EP3615479A1 - Artificial wetland sized for removing pollutants - Google Patents

Artificial wetland sized for removing pollutants

Info

Publication number
EP3615479A1
EP3615479A1 EP18717095.6A EP18717095A EP3615479A1 EP 3615479 A1 EP3615479 A1 EP 3615479A1 EP 18717095 A EP18717095 A EP 18717095A EP 3615479 A1 EP3615479 A1 EP 3615479A1
Authority
EP
European Patent Office
Prior art keywords
compartment
area
equal
artificial wetland
square meters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP18717095.6A
Other languages
German (de)
French (fr)
Inventor
Chrystelle Langlais
Ywann PENRU
Ludovic PERRIDY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suez International SAS
Original Assignee
Suez Groupe SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suez Groupe SAS filed Critical Suez Groupe SAS
Publication of EP3615479A1 publication Critical patent/EP3615479A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • C02F3/327Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae characterised by animals and plants
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/42Liquid level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the present invention relates to the field of wetlands for the removal of pollutants. More specifically, the present invention relates to the sizing of wet areas to optimize the purifying capabilities thereof.
  • patent application US2016167994 describes the addition of aquatic microorganisms (bio-increase), in particular the addition of microalgae for the aqueous elimination of metals and sulphates from a mining effluent.
  • This solution makes it possible to improve the treatment efficiency in the case of wastewater treatment systems dedicated to the treatment of an industrial effluent (and thus having a low natural biodiversity).
  • the patent application US2016200608 discloses recirculation of effluents in a wastewater treatment system having at least two compartments, in order to avoid a drop in the purification efficiency of the zone. wet in case of significant changes in temperature during the seasons.
  • So-called root ecosystems (or rhizospheres) of plant macro are also known and advantageously exploited to eliminate pollutants of water and effluents in general.
  • the patent application WO201 1 157406 describes the implementation of several compartments having root ecosystems arranged in series.
  • the patent application WO2011157406 describes the nature of the substrate to maintain a good permeability of said substrate for, in particular, the elimination of organochlorine compounds.
  • the patent application WO2006030164 describes a method for managing compartments planted with plant macro and describes in particular the alternation of feed and non-feed phases of the compartments to promote the alternation of aerobic and anoxic phases or anaerobic in the artificial wetland.
  • these devices are intended to promote a particular purifying process. These techniques have important limitations for the treatment of modern effluents. Indeed, if these devices allow a good elimination of macro pollutants, the use of a single treatment process may have limited effectiveness for many organic pollutants or minerals. For example, these wetlands may have limited efficacy for the treatment of micropollutants such as pharmaceuticals.
  • these devices can achieve satisfactory sanitation efficiency at the cost of a significant footprint, of the order of 10 to 20 m 2 / equivalent inhabitants depending on the nature of the effluent and the treatment objectives.
  • This footprint remains too large to allow the installation of artificial wetlands in areas where land is expensive and / or not available.
  • Wetlands allow elimination of micropollutants rainwater. Wetlands can also be used to remove micropollutants from urban or industrial effluents after pre-treatment, in order to reduce the impact of the effluent on the receiving environment, for example.
  • the simplest wetlands consist of one or more lagoons, natural or man-made, through which / transits the effluent. These devices consist preferentially of a large water surface, an average water height of 1 to 1, 5 m, a low flow rate, a long residence time (from several days to several weeks). These wetlands allow the removal of suspended solids that decant, the disinfection of effluents through the penetration into the water column natural UV rays of the sun, and the elimination of organic pollution, nitrogen and phosphorus. These wetlands can generate several degradation mechanisms, including photo-degradation, adsorption (on a substrate, on plants, or suspended solids for example), biodegradation, or assimilation by plants if plants are present in the wetland.
  • these wet areas are characterized by a high residence time, and therefore, for a given flow, a large volume.
  • the average water height of these devices being limited, the ground surface of these areas is therefore very important. This may limit the possibility of wetland development in areas where land is scarce and / or expensive.
  • the invention describes an artificial wet zone for the purification of liquid effluents from at least one target pollutant, said artificial wetland comprising at least a first compartment and a second compartment supplied with an effluent of said first compartment. compartment, said artificial wetland being characterized in that: said at least a first compartment has an average water depth of between 5 and 70 cm; said at least one second compartment has a mean water height of between 70 and 150 cm.
  • the low height, between 5 and 70 cm, of the at least one first compartment promotes plant growth and / or adsorption in the at least a first compartment.
  • the higher height of the at least one second compartment between 70 and 150 cm, makes it possible to limit the growth of the plants, and to promote photodegradation and / or decantation in the at least one second compartment.
  • Decantation, in the at least a second compartment, of suspended matter and / or plants on which the pollutant has adsorbed in the at least one first compartment makes it possible to increase the effectiveness of the artificial wetland.
  • the synergy of processes occurring in the at least one first and the at least one second compartment thus achieves high pollutant removal rates, with a low footprint.
  • the volume of said at least one first compartment is chosen to allow a first residence time of the liquid effluents in said at least one first compartment according to a flow rate entering said first compartment; the volume of the second compartment is selected to allow a second residence time of the liquid effluents in said second compartment, according to an inflow of said second compartment.
  • This feature ensures that the compartments of the artificial wetland have a sufficient volume to ensure the duration of the reactions taking place in each of the compartments, while limiting the footprint of the artificial wetland.
  • the first and second residence time are chosen so as to achieve a minimum elimination rate of the at least one target pollutant at the outlet of the second compartment.
  • This feature ensures the purification performance of the artificial wetland, while limiting its size.
  • said at least one first compartment has a perimeter in linear meters greater than or equal to one-tenth of its area in square meters, less than or equal to one-sixth of its area in square meters, and preferably equal to 15% its area in square meters; said at least a first compartment has a mean water level of between 10 and 50 cm, and preferably equal to 20 cm.
  • This feature promotes plant growth and adsorption to plants in the at least a first compartment.
  • the volume of the first compartment is chosen to allow a residence time of liquid effluents in the said at least a first compartment between 0.5 and 3 days depending on an inflow of said at least a first compartment .
  • This characteristic allows to adapt the residence time, and therefore the size of the at least a first compartment depending on the importance of adsorption for the removal of the at least one target pollutant: if the adsorption is not important with respect to the at least one target pollutant, a very short residence time (for example of 0.5 days) allows nevertheless to remove a little sludge and suspended matter; if the adsorption is important to eliminate the at least one target pollutant, a longer residence time (up to 3 days) makes it possible to guarantee a desired elimination rate of the target pollutant.
  • said at least one first compartment has a perimeter in linear meters greater than or equal to 5% of its area in square meters less than or equal to 55% of its area in square meters, and preferably equal to half of its area in square meters; said at least one first compartment has an average water height of between 10 and 70 cm, and preferably equal to 50 cm.
  • This feature makes it possible to have at least one first compartment stretched in length, or forming meanders, while having a small length. This makes it possible to have an important contact with the substrate, and to promote the adsorption of the pollutant to the substrate or to the suspended matter.
  • the volume of the at least a first compartment is configured to allow a residence time of the liquid effluents in the said at least one first compartment is between 1 and 2 days, depending on an inflow of said at least one first compartment.
  • This characteristic allows to adapt the residence time, and therefore the size of the at least a first compartment depending on the importance of the adsorption for the elimination of the at least one target pollutant: if the adsorption is not important with respect to the at least one target pollutant, a time of short stay (eg 1 day) allows to slow the flow between two compartments; if the adsorption is important to eliminate the at least one target pollutant, a longer residence time (up to 2 days) can guarantee a desired rate of elimination of the target pollutant.
  • said at least one second compartment has a perimeter in linear meters less than or equal to a quarter of its area in square meters, and preferably equal to 17% of its area in square meters; said at least one second compartment has an average water height greater than or equal to 70 cm and less than or equal to 150 cm.
  • This feature promotes photodegradation and settling in the at least one second compartment.
  • the volume of the second compartment is configured to allow a residence time of the liquid effluents in the said at least a second compartment between 1 and 5 days depending on an inflow of said first compartment.
  • This feature ensures a sufficient level of pollutant removal in the at least a second compartment, while limiting the area occupied by the at least a second compartment.
  • At least one of said at least a first compartment and second compartment is equipped with valleys over a length greater than or equal to half of its maximum width.
  • This characteristic makes it possible to improve the distribution of the flow entering the compartment.
  • said at least one second compartment comprises at least one shoal area.
  • This feature helps to promote the emergence of macrophytes in the second compartment.
  • said at least one shallow zone has a decreasing width of the bank towards the center of said at least one second compartment.
  • the artificial wetland is connected at the output to a media filtering device comprising at least two parallel works that can be powered alternately.
  • This characteristic allows to retain suspended matter, particles and plant debris.
  • said filtering device is planted with reeds.
  • This characteristic makes it possible to maintain the permeability of the banks of the filtering material.
  • the invention also describes a method for developing an artificial wetland for the purification of liquid effluents from at least one target pollutant, said method comprising: the definition of at least a first compartment, having a average water level between 5 and 70 cm; the definition of at least second compartment fed by an effluent of said first compartment, having an average water height of between 70 and 150 cm.
  • the management method comprises, for at least one compartment: a definition of a residence time in said at least one compartment, according to at least one type of reaction to take place in the at least one compartment; minus one compartment, and a target elimination rate of the at least one target pollutant; calculating a volume of the at least one compartment according to said residence time, and an inflow of effluent into said at least one compartment; calculating a surface of the at least one compartment according to said volume, and an average height of the at least one compartment selected according to the at least one type of reaction; a calculation of a perimeter of the at least one compartment according to said surface, and a ratio between the perimeter in linear meters of the at least one compartment, and the area of the at least one compartment, said ratio being chosen according to the at least one type of reaction.
  • This method allows effective design of an artificial wetland, to ensure a rate of elimination of a target pollutant, while limiting the footprint of the artificial wetland, and adapting to the land available.
  • the invention also describes a method for the purification of liquid effluents from at least one target pollutant by an artificial wetland, said method comprising successively: the treatment of the effluents with at least one first compartment of the artificial wetland, said at least one first compartment having a mean water height of between 5 and 70 cm; the treatment of the effluents by at least a second compartment of the artificial wetland, said at least one second compartment having an average water height of between 70 and 150 cm.
  • This method allows an effective treatment of an effluent, promoting the treatment of the effluent by compartments favoring reactions having synergies between them.
  • the invention optimizes purification processes taking place in an artificial wetland.
  • the invention makes it possible to guarantee an elimination rate of a target pollutant by an artificial wetland.
  • the invention reduces the footprint of wet areas.
  • the invention is applicable to many purification processes.
  • the invention eliminates many types of target pollutants.
  • the invention improves the biodiversity of wetlands.
  • the invention is usable with a large number of plants, including plants endemic to the region in which the artificial wetland is installed.
  • the invention allows different forms of compartments.
  • the invention is applicable to several arrangements of compartments, which allows to adapt the artificial wetland to land available.
  • FIG. 1 a first schematic example of an artificial wetland according to the invention
  • FIG. 2 a second schematic example of an artificial wetland according to the invention.
  • FIG. 3 an example of an aerial view of a simulated artificial wetland according to the invention
  • FIG. 4 an example of an aerial view of a compartment of a simulated artificial wetland according to the invention
  • FIG. 5 a first example of a method for dimensioning an artificial wetland according to the invention
  • FIG. 6 a second example of a method for dimensioning an artificial wetland according to the invention.
  • FIG. 1 represents a first schematic example of an artificial wetland according to the invention.
  • the artificial wetland 100 makes it possible to treat liquids, for example treated wastewater of residential and / or industrial origin.
  • the artificial wetland can also treat polluted rainwater, or any other type of aqueous effluent, for example a mixed effluent composed of urban wastewater and rainwater.
  • the artificial wetland 100 may, for example, treat the effluents of a purification plant, an urban community or an industrial site, or be located downstream of a watercourse and / or a pond rainwater collector.
  • the artificial wetland 100 more specifically allows the purification of at least one target pollutant of the effluent.
  • the wet zones according to the invention generally make it possible to treat a large number of pollutants.
  • the artificial wetland 100 can be sized for the treatment of a single pollutant, or for the simultaneous treatment of several pollutants.
  • the artificial wetland comprises a first compartment 1 10, and a second compartment 120.
  • the second compartment 120 is located downstream of the first compartment 1 10, and treats the effluents thereof. The effluents are therefore first treated by the first compartment 1 10, then by the second compartment 120.
  • the compartments of wet areas according to the invention are remarkable for their average heights, which allow to promote different purification mechanisms according to the compartments.
  • the average height of the compartments may, in the context of the present application, be designated either height or water level.
  • the average water level is the average of the water depths of a compartment.
  • the first compartment 1 10 has an average water height of between 5 and 70 cm. This height of water makes it possible to promote plant growth and / or adsorption in the at least one first compartment.
  • the second compartment has an average water height of between 70 and 150 cm.
  • the higher height of the at least one second compartment makes it possible to limit the growth of the plants, and to promote photodegradation and / or decantation.
  • Decanting, in the second compartment, suspended materials and / or plants on which adsorbed the pollutant in the at least a first compartment, increases the efficiency of the artificial wetland.
  • the combination of these processes makes it possible to achieve high pollutant removal rates with a low footprint.
  • the artificial wetland 100 is characterized by an inflow, depending on the source of the effluent to be treated.
  • the inflow is generally predictable, depending on the source of the effluent to be treated. For example, if the artificial wetland is positioned at the outlet of a wastewater treatment plant of an urban community, it is possible to provide an inflow of the artificial wetland to be sized according to the number of inhabitants of the urban area. the urban community. Similarly, it is possible to provide a target input flow rate for an artificial wetland to treat the effluents of an industrial zone according to the output flow of the industrial zone.
  • the inflow can be a medium flow, or a maximum flow.
  • the volume of the first compartment 1 10 may be chosen to allow a first residence time liquid effluents in the first compartment 1 10.
  • the volume of the first compartment 1 10 can be defined by multiplying the time of target stay by the inward flow of the first compartment 1 10.
  • the volume of the second compartment 120 can be chosen to allow a second residence time of the liquid effluents in the second compartment 120.
  • the volume of the second compartment 120 can thus be defined by multiplying the target residence time by the inflow of the second compartment 120
  • the volumes of the first compartment 1 10 and the second compartment 120 and ensure the desired duration of reactions taking place in each of the compartments, while limiting the volume of the compartments , and therefore the footprint of the artificial wetland.
  • the first and the second residence time are chosen so as to achieve a minimum elimination rate of the at least one target pollutant at the outlet of the second compartment. It is thus possible to ensure the purification performance of the artificial wetland, while limiting its footprint.
  • the first and second residence times may be chosen in different ways.
  • field data compendia can be used to determine, for a given reaction, a rate of removal of the pollutant by the reaction.
  • the residence times may also have been obtained by studying the kinetics of existing wetland compartments and / or by laboratory studies of the kinetics of reactions occurring in mini-basins.
  • the artificial wetland is intended to obtain a target elimination rate of several target pollutants.
  • the volumes of the first compartment 1 10 and the second compartment 120 can be defined according to the maximum residence time for each compartment. For example, if a target elimination rate of a first pollutant is reached with a residence time of 2 days in the first compartment 1 10, and a target elimination rate of a second pollutant with a residence time of 3 days in the first compartment 1 10, the volume of the first compartment 1 10 can be defined to ensure a residence time of 3 days to ensure the target elimination rate of the two pollutants.
  • the volume of the second compartment can be sized to ensure a residence time of 5 days to achieve the target elimination rate of the two pollutants.
  • the dimensions of the first compartment 1 10 can further promote the growth of plants, for example to form a reed bed. This condition is fulfilled, for example, when the first compartment has:
  • the first compartment 1 10 may have at the same time a low water height, and an elongated shape.
