, so that the ratio between the surfaces of these zones and/or between the densities of electroluminescent sticks of these zones is equal to 50.

De préférence, le procédé comprend en outre une étape suivante 68 au cours de laquelle le système de pilotage 16 reçoit un signal de commande d'activation d'une troisième zone d'émission lumineuse 20C ; 20F de la source lumineuse 13. Le dispositif de connexion 32 reçoit alors un signal de commande d'activation 44 correspondant, et active en conséquence la troisième zone d'émission lumineuse 20C ; 20F.Preferably, the method further comprises a following step 68 during which the control system 16 receives a control signal for activation of a third light emission zone 20C; 20F of the light source 13. The connection device 32 then receives a control signal corresponding activation 44, and consequently activates the third light emission zone 20C; 20F.

De préférence toujours, au cours d'une étape suivante 70, l'organe de réglage 30 règle la valeur moyenne de la tension électrique de sortie U1 qu'il fournit à la source lumineuse 13, en fonction d'une troisième consigne 46C de courant moyen. Une troisième valeur d'un troisième flux lumineux est ainsi obtenue pour la source lumineuse 13. Ce troisième flux lumineux correspond au flux émis par au moins la troisième zone d'émission lumineuse 20C ; 20F. En effet, selon un premier exemple de mise en œuvre du procédé, le troisième flux lumineux correspond au flux émis par la première zone d'émission lumineuse 20A ; 20D, par la deuxième zone d'émission lumineuse 20B ; 20E et par la troisième zone d'émission lumineuse 20C ; 20F. En variante, le troisième flux lumineux correspond au flux émis par l'une des première et deuxième zones d'émission lumineuse 20A, 20B ; 20D, 20E et par la troisième zone d'émission lumineuse 20C ; 20F, ou au flux émis uniquement par la troisième zone d'émission lumineuse 20C ; 20F. Dans ce cas, le procédé comprend, préalablement à l'étape 70, une étape additionnelle de désactivation de la première zone d'émission lumineuse 20A ; 20D et/ou de la deuxième zone d'émission lumineuse 20B ; 20E par le dispositif de connexion 32. Selon l'exemple de réalisation préférentiel illustré sur la figure 1, le hacheur formant l'organe de réglage 30 régule la valeur moyenne du courant électrique qu'il fournit à la source lumineuse 13, en modifiant le rapport cyclique d'application de la tension électrique d'entrée U0 aux bornes d'au moins la troisième zone lumineuse 20C ; 20F. Au cours de cette étape de réglage 70, le rapport cyclique, modifié par le hacheur, reste toutefois supérieur à une valeur égale à 5%.Still preferably, during a following step 70, the adjustment member 30 adjusts the average value of the electrical output voltage U1 which it supplies to the light source 13, as a function of a third current setpoint 46C AVERAGE. A third value of a third luminous flux is thus obtained for the light source 13. This third luminous flux corresponds to the flux emitted by at least the third light emission zone 20C; 20F. Indeed, according to a first example of implementation of the method, the third light flux corresponds to the flux emitted by the first light emission zone 20A; 20D, by the second light emission zone 20B; 20E and by the third light emission zone 20C; 20F. Alternatively, the third light flux corresponds to the flux emitted by one of the first and second light emission zones 20A, 20B; 20D, 20E and by the third light emission zone 20C; 20F, or to the flux emitted only by the third light emission zone 20C; 20F. In this case, the method comprises, prior to step 70, an additional step of deactivation of the first light emission zone 20A; 20D and/or the second light emission zone 20B; 20E by the connection device 32. According to the preferred embodiment illustrated on the figure 1 , the chopper forming the adjustment member 30 regulates the average value of the electric current which it supplies to the light source 13, by modifying the cyclical ratio of application of the input electric voltage U 0 to the terminals by at least the third light zone 20C; 20F. During this adjustment step 70, the duty cycle, modified by the chopper, however remains greater than a value equal to 5%.

De préférence, lors de l'étape de réglage 70, l'organe de réglage 30 règle la valeur moyenne de la tension électrique de sortie U1 qu'il fournit à la source lumineuse 13, de sorte à ce que le rapport entre la troisième valeur du troisième flux lumineux obtenu à l'issue de cette étape 70, et la deuxième valeur du deuxième flux lumineux obtenu à l'issue de l'étape de réglage 66 soit supérieur ou égal à 4, et de préférence compris entre 4 et 100 ; et à ce que le rapport entre la deuxième valeur du deuxième flux lumineux obtenu à l'issue de l'étape de réglage 66, et la première valeur du premier flux lumineux obtenu à l'issue de l'étape de réglage 64 soit supérieur ou égal à 3, et de préférence compris entre 3 et 30.Preferably, during the adjustment step 70, the adjustment member 30 adjusts the average value of the electrical voltage of output U1 which it supplies to the light source 13, so that the ratio between the third value of the third luminous flux obtained at the end of this step 70, and the second value of the second luminous flux obtained at the end from adjustment step 66 is greater than or equal to 4, and preferably between 4 and 100; and that the ratio between the second value of the second luminous flux obtained at the end of the adjustment step 66, and the first value of the first luminous flux obtained at the end of the adjustment step 64 is greater or equal to 3, and preferably between 3 and 30.

Le réglage effectué par le hacheur formant l'organe de réglage 30 au cours des étapes de réglage 62, 66, 70 est une régulation de type modulation de largeur d'impulsions.The adjustment carried out by the chopper forming the adjustment member 30 during the adjustment steps 62, 66, 70 is a pulse width modulation type regulation.

La figure 5 est un exemple de pilotage du rapport cyclique d'application de la tension électrique d'entrée U0, illustrant les étapes 60 à 70 du procédé de pilotage d'un courant décrit ci-dessus, pour une source lumineuse 13 selon l'exemple de réalisation particulier représenté sur la figure 3. Plus précisément, la figure 5 est un ensemble de trois diagrammes 72D, 72E, 72F représentant chacun l'évolution du rapport cyclique R d'application de la tension électrique d'entrée U0 aux bornes respectivement d'une des zones lumineuses 20D, 20E, 20F, en fonction du flux lumineux total Φ émis par la source lumineuse 13. On suppose par exemple que le flux lumineux maximal émis par la troisième zone d'émission lumineuse 20F est supérieur au flux lumineux maximal émis par la deuxième zone d'émission lumineuse 20E, qui est lui-même supérieur au flux lumineux maximal émis par la première zone d'émission lumineuse 20D.There Figure 5 is an example of controlling the duty cycle of application of the input electrical voltage U 0 , illustrating steps 60 to 70 of the method of controlling a current described above, for a light source 13 according to the example of particular achievement represented on the Figure 3 . More precisely, the Figure 5 is a set of three diagrams 72D, 72E, 72F each representing the evolution of the cyclic ratio R of application of the input electrical voltage U 0 to the terminals respectively of one of the light zones 20D, 20E, 20F, as a function of the total luminous flux Φ emitted by the light source 13. It is assumed for example that the maximum luminous flux emitted by the third light emission zone 20F is greater than the maximum luminous flux emitted by the second light emission zone 20E, which is -even greater than the maximum luminous flux emitted by the first light emission zone 20D.

Initialement, le flux lumineux total Φ émis par la source lumineuse 13 présente par exemple une valeur minimale Φmin.Initially, the total luminous flux Φ emitted by the light source 13 has for example a minimum value Φ min .

Au cours de l'étape initiale 60, le dispositif de connexion 32 active la première zone d'émission lumineuse 20D, comme illustré sur le diagramme 72D. Le rapport cyclique R d'application de la tension électrique d'entrée U0 aux bornes de la première zone lumineuse 20D présente par exemple une valeur minimale Rmin.During the initial step 60, the connection device 32 activates the first light emission zone 20D, as shown in diagram 72D. The duty cycle R of application of the input electrical voltage U 0 across the first light zone 20D has for example a minimum value R min .

Au cours de l'étape suivante 62, l'organe de réglage 30 régule la valeur moyenne de la tension électrique de sortie U1 qu'il fournit à la source lumineuse 13, en modifiant le rapport cyclique R d'application de la tension électrique d'entrée U0 aux bornes de la première zone lumineuse 20D. Cette régulation se fait par augmentation progressive du rapport cyclique R entre la valeur minimale Rmin et une valeur maximale Rmax, comme illustré sur le diagramme 72D. La valeur Rmin est supérieure à une valeur égale à 5%, et la valeur Rmax est par exemple sensiblement égale à 100%.During the next step 62, the adjustment member 30 regulates the average value of the electrical output voltage U1 which it supplies to the light source 13, by modifying the cyclical ratio R of application of the electrical voltage d input U 0 across the first light zone 20D. This regulation is done by progressive increase in the duty cycle R between the minimum value R min and a maximum value R max , as illustrated in diagram 72D. The R min value is greater than a value equal to 5%, and the R max value is for example substantially equal to 100%.