  • the first compartment 1 10 then greatly promotes the growth of plants, and the adsorption of pollutants thereon.
  • the volume of this first compartment may be selected to guarantee a residence time of the effluents of between 0.5 and 3 days depending on the flow rate entering the compartment. This residence time allows in most cases to ensure a sufficient level of adsorption in a first compartment type reed, while limiting the footprint of the at least a first compartment.
  • the dimensions of the first compartment 1 10 are such that the first compartment 1 10 has:
  • said at least one first compartment has a perimeter in linear meters greater than or equal to 16% of its area in square meters, less than or equal to 55% of its area in square meters, for example equal to half of its area in square meters;
  • This first compartment 1 10 may have a volume allowing a residence time of between 1 and 2 days. This residence time makes it possible, in most cases, to guarantee a sufficient level of adsorption in a first meander-type compartment 1 10, while limiting the footprint of the first compartment 1 10.
  • the dimensions of the second compartment 120 are such that:
  • the second compartment 120 has a perimeter in linear meters less than or equal to a quarter of its area in square meters, for example equal to 17% of its area in square meters;
  • the average water level is greater than or equal to 70 cm and less than or equal to 150 cm.
  • a second compartment 120 of the basin type to promote photodegradation and decantation.
  • a height of at least 70 cm makes it possible to prevent the growth of helophyte type plants in the compartment in order to promote photodegradation; a height up to 150 cm allows a sufficient amount of photons to reach the bottom of the second compartment 120.
  • the photodegradation will take place throughout the second compartment. This makes it possible to have a second compartment 120 having a given volume, with the smallest possible area, and thus to promote photodegradation with a footprint as low as possible.
  • the volume of the second compartment allows a residence time of the liquid effluents in a second compartment 120 between 1 and 5 days depending an inflow of said second compartment 120. This residence time allows, in most cases, to ensure a sufficient level of photodegradation and settling in the second compartment 120 lagoon type, while limiting the footprint of the second compartment 120.
  • the possible dimensions of the first compartment 1 10 and the second compartment 120 can define a set of compartment shapes. Thus, if these dimensions make it possible to ensure a level of elimination of the target pollutant (s), the shape of the first compartment 1 10 and the shape of the second compartment 120 can be defined to adapt to external constraints, for example for adapt to the land available where the area is to be located.
  • Figure 2 shows a second schematic example of artificial wetland according to the invention.
  • the artificial wetland 200 is intended for use similar to that of the artificial wetland 100 described with reference to Figure 1.
  • the artificial wetland 200 comprises a reed-like compartment 210 similar to the first compartment 1 10 (with a perimeter in linear meters greater than or equal to one-tenth of its area in square meters, less than or equal to one-sixth of its area in square meters), two basin type compartments 220 and 221 similar to the second compartment 120, a meander type compartment 21 1 similar to the first compartment 1 10 (with a perimeter in linear meters greater than or equal to 5% of its area in meters squares less than or equal to 55% of its area in square meters, for example equal to half of its area in square meters), and a third basin type compartment 222 similar to the second compartment 120.
  • the artificial wet zone 200 thus allows an alternation of compartments favoring different reactions, with in particular, in the order of flow of the effluent:
  • the compartment 210 of the reed type favoring the growth of plants and adsorption to plants;
  • the volumes of the compartments of the artificial wetland 200 can be defined for example such that:
  • the residence time in compartment 210 is 1 day, and that in compartment 21 1 is 2 days;
  • compartment 210 or the residence time in compartment 210 is 1.5 days, and that in compartment 21 1 is 1.5 days.
  • the design of the artificial wetland 200 makes it possible to modulate the residence times, and therefore the volumes and the surfaces, of the different compartments so as to ensure that an overall residence time in compartments allowing a given reaction is respected, while allowing greater flexibility in the choice of volumes and surfaces between the different compartments.
  • This makes it possible to adapt the design of an artificial wetland according to the invention to additional factors, such as the size and layout of the available land, or integration into the landscape.
  • compartments are given by way of example, and the invention is applicable to a large number of possible compartments arrangements, from the moment when one or more compartments 120, 220, 221, 222 having heights Average water averages between 70 and 150 cm are placed downstream of one or more compartments 10, 210, 21 1 having water heights between 5 and 70 cm.
  • the considerations mentioned above concerning the distribution of volumes, surfaces, and residence times among the compartments favoring the same reaction can also be applied to any artificial wetland according to the invention, which allows a even greater flexibility of the dimensions of wet areas according to the invention.
  • the invention thus promotes synergies between purification processes, while allowing great flexibility in the shape and arrangement of the compartments. This makes it possible to define wetlands with the desired purification capacities, while at the same time optimally adapting the layout of the wetlands to the available land.
  • FIG. 3 represents an example of an aerial view of a simulated artificial wetland according to the invention.
  • FIG. 3 represents an exemplary simulation of an aerial view of an artificial wetland 200 according to the invention shown diagrammatically in FIG. 2.
  • the artificial wetland 200 is located downstream of a purification plant 310.
  • the liquid effluent from the treatment plant 310 passes successively through the compartment 210 of the reedbed type ; compartments 220 and 221 of the basin type; the meander-type compartment 221; the basin type compartment 222.
  • the artificial wetland 200 comprises, at the outlet of the compartment 222, a media filtering device 330 comprising at least two parallel works that can be powered alternately.
  • the media filtration device 330 makes it possible to retain suspended matter, particles and plant debris.
  • the media filtration device 330 can also be planted with reeds to maintain the permeability of the filter material. It should however be noted that this device is optional, this example is not limiting and artificial wetlands according to the invention may not include media filtration device.
  • the effluent is completely treated, and can be discharged into the natural environment, for example in a river 340.
  • FIG. 3 thus makes it possible to visualize, in a more concrete manner, examples of compartment shapes according to the invention.
  • FIG. 3 shows that the reed-type compartment 210 may have an elongated and / or sinuous appearance, the meander-type compartment 21 1 has a very elongated and / or sinuous, and compartments 220, 221 and 222-type basins a more compact appearance.
  • each compartment of an artificial wetland according to the invention can be equipped with valleys over a length greater than or equal to half of its maximum width.
  • the presence of valleys makes it possible to improve the distribution of the flow entering the compartment. It should however be noted that the presence of valleys is optional, this example is not limiting and artificial wetlands according to the invention may not include valleys.
  • the basin-type compartments 220, 221 and 222 each comprise a zone with shoals, respectively the zones 320, 321 and 322.
  • the zones with shallows make it possible to promote the emergence of macrophytes in compartments where they are present, and thus promote settling.
  • Shoal areas can also lengthen the hydraulic path in a basin, and thus increase sedimentation without impacting the water surface.
  • a basin-type compartment may also include several shallow areas.
  • a shoal area may have a decreasing slope of the bank towards the center of the compartment where it is located, to specifically promote the emergence of macrophytes near the banks of the at least a second compartment. It should be noted, however, that the presence of shallow areas is optional, this example is not limiting and artificial wetlands according to the invention may not include shallow areas.
  • FIG. 3 represents an example of an artificial wetland according to the invention, and shows the capacity of an artificial wetland according to the invention to be integrated in a given natural setting.
  • an artificial wetland according to the invention makes it possible, in addition to improving the treatment of wastewater, to promote biodiversity in the environment in which it is located.
  • An artificial wetland according to the invention also allows a harmonious integration into the landscapes surrounding the area where it is located. These points can be favored by the establishment in the artificial wetland of plant species indigenous to the region where the zone is located.
  • FIG. 4 represents an example of an aerial view of a compartment of a simulated artificial wetland according to the invention.
  • Figure 4 shows a more detailed aerial view of the compartment 220 of the artificial wetland 200.
  • FIG. 5 represents a first example of a method of designing an artificial wetland according to the invention.
  • the method 500 allows the design and development of an artificial wetland liquid effluent purification of at least one target pollutant.
  • the method 500 comprises the definition 510 of at least one first compartment, having an average water height of between 5 and 70 cm.
  • Said at least one compartment may for example be at least one of the compartments 1 10 or 210.
  • the method 500 also comprises the definition of at least a second compartment, having an average water height of between 70 and 150 cm.
  • Said at least one second compartment may be at least one of the compartments 120, 220 or 221.
  • FIG. 6 represents a second example of a method of dimensioning an artificial wetland according to a set of embodiments of the invention.
  • FIG. 6 represents a method 600 for defining a compartment according to a set of embodiments of the invention, for example corresponding to one of the steps 510 and 520 of the method 500.
  • the method 600 can therefore allow the definition of a first or a second compartment in a set of embodiments of the invention.
  • the method 600 can be used to define one of the compartments 1 10, 120, 210, 220 or 221 previously mentioned.
  • the method 600 comprises a first step 610 for calculating a target residence time 61 1 in the compartment, depending on a reaction type 601, and a target elimination rate 602.
  • the times stay allowing a rate of elimination of a target molecule by a reaction can thus have been determined for example by studying the kinetics of existing wetland compartments and / or by studying in the laboratory the kinetics of reactions in small experimental basins.
  • the method 600 can be used to size compartments to eliminate several pollutants.
  • a target residence time to eliminate a given pollutant can be calculated for each pollutant to be eliminated.
  • the selected target residence time of the compartment will then be the highest target residence time among the target residence times for each pollutant.
  • the target residence time finally selected is at least equal to the target residence time for each pollutant, and the removal rate obtained for each pollutant is at least equal to the target elimination rate of this pollutant.
  • the residence time can be defined for a single compartment, or jointly for several compartments. More specifically, if a single compartment makes it possible to favor a given reaction, the target residence time 61 in the compartment can be calculated directly.
  • a cumulative residence time in these compartments can first be calculated, corresponding to the cumulative residence time of the effluent in the compartments promoting the reaction. Then this accumulated residence time can be divided among the different compartments. For example, in the case of the artificial wetland 200, a cumulative target residence time in the adsorption promoting compartments can be calculated for all the compartments 210 and 21 1, and this accumulated residence time distributed over a period of time. in the compartment 210, and a residence time in the compartment 21 1.
  • the method 600 then comprises a step 620 for calculating the volume 621 of the compartment, from the target residence time 61 1, and the inflow.
  • the volume of the compartment 621 can be obtained directly by multiplying the target residence time 61 1 in the compartment by the inflow 612.
  • each reaction 601 to be favored is associated with an average water height 622, or a range of heights.
  • the average height 622 can be between 5 and 70 cm; if the reaction 601 to be favored is photodegradation, the average height 622 may be between 70 and 150 cm.
  • the method 600 comprises, after the volume calculation step 620, a step 630 for calculating the area 631 of the compartment.
  • the area 631 can be calculated by dividing the volume 621 of the compartment by the average height 622 of the compartment.
  • each reaction 601 to be favored is associated with a perimeter / area ratio 622, or a range of ratios.
  • a compartment intended to promote plant growth and plant adsorption may have a perimeter in linear meters of between one-tenth and one-sixth of its area in square meters; a compartment designed to promote adsorption to the substrate or suspended solids may have a perimeter in linear meters of between 5% and 55% of its area in square meters; a compartment intended to promote photodegradation may have a perimeter in linear meters less than or equal to a quarter of its area in square meters.
  • the method 600 comprises, after the step 630 for calculating the area, a step 640 for calculating the perimeter 641 of the compartment.
  • the perimeter 641 is calculated by multiplying the area 631 of the compartment by the area perimeter ratio 632 of the compartment.
  • the method 600 can calculate dimensions of a compartment of an artificial wetland according to the invention to ensure that a given reaction is favored, and a target yield will be obtained.
  • the 600 method offers some latitude to determine the dimensions and shape of the compartment, in order to adapt to other constraints or objectives, such as the available land, or the insertion of the artificial wetland into the landscape.
  • step 630 of calculating the area may include a substep of selecting an average height 622 to obtain a larger surface area. or less important, in order to adapt to the land surface available for the compartment.
  • step 630 can consist of calculating, from a range of possible average heights, and volume 621 of the compartment, a minimum area of compartment, and a maximum area of the compartment, then select the most suitable surface 631 according to criteria such as the land area available.
  • the average height 622 of the compartment can then be deduced directly from the surface 631 of the compartment and the volume 621 of the compartment. It is also possible to systematically choose the maximum height from a range of possible heights, in order to have the area 631 of the compartment as small as possible, and limit the footprint of the compartment.
  • the different average heights 622 are associated with different yields of the reaction. These yields can be obtained for different heights, for example by means of relationships determined experimentally between the efficiency of the reaction in function and the average height of the compartment, for example abacuses indicating the effectiveness of the reaction in function the average height of the compartment. These charts, or generally the relationship between average height 622 and reaction yield can be determined from laboratory reaction tests. Step 630 may then consist, in a first step, in selecting the height corresponding to the efficiency of the reaction. Once the area 631 of the compartment is determined, a number of constraints or secondary objectives can be validated.
  • the method 600 may include a check that the surface 631 of the compartment is small enough to adapt to the available land, allows a good landscape integration, etc. Numerous criteria relating to the integration of the compartment in its environment can to be taken into account at this stage. If one or more of these criteria is not fulfilled, the method 600 may include a return to step 630 for calculating the area, with the selection of a new average height 622 making it possible to hold the criterion or criteria relating to the integration of the compartment in its environment, maintaining a return as good as possible. Several iterations can be carried out, making it possible to ensure that the integration criteria of the compartment in its environment are taken into account, while promoting a purification efficiency as high as possible.
  • the perimeter calculation step 640 may include selecting a perimeter / area ratio 632 from a range of possible ratios, in order to have a longer or longer compartment.
  • the shape of the compartment can also be determined, in order to adapt to the available land, and / or to favor the integration in a landscape, and / or to facilitate the maintenance of the artificial wetland.
  • a compartment having a high 632 perimeter ratio (and therefore a very elongated shape) may be arranged in length, but also by meandering to limit the footprint of the compartment. This is the case, for example, of the compartment 21 1 shown in FIG. 3.
  • the compartments may also be arranged relative to each other in order to obtain an artificial humid zone as compact as possible, such as represented in FIG.
  • perimeter / area ratios 632 are associated with different reaction efficiencies. These yields can be obtained for the different perimeter / area ratios, for example by means of relationships determined experimentally between the reaction efficiency and the perimeter / area ratio of the compartment, for example abacuses indicating the efficiency of the reaction. function of the ratio perimeter / area of the compartment. These charts, or generally the relationship between the perimeter / area ratio 632 and the reaction yield can be determined from laboratory reaction tests. Step 640 can then consist, initially, in selecting the perimeter / area ratio corresponding to an optimum yield of the reaction. Once the perimeter 641 of the compartment is determined, a number of constraints or secondary objectives can be validated.
  • the method 600 can include a verification that the perimeter 641 of the compartment makes it possible to adapt to the available land, allows a good landscape integration, etc. Numerous criteria relating to the integration of the compartment in its environment can be taken at this stage. If one or more of these criteria is not fulfilled, the method 600 may include a return to step 640 for calculating the perimeter, with the selection of a new average height 622 making it possible to hold the criterion or criteria relating to the integration of the compartment into its environment. Several iterations can be performed, making it possible to ensure that the integration criteria of the compartment in its environment are taken into account, while favoring a purification efficiency as high as possible.
  • the method 600 may also comprise a return to the step 630 for calculating the area, in order to select an average height 622 that makes it possible to calculate a surface 631, and a 641 perimeter of the compartment adapted to the integration of the compartment in its environment.
  • the method 600 thus makes it possible to determine the dimensions of compartments of an artificial wetland according to the invention making it possible to favor the desired reactions, and to obtain a target efficiency of the purification.
  • the method 600 also makes it possible to optimize as much as possible the purification efficiency, while validating the integration constraints of the compartments in their environment.
  • the first example relates to the design of an artificial wetland for the removal of ciprofloxacin.