Au cours de l'étape suivante 64, le dispositif de connexion 32 active la deuxième zone d'émission lumineuse 20E, comme illustré sur le diagramme 72E. Le rapport cyclique R d'application de la tension électrique d'entrée U0 aux bornes de la deuxième zone lumineuse 20E présente par exemple une valeur minimale Rmin. Au cours de cette étape 64, afin d'assurer une continuité dans le flux lumineux total Φ émis par la source lumineuse 13, le rapport cyclique R d'application de la tension électrique d'entrée U0 aux bornes de la première zone lumineuse 20D est basculé de sa valeur maximale Rmax vers sa valeur minimale Rmin. Pour que cette continuité de flux lumineux total soit obtenue, la condition suivante doit être vérifiée : R max R min . Φ min 20D = R min . Φ min 20E ;

Figure imgb0001
avec Φmin 20D, respectivement Φmin 20E, la valeur du flux lumineux émis par la première zone lumineuse 20D, respectivement par la deuxième zone lumineuse 20E, lorsque le rapport cyclique R présente sa valeur minimale Rmin.During the next step 64, the connection device 32 activates the second light emission zone 20E, as illustrated in diagram 72E. The duty cycle R of application of the input electrical voltage U 0 across the second light zone 20E has for example a minimum value R min . During this step 64, in order to ensure continuity in the total luminous flux Φ emitted by the light source 13, the cyclic ratio R of application of the input electrical voltage U 0 across the first light zone 20D is switched from its maximum value R max to its minimum value R min . For this continuity of total luminous flux to be obtained, the following condition must be verified: R max R min . Φ min 20D = R min . Φ min 20E ;
Figure imgb0001
with Φ min 20D , respectively Φ min 20E , the value of the luminous flux emitted by the first light zone 20D, respectively by the second light zone 20E, when the duty cycle R presents its minimum value R min .

Au cours de l'étape suivante 66, l'organe de réglage 30 régule la valeur moyenne de la tension électrique de sortie U1 qu'il fournit à la source lumineuse 13, en modifiant le rapport cyclique R d'application de la tension électrique d'entrée U0 aux bornes des première et deuxième zones lumineuses 20D, 20E. Cette régulation se fait par augmentation progressive du rapport cyclique R entre la valeur minimale Rmin et la valeur maximale Rmax, comme illustré sur les diagrammes 72D, 72E. En variante non représentée, afin d'augmenter la valeur du flux lumineux total Φ émis par la source lumineuse 13, il est possible d'augmenter uniquement la valeur du rapport cyclique R aux bornes d'une des zones lumineuses 20D, 20E, et de maintenir constante la valeur du rapport cyclique aux bornes de l'autre zone lumineuse 20D, 20E. On obtient alors un plateau et non une pente positive sur le diagramme qui correspond à cette dernière zone lumineuse 20D, 20E.During the next step 66, the adjustment member 30 regulates the average value of the electrical output voltage U1 which it supplies to the light source 13, by modifying the cyclic ratio R of application of the electrical voltage d input U 0 across the first and second light zones 20D, 20E. This regulation is done by progressive increase of the duty cycle R between the minimum value R min and the maximum value R max , as illustrated in diagrams 72D, 72E. As a variant not shown, in order to increase the value of the total luminous flux Φ emitted by the light source 13, it is possible to only increase the value of the cyclic ratio R across one of the light zones 20D, 20E, and to maintain constant the value of the duty cycle across the other light zone 20D, 20E. We then obtain a plateau and not a positive slope on the diagram which corresponds to this last light zone 20D, 20E.

Au cours de l'étape suivante 68, le dispositif de connexion 32 active la troisième zone d'émission lumineuse 20F, comme illustré sur le diagramme 72F. Le rapport cyclique R d'application de la tension électrique d'entrée U0 aux bornes de la troisième zone lumineuse 20F présente par exemple une valeur minimale Rmin. Au cours de cette étape 68, afin d'assurer une continuité dans le flux lumineux total Φ émis par la source lumineuse 13, le rapport cyclique R d'application de la tension électrique d'entrée U0 aux bornes de la première zone lumineuse 20D et le rapport cyclique R d'application de la tension électrique d'entrée U0 aux bornes de la deuxième zone lumineuse 20E sont chacun basculés de leur valeur maximale Rmax vers leur valeur minimale Rmin. Pour que cette continuité de flux lumineux total soit obtenue, la condition suivante doit être vérifiée : R max R min . Φ min 20D + Φ min 20E = R min . Φ min 20F ;

Figure imgb0002
avec Φmin 20D, Φmin 20E, respectivement Φmin 20F, la valeur du flux lumineux émis par la première zone lumineuse 20D, par la deuxième zone lumineuse 20E, respectivement par la troisième zone lumineuse 20F, lorsque le rapport cyclique R présente sa valeur minimale Rmin.During the next step 68, the connection device 32 activates the third light emission zone 20F, as illustrated in diagram 72F. The duty cycle R of application of the input electrical voltage U 0 across the third light zone 20F has for example a minimum value R min . During this step 68, in order to ensure continuity in the total luminous flux Φ emitted by the light source 13, the cyclic ratio R of application of the input electrical voltage U 0 across the first light zone 20D and the cyclic ratio R of application of the input electrical voltage U 0 across the second light zone 20E are each switched from their maximum value R max to their minimum value R min . For this continuity of total luminous flux to be obtained, the following condition must be verified: R max R min . Φ min 20D + Φ min 20E = R min . Φ min 20F ;
Figure imgb0002
with Φ min 20D , Φ min 20E , respectively Φ min 20F , the value of the luminous flux emitted by the first light zone 20D, by the second light zone 20E, respectively by the third light zone 20F, when the cyclic ratio R presents its value minimum R min .

Au cours de l'étape finale 70, l'organe de réglage 30 régule la valeur moyenne de la tension électrique de sortie U1 qu'il fournit à la source lumineuse 13, en modifiant le rapport cyclique R d'application de la tension électrique d'entrée U0 aux bornes des première, deuxième et troisième zones lumineuses 20D, 20E, 20F. Cette régulation se fait par augmentation progressive du rapport cyclique R entre la valeur minimale Rmin et la valeur maximale Rmax, comme illustré sur les diagrammes 72D, 72E, 70F. A l'issue de cette étape finale 70, le flux lumineux total Φ émis par la source lumineuse 13 atteint une valeur maximale Φmax.During the final step 70, the adjustment member 30 regulates the average value of the electrical output voltage U1 which it supplies to the light source 13, by modifying the cyclical ratio R of application of the electrical voltage d input U 0 across the first, second and third light zones 20D, 20E, 20F. This regulation is done by progressive increase in the duty cycle R between the minimum value R min and the maximum value R max , as illustrated in diagrams 72D, 72E, 70F. At the end of this final step 70, the total luminous flux Φ emitted by the light source 13 reaches a maximum value Φ max .

Plus généralement, un principe de pilotage du rapport cyclique identique ou similaire à celui décrit ci-dessus peut être mis en œuvre dans le cas où la source lumineuse 13 définit sur son substrat un nombre de zones d'émission lumineuse supérieur ou égal à deux. Le même principe de basculement du rapport cyclique est alors mis en oeuvre, afin d'assurer la continuité du flux lumineux total émis par la source lumineuse 13 au moment de l'activation de nouvelles zones lumineuses.More generally, a principle for controlling the duty cycle identical or similar to that described above can be implemented in the case where the light source 13 defines on its substrate a number of light emission zones greater than or equal to two. The same principle of switching the duty cycle is then implemented, in order to ensure the continuity of the total luminous flux emitted by the light source 13 at the time of activation of new light zones.

Dans un autre mode de réalisation non représenté, les valeurs de Rmin et Rmax peuvent être différentes d'une zone de la source à l'autre. Elles peuvent aussi être différentes pour une zone donnée, d'une étape à l'autre de l'allumage. Le rapport cyclique Rmax est avantageusement 100%, en particulier pour l'obtention de Φmax.In another embodiment not shown, the values of R min and R max may be different from one zone of the source to another. They can also be different for a given zone, from one stage of ignition to another. The duty cycle R max is advantageously 100%, in particular for obtaining Φ max .

L'invention est décrite dans ce qui précède à titre d'exemple. Il est entendu que l'homme du métier est à même de réaliser différentes variantes de réalisation de l'invention sans pour autant sortir du cadre de l'invention.The invention is described in the above by way of example. It is understood that those skilled in the art are able to carry out different embodiments of the invention without departing from the scope of the invention.