  • Cirprofloxacin can be removed by an artificial wetland according to the invention comprising two compartments, respectively favoring the following reactions:
  • the artificial wet area to be dimensioned must be located downstream of a purification station (abbreviated below STEP) of 3200 male equivalent (abbreviated below EH), which corresponds for a given region to an effluent flow rate of 480 m 3 / d.
  • STEP purification station
  • EH 3200 male equivalent
  • Water consumption can vary significantly by region and country.
  • the number of inhabitants in an urban community may correspond, according to the regions / countries, to a different effluent flow rate
  • the first compartment can then be dimensioned as follows:
  • the target residence time 621 is 1 day minimum, the inflow 612 480 m 3 / d;
  • Perimeter calculation (step 640): o
  • the ratio of banks 632 linear meter / surface of the compartment is selected from a range between 1 / 10th and 1/6 e.
  • a ratio of 0.15 m / m 2 (linear meters per square meter) is selected; o
  • the dimensioning thus makes it possible to define a first compartment having the following dimensions:
  • the second compartment can be dimensioned as follows:
  • the target residence time 621 is 2 days minimum, the inflow 612 480 m 3 / d;
  • the second compartment In order to promote photodegradation, the second compartment must have a minimum height sufficiently large to prevent the growth of plants that would prevent photons from entering the compartment, and a maximum height sufficiently low for photodegradation to take place on the entire compartment. .
  • the range of average heights 622 is between 0.7 and 1.5 m.
  • An average height 622 of 0.8 m is selected.
  • the height of 0.8 m corresponds, according to the experimental data collected by the applicant, the best compromise between residence time and penetration of light to promote the degradation of photosensitive molecules.
  • an iteration loop is performed on the values of the height, and the corresponding values of surface. This makes it possible to select a height associated with a surface adapted to the available land;
  • the ratio of 632 linear meters of bank / compartment surface is chosen in a range between 0.15 and 0.25.
  • a ratio of 0.2 m // m 2 (linear meters per square meter) is selected, this ratio corresponding, according to the experimental data collected by the applicant, to the best compromise between hydraulic pathway and light exposure surface to favor degradation of photosensitive molecules;
  • the dimensioning thus makes it possible to define a second compartment having the following dimensions:
  • the method 600 allows, in general, define wet areas having dimensions to promote certain reactions, and obtain target pollutant removal rates. Some dimensions can be chosen from a range.
  • a set of secondary objectives can be achieved. These objectives can be, for example, integration into a given landscape or adaptation to available land.
  • Method 600 may include, for these purposes, iterations. For example, if the surface 631 is too large for the available land, the method 600 may include a return to the surface calculation step 630, during which a larger height will be selected, in order to reduce the surface area. compartment.
  • method 600 may include a return to step 640 perimeter calculation, during which a perimeter / area ratio 632 more or less important will be selected, so to get the desired perimeter.
  • the method 600 may comprise the selection of the height or the perimeter / surface ratio making it possible to promote the desired reaction as much as possible and then, as long as the surface and / or the perimeter of the compartment do not allow to adapt to the available land, iterations of selection of a surface and / or ratio perimeter surface to better adapt to the available function.
  • Other shape parameters can be adjusted.
  • the entry and exit points of the compartments can be positioned to maximize the hydraulic path.
  • the second example relates to the design of an artificial wetland for the removal of ibuprofen.
  • Ibuprofen can be removed by an artificial wetland according to the invention comprising four compartments, favoring respectively the following reactions:
  • a target elimination rate of 50% of the ibuprofen may be reached, if the dimensions of the first and second compartments favor the reactions mentioned above, and if the residence time in the compartments are:
  • the artificial wet area to be sized must be located downstream of a treatment STation (abbreviated below STEP) of 3200 male equivalent (abbreviated below EH), which corresponds to a flow rate of effluent of 480 m 3 / d.
  • STEP treatment STation
  • EH 3200 male equivalent
  • the conversion ratio between population and flow can vary from one country to another.
  • the first compartment can then be dimensioned as follows:
  • the target residence time 621 is 1 day minimum, the inflow 612 480 m 3 / d;
  • the first compartment In order to promote the contact of the micropollut targeted with the soil, and possibly the plants, and thus promote biodegradation via microorganisms on the substrate, the first compartment must have a mean low height 622, in a range between 0.05 and 0, 5 m. An average height 622 of 0.2 m is selected, this height corresponding, according to the experimental data collected by the applicant, the best compromise between biodegradation and plant growth;
  • the ratio of banks 632 linear meter / surface of the compartment is selected from a range between 1 / 10th and 1/6 e.
  • a ratio of 0.1 5 ml / m 2 (linear meters per square meters) is selected, this ratio corresponding, according to the experimental data collected by the depositor, to the best compromise between elongation of the hydraulic path and increase of the contact surface between the water , substrate and plants; o
  • the dimensioning thus makes it possible to define a first compartment having the following dimensions:
  • the second compartment can be dimensioned as follows:
  • the target residence time 621 is at least 2 days, the inflow 61 2480 m 3 / d;
  • the range of average heights 622 possible is between 0.7 and 1.5 m.
  • An average height 622 of 0.8 m is selected, this height corresponding, according to the experimental data collected by the applicant, to the best compromise between the maximum height favoring the biodegradation by oxygenation and penetration of the light, and the minimum height ensuring a time minimum stay; o
  • the ratio of 632 linear meters of bank / compartment surface is chosen in a range between 0.15 and 0.25.
  • a ratio of 0.2 m // m 2 (linear meters per square meter) is selected, this ratio corresponding, according to the experimental data collected by the applicant, to the best compromise between lengthening of the hydraulic path and guarantee of a residence time. at least equal to the minimum residence time;
  • the dimensioning thus makes it possible to define a second compartment having the following dimensions:
  • the third compartment can then be dimensioned as follows:
  • the target residence time 621 is 2 days minimum, the inflow 612 480 m 3 / d;
  • the third compartment In order to promote the contact of the micropollutant with the soil, and possibly the plants, and thus promote biodegradation via microorganisms on a substrate, the third compartment must have a low average height 622, in a range between 0.05 and 0, 5 m. An average height 622 of 0.5 m is selected, this height corresponding, according to the experimental data collected by the depositor, the best compromise between elongation of the hydraulic path and slowing of the speed of the flow;
  • the fourth compartment can be dimensioned as follows:
  • the target residence time 621 is 2 days minimum, the inflow 612 480 m 3 / d;
  • the range of average heights 622 possible is between 0.7 and 1.5 m.
  • An average height 622 of 0.8 m is selected, this height corresponding, according to the experimental data collected by the applicant, to the best compromise between the maximum height favoring the biodegradation by oxygenation and penetration of the light, and the minimum height ensuring a time minimum stay; o
  • the ratio of 632 linear meters of bank / compartment surface is chosen in a range between 0.15 and 0.25.
  • a ratio of 0.1 m // m 2 (linear meters per square meter) is selected, this ratio corresponding, according to the experimental data collected by the depositor, to the best compromise between lengthening of the hydraulic path and guarantee of a residence time. minimum. It also makes it possible to limit the proliferation of plants throughout the compartment, promote good penetration of light, optimize the storage volume to manage the minimum residence time, and optimize the slope of compartment funds;
  • the perimeter of the compartment is calculated by multiplying the ratio 632 by the surface 631: the perimeter 641 is equal to 1200 x 0.17
  • the shapes of the compartments can be defined according to additional objectives.
  • the entry and exit points of the compartments can be positioned to maximize the hydraulic path.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

The present invention relates to an artificial wetland for removing one or more pollutants from an effluent comprising at least two compartments, wherein the dimensions of the compartments make it possible to promote various reactions. The synergy of the reactions that occur in the various compartments makes it possible to improve the purifying capacity of an artificial wetland according to the invention compared with an artificial wetland of the prior art. The dimensions of the wetlands according to the invention also make it possible to reach a target rate for removing pollutants from the effluent, with the smallest possible site coverage. The present invention also relates to a method for defining such an artificial wetland.

Description

ZONE HUMIDE ARTIFICIELLE DIMENSIONNEE POUR L'ELIMINATION  ARTIFICIAL WET ZONE DIMENSIONED FOR ELIMINATION
DE POLLUANTS  OF POLLUTANTS
DOMAINE DE L'INVENTION FIELD OF THE INVENTION
[0001] La présente invention concerne le domaine des zones humides pour l'élimination de polluants. Plus précisément, la présente invention concerne le dimensionnement de zones humides pour optimiser les capacités épuratoires de celles-ci. The present invention relates to the field of wetlands for the removal of pollutants. More specifically, the present invention relates to the sizing of wet areas to optimize the purifying capabilities thereof.
ETAT DE L'ART PRECEDENT STATE OF THE ART PREVIOUS
[0002] Il est connu d'utiliser des systèmes d'épuration d'eaux usées brutes, issues d'effluents urbains et/ou industriels pour limiter l'impact des effluents d'activités humaines sur les écosystèmes. It is known to use raw sewage treatment systems, from urban effluents and / or industrial to limit the impact of effluents of human activities on ecosystems.
[0003] Plusieurs techniques permettent d'intensifier la capacité épuratoire des systèmes d'épuration d'eaux usées, et donc de réduire leur emprise au sol pour une capacité épuratoire donnée. Par exemple, certaines techniques permettent d'intensifier le processus épurateur dans la phase liquide de ces ouvrages par un apport forcé en oxygène. Par exemple la demande de brevet US2016100083 décrit des dispositifs visant à transférer de l'oxygène dans les lagunes d'un système d'épuration d'eaux usées. La demande de brevet CN2051 15138 décrit un dispositif d'aération utilisant avantageusement l'énergie solaire.  Several techniques can intensify the purification capacity of wastewater treatment systems, and thus reduce their footprint for a given purification capacity. For example, certain techniques make it possible to intensify the purifying process in the liquid phase of these structures by a forced supply of oxygen. For example, patent application US2016100083 describes devices for transferring oxygen into the lagoons of a wastewater treatment system. The patent application CN2051 15138 describes an aeration device advantageously using solar energy.
[0004] Certaines solutions permettent d'améliorer le rendement épuratoire des systèmes d'épuration d'eaux usées, dans des contextes particuliers. Par exemple, la demande de brevet US2016167994 décrit l'ajout de microorganismes aquatiques (bio-augmentation), en particulier l'ajout de micro algues pour l'élimination en phase aqueuse de métaux et de sulfates d'un effluent minier. Cette solution permet d'améliorer le rendement épuratoire dans le cas de systèmes d'épuration d'eaux usées dédiés au traitement d'un effluent industriel (et présentant donc une faible biodiversité naturelle). [0004] Certain solutions make it possible to improve the purification performance of wastewater treatment systems in particular contexts. For example, patent application US2016167994 describes the addition of aquatic microorganisms (bio-increase), in particular the addition of microalgae for the aqueous elimination of metals and sulphates from a mining effluent. This solution makes it possible to improve the treatment efficiency in the case of wastewater treatment systems dedicated to the treatment of an industrial effluent (and thus having a low natural biodiversity).
[0005] La demande de brevet US2016200608 divulgue une recirculation des effluents dans un système d'épuration d'eaux usées présentant au moins deux compartiments, afin d'éviter une chute du rendement épuratoire de la zone humide en cas de changements importants de température au cours des saisons. The patent application US2016200608 discloses recirculation of effluents in a wastewater treatment system having at least two compartments, in order to avoid a drop in the purification efficiency of the zone. wet in case of significant changes in temperature during the seasons.
[0006] Les écosystèmes dits racinaires (ou rhizosphères) de macro végétaux sont également connus et avantageusement exploités pour éliminer les polluants d'eau et d'effluents en général.  [0006] So-called root ecosystems (or rhizospheres) of plant macro are also known and advantageously exploited to eliminate pollutants of water and effluents in general.
[0007] Par exemple, la demande de brevet WO201 1 157406 décrit la mise en œuvre de plusieurs compartiments présentant des écosystèmes racinaires disposés en série. La demande de brevet WO201 1 157406 décrit la nature du substrat pour maintenir une bonne perméabilité dudit substrat pour, notamment, l'élimination de composés organochlorés.  For example, the patent application WO201 1 157406 describes the implementation of several compartments having root ecosystems arranged in series. The patent application WO2011157406 describes the nature of the substrate to maintain a good permeability of said substrate for, in particular, the elimination of organochlorine compounds.
[0008] La demande de brevet WO2006030164 décrit une méthode de gestion de compartiments plantés de macro végétaux et décrit en particulier l'alternance de phases d'alimentation et de non alimentation en effluent des compartiments pour favoriser l'alternance de phases aérobies et anoxiques ou anaérobiques au sein de la zone humide artificielle.  [0008] The patent application WO2006030164 describes a method for managing compartments planted with plant macro and describes in particular the alternation of feed and non-feed phases of the compartments to promote the alternation of aerobic and anoxic phases or anaerobic in the artificial wetland.
[0009] La demande de brevet WO2006128994, déposée par le demandeur de la présente demande, décrit une combinaison de dispositifs d'épuration classiques pour l'élimination de la pollution carbonée et azotée, avec des compartiments consistant en des lits filtrants plantés de roseaux.  The patent application WO2006128994, filed by the applicant of the present application, describes a combination of conventional purification devices for the removal of carbon and nitrogen pollution, with compartments consisting of filter beds planted with reeds.
[0010] De manière générale, ces dispositifs visent à favoriser un processus épuratoire en particulier. Ces techniques présentent des limites importantes pour le traitement des effluents modernes. En effet, si ces dispositifs permettent une bonne élimination des macro polluants, l'utilisation d'un processus épuratoire unique peut présenter une efficacité limitée pour de nombreux polluants organiques ou minéraux. Par exemple, ces zones humides peuvent présenter une efficacité limitée pour le traitement de micropolluants tels que les produits pharmaceutiques. In general, these devices are intended to promote a particular purifying process. These techniques have important limitations for the treatment of modern effluents. Indeed, if these devices allow a good elimination of macro pollutants, the use of a single treatment process may have limited effectiveness for many organic pollutants or minerals. For example, these wetlands may have limited efficacy for the treatment of micropollutants such as pharmaceuticals.
[0011] Ainsi, ces dispositifs, s'ils présentent certaines améliorations, ne peuvent atteindre des rendements épuratoires satisfaisants qu'au prix d'une emprise au sol importante, de l'ordre de 10 à 20 m2/équivalent habitants en fonction de la nature de l'effluent et des objectifs de traitement. Cette emprise au sol reste trop importante pour permettre d'installer des zones humides artificielles dans des zones où le foncier est cher et/ou peu disponible. Thus, these devices, if they have certain improvements, can achieve satisfactory sanitation efficiency at the cost of a significant footprint, of the order of 10 to 20 m 2 / equivalent inhabitants depending on the nature of the effluent and the treatment objectives. This footprint remains too large to allow the installation of artificial wetlands in areas where land is expensive and / or not available.
[0012] Le déposant s'est intéressé à la capacité épuratoire des zones humides. Les zones humides permettent une élimination des micropolluants d'eaux de pluie. Les zones humides peuvent également être utilisées pour éliminer des micropolluants d'effluents urbains ou industriels après un prétraitement, en vue de réduire l'impact de l'effluent sur le milieu récepteur par exemple. The applicant was interested in the purification capacity of wetlands. Wetlands allow elimination of micropollutants rainwater. Wetlands can also be used to remove micropollutants from urban or industrial effluents after pre-treatment, in order to reduce the impact of the effluent on the receiving environment, for example.