Claims (9)

  1. Method for controlling an electric current within a semiconductor light source, said light source (13) comprising a substrate (18) and a plurality of photoemitter elements (22), the photoemitter elements being divided into multiple distinct groups of photoemitter elements (24A, 24B, 24C), each group of photoemitter elements corresponding to a light-emitting region (20A, 20B, 20C),
    said light source defining, on its substrate, at least two distinct light-emitting regions (20A, 20B, 20C; 20D, 20E, 20F), said at least two light-emitting regions being concentric regions (20D, 20E, 20F) or interlaced regions (20A, 20B, 20C) such that said groups of photoemitter elements of the interlaced regions (20A, 20B, 20C) form interlaced matrices of discrete photoemitter elements,
    said method being deployed by a system (16) for controlling the electric current within the light source, said control system comprising:
    - a control component (30) for the mean value of an electrical variable relating to the electric current received by the light source, said control component being able to be connected to an electric current or an electric voltage input source, specifically for a direct current or direct voltage input, and the control component being a chopper (30), and the control executed by the chopper being control of the pulse-width modulation type;
    - said control system further comprising a device (32) for the connection of the light source to the control component, this connection device being connected to said at least two distinct light-emitting regions of the light source, and being able to selectively activate said at least two light-emitting regions, and the method comprising the following steps:
    - activating a first light-emitting region of said at least two distinct light-emitting regions (20A; 20D) of the light source,
    - regulating, via the control component, the mean value of the electrical variable relating to the electric current received by the light source as a function of a first setpoint (46A) for the mean current, the mean electric voltage or the mean electric power, so as to obtain a first value of a first luminous flux for the light source, said first luminous flux corresponding to the flux emitted by said first light-emitting region, wherein the control component regulates the mean value of said electrical variable by applying a duty cycle to the value of the electrical variable;
    - activating at least a second light-emitting region of said at least two distinct light-emitting regions (20B; 20E) of the light source,
    - regulating, via the control component, the mean value of the electrical variable relating to the electric current received by the light source as a function of a second setpoint (46B) for the mean current, the mean electric voltage or the mean power, so as to obtain a second value of a second luminous flux for the light source, said second luminous flux corresponding to the flux emitted by said second light-emitting region or by a combination of the luminous flux emitted by the first light-emitting region and the luminous flux emitted by the second light-emitting region, wherein the control component regulates the mean value of said electrical variable by applying a duty cycle to the value of the electrical variable;
    the control method being characterized in that said duty cycles are greater than a value equal to 5%, such that the first value of the first luminous flux obtained for the light source (13) and the second value of the second luminous flux obtained for the light source (13) are such that the ratio between the second value of the second luminous flux and the first value of the first luminous flux is greater than or equal to 100, and is preferably between 100 and 1000.
  2. Method according to Claim 1, wherein said at least two distinct light-emitting regions are concentric regions (20D, 20E, 20F), the light source defining, on its substrate, three distinct light-emitting regions (20D, 20E, 20F), the first light-emitting region (20D) being surrounded by the second light-emitting region (20E), the second light-emitting region being surrounded by a third light-emitting region (20F), and wherein the method further comprises a step for activating the third light-emitting region, and a step for regulating, via the control component (30), the mean value of the electrical variable relating to the electric current received by the light source as a function of a third setpoint (46C) for the mean current, the mean electric voltage or the mean electric power, so as to obtain a third value of a third luminous flux for the light source, said third luminous flux corresponding to the flux emitted by at least the third light-emitting region.
  3. Method according to either one of the preceding claims, wherein the control system (16) further comprises a measuring component (34) for an electrical variable representative of a current flowing within the light source (13), the control component being connected to the measuring component, said method further comprising a step for measuring an electrical variable representative of the electric current flowing within the light source, and a step for the delivery of at least one measuring datum for said electrical variable, and wherein each step for regulating the mean value of the electrical variable relating to the electric current received by the light source constitutes a regulation of said mean value, executed as a function of said measuring datum and a first, or respectively a second, setpoint for the mean current, electric voltage or electric power.
  4. Lighting unit (12) comprising:
    - a semiconductor light source (13) comprising a substrate (18) and a plurality of photoemitter elements (22), the photoemitter elements being divided into multiple distinct groups of photoemitter elements (24A, 24B, 24C), each group of photoemitter elements corresponding to a light-emitting region (20A, 20B, 20C), said light source defining, on its substrate, at least two distinct light-emitting regions (20A, 20B, 20C; 20D, 20E, 20F), which are concentric regions or interlaced regions such that said groups of photoemitter elements of the interlaced regions (20A, 20B, 20C) form interlaced matrices of discrete photoemitter elements, and
    - a system (16) for controlling an electric current within said light source (13), characterized in that the system is able to deploy the method for controlling an electric current according to any one of the preceding claims,
    the system comprising:
    - a control component (30) for the mean value of an electrical variable relating to the electric current received by the light source, the control component being a chopper (30), and the control executed by the chopper being control of the pulse-width modulation type, and
    - a device (32) for the connection of the light source to the control component, this connection device being connected to said at least two distinct light-emitting regions of the light source, and being able to selectively activate said at least two distinct light-emitting regions; the control component being able to be connected to an electric current or an electric voltage input source (36), specifically for a direct current or direct voltage input,
    the lighting unit being characterized in that the control component is configured to regulate, for each activated region of said at least two distinct light-emitting regions, the mean value of the electrical variable relating to the electric current received by the light source as a function of a setpoint (46A, 46B, 46C) for the mean current, the mean electric voltage or the mean electric power associated with said activation by applying a duty cycle greater than the value of 5% to the value of the electrical variable such that the first value of the first luminous flux and the second value of the second luminous flux are such that the ratio between the second value of the second luminous flux and the first value of the first luminous flux is greater than or equal to 100, and is preferably between 100 and 1000.
  5. Lighting unit (12) according to Claim 4, wherein each photoemitter element (22) comprises at least one electroluminescent rod (26) extending from the substrate (18) .
  6. Lighting unit (12) according to the preceding claim, wherein the electroluminescent rods (26) are divided into a plurality of separate groups of rods, each group of rods corresponding to all or part of one of said at least two distinct light-emitting regions (20A, 20B, 20C; 20D, 20E, 20F).
  7. Lighting unit (12) according to one of Claims 4 to 6, wherein said at least two distinct light-emitting regions are concentric regions (20D, 20E, 20F), the light source (13) defining, on its substrate (18), a first light-emitting region (20D), and a second light-emitting region (20E), which is distinct from the first region and which surrounds the first region, the surface area of the second light-emitting region being greater than that of the first light-emitting region, such that the ratio between the surface area thereof and the surface area of the first light-emitting region is equal to or greater than 9, and is preferably equal to or greater than 10.
  8. Lighting unit according to Claim 6, wherein said at least two distinct light-emitting regions are concentric regions (20D, 20E, 20F), the light source (13) defining, on its substrate (18), a first light-emitting region (20D), and a second light-emitting region (20E), which is distinct from the first region and which surrounds the first region, the density of the electroluminescent rods (26) in the group corresponding to the second light-emitting region being greater than that of the group corresponding to the first light-emitting region, such that the ratio between the density thereof and the density of the electroluminescent rods in the group corresponding to the first light-emitting region is equal to or greater than 9, and is preferably equal to or greater than 10.
  9. Lighting device for a vehicle comprising at least one lighting unit, wherein the lighting unit is in accordance with one of Claims 4 to 8.
EP18719209.1A 2017-04-28 2018-04-27 Method and system for controlling the electric current within a semiconductor light source defining at least two distinct light emission regions Active EP3616471B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1753786A FR3065822B1 (en) 2017-04-28 2017-04-28 METHOD AND SYSTEM FOR CONTROL OF ELECTRIC CURRENT WITHIN A SEMICONDUCTOR LIGHT SOURCE DEFINING AT LEAST TWO DISTINCT LIGHT EMISSION ZONES
PCT/EP2018/060918 WO2018197686A1 (en) 2017-04-28 2018-04-27 Method and system for controlling the electric current within a semiconductor light source defining at least two distinct light emission regions