[0013] Les zones humides les plus simples consistent en une ou plusieurs lagunes, naturelles ou aménagées par l'homme, à travers laquelle/lesquelles transite l'effluent. Ces dispositifs sont constitués préférentiellement d'une large surface aquatique, une hauteur d'eau moyenne de 1 à 1 ,5 m, une faible vitesse d'écoulement, un grand temps de séjour (de plusieurs jours à plusieurs semaines). Ces zones humides permettent ainsi l'élimination des matières en suspension qui y décantent, la désinfection des effluents par la pénétration dans la colonne d'eau des rayons UV naturels du soleil, et l'élimination de la pollution organique, azotée et phosphorée. Ces zones humides peuvent générer plusieurs mécanismes de dégradation, notamment de la photo- dégradation, de l'adsorption (sur un substrat, sur des plantes, ou des matières en suspension par exemple), de la biodégradation, ou de l'assimilation par des végétaux si des végétaux sont présents dans la zone humide. The simplest wetlands consist of one or more lagoons, natural or man-made, through which / transits the effluent. These devices consist preferentially of a large water surface, an average water height of 1 to 1, 5 m, a low flow rate, a long residence time (from several days to several weeks). These wetlands allow the removal of suspended solids that decant, the disinfection of effluents through the penetration into the water column natural UV rays of the sun, and the elimination of organic pollution, nitrogen and phosphorus. These wetlands can generate several degradation mechanisms, including photo-degradation, adsorption (on a substrate, on plants, or suspended solids for example), biodegradation, or assimilation by plants if plants are present in the wetland.
[0014] Si l'efficacité de ces zones humides est reconnue, elles présentent l'inconvénient de présenter une emprise au sol importante: en effet, ces zones humides sont caractérisées par un temps de séjour élevé, et donc, pour un débit donné, un volume important. La hauteur d'eau moyenne de ces dispositifs étant limitée, la surface au sol de ces zones est donc très importante. Ceci peut limiter la possibilité d'aménagement de zones humides dans des zones où le foncier est peu disponible et/ou cher. If the effectiveness of these wetlands is recognized, they have the disadvantage of having a significant footprint: in fact, these wet areas are characterized by a high residence time, and therefore, for a given flow, a large volume. The average water height of these devices being limited, the ground surface of these areas is therefore very important. This may limit the possibility of wetland development in areas where land is scarce and / or expensive.
[0015] Il y a donc besoin d'une zone humide artificielle permettant d'atteindre un taux d'élimination cible d'un ou plusieurs polluants d'un effluent, tout en ayant une emprise au sol aussi faible que possible. There is therefore a need for an artificial wetland to achieve a target elimination rate of one or more pollutants of an effluent, while having a footprint as low as possible.
RESUME DE L'INVENTION SUMMARY OF THE INVENTION
[0016] A cet effet, l'invention décrit un zone humide artificielle d'épuration d'effluents liquides d'au moins un polluant cible, ladite zone humide artificielle comprenant au moins un premier compartiment et un deuxième compartiment alimenté par un effluent dudit premier compartiment, ladite zone humide artificielle étant caractérisée en ce que : ledit au moins un premier compartiment a une hauteur d'eau moyenne comprise entre 5 et 70 cm ; ledit au moins un deuxième compartiment a une hauteur d'eau moyenne comprise entre 70 et 150 cm. For this purpose, the invention describes an artificial wet zone for the purification of liquid effluents from at least one target pollutant, said artificial wetland comprising at least a first compartment and a second compartment supplied with an effluent of said first compartment. compartment, said artificial wetland being characterized in that: said at least a first compartment has an average water depth of between 5 and 70 cm; said at least one second compartment has a mean water height of between 70 and 150 cm.
[0017] La hauteur faible, entre 5 et 70 cm, de l'au moins un premier compartiment permet de favoriser la pousse de végétaux et/ou l'adsorption dans l'au moins un premier compartiment. La hauteur plus élevée de l'au moins un second compartiment, entre 70 et 150 cm, permet de limiter la pousse des végétaux, et de favoriser la photodégradation et/ou la décantation dans l'au moins un second compartiment. La décantation, dans l'au moins un deuxième compartiment, de matières en suspension et/ou végétaux sur lesquels s'est adsorbé le polluant dans l'au moins un premier compartiment, permet d'accroître l'efficacité de la zone humide artificielle. La synergie des processus ayant lieu dans l'au moins un premier et l'au moins un deuxième compartiment permet ainsi d'atteindre des taux d'élimination de polluants élevés, avec une emprise au sol faible.  The low height, between 5 and 70 cm, of the at least one first compartment promotes plant growth and / or adsorption in the at least a first compartment. The higher height of the at least one second compartment, between 70 and 150 cm, makes it possible to limit the growth of the plants, and to promote photodegradation and / or decantation in the at least one second compartment. Decantation, in the at least a second compartment, of suspended matter and / or plants on which the pollutant has adsorbed in the at least one first compartment, makes it possible to increase the effectiveness of the artificial wetland. The synergy of processes occurring in the at least one first and the at least one second compartment thus achieves high pollutant removal rates, with a low footprint.
[0018] Avantageusement, le volume dudit au moins un premier compartiment est choisi pour permettre un premier temps de séjour des effluents liquides dans ledit au moins un premier compartiment en fonction d'un débit entrant dans ledit premier compartiment ; le volume du deuxième compartiment est choisi pour permettre un deuxième temps de séjour des effluents liquides dans ledit deuxième compartiment, en fonction d'un débit entrant dudit deuxième compartiment.  Advantageously, the volume of said at least one first compartment is chosen to allow a first residence time of the liquid effluents in said at least one first compartment according to a flow rate entering said first compartment; the volume of the second compartment is selected to allow a second residence time of the liquid effluents in said second compartment, according to an inflow of said second compartment.
[0019] Cette caractéristique permet de s'assurer que les compartiments de la zone humide artificielle ont un volume suffisant pour garantir la durée les réactions y ayant lieu dans chacun des compartiments, tout en limitant l'emprise au sol de la zone humide artificielle.  This feature ensures that the compartments of the artificial wetland have a sufficient volume to ensure the duration of the reactions taking place in each of the compartments, while limiting the footprint of the artificial wetland.
[0020] Avantageusement, les premier et deuxième temps de séjour sont choisis de manière à atteindre un taux d'élimination minimal de l'au moins un polluant cible en sortie du deuxième compartiment.  Advantageously, the first and second residence time are chosen so as to achieve a minimum elimination rate of the at least one target pollutant at the outlet of the second compartment.
[0021] Cette caractéristique permet de garantir le rendement épuratoire de la zone humide artificielle, tout en limitant son encombrement. This feature ensures the purification performance of the artificial wetland, while limiting its size.
[0022] Avantageusement, ledit au moins un premier compartiment a un périmètre en mètres linéaires supérieur ou égal à un dixième de sa surface en mètres carrés, inférieur ou égal à un sixième de sa surface en mètres carrés, et de préférence égal à 15% de sa surface en mètres carrés ; ledit au moins un premier compartiment a une hauteur d'eau moyenne comprise entre 10 et 50 cm, et de préférence égale à 20 cm. Advantageously, said at least one first compartment has a perimeter in linear meters greater than or equal to one-tenth of its area in square meters, less than or equal to one-sixth of its area in square meters, and preferably equal to 15% its area in square meters; said at least a first compartment has a mean water level of between 10 and 50 cm, and preferably equal to 20 cm.
[0023] Cette caractéristique permet de favoriser la pousse des végétaux et l'adsorption aux végétaux dans l'au moins un premier compartiment.  This feature promotes plant growth and adsorption to plants in the at least a first compartment.
[0024] Avantageusement, le volume du premier compartiment est choisi pour permettre un temps de séjour des effluents liquides dans le ledit au moins un premier compartiment compris entre 0,5 et 3 jours en fonction d'un débit entrant dudit au moins un premier compartiment. Advantageously, the volume of the first compartment is chosen to allow a residence time of liquid effluents in the said at least a first compartment between 0.5 and 3 days depending on an inflow of said at least a first compartment .
[0025] Cette caractéristique permet d'adapter le temps de séjour, et donc la taille de l'au moins un premier compartiment en fonction de l'importance de l'adsorption pour l'élimination de l'au moins un polluant cible : si l'adsorption n'est pas importante vis-à-vis de l'au moins un polluant cible, un temps de séjour très court (par exemple de 0,5 jours) permet néanmoins de supprimer un peu de boues et matières en suspension ; si l'adsorption est importante pour éliminer l'au moins un polluant cible, un temps de séjour plus long (jusqu'à 3 jours) permet de garantir un taux d'élimination voulu du polluant cible..  This characteristic allows to adapt the residence time, and therefore the size of the at least a first compartment depending on the importance of adsorption for the removal of the at least one target pollutant: if the adsorption is not important with respect to the at least one target pollutant, a very short residence time (for example of 0.5 days) allows nevertheless to remove a little sludge and suspended matter; if the adsorption is important to eliminate the at least one target pollutant, a longer residence time (up to 3 days) makes it possible to guarantee a desired elimination rate of the target pollutant.
[0026] Avantageusement, ledit au moins un premier compartiment a un périmètre en mètres linéaires supérieur ou égal à 5% de sa surface en mètres carrés inférieur ou égal à 55% de sa surface en mètres carrés, et de préférence égal à la moitié de sa surface en mètres carrés ; ledit au moins un premier compartiment a une hauteur d'eau moyenne comprise entre 10 et 70 cm, et de préférence égale à 50 cm.  Advantageously, said at least one first compartment has a perimeter in linear meters greater than or equal to 5% of its area in square meters less than or equal to 55% of its area in square meters, and preferably equal to half of its area in square meters; said at least one first compartment has an average water height of between 10 and 70 cm, and preferably equal to 50 cm.
[0027] Cette caractéristique permet d'avoir au moins un premier compartiment étiré en longueur, ou formant des méandres, tout en ayant une longueur faible. Ceci permet d'avoir un contact important avec le substrat, et de favoriser l'adsorption du polluant au substrat ou aux matières en suspension.  This feature makes it possible to have at least one first compartment stretched in length, or forming meanders, while having a small length. This makes it possible to have an important contact with the substrate, and to promote the adsorption of the pollutant to the substrate or to the suspended matter.
[0028] Avantageusement, le volume de l'au moins un premier compartiment est configuré pour permettre un temps de séjour des effluents liquides dans le ledit au moins un premier compartiment est compris entre 1 et 2 jours, en fonction d'un débit entrant dudit au moins un premier compartiment. Advantageously, the volume of the at least a first compartment is configured to allow a residence time of the liquid effluents in the said at least one first compartment is between 1 and 2 days, depending on an inflow of said at least one first compartment.
[0029] Cette caractéristique permet d'adapter le temps de séjour, et donc la taille de l'au moins un premier compartiment en fonction de l'importance de l'adsorption pour l'élimination de l'au moins un polluant cible : si l'adsorption n'est pas importante vis-à-vis de l'au moins un polluant cible, un temps de séjour court (par exemple de 1 jour) permet de ralentir les écoulements entre deux compartiments ; si l'adsorption est importante pour éliminer l'au moins un polluant cible, un temps de séjour plus long (jusqu'à 2 jours) permet de garantir un taux d'élimination voulu du polluant cible.. This characteristic allows to adapt the residence time, and therefore the size of the at least a first compartment depending on the importance of the adsorption for the elimination of the at least one target pollutant: if the adsorption is not important with respect to the at least one target pollutant, a time of short stay (eg 1 day) allows to slow the flow between two compartments; if the adsorption is important to eliminate the at least one target pollutant, a longer residence time (up to 2 days) can guarantee a desired rate of elimination of the target pollutant.
[0030] Avantageusement, ledit au moins un deuxième compartiment a un périmètre en mètres linéaires inférieur ou égal à un quart de sa surface en mètres carrés, et de préférence égal à 17% de sa surface en mètres carrés ; ledit au moins un deuxième compartiment a une hauteur d'eau moyenne supérieure ou égale à 70 cm et inférieure ou égale à 150 cm. [0030] Advantageously, said at least one second compartment has a perimeter in linear meters less than or equal to a quarter of its area in square meters, and preferably equal to 17% of its area in square meters; said at least one second compartment has an average water height greater than or equal to 70 cm and less than or equal to 150 cm.
[0031] Cette caractéristique permet de favoriser la photodégradation et la décantation dans l'au moins un deuxième compartiment. This feature promotes photodegradation and settling in the at least one second compartment.
[0032] Avantageusement, le volume du deuxième compartiment est configuré pour permettre un temps de séjour des effluents liquides dans le ledit au moins un deuxième compartiment compris entre 1 et 5 jours en fonction d'un débit entrant dudit premier compartiment. Advantageously, the volume of the second compartment is configured to allow a residence time of the liquid effluents in the said at least a second compartment between 1 and 5 days depending on an inflow of said first compartment.
[0033] Cette caractéristique permet de garantir un niveau suffisant d'élimination du polluant dans l'au moins un deuxième compartiment, tout en limitant la surface occupée par l'au moins un deuxième compartiment.  This feature ensures a sufficient level of pollutant removal in the at least a second compartment, while limiting the area occupied by the at least a second compartment.
[0034] Avantageusement, l'un au moins desdits au moins un premier compartiment et deuxième compartiment est équipé de noues sur une longueur supérieure ou égale à la moitié de sa largeur maximale. Advantageously, at least one of said at least a first compartment and second compartment is equipped with valleys over a length greater than or equal to half of its maximum width.
[0035] Cette caractéristique permet d'améliorer la répartition du débit entrant dans le compartiment This characteristic makes it possible to improve the distribution of the flow entering the compartment.
[0036] Avantageusement, ledit au moins un deuxième compartiment comprend au moins une zone à hauts-fonds.  [0036] Advantageously, said at least one second compartment comprises at least one shoal area.
[0037] Cette caractéristique permet de favoriser l'émergence de macrophytes dans le deuxième compartiment.  This feature helps to promote the emergence of macrophytes in the second compartment.
[0038] Avantageusement, ladite au moins une zone à hauts-fonds a une largeur décroissante de la berge vers le centre dudit au moins un deuxième compartiment.  Advantageously, said at least one shallow zone has a decreasing width of the bank towards the center of said at least one second compartment.
[0039] Cette caractéristique permet de favoriser une plus forte concentration de macrophytes à proximité des berges de l'au moins un deuxième compartiment. [0040] Avantageusement, la zone humide artificielle est connectée en sortie à un dispositif de filtration sur média comprenant au moins deux ouvrages en parallèle pouvant être alimentés en alternance. This feature allows to promote a higher concentration of macrophytes near the banks of the at least a second compartment. Advantageously, the artificial wetland is connected at the output to a media filtering device comprising at least two parallel works that can be powered alternately.
[0041] Cette caractéristique permet de retenir les matières en suspension, particules et débris végétaux.  This characteristic allows to retain suspended matter, particles and plant debris.
[0042] Avantageusement, ledit dispositif de filtration est planté de roseaux.  [0042] Advantageously, said filtering device is planted with reeds.
[0043] Cette caractéristique permet de maintenir la perméabilité des berges du matériau filtrant. This characteristic makes it possible to maintain the permeability of the banks of the filtering material.
[0044] L'invention décrit également une méthode d'aménagement d'une zone humide artificielle d'épuration d'effluents liquides d'au moins un polluant cible, ladite méthode comprenant : la définition d'au moins un premier compartiment, ayant une hauteur d'eau moyenne comprise entre 5 et 70 cm ; la définition d'au moins deuxième compartiment alimenté par un effluent dudit premier compartiment, ayant une hauteur d'eau moyenne comprise entre 70 et 150 cm.  The invention also describes a method for developing an artificial wetland for the purification of liquid effluents from at least one target pollutant, said method comprising: the definition of at least a first compartment, having a average water level between 5 and 70 cm; the definition of at least second compartment fed by an effluent of said first compartment, having an average water height of between 70 and 150 cm.
[0045] Avantageusement, la méthode d'aménagement comprend, pour au moins un compartiment : une définition d'un temps de séjour dans ledit au moins un compartiment, en fonction d'au moins un type de réaction devant avoir lieu dans l'au moins un compartiment, et d'un taux d'élimination cible de l'au moins un polluant cible ; un calcul d'un volume de l'au moins un compartiment en fonction dudit temps de séjour, et d'un débit entrant d'effluents dans ledit au moins un compartiment ; un calcul d'une surface de l'au moins un compartiment en fonction dudit volume, et d'une hauteur moyenne de l'au moins un compartiment choisie en fonction de l'au moins un type de réaction ; un calcul d'un périmètre de l'au moins un compartiment en fonction de ladite surface, et d'un ratio entre le périmètre en mètres linéaires de l'au moins un compartiment, et la surface de l'au moins un compartiment, ledit ratio étant choisi en fonction de l'au moins un type de réaction.  Advantageously, the management method comprises, for at least one compartment: a definition of a residence time in said at least one compartment, according to at least one type of reaction to take place in the at least one compartment; minus one compartment, and a target elimination rate of the at least one target pollutant; calculating a volume of the at least one compartment according to said residence time, and an inflow of effluent into said at least one compartment; calculating a surface of the at least one compartment according to said volume, and an average height of the at least one compartment selected according to the at least one type of reaction; a calculation of a perimeter of the at least one compartment according to said surface, and a ratio between the perimeter in linear meters of the at least one compartment, and the area of the at least one compartment, said ratio being chosen according to the at least one type of reaction.
[0046] Cette méthode permet un dimensionnement efficace d'une zone humide artificielle, permettant de garantir un taux d'élimination d'un polluant cible, tout en limitant l'emprise au sol de la zone humide artificielle, et en s'adaptant au foncier disponible. This method allows effective design of an artificial wetland, to ensure a rate of elimination of a target pollutant, while limiting the footprint of the artificial wetland, and adapting to the land available.
[0047] L'invention décrit également une méthode d'épuration d'effluents liquides d'au moins un polluant cible par une zone humide artificielle ladite méthode comprenant successivement : le traitement des effluents par au moins un premier compartiment de la zone humide artificielle, ledit au moins un premier compartiment ayant une hauteur d'eau moyenne comprise entre 5 et 70 cm ; le traitement des effluents par au moins un deuxième compartiment de la zone humide artificielle, ledit au moins un deuxième compartiment ayant une hauteur d'eau moyenne comprise entre 70 et 150 cm. The invention also describes a method for the purification of liquid effluents from at least one target pollutant by an artificial wetland, said method comprising successively: the treatment of the effluents with at least one first compartment of the artificial wetland, said at least one first compartment having a mean water height of between 5 and 70 cm; the treatment of the effluents by at least a second compartment of the artificial wetland, said at least one second compartment having an average water height of between 70 and 150 cm.
[0048] Cette méthode permet un traitement efficace d'un effluent, en favorisant le traitement de l'effluent par des compartiments favorisant des réactions ayant des synergies entre elles.  This method allows an effective treatment of an effluent, promoting the treatment of the effluent by compartments favoring reactions having synergies between them.
[0049] L'invention permet d'optimiser les processus épuratoires ayant lieu dans une zone humide artificielle. The invention optimizes purification processes taking place in an artificial wetland.
[0050] L'invention permet de garantir un taux d'élimination d'un polluant cible par une zone humide artificielle.  The invention makes it possible to guarantee an elimination rate of a target pollutant by an artificial wetland.
[0051] L'invention permet de réduire l'emprise au sol des zones humides. The invention reduces the footprint of wet areas.
[0052] L'invention est applicable à de nombreux processus épuratoires.  The invention is applicable to many purification processes.
[0053] L'invention permet d'éliminer de nombreux types de polluants cibles.  The invention eliminates many types of target pollutants.
[0054] L'invention permet d'améliorer la biodiversité des zones humides.  The invention improves the biodiversity of wetlands.
[0055] L'invention est utilisable avec un grand nombre de végétaux, y compris des végétaux endémiques de la région dans laquelle la zone humide artificielle est installée.  The invention is usable with a large number of plants, including plants endemic to the region in which the artificial wetland is installed.
[0056] L'invention permet différentes formes de compartiments.  The invention allows different forms of compartments.
[0057] L'invention est applicable à plusieurs agencements de compartiments, ce qui permet d'adapter la zone humide artificielle au foncier disponible.  The invention is applicable to several arrangements of compartments, which allows to adapt the artificial wetland to land available.
LISTE DES FIGURES LIST OF FIGURES
[0058] D'autres caractéristiques apparaîtront à la lecture de la description détaillée donnée à titre d'exemple et non limitative qui suit faite au regard de dessins annexés qui représentent: Other characteristics will become apparent on reading the detailed description given by way of example and not limiting thereafter with reference to appended drawings which represent:
- La figure 1 , un premier exemple schématique de zone humide artificielle selon l'invention ;  FIG. 1, a first schematic example of an artificial wetland according to the invention;
- La figure 2, un second exemple schématique de zone humide artificielle selon l'invention ;  FIG. 2, a second schematic example of an artificial wetland according to the invention;
- La figure 3, un exemple de vue aérienne d'une zone humide artificielle simulée selon l'invention ; - La figure 4, un exemple de vue aérienne d'un compartiment d'une zone humide artificielle simulée selon l'invention ; FIG. 3, an example of an aerial view of a simulated artificial wetland according to the invention; FIG. 4, an example of an aerial view of a compartment of a simulated artificial wetland according to the invention;
- La figure 5, un premier exemple de méthode de dimensionnement d'une zone humide artificielle selon l'invention ;  FIG. 5, a first example of a method for dimensioning an artificial wetland according to the invention;
- La figure 6, un deuxième exemple de méthode de dimensionnement d'une zone humide artificielle selon l'invention.  FIG. 6, a second example of a method for dimensioning an artificial wetland according to the invention.
DESCRIPTION DETAILLEE [0059] La figure 1 représente un premier exemple schématique de zone humide artificielle selon l'invention. DETAILED DESCRIPTION [0059] FIG. 1 represents a first schematic example of an artificial wetland according to the invention.
[0060] La zone humide artificielle 100 permet de traiter des liquides, par exemple des eaux usées traitées d'origine résidentielle et/ou industrielle. La zone humide artificielle peut également traiter des eaux de pluie polluées, ou tout autre type d'effluent aqueux, par exemple un effluent mixte composé d'eaux usées urbaines et d'eaux de pluie. La zone humide artificielle 100 peut par exemple traiter les effluents d'une station d'épuration, d'une communauté urbaine, d'un site industriel, ou se situer en aval d'un cours d'eau et/ou d'un bassin collecteur d'eau de pluie.  The artificial wetland 100 makes it possible to treat liquids, for example treated wastewater of residential and / or industrial origin. The artificial wetland can also treat polluted rainwater, or any other type of aqueous effluent, for example a mixed effluent composed of urban wastewater and rainwater. The artificial wetland 100 may, for example, treat the effluents of a purification plant, an urban community or an industrial site, or be located downstream of a watercourse and / or a pond rainwater collector.
[0061] La zone humide artificielle 100 permet plus spécifiquement l'épuration d'au moins un polluant cible de l'effluent. Les zones humides selon l'invention permettent généralement de traiter un grand nombre de polluants. Selon les différents modes de réalisation de l'invention les zones humides, la zone humide artificielle 100 peut être dimensionnée pour le traitement d'un seul polluant, ou pour le traitement simultané de plusieurs polluants. The artificial wetland 100 more specifically allows the purification of at least one target pollutant of the effluent. The wet zones according to the invention generally make it possible to treat a large number of pollutants. According to the various embodiments of the invention wet areas, the artificial wetland 100 can be sized for the treatment of a single pollutant, or for the simultaneous treatment of several pollutants.
[0062] La zone humide artificielle comporte un premier compartiment 1 10, et un deuxième compartiment 120. Le deuxième compartiment 120 se situe en aval du premier compartiment 1 10, et traite les effluents de celui-ci. Les effluents sont donc dans un premier temps traités par le premier compartiment 1 10, puis par le deuxième compartiment 120.  The artificial wetland comprises a first compartment 1 10, and a second compartment 120. The second compartment 120 is located downstream of the first compartment 1 10, and treats the effluents thereof. The effluents are therefore first treated by the first compartment 1 10, then by the second compartment 120.
[0063] Les compartiments des zones humides selon l'invention sont remarquables par leurs hauteurs moyennes, qui permettent de favoriser des mécanismes épuratoires différents selon les compartiments. Les hauteurs moyennes des compartiments pourront, dans le cadre de la présente demande, être désignées indifféremment hauteur ou hauteur d'eau. La hauteur d'eau moyenne correspond à la moyenne des hauteurs d'eau d'un compartiment. The compartments of wet areas according to the invention are remarkable for their average heights, which allow to promote different purification mechanisms according to the compartments. The average height of the compartments may, in the context of the present application, be designated either height or water level. The average water level is the average of the water depths of a compartment.
[0064] Le premier compartiment 1 10 a une hauteur d'eau moyenne comprise entre 5 et 70 cm. Cette hauteur d'eau permet de favoriser la pousse de végétaux et/ou l'adsorption dans l'au moins un premier compartiment.  The first compartment 1 10 has an average water height of between 5 and 70 cm. This height of water makes it possible to promote plant growth and / or adsorption in the at least one first compartment.
[0065] Le deuxième compartiment a une hauteur d'eau moyenne comprise entre 70 et 150 cm. La hauteur plus élevée de l'au moins un second compartiment permet de limiter la pousse des végétaux, et de favoriser la photodégradation et/ou la décantation.  The second compartment has an average water height of between 70 and 150 cm. The higher height of the at least one second compartment makes it possible to limit the growth of the plants, and to promote photodegradation and / or decantation.
[0066] La décantation, dans le deuxième compartiment, de matières en suspension et/ou végétaux sur lesquels s'est adsorbé le polluant dans l'au moins un premier compartiment, permet d'accroître l'efficacité de la zone humide artificielle. La combinaison de ces processus permet ainsi d'atteindre des taux d'élimination de polluants élevés, avec une emprise au sol faible. Decanting, in the second compartment, suspended materials and / or plants on which adsorbed the pollutant in the at least a first compartment, increases the efficiency of the artificial wetland. The combination of these processes makes it possible to achieve high pollutant removal rates with a low footprint.
[0067] La zone humide artificielle 100 est caractérisée par un débit d'entrée, dépendant de la source des effluents à traiter. Le débit d'entrée est généralement prédictible, en fonction de la source des effluents à traiter. Par exemple, si la zone humide artificielle est positionnée en sortie d'une station d'épuration d'une communauté urbaine, il est possible de prévoir un débit d'entrée de la zone humide artificielle à dimensionner en fonction du nombre d'habitants de la communauté urbaine. De même, il est possible de prévoir un débit d'entrée cible pour une zone humide artificielle pour traiter les effluents d'une zone industrielle en fonction du flux de sortie de la zone industrielle. Selon différents modes de réalisation de l'invention, le débit entrant peut être un débit moyen, ou un débit maximum. The artificial wetland 100 is characterized by an inflow, depending on the source of the effluent to be treated. The inflow is generally predictable, depending on the source of the effluent to be treated. For example, if the artificial wetland is positioned at the outlet of a wastewater treatment plant of an urban community, it is possible to provide an inflow of the artificial wetland to be sized according to the number of inhabitants of the urban area. the urban community. Similarly, it is possible to provide a target input flow rate for an artificial wetland to treat the effluents of an industrial zone according to the output flow of the industrial zone. According to different embodiments of the invention, the inflow can be a medium flow, or a maximum flow.
[0068] Dans un ensemble de modes de réalisation de l'invention, il est désirable de garantir que l'effluent reste suffisamment longtemps dans le premier compartiment 1 10 et le deuxième compartiment 120, pour garantir que la durée de réaction est suffisante.  In one set of embodiments of the invention, it is desirable to ensure that the effluent remains sufficiently long in the first compartment 1 10 and the second compartment 120, to ensure that the reaction time is sufficient.
[0069] A cet effet, le volume du premier compartiment 1 10 peut être choisi pour permettre un premier temps de séjour des effluents liquides dans le premier compartiment 1 10. Le volume du premier compartiment 1 10 peut ainsi être défini en multipliant le temps de séjour cible par le débit entrant du premier compartiment 1 10. [0070] De manière similaire, le volume du deuxième compartiment 120 peut être choisi pour permettre un deuxième temps de séjour des effluents liquides dans le deuxième compartiment 120. Le volume du deuxième compartiment 120 peut ainsi être défini en multipliant le temps de séjour cible par le débit entrant du deuxième compartiment 120 For this purpose, the volume of the first compartment 1 10 may be chosen to allow a first residence time liquid effluents in the first compartment 1 10. The volume of the first compartment 1 10 can be defined by multiplying the time of target stay by the inward flow of the first compartment 1 10. Similarly, the volume of the second compartment 120 can be chosen to allow a second residence time of the liquid effluents in the second compartment 120. The volume of the second compartment 120 can thus be defined by multiplying the target residence time by the inflow of the second compartment 120
[0071] Dans un ensemble de modes de réalisation de l'invention, les volumes du premier compartiment 1 10 et du deuxième compartiment 120 permettent ainsi de garantir la durée voulue des réactions ayant lieu dans chacun des compartiments, tout en limitant le volume des compartiments, et donc l'emprise au sol de la zone humide artificielle.  In one set of embodiments of the invention, the volumes of the first compartment 1 10 and the second compartment 120 and ensure the desired duration of reactions taking place in each of the compartments, while limiting the volume of the compartments , and therefore the footprint of the artificial wetland.
[0072] Selon différents modes de réalisation de l'invention, le premier et le deuxième temps de séjour sont choisis de manière à atteindre un taux d'élimination minimal de l'au moins un polluant cible en sortie du deuxième compartiment. Il est ainsi possible de garantir le rendement épuratoire de la zone humide artificielle, tout en limitant son emprise au sol.  According to various embodiments of the invention, the first and the second residence time are chosen so as to achieve a minimum elimination rate of the at least one target pollutant at the outlet of the second compartment. It is thus possible to ensure the purification performance of the artificial wetland, while limiting its footprint.
[0073] Selon différents modes de réalisation de l'invention, les premier et deuxième temps de séjour peuvent être choisis de différentes manières. Par exemple, des recueils de données sur le terrain permettent de déterminer, pour une réaction donnée, un taux d'élimination du polluant par la réaction. Les temps de séjour peuvent aussi avoir été obtenus par étude de la cinétique de compartiments de zones humides existantes et/ou par l'étude en laboratoire de la cinétique de réactions se produisant en mini bassins.  According to various embodiments of the invention, the first and second residence times may be chosen in different ways. For example, field data compendia can be used to determine, for a given reaction, a rate of removal of the pollutant by the reaction. The residence times may also have been obtained by studying the kinetics of existing wetland compartments and / or by laboratory studies of the kinetics of reactions occurring in mini-basins.