Publications (2)

Publication Number Publication Date
EP3616471A1 EP3616471A1 (en) 2020-03-04
EP3616471B1 true EP3616471B1 (en) 2024-01-31

Family

ID=59409467

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18719209.1A Active EP3616471B1 (en) 2017-04-28 2018-04-27 Method and system for controlling the electric current within a semiconductor light source defining at least two distinct light emission regions

Country Status (6)

Country Link
US (1) US11041598B2 (en)
EP (1) EP3616471B1 (en)
KR (1) KR102271012B1 (en)
CN (1) CN110583099B (en)
FR (1) FR3065822B1 (en)
WO (1) WO2018197686A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3062096B1 (en) * 2017-01-26 2022-04-15 Valeo Vision DEVICE FOR CONTROLLING A MATRIX OF LIGHT SOURCES FOR THE INTERIOR LIGHTING OF THE CABIN OF A MOTOR VEHICLE
FR3124444B1 (en) * 2021-06-23 2023-05-12 Valeo Vision Powering a matrix of light sources for a dynamic function

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050212459A1 (en) * 2004-03-26 2005-09-29 Patel Sanmukh M System and method for driving a plurality of loads
US20140175978A1 (en) * 2011-09-01 2014-06-26 Koito Manufacturing Co.,Ltd. Automotive headlamp apparatus
US20160144771A1 (en) * 2014-11-25 2016-05-26 Stanley Electric Co., Ltd. Light-emitting diode apparatus
WO2016152465A1 (en) * 2015-03-26 2016-09-29 株式会社小糸製作所 Vehicular lamp device and lamp device system
WO2017025441A1 (en) * 2015-08-07 2017-02-16 Valeo Vision Lighting and/or signalling device for a motor vehicle
DE102015219789A1 (en) * 2015-10-13 2017-04-13 Osram Gmbh Luminous density regulation at edge areas

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8988599B2 (en) * 2010-08-31 2015-03-24 University Of Southern California Illumination sphere with intelligent LED lighting units in scalable daisy chain with interchangeable filters
US7777166B2 (en) * 2006-04-21 2010-08-17 Cree, Inc. Solid state luminaires for general illumination including closed loop feedback control
US8957601B2 (en) * 2008-09-18 2015-02-17 Lumastream Canada Ulc Configurable LED driver/dimmer for solid state lighting applications
GB2475634B (en) * 2008-09-18 2013-04-10 Craftsmen Corp E Configurable LED driver/dimmer for solid state lighting applications
AU2012201949B2 (en) * 2011-04-05 2015-05-07 Rimikon Inc. Low voltage system and method
US9060400B2 (en) * 2011-07-12 2015-06-16 Arkalumen Inc. Control apparatus incorporating a voltage converter for controlling lighting apparatus
US8872438B2 (en) * 2012-06-14 2014-10-28 Xunwei Zhou LED light dimming with a target brightness
JP6282484B2 (en) * 2014-02-21 2018-02-21 スタンレー電気株式会社 Light emitting device
WO2016052550A1 (en) * 2014-09-29 2016-04-07 シチズンホールディングス株式会社 Led module
JP6524656B2 (en) * 2014-12-10 2019-06-05 パナソニックIpマネジメント株式会社 Lighting system and control device
FR3039880B1 (en) * 2015-08-07 2019-10-11 Valeo Vision LIGHTING AND / OR SIGNALING DEVICE FOR MOTOR VEHICLE
FR3041204B1 (en) * 2015-09-14 2017-09-15 Valeo Vision DIRECT VOLTAGE MANAGEMENT OF A MICRO OR NANO-WIRE LED LIGHT SOURCE
FR3041576B1 (en) 2015-09-25 2019-11-29 Valeo Vision DEVICE AND METHOD FOR CONFERING DIFFERENT WHITE COLORS TO A BRIGHT BEAM
DE102015013191A1 (en) 2015-10-10 2017-04-13 Daimler Ag Method for operating a lighting unit and lighting unit
CN109032232B (en) * 2015-12-28 2020-04-28 台达电子企业管理(上海)有限公司 Electronic device
WO2018228858A1 (en) * 2017-06-12 2018-12-20 Philips Lighting Holding B.V. Method and apparatus for driving an led
CN111279799B (en) * 2017-09-22 2022-04-05 路创技术有限责任公司 Load control device with wide output range
JP2019061854A (en) * 2017-09-26 2019-04-18 パナソニックIpマネジメント株式会社 Lighting system, luminaire apparatus, lighting control system, and program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050212459A1 (en) * 2004-03-26 2005-09-29 Patel Sanmukh M System and method for driving a plurality of loads
US20140175978A1 (en) * 2011-09-01 2014-06-26 Koito Manufacturing Co.,Ltd. Automotive headlamp apparatus
US20160144771A1 (en) * 2014-11-25 2016-05-26 Stanley Electric Co., Ltd. Light-emitting diode apparatus
WO2016152465A1 (en) * 2015-03-26 2016-09-29 株式会社小糸製作所 Vehicular lamp device and lamp device system
WO2017025441A1 (en) * 2015-08-07 2017-02-16 Valeo Vision Lighting and/or signalling device for a motor vehicle
DE102015219789A1 (en) * 2015-10-13 2017-04-13 Osram Gmbh Luminous density regulation at edge areas