[0074] Dans un ensemble de modes de réalisations de l'invention, la zone humide artificielle est destinée à obtenir un taux d'élimination cible de plusieurs polluants cible. Si les temps de séjours nécessaires pour l'élimination des différents polluants sont différents, les volumes du premier compartiment 1 10 et du deuxième compartiment 120 peuvent être définis en fonction des temps de séjour maximaux pour chaque compartiment. Par exemple, si un taux d'élimination cible d'un premier polluant est atteint avec un temps de séjour de 2 jours dans le premier compartiment 1 10, et un taux d'élimination cible d'un deuxième polluant avec un temps de séjour de 3 jours dans le premier compartiment 1 10, le volume du premier compartiment 1 10 peut être défini pour garantir un temps de séjour de 3 jours permettant de garantir le taux d'élimination cible des deux polluants. [0075] Inversement, si un taux d'élimination cible d'un premier polluant est atteint avec un temps de séjour de 5 jours dans le deuxième compartiment 120, et un taux d'élimination cible du deuxième polluant avec un temps de séjour de 2 jours dans le deuxième compartiment 120, , le volume du deuxième compartiment pourra être dimensionné pour garantir un temps de séjour de 5 jours permettant d'atteindre le taux d'élimination cible des deux polluants. Ainsi, le choix du volume des deux compartiments permet de garantir que le taux d'élimination cible de chacun des deux polluants est atteint ou dépassé par la zone humide artificielle. In one set of embodiments of the invention, the artificial wetland is intended to obtain a target elimination rate of several target pollutants. If the residence times required for the elimination of different pollutants are different, the volumes of the first compartment 1 10 and the second compartment 120 can be defined according to the maximum residence time for each compartment. For example, if a target elimination rate of a first pollutant is reached with a residence time of 2 days in the first compartment 1 10, and a target elimination rate of a second pollutant with a residence time of 3 days in the first compartment 1 10, the volume of the first compartment 1 10 can be defined to ensure a residence time of 3 days to ensure the target elimination rate of the two pollutants. Conversely, if a target elimination rate of a first pollutant is reached with a residence time of 5 days in the second compartment 120, and a target elimination rate of the second pollutant with a residence time of 2 days in the second compartment 120, the volume of the second compartment can be sized to ensure a residence time of 5 days to achieve the target elimination rate of the two pollutants. Thus, the choice of the volume of the two compartments makes it possible to guarantee that the target elimination rate of each of the two pollutants is reached or exceeded by the artificial wetland.
[0076] Dans un ensemble de modes de réalisation de l'invention, les dimensions du premier compartiment 1 10 permettent de favoriser encore plus la pousse des végétaux, par exemple pour former une roselière. Cette condition est remplie par exemple, lorsque le premier compartiment a : In one set of embodiments of the invention, the dimensions of the first compartment 1 10 can further promote the growth of plants, for example to form a reed bed. This condition is fulfilled, for example, when the first compartment has:
une hauteur d'eau moyenne comprise entre 10 et 50 cm, par exemple égale à 20 cm ;  an average water level of between 10 and 50 cm, for example equal to 20 cm;
- un périmètre en mètres linéaires supérieur ou égal à un dixième de sa surface en mètres carrés, inférieur ou égal à un sixième de sa surface en mètres carrés, par exemple égal à 15% de sa surface en mètres carrés ;  - a perimeter in linear meters greater than or equal to one-tenth of its area in square meters, less than or equal to one-sixth of its area in square meters, for example equal to 15% of its area in square meters;
Ces dimensions permettent au premier compartiment 1 10 d'avoir en même temps une hauteur d'eau faible, et une forme allongée. Le premier compartiment 1 10 favorise alors de manière importante la pousse des végétaux, et l'adsorption des polluants à ceux-ci. Dans un ensemble de modes de réalisation de l'invention, le volume de ce premier compartiment peut être choisi pour garantir un temps de séjour des effluents compris entre 0,5 et 3 jours en fonction du débit entrant dans le compartiment. Ce temps de séjour permet dans la plupart des cas de garantir un niveau suffisant d'adsorption dans un premier compartiment de type roselière, tout en limitant l'emprise au sol de l'au moins un premier compartiment. These dimensions allow the first compartment 1 10 to have at the same time a low water height, and an elongated shape. The first compartment 1 10 then greatly promotes the growth of plants, and the adsorption of pollutants thereon. In one set of embodiments of the invention, the volume of this first compartment may be selected to guarantee a residence time of the effluents of between 0.5 and 3 days depending on the flow rate entering the compartment. This residence time allows in most cases to ensure a sufficient level of adsorption in a first compartment type reed, while limiting the footprint of the at least a first compartment.
[0077] Dans un ensemble de modes de réalisation de l'invention, les dimensions du premier compartiment 1 10 sont telles que le premier compartiment 1 10 a : In one set of embodiments of the invention, the dimensions of the first compartment 1 10 are such that the first compartment 1 10 has:
- un périmètre en mètres linéaires supérieur ou égal à 5% de sa surface en mètres carrés inférieur ou égal à 55% de sa surface en mètres carrés, de préférence ledit au moins un premier compartiment a un périmètre en mètres linéaires supérieur ou égal à 16% de sa surface en mètres carrés, inférieur ou égal à 55% de sa surface en mètres carrés, par exemple égal à la moitié de sa surface en mètres carrés ;a perimeter in linear meters greater than or equal to 5% of its area in square meters less than or equal to 55% of its area in square meters, preferably said at least one first compartment has a perimeter in linear meters greater than or equal to 16% of its area in square meters, less than or equal to 55% of its area in square meters, for example equal to half of its area in square meters;
- une hauteur d'eau moyenne comprise entre 10 et 70 cm, par exemple égale à 50 cm. - An average water level of between 10 and 70 cm, for example equal to 50 cm.
Ces dimensions permettent d'avoir un premier compartiment 1 10 étiré en longueur, ou formant des méandres, tout en ayant une longueur faible. Ceci permet d'avoir un contact important avec le substrat, et de favoriser l'adsorption du polluant au substrat ou aux matières en suspension. Ce premier compartiment 1 10 peut avoir un volume permettant un temps de séjour compris entre 1 et 2 jours. Ce temps de séjour permet, dans la plupart des cas, de garantir un niveau suffisant d'adsorption dans un premier compartiment 1 10 de type méandres, tout en limitant l'emprise au sol du premier compartiment 1 10.  These dimensions make it possible to have a first compartment 1 stretched in length, or forming meanders, while having a small length. This makes it possible to have an important contact with the substrate, and to promote the adsorption of the pollutant to the substrate or to the suspended matter. This first compartment 1 10 may have a volume allowing a residence time of between 1 and 2 days. This residence time makes it possible, in most cases, to guarantee a sufficient level of adsorption in a first meander-type compartment 1 10, while limiting the footprint of the first compartment 1 10.
[0078] Dans un ensemble de modes de réalisation de l'invention, les dimensions du deuxième compartiment 120 sont telles que : In one set of embodiments of the invention, the dimensions of the second compartment 120 are such that:
- Le deuxième compartiment 120 a un périmètre en mètres linéaires inférieur ou égal à un quart de sa surface en mètres carrés, par exemple égal à 17% de sa surface en mètres carrés ;  - The second compartment 120 has a perimeter in linear meters less than or equal to a quarter of its area in square meters, for example equal to 17% of its area in square meters;
- La hauteur d'eau moyenne est supérieure ou égale à 70 cm et inférieure ou égale à 150 cm.  - The average water level is greater than or equal to 70 cm and less than or equal to 150 cm.
Ces dimensions permettent de définir un deuxième compartiment 120 de type bassin permettant de favoriser la photodégradation et la décantation. En particulier, une hauteur d'au moins 70 cm permet d'empêcher la pousse des végétaux de type hélophytes dans le compartiment afin de favoriser la photodégradation ; une hauteur jusqu'à 150 cm permet à une quantité suffisante de photons d'atteindre le fond du deuxième compartiment 120. Ainsi, si le deuxième compartiment 120 est aussi profond, la photodégradation va avoir lieu dans l'ensemble du deuxième compartiment. Ceci permet d'avoir un deuxième compartiment 120 ayant un volume donné, avec la surface la plus petite possible, et donc de favoriser la photodégradation avec une emprise au sol aussi faible que possible.  These dimensions make it possible to define a second compartment 120 of the basin type to promote photodegradation and decantation. In particular, a height of at least 70 cm makes it possible to prevent the growth of helophyte type plants in the compartment in order to promote photodegradation; a height up to 150 cm allows a sufficient amount of photons to reach the bottom of the second compartment 120. Thus, if the second compartment 120 is as deep, the photodegradation will take place throughout the second compartment. This makes it possible to have a second compartment 120 having a given volume, with the smallest possible area, and thus to promote photodegradation with a footprint as low as possible.
[0079] Dans un ensemble de modes de réalisation de l'invention, le volume du deuxième compartiment permet un temps de séjour des effluents liquides dans un deuxième compartiment 120 compris entre 1 et 5 jours en fonction d'un débit entrant dudit deuxième compartiment 120. Ce temps de séjour permet, dans la plupart des cas, de garantir un niveau suffisant de photodégradation et de décantation dans le deuxième compartiment 120 de type lagune, tout en limitant l'emprise au sol du deuxième compartiment 120. In one set of embodiments of the invention, the volume of the second compartment allows a residence time of the liquid effluents in a second compartment 120 between 1 and 5 days depending an inflow of said second compartment 120. This residence time allows, in most cases, to ensure a sufficient level of photodegradation and settling in the second compartment 120 lagoon type, while limiting the footprint of the second compartment 120.
[0080] Les dimensions possibles du premier compartiment 1 10 et du deuxième compartiment 120 permettent de définir un ensemble de formes de compartiments. Ainsi, si ces dimensions permettent d'assurer un niveau d'élimination du ou des polluants cibles, la forme du premier compartiment 1 10 et la forme du deuxième compartiment 120 peuvent être définies pour s'adapter à des contraintes externes, par exemple pour s'adapter au foncier disponible là où la zone doit être implantée. The possible dimensions of the first compartment 1 10 and the second compartment 120 can define a set of compartment shapes. Thus, if these dimensions make it possible to ensure a level of elimination of the target pollutant (s), the shape of the first compartment 1 10 and the shape of the second compartment 120 can be defined to adapt to external constraints, for example for adapt to the land available where the area is to be located.
[0081] La figure 2 représente un second exemple schématique de zone humide artificielle selon l'invention. [0081] Figure 2 shows a second schematic example of artificial wetland according to the invention.
[0082] La zone humide artificielle 200 est destinée à un usage similaire à celui de la zone humide artificielle 100 décrite en référence à la figure 1 . The artificial wetland 200 is intended for use similar to that of the artificial wetland 100 described with reference to Figure 1.
[0083] La zone humide artificielle 200 comprend un compartiment de type roselière 210 similaire au premier compartiment 1 10 (avec un périmètre en mètres linéaires supérieur ou égal à un dixième de sa surface en mètres carrés, inférieur ou égal à un sixième de sa surface en mètres carrés), deux compartiments de type bassin 220 et 221 similaires au deuxième compartiment 120, un compartiment de type méandres 21 1 similaire au premier compartiment 1 10 (avec un périmètre en mètres linéaires supérieur ou égal à 5% de sa surface en mètres carrés inférieur ou égal à 55% de sa surface en mètres carrés, par exemple égal à la moitié de sa surface en mètres carrés), et un troisième compartiment de type bassin 222 similaire au deuxième compartiment 120. The artificial wetland 200 comprises a reed-like compartment 210 similar to the first compartment 1 10 (with a perimeter in linear meters greater than or equal to one-tenth of its area in square meters, less than or equal to one-sixth of its area in square meters), two basin type compartments 220 and 221 similar to the second compartment 120, a meander type compartment 21 1 similar to the first compartment 1 10 (with a perimeter in linear meters greater than or equal to 5% of its area in meters squares less than or equal to 55% of its area in square meters, for example equal to half of its area in square meters), and a third basin type compartment 222 similar to the second compartment 120.
[0084] La zone humide artificielle 200 permet ainsi une alternance de compartiments favorisant des réactions différentes, avec notamment, dans l'ordre de parcours de l'effluent :  The artificial wet zone 200 thus allows an alternation of compartments favoring different reactions, with in particular, in the order of flow of the effluent:
- Le compartiment 210 de type roselière favorisant la pousse des végétaux et l'adsorption aux végétaux ;  - The compartment 210 of the reed type favoring the growth of plants and adsorption to plants;
- Les compartiments 220 et 221 de type bassin, à l'effluent du compartiment 210, favorisant la photodégradation et la décantation ; - Le compartiment 21 1 de type méandres, à l'effluent des compartiments 220 et 221 , favorisant le contact avec le substrat, et l'adsorption du polluant au substrat ou aux matières en suspension ; Basin-type compartments 220 and 221, with the effluent from compartment 210, favoring photodegradation and decantation; The meander-type compartment 21 1, with the effluent from the compartments 220 and 221, promoting contact with the substrate, and the adsorption of the pollutant to the substrate or to the suspended matter;
- Le compartiment 222 de type bassin, à l'effluent du compartiment 21 1 , favorisant la photodégradation et la décantation.  - The basin-type compartment 222, effluent compartment 21 1, promoting photodegradation and decantation.
[0085] De manière similaire à la zone humide artificielle 100, il est possible de définir les volumes des compartiments de la zone humide artificielle 200 de manière a s'assurer que le temps de séjour de l'effluent liquide soit suffisant dans les compartiments favorisant une réaction donnée. Par exemple, si un temps de séjour de 3 jours dans un ou plusieurs compartiments favorisant l'adsorption est désiré, les volumes des compartiments peuvent être définis par exemple tels que :  Similarly to the artificial wetland 100, it is possible to define the volumes of the compartments of the artificial wetland 200 so as to ensure that the residence time of the liquid effluent is sufficient in the compartments favoring a given reaction. For example, if a residence time of 3 days in one or more compartments promoting adsorption is desired, the volumes of the compartments can be defined for example such that:
- le temps de séjour dans le compartiment 210 est de 1 jour, et celui dans le compartiment 21 1 est de 2 jours ;  the residence time in compartment 210 is 1 day, and that in compartment 21 1 is 2 days;
- ou le temps de séjour dans le compartiment 210 est de 1 ,5 jour, et celui dans le compartiment 21 1 est de 1 ,5 jours.  or the residence time in compartment 210 is 1.5 days, and that in compartment 21 1 is 1.5 days.
Ainsi, la conception de la zone humide artificielle 200 permet de moduler les temps de séjour, et donc les volumes et les surfaces, des différents compartiments de manière à s'assurer qu'un temps de séjour global dans des compartiments permettant une réaction donnée est respecté, tout en laissant une plus grande flexibilité dans le choix des volumes et surfaces entre les différents compartiments. Ceci permet d'adapter la conception d'une zone humide artificielle selon l'invention à des facteurs supplémentaires, tels que la taille et la disposition du foncier disponible, ou encore l'intégration dans le paysage. Thus, the design of the artificial wetland 200 makes it possible to modulate the residence times, and therefore the volumes and the surfaces, of the different compartments so as to ensure that an overall residence time in compartments allowing a given reaction is respected, while allowing greater flexibility in the choice of volumes and surfaces between the different compartments. This makes it possible to adapt the design of an artificial wetland according to the invention to additional factors, such as the size and layout of the available land, or integration into the landscape.
[0086] Cette disposition des compartiments est donnée à titre d'exemple, et l'invention est applicable à un grand nombre de dispositions possibles de compartiments, à partir du moment où un ou plusieurs compartiments 120, 220, 221 , 222 ayant des hauteurs d'eau moyennes comprises entre 70 et 150 cm sont placés en aval d'un ou plusieurs compartiments 1 10, 210, 21 1 ayant des hauteurs d'eau comprises entre 5 et 70 cm. Les considérations évoquées ci-dessus concernant la répartition des volumes, surfaces, et temps de séjour parmi les compartiments favorisant une même réaction peuvent également s'appliquer à toute zone humide artificielle selon l'invention, ce qui permet une flexibilité encore plus grande des dimensionnements de zones humides selon l'invention. This provision of the compartments is given by way of example, and the invention is applicable to a large number of possible compartments arrangements, from the moment when one or more compartments 120, 220, 221, 222 having heights Average water averages between 70 and 150 cm are placed downstream of one or more compartments 10, 210, 21 1 having water heights between 5 and 70 cm. The considerations mentioned above concerning the distribution of volumes, surfaces, and residence times among the compartments favoring the same reaction can also be applied to any artificial wetland according to the invention, which allows a even greater flexibility of the dimensions of wet areas according to the invention.
[0087] L'invention permet ainsi de favoriser les synergies entre processus épuratoires, tout en permettant une grande flexibilité dans la forme et la disposition des compartiments. Ceci permet de définir des zones humides ayant les capacités épuratoires désirées, tout en adaptant au mieux la disposition des zones humides au foncier disponible.  The invention thus promotes synergies between purification processes, while allowing great flexibility in the shape and arrangement of the compartments. This makes it possible to define wetlands with the desired purification capacities, while at the same time optimally adapting the layout of the wetlands to the available land.
[0088] La figure 3 représente un exemple de vue aérienne d'une zone humide artificielle simulée selon l'invention. FIG. 3 represents an example of an aerial view of a simulated artificial wetland according to the invention.
[0089] Plus particulièrement, la figure 3 représente un exemple de simulation d'une vue aérienne de zone humide artificielle 200 selon l'invention représentée de manière schématique en figure 2.  More particularly, FIG. 3 represents an exemplary simulation of an aerial view of an artificial wetland 200 according to the invention shown diagrammatically in FIG. 2.
[0090] Dans l'exemple de la figure 3, la zone humide artificielle 200 est située en aval d'une station d'épuration 310. L'effluent liquide de la station d'épuration 310 transite successivement par le compartiment 210 de type roselière ; les compartiments 220 et 221 de type bassin ; le compartiment 221 de type méandre ; le compartiment 222 de type bassin. In the example of Figure 3, the artificial wetland 200 is located downstream of a purification plant 310. The liquid effluent from the treatment plant 310 passes successively through the compartment 210 of the reedbed type ; compartments 220 and 221 of the basin type; the meander-type compartment 221; the basin type compartment 222.
[0091] Dans cet exemple, la zone humide artificielle 200 comprend, en sortie du compartiment 222, un dispositif de filtration sur média 330 comprenant au moins deux ouvrages en parallèle pouvant être alimentés en alternance. Le dispositif de filtration sur média 330 permet de retenir les matières en suspension, particules et débris végétaux. Le dispositif de filtration sur média 330 peut également être planté de roseaux, afin de maintenir la perméabilité du matériau filtrant. Il est cependant à noter que ce dispositif est optionnel, cet exemple n'est pas limitatif et des zones humides artificielles selon l'invention peuvent ne pas comprendre de dispositif de filtration sur média. In this example, the artificial wetland 200 comprises, at the outlet of the compartment 222, a media filtering device 330 comprising at least two parallel works that can be powered alternately. The media filtration device 330 makes it possible to retain suspended matter, particles and plant debris. The media filtration device 330 can also be planted with reeds to maintain the permeability of the filter material. It should however be noted that this device is optional, this example is not limiting and artificial wetlands according to the invention may not include media filtration device.
[0092] En sortie du dispositif de filtration sur média 330, l'effluent est complètement traité, et peut être rejeté dans le milieu naturel, par exemple dans une rivière 340. At the outlet of the media filtration device 330, the effluent is completely treated, and can be discharged into the natural environment, for example in a river 340.
[0093] La figure 3 permet ainsi de visualiser de manière plus concrète des exemples de formes de compartiments selon l'invention. Par exemple, la figure 3 montre que le compartiment 210 de type roselière peut avoir un aspect allongé et/ou sinueux, le compartiment 21 1 de type méandres un aspect très allongé et/ou sinueux, et les compartiments 220, 221 et 222 de type bassins un aspect plus compact. FIG. 3 thus makes it possible to visualize, in a more concrete manner, examples of compartment shapes according to the invention. For example, FIG. 3 shows that the reed-type compartment 210 may have an elongated and / or sinuous appearance, the meander-type compartment 21 1 has a very elongated and / or sinuous, and compartments 220, 221 and 222-type basins a more compact appearance.
[0094] Dans l'exemple de la figure 3, les compartiments 220 et 221 sont équipés de noues 31 1 . De manière plus générale, chaque compartiment d'une zone humide artificielle selon l'invention peut être équipé de noues sur une longueur supérieure ou égale à la moitié de sa largeur maximale. La présence de noues permet d'améliorer la répartition du débit entrant dans le compartiment. Il est cependant à noter que la présence de noues est optionnelle, cet exemple n'est pas limitatif et des zones humides artificielles selon l'invention peuvent ne pas comprendre de noues.  In the example of Figure 3, the compartments 220 and 221 are equipped with valleys 31 1. More generally, each compartment of an artificial wetland according to the invention can be equipped with valleys over a length greater than or equal to half of its maximum width. The presence of valleys makes it possible to improve the distribution of the flow entering the compartment. It should however be noted that the presence of valleys is optional, this example is not limiting and artificial wetlands according to the invention may not include valleys.
[0095] Dans cet exemple, les compartiments de type bassin 220, 221 et 222 comprennent chacun une zone à hauts-fonds, respectivement les zones 320, 321 et 322. Les zones à hauts-fonds permettent de favoriser l'émergence de macrophytes dans les compartiments où elles sont présentes, et donc de favoriser la décantation. Les zones à hauts-fonds peuvent également allonger le cheminement hydraulique dans un bassin, et donc augmenter la sédimentation, sans impacter la surface en eau. Un compartiment de type bassin peut également comprendre plusieurs zones à hauts-fonds.  In this example, the basin-type compartments 220, 221 and 222 each comprise a zone with shoals, respectively the zones 320, 321 and 322. The zones with shallows make it possible to promote the emergence of macrophytes in compartments where they are present, and thus promote settling. Shoal areas can also lengthen the hydraulic path in a basin, and thus increase sedimentation without impacting the water surface. A basin-type compartment may also include several shallow areas.
[0096] Une zone à hauts-fonds peut avoir une pente décroissante de la berge vers le centre du compartiment où elle est implantée, afin de favoriser plus spécifiquement l'émergence de macrophytes à proximité des berges de l'au moins un deuxième compartiment. Il est cependant à noter que la présence de zones à hauts-fonds est optionnelle, cet exemple n'est pas limitatif et des zones humides artificielles selon l'invention peuvent ne pas comprendre de zones à hauts-fonds. A shoal area may have a decreasing slope of the bank towards the center of the compartment where it is located, to specifically promote the emergence of macrophytes near the banks of the at least a second compartment. It should be noted, however, that the presence of shallow areas is optional, this example is not limiting and artificial wetlands according to the invention may not include shallow areas.
[0097] La figure 3 représente un exemple de zone humide artificielle selon l'invention, et montre la capacité d'une zone humide artificielle selon l'invention à s'intégrer dans un cadre naturel donné. Ainsi, une zone humide artificielle selon l'invention permet, en plus d'améliorer le traitement des eaux usées, de favoriser la biodiversité dans l'environnement où elle est implantée. Une zone humide artificielle selon l'invention permet également une intégration harmonieuse dans les paysages environnant la zone où elle est implantée. Ces points peuvent être favorisés par l'implantation dans la zone humide artificielle d'espèces végétales indigènes de la région où la zone est implantée. [0098] La figure 4 représente un exemple de vue aérienne d'un compartiment d'une zone humide artificielle simulée selon l'invention. FIG. 3 represents an example of an artificial wetland according to the invention, and shows the capacity of an artificial wetland according to the invention to be integrated in a given natural setting. Thus, an artificial wetland according to the invention makes it possible, in addition to improving the treatment of wastewater, to promote biodiversity in the environment in which it is located. An artificial wetland according to the invention also allows a harmonious integration into the landscapes surrounding the area where it is located. These points can be favored by the establishment in the artificial wetland of plant species indigenous to the region where the zone is located. [0098] FIG. 4 represents an example of an aerial view of a compartment of a simulated artificial wetland according to the invention.
[0099] La figure 4 représente une vue aérienne plus détaillée du compartiment 220 de la zone humide artificielle 200. [0099] Figure 4 shows a more detailed aerial view of the compartment 220 of the artificial wetland 200.
[00100] Dans l'exemple de la figure 4, les noues 31 1 sont disposées en entrée du compartiment 220, afin de favoriser la répartition du débit entrant dans le compartiment 220. La zone de hauts-fonds 320 est située, à l'inverse, vers le centre du compartiment 220. [00101] La figure 5 représente un premier exemple de méthode d'aménagement d'une zone humide artificielle selon l'invention. In the example of Figure 4, the valleys 31 1 are arranged at the entrance of the compartment 220, to promote the distribution of the inflow into the compartment 220. The shoal area 320 is located, at the Conversely, towards the center of the compartment 220. [00101] FIG. 5 represents a first example of a method of designing an artificial wetland according to the invention.
[00102] La méthode 500 permet la conception et l'aménagement d'une zone humide artificielle d'épuration d'effluents liquides d'au moins un polluant cible. [00102] The method 500 allows the design and development of an artificial wetland liquid effluent purification of at least one target pollutant.
[00103] La méthode 500 comprend la définition 510 d'au moins un premier compartiment, ayant une hauteur d'eau moyenne comprise entre 5 et 70 cm. Ledit au moins un compartiment peut par exemple être au moins un des compartiments 1 10 ou 210. The method 500 comprises the definition 510 of at least one first compartment, having an average water height of between 5 and 70 cm. Said at least one compartment may for example be at least one of the compartments 1 10 or 210.
[00104] La méthode 500 comprend également la définition d'au moins un deuxième compartiment, ayant une hauteur d'eau moyenne comprise entre 70 et 150 cm. Ledit au moins un deuxième compartiment peut être au moins un des compartiments 120, 220 ou 221 .  The method 500 also comprises the definition of at least a second compartment, having an average water height of between 70 and 150 cm. Said at least one second compartment may be at least one of the compartments 120, 220 or 221.
[00105] La figure 6 représente un deuxième exemple de méthode de dimensionnement d'une zone humide artificielle selon un ensemble de modes de réalisation de l'invention. [00105] FIG. 6 represents a second example of a method of dimensioning an artificial wetland according to a set of embodiments of the invention.
[00106] La figure 6 représente une méthode 600 de définition d'un compartiment selon un ensemble de modes de réalisation de l'invention, correspondant par exemple à l'une des étapes 510 et 520 de la méthode 500. La méthode 600 peut donc permettre la définition d'un premier ou d'un deuxième compartiment dans un ensemble de modes de réalisation de l'invention. Par exemple, la méthode 600 peut permettre de définir l'un des compartiments 1 10, 120, 210, 220 ou 221 précédemment évoqués.  FIG. 6 represents a method 600 for defining a compartment according to a set of embodiments of the invention, for example corresponding to one of the steps 510 and 520 of the method 500. The method 600 can therefore allow the definition of a first or a second compartment in a set of embodiments of the invention. For example, the method 600 can be used to define one of the compartments 1 10, 120, 210, 220 or 221 previously mentioned.
[00107] La méthode 600 comprend, une première étape 610 de calcul d'un temps de séjour cible 61 1 dans le compartiment, en fonction d'un type de réaction 601 , et d'un taux d'élimination cible 602. Les temps de séjour permettant un taux d'élimination d'une molécule cible par une réaction peuvent ainsi avoir été déterminés par exemple en étudiant la cinétique de compartiments de zones humides existantes et/ou en étudiant en laboratoire la cinétique de réactions dans de petits bassins expérimentaux. The method 600 comprises a first step 610 for calculating a target residence time 61 1 in the compartment, depending on a reaction type 601, and a target elimination rate 602. The times stay allowing a rate of elimination of a target molecule by a reaction can thus have been determined for example by studying the kinetics of existing wetland compartments and / or by studying in the laboratory the kinetics of reactions in small experimental basins.
[00108] La méthode 600 peut être utilisée pour dimensionner des compartiments pour éliminer plusieurs polluants. Dans ce cas, un temps de séjour cible permettant d'éliminer un polluant donné peut être calculé pour chaque polluant à éliminer. Le temps de séjour cible choisi du compartiment sera alors le temps de séjour cible le plus élevé parmi les temps de séjour cibles pour chaque polluant. Ainsi, le temps de séjour cible finalement sélectionné est au moins égal au temps de séjour cible pour chaque polluant, et le taux d'élimination obtenu pour chaque polluant est au moins égal au taux d'élimination cible de ce polluant. The method 600 can be used to size compartments to eliminate several pollutants. In this case, a target residence time to eliminate a given pollutant can be calculated for each pollutant to be eliminated. The selected target residence time of the compartment will then be the highest target residence time among the target residence times for each pollutant. Thus, the target residence time finally selected is at least equal to the target residence time for each pollutant, and the removal rate obtained for each pollutant is at least equal to the target elimination rate of this pollutant.
[00109] Selon différents modes de réalisation de l'invention, le temps de séjour peut être défini pour un seul compartiment, ou, de manière conjointe pour plusieurs compartiments. Plus spécifiquement, si un seul compartiment permet de favoriser une réaction donnée, le temps de séjour cible 61 1 dans le compartiment peut être calculé directement.  According to various embodiments of the invention, the residence time can be defined for a single compartment, or jointly for several compartments. More specifically, if a single compartment makes it possible to favor a given reaction, the target residence time 61 in the compartment can be calculated directly.
[00110] Si au contraire, plusieurs compartiments permettent de favoriser la même réaction, un temps de séjour cumulé dans ces compartiments peut d'abord être calculé, correspondant au temps de séjour cumulé de l'effluent dans les compartiments favorisant la réaction. Puis ce temps de séjour cumulé peut être réparti parmi les différents compartiments. Par exemple, dans le cas de la zone humide artificielle 200, un temps de séjour cible cumulé dans les compartiments favorisant l'adsorption peut être calculé pour l'ensemble des compartiments 210 et 21 1 , et ce temps de séjour cumulé réparti entre un temps de séjour dans le compartiment 210, et un temps de séjour dans le compartiment 21 1 .  If on the contrary, several compartments allow to promote the same reaction, a cumulative residence time in these compartments can first be calculated, corresponding to the cumulative residence time of the effluent in the compartments promoting the reaction. Then this accumulated residence time can be divided among the different compartments. For example, in the case of the artificial wetland 200, a cumulative target residence time in the adsorption promoting compartments can be calculated for all the compartments 210 and 21 1, and this accumulated residence time distributed over a period of time. in the compartment 210, and a residence time in the compartment 21 1.
[00111 ] La méthode 600 comprend ensuite une étape 620 de calcul du volume 621 du compartiment, à partir du temps de séjour cible 61 1 , et du débit entrant. Le volume du compartiment 621 peut être obtenu directement, en multipliant le temps de séjour cible 61 1 dans le compartiment par le débit entrant 612.  The method 600 then comprises a step 620 for calculating the volume 621 of the compartment, from the target residence time 61 1, and the inflow. The volume of the compartment 621 can be obtained directly by multiplying the target residence time 61 1 in the compartment by the inflow 612.
[00112] Dans un ensemble de modes de réalisation de l'invention, chaque réaction 601 à favoriser est associée à une hauteur moyenne d'eau 622, ou une plage de hauteurs. Par exemple, si la réaction 601 à favoriser est l'adsorption, la hauteur moyenne 622 peut être comprise entre 5 et 70 cm ; si la réaction 601 à favoriser est la photodégradation, la hauteur moyenne 622 peut être comprise entre 70 et 150 cm. In a set of embodiments of the invention, each reaction 601 to be favored is associated with an average water height 622, or a range of heights. For example, if the reaction 601 to favor is adsorption, the average height 622 can be between 5 and 70 cm; if the reaction 601 to be favored is photodegradation, the average height 622 may be between 70 and 150 cm.
[00113] La méthode 600 comprend, après l'étape 620 de calcul du volume, une étape 630 de calcul de la surface 631 du compartiment. La surface 631 peut être calculée en divisant le volume 621 du compartiment par la hauteur moyenne 622 du compartiment.  The method 600 comprises, after the volume calculation step 620, a step 630 for calculating the area 631 of the compartment. The area 631 can be calculated by dividing the volume 621 of the compartment by the average height 622 of the compartment.
[00114] Dans un ensemble de modes de réalisation de l'invention, chaque réaction 601 à favoriser est associée à un ratio périmètre/surface 622, ou une plage de ratios. Par exemple, un compartiment destiné à favoriser la pousse des végétaux et l'adsorption aux végétaux peut avoir un périmètre en mètres linéaires compris entre un dixième et un sixième de sa surface en mètres carrés ; un compartiment destiné à favoriser l'adsorption au substrat ou aux matières en suspension peut avoir un périmètre en mètres linéaires compris entre 5% et 55% de sa surface en mètres carrés ; un compartiment destiné à favoriser la photodégradation peut avoir un périmètre en mètres linéaires inférieur ou égal à un quart de sa surface en mètres carrés.  In one set of embodiments of the invention, each reaction 601 to be favored is associated with a perimeter / area ratio 622, or a range of ratios. For example, a compartment intended to promote plant growth and plant adsorption may have a perimeter in linear meters of between one-tenth and one-sixth of its area in square meters; a compartment designed to promote adsorption to the substrate or suspended solids may have a perimeter in linear meters of between 5% and 55% of its area in square meters; a compartment intended to promote photodegradation may have a perimeter in linear meters less than or equal to a quarter of its area in square meters.
[00115] La méthode 600 comprend, après l'étape 630 de calcul de la surface, une étape 640 de calcul du périmètre 641 du compartiment. Le périmètre 641 être calculé en multipliant la surface 631 du compartiment par le ratio périmètre surface 632 du compartiment. The method 600 comprises, after the step 630 for calculating the area, a step 640 for calculating the perimeter 641 of the compartment. The perimeter 641 is calculated by multiplying the area 631 of the compartment by the area perimeter ratio 632 of the compartment.
[00116] La méthode 600 permet de calculer des dimensions d'un compartiment d'une zone humide artificielle selon l'invention afin de s'assurer qu'une réaction donnée est favorisée, et qu'un rendement cible sera obtenu. La méthode 600 offre cependant une certaine latitude pour déterminer les dimensions et la forme du compartiment, afin de s'adapter à d'autres contraintes ou objectifs, telles que le foncier disponible, ou l'insertion de la zone humide artificielle dans le paysage.  The method 600 can calculate dimensions of a compartment of an artificial wetland according to the invention to ensure that a given reaction is favored, and a target yield will be obtained. The 600 method, however, offers some latitude to determine the dimensions and shape of the compartment, in order to adapt to other constraints or objectives, such as the available land, or the insertion of the artificial wetland into the landscape.
[00117] Par exemple, dans un mode de réalisation où une plage de hauteurs moyennes 622 est disponible, l'étape 630 de calcul de la surface peut comprendre une sous étape de sélection d'une hauteur moyenne 622 afin d'obtenir une surface plus ou moins importante, afin de s'adapter à la surface de foncier disponible pour le compartiment. De manière similaire, l'étape 630 peut consister à calculer, à partir d'une plage de hauteurs moyennes possibles, et du volume 621 du compartiment, une surface minimum du compartiment, et une surface maximum du compartiment, puis à sélectionner la surface 631 la plus adaptée selon des critères tels que la surface de foncier disponible. La hauteur moyenne 622 du compartiment peut alors être déduite directement de la surface 631 du compartiment et du volume 621 du compartiment. Il est également possible de choisir systématiquement la hauteur maximale parmi une plage de hauteurs possibles, afin d'avoir la surface 631 du compartiment aussi petite que possible, et limiter l'emprise au sol du compartiment. For example, in one embodiment where a range of average heights 622 is available, step 630 of calculating the area may include a substep of selecting an average height 622 to obtain a larger surface area. or less important, in order to adapt to the land surface available for the compartment. Similarly, step 630 can consist of calculating, from a range of possible average heights, and volume 621 of the compartment, a minimum area of compartment, and a maximum area of the compartment, then select the most suitable surface 631 according to criteria such as the land area available. The average height 622 of the compartment can then be deduced directly from the surface 631 of the compartment and the volume 621 of the compartment. It is also possible to systematically choose the maximum height from a range of possible heights, in order to have the area 631 of the compartment as small as possible, and limit the footprint of the compartment.
[00118] Dans un ensemble de modes de réalisation, les différentes hauteurs moyennes 622 sont associées à différents rendements de la réaction. Ces rendements peuvent être obtenus, pour les différentes hauteurs, par exemple par le biais de relations déterminées expérimentalement entre l'efficacité de la réaction en fonction et la hauteur moyenne du compartiment, par exemple d'abaques indiquant l'efficacité de la réaction en fonction de la hauteur moyenne du compartiment. Ces abaques, ou de manière générale relations entre la hauteur moyenne 622 et rendement de la réaction peuvent être déterminées à partir de tests de réaction en laboratoire. L'étape 630 peut alors consister, dans un premier temps, à sélectionner la hauteur correspondant au rendement de la réaction. Une fois la surface 631 du compartiment déterminée, un certain nombre de contraintes ou d'objectifs secondaires peuvent être validés. Par exemple, la méthode 600 peut comprendre une vérification que la surface 631 du compartiment est suffisamment petite pour s'adapter au foncier disponible, permet une bonne intégration paysagère, etc .. De nombres critères relatifs à l'intégration du compartiment dans son environnement peuvent être pris en compte à ce stade. Si un ou plusieurs de ces critères n'est pas rempli, la méthode 600 peut comprendre un retour à l'étape 630 de calcul de la surface, avec la sélection d'une nouvelle hauteur moyenne 622 permettant de tenir le ou les critères relatifs à l'intégration du compartiment dans son environnement, en conservant un rendement aussi bon que possible. Plusieurs itérations peuvent être effectuées, permettant de s'assurer que les critères d'intégration du compartiment dans son environnement sont pris en compte, tout en favorisant un rendement épuratoire aussi élevé que possible.  In one set of embodiments, the different average heights 622 are associated with different yields of the reaction. These yields can be obtained for different heights, for example by means of relationships determined experimentally between the efficiency of the reaction in function and the average height of the compartment, for example abacuses indicating the effectiveness of the reaction in function the average height of the compartment. These charts, or generally the relationship between average height 622 and reaction yield can be determined from laboratory reaction tests. Step 630 may then consist, in a first step, in selecting the height corresponding to the efficiency of the reaction. Once the area 631 of the compartment is determined, a number of constraints or secondary objectives can be validated. For example, the method 600 may include a check that the surface 631 of the compartment is small enough to adapt to the available land, allows a good landscape integration, etc. Numerous criteria relating to the integration of the compartment in its environment can to be taken into account at this stage. If one or more of these criteria is not fulfilled, the method 600 may include a return to step 630 for calculating the area, with the selection of a new average height 622 making it possible to hold the criterion or criteria relating to the integration of the compartment in its environment, maintaining a return as good as possible. Several iterations can be carried out, making it possible to ensure that the integration criteria of the compartment in its environment are taken into account, while promoting a purification efficiency as high as possible.
[00119] De la même manière, l'étape 640 de calcul du périmètre peut comprendre la sélection d'un ratio périmètre/surface 632 parmi une plage de ratios possibles, afin d'avoir un compartiment plus ou mois allongé. La forme du compartiment peut également être déterminée, afin de s'adapter au foncier disponible, et/ou de favoriser l'intégration dans un paysage, et/ou de faciliter l'entretien de la zone humide artificielle. Par exemple, un compartiment ayant un ratio périmètre/surface 632 élevé (et donc une forme très allongée), peut être disposé en longueur, mais aussi en formant des méandres afin de limiter l'emprise au sol du compartiment. C'est le cas par exemple du compartiment 21 1 représenté en figure 3. Une fois les dimensions des compartiments déterminées, les compartiments peuvent également être agencés les uns par rapport aux autres afin d'obtenir une zone humide artificielle aussi compacte que possible, comme représenté en figure 3. Similarly, the perimeter calculation step 640 may include selecting a perimeter / area ratio 632 from a range of possible ratios, in order to have a longer or longer compartment. The shape of the compartment can also be determined, in order to adapt to the available land, and / or to favor the integration in a landscape, and / or to facilitate the maintenance of the artificial wetland. For example, a compartment having a high 632 perimeter ratio (and therefore a very elongated shape) may be arranged in length, but also by meandering to limit the footprint of the compartment. This is the case, for example, of the compartment 21 1 shown in FIG. 3. Once the dimensions of the compartments have been determined, the compartments may also be arranged relative to each other in order to obtain an artificial humid zone as compact as possible, such as represented in FIG.
[00120] Dans un ensemble de modes de réalisation, les ratios périmètre/surface 632 sont associés à différents rendements de la réaction. Ces rendements peuvent être obtenus, pour les différents ratios périmètre/surface, par exemple par le biais de relations déterminées expérimentalement entre le rendement de la réaction et le ratio périmètre/surface du compartiment, par exemple d'abaques indiquant le rendement de la réaction en fonction du ratio périmètre/surface du compartiment. Ces abaques, ou de manière générale relations entre le ratio périmètre/surface 632 et le rendement de la réaction peuvent être déterminés à partir de tests de réaction en laboratoire. L'étape 640 peut alors consister, dans un premier temps, à sélectionner le ratio périmètre/surface correspondant à un rendement optimal de la réaction. Une fois le périmètre 641 du compartiment déterminé, un certain nombre de contraintes ou d'objectifs secondaires peuvent être validés. Par exemple, la méthode 600 peut comprendre une vérification que le périmètre 641 du compartiment permet de s'adapter au foncier disponible, permet une bonne intégration paysagère, etc .. De nombres critères relatifs à l'intégration du compartiment dans son environnement peuvent être pris en compte à ce stade. Si un ou plusieurs de ces critères n'est pas rempli, la méthode 600 peut comprendre un retour à l'étape 640 de calcul du périmètre, avec la sélection d'une nouvelle hauteur moyenne 622 permettant de tenir le ou les critères relatifs à l'intégration du compartiment dans son environnement. Plusieurs itérations peuvent être effectuées, permettant de s'assurer que les critères d'intégration du compartiment dans son environnement sont pris en compte, tout en favorisant un rendement épuratoire aussi élevé que possible. Si la surface 631 du compartiment ne permet d'obtenir un périmètre satisfaisant, la méthode 600 peut également comprendre un retour à l'étape 630 de calcul de la surface, afin de sélectionner une hauteur moyenne 622 permettant de calculer une surface 631 , et un périmètre 641 du compartiment adaptés à l'intégration du compartiment dans son environnement. In one set of embodiments, perimeter / area ratios 632 are associated with different reaction efficiencies. These yields can be obtained for the different perimeter / area ratios, for example by means of relationships determined experimentally between the reaction efficiency and the perimeter / area ratio of the compartment, for example abacuses indicating the efficiency of the reaction. function of the ratio perimeter / area of the compartment. These charts, or generally the relationship between the perimeter / area ratio 632 and the reaction yield can be determined from laboratory reaction tests. Step 640 can then consist, initially, in selecting the perimeter / area ratio corresponding to an optimum yield of the reaction. Once the perimeter 641 of the compartment is determined, a number of constraints or secondary objectives can be validated. For example, the method 600 can include a verification that the perimeter 641 of the compartment makes it possible to adapt to the available land, allows a good landscape integration, etc. Numerous criteria relating to the integration of the compartment in its environment can be taken at this stage. If one or more of these criteria is not fulfilled, the method 600 may include a return to step 640 for calculating the perimeter, with the selection of a new average height 622 making it possible to hold the criterion or criteria relating to the integration of the compartment into its environment. Several iterations can be performed, making it possible to ensure that the integration criteria of the compartment in its environment are taken into account, while favoring a purification efficiency as high as possible. If the surface 631 of the compartment does not make it possible to obtain a satisfactory perimeter, the method 600 may also comprise a return to the step 630 for calculating the area, in order to select an average height 622 that makes it possible to calculate a surface 631, and a 641 perimeter of the compartment adapted to the integration of the compartment in its environment.
[00121] La méthode 600 permet ainsi de déterminer les dimensions de compartiments d'une zone humide artificielle selon l'invention permettant de favoriser les réactions voulues, et d'obtenir un rendement cible de l'épuration, La méthode 600 permet également d'optimiser autant que possible le rendement épuratoire, tout en validant des contraintes d'intégration des compartiments dans leur environnement.  The method 600 thus makes it possible to determine the dimensions of compartments of an artificial wetland according to the invention making it possible to favor the desired reactions, and to obtain a target efficiency of the purification. The method 600 also makes it possible to optimize as much as possible the purification efficiency, while validating the integration constraints of the compartments in their environment.
[00122] Afin de rendre le processus de dimensionnement d'une zone humide artificielle selon l'invention plus concret, deux exemples sont fournis ci- dessous, respectivement pour l'élimination de la ciprofloxacine et de l'ibuprofène.  In order to make the sizing process of an artificial wetland according to the invention more concrete, two examples are provided below, respectively for the removal of ciprofloxacin and ibuprofen.
EXEMPLE DE DIMENSIONNEMENT 1 SAMPLE EXAMPLE 1
[00123] Le premier exemple porte sur le dimensionnement d'une zone humide artificielle pour l'élimination de la ciprofloxacine. The first example relates to the design of an artificial wetland for the removal of ciprofloxacin.
[00124] La cirprofloxacine peut être éliminée par une zone humide artificielle selon l'invention comportant deux compartiments, favorisant respectivement les réactions suivantes :  Cirprofloxacin can be removed by an artificial wetland according to the invention comprising two compartments, respectively favoring the following reactions:
- Dans le premier compartiment :  - In the first compartment:
o Adsorption sur le substrat ;  o adsorption on the substrate;
o Adsorption sur les matières en suspension ;  o Adsorption on suspended solids;
o De manière optionnelle, absorption par les plantes : - Dans le deuxième compartiment :  o Optionally, absorption by plants: - In the second compartment:
o Décantation des matières en suspension sur lesquelles se sont adsorbées les molécules de ciprofloxacine dans le premier compartiment ;  o Decantation of suspended solids on which the ciprofloxacin molecules adsorbed in the first compartment;
o Photodégradation. [00125] Sur la base d'une combinaison de tests préalablement effectués par le déposant, un taux cible d'élimination de 70% de la ciprofloxacine peut être atteint, si les dimensions des premier et deuxième compartiments permettent de favoriser les réactions citées ci-dessus, et si le temps de séjour dans les compartiments sont : o Photodegradation. On the basis of a combination of tests previously carried out by the applicant, a target rate of elimination of 70% of ciprofloxacin can be reached, if the dimensions of the first and second compartments favor the reactions mentioned above. above, and if the residence time in the compartments are:
- Au moins 1 jour dans le premier compartiment ;  - At least 1 day in the first compartment;
- Au moins 2 jours dans le deuxième compartiment.  - At least 2 days in the second compartment.
[00126] La zone humide artificielle à dimensionner doit être située à l'aval d'une STation d'EPuration (abréviée ci-dessous STEP) de 3200 Equivalent Homme (abrévié ci-dessous EH), ce qui correspond pour une région donnée à un débit d'effluent de 480 m3 / j. La consommation d'eau peut varier de manière importante selon les régions et pays. Ainsi, la un nombre d'habitants dans une communauté urbaine peut correspondre, selon les régions/pays, à un débit d'effluents différent The artificial wet area to be dimensioned must be located downstream of a purification station (abbreviated below STEP) of 3200 male equivalent (abbreviated below EH), which corresponds for a given region to an effluent flow rate of 480 m 3 / d. Water consumption can vary significantly by region and country. Thus, the number of inhabitants in an urban community may correspond, according to the regions / countries, to a different effluent flow rate
[00127] Le premier compartiment peut alors être dimensionné de la manière suivante : The first compartment can then be dimensioned as follows:
- Calcul du volume (étape 620) :  - Calculation of the volume (step 620):
o Le temps de séjour cible 621 est de 1 jour minimum, le débit entrant 612 480 m3 / j ; o The target residence time 621 is