Also Published As

Publication number Publication date
FR3065822B1 (en) 2020-08-28
KR20190126933A (en) 2019-11-12
WO2018197686A1 (en) 2018-11-01
EP3616471A1 (en) 2020-03-04
CN110583099A (en) 2019-12-17
US20200149698A1 (en) 2020-05-14
US11041598B2 (en) 2021-06-22
CN110583099B (en) 2022-11-11
FR3065822A1 (en) 2018-11-02
KR102271012B1 (en) 2021-06-29

Similar Documents

Publication Publication Date Title
EP3616471B1 (en) Method and system for controlling the electric current within a semiconductor light source defining at least two distinct light emission regions
EP3350845A1 (en) Micro- or nano-wire led light source comprising temperature measurement means
FR3013937A1 (en) ATTACK CIRCUIT WITH SEMICONDUCTOR LIGHT SOURCE AND METHOD OF OPERATING AN ATTACK CIRCUIT
FR3056071A1 (en) METHOD FOR CALIBRATING THE INTENSITY OF AN ELECTRICAL CURRENT FOR SUPPLYING LIGHT-EMITTING LIGHT-EMITTING SOURCES TO OBTAIN UNIFORM LIGHT
EP3351057B1 (en) Power management for a micro- or nano-wire led light source
WO2018050355A1 (en) Wiring for a high-resolution light source
WO2020260718A1 (en) Device and method for controlling a set of light sources for a motor vehicle light assembly
WO2017046083A1 (en) Forward voltage management for a micro- or nano-wire led light source
EP3502549A1 (en) Light module with electroluminescent elements with progressive cutoff
WO2017050801A1 (en) System and method for driving an electric current within at least one photoemitter element able to emit a colour that varies as a function of the intensity of the electric current that it receives
WO2017046107A1 (en) Led light source comprising an electronic circuit
FR3124578A1 (en) Method of operation of automotive lighting device and automotive lighting device
WO2022243497A1 (en) Light-emitting module with compact converter circuit
WO2023062245A1 (en) Optimizing the pulse-width modulation current supply to a lighting system
EP4046465A1 (en) Lighting system comprising a pixelated light source and a current sensor
WO2022117775A1 (en) Voltage control method for a pixelated light source
FR3116409A1 (en) LIGHTING SYSTEM FOR MOTOR VEHICLES
EP4147537A1 (en) Method for controlling a lighting system of a motor vehicle
EP3836757A1 (en) Method and device for controlling a pixellated light source of a motor vehicle
FR3116985A1 (en) Method of operation of automotive lighting device and automotive lighting device
FR3105704A1 (en) LIGHT SOURCE ELECTRICAL SUPPLY CONTROL SYSTEM
FR3113994A1 (en) Method of operation of automotive lighting device and automotive lighting device
FR3062258A1 (en) ELECTRIC POWER SUPPLY CONTROL MODULE OF A PLURALITY OF LIGHT SOURCES OF A MOTOR VEHICLE
FR3096759A1 (en) Method of operating an automotive lighting device and automotive lighting device
FR2924298A1 (en) Luminosity regulating circuit for white LEDs, has regulator supplying direct voltage to LEDs having high operating voltage and including potentiometer and threshold resistor mounted in series, where LEDs are arranged in series of four

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191015

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20200731

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602018064745

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H05B0033080000

Ipc: H05B0045100000

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: H05B0033080000

Ipc: H05B0045100000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F21S 41/155 20180101ALI20230724BHEP

Ipc: F21S 41/663 20180101ALI20230724BHEP

Ipc: F21S 41/141 20180101ALI20230724BHEP

Ipc: H05B 45/10 20200101AFI20230724BHEP

INTG Intention to grant announced

Effective date: 20230821

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602018064745

Country of ref document: DE

Owner name: VALEO VISION, FR

Free format text: FORMER OWNER: VALEO VISION, BOBIGNY CEDEX, FR

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018064745

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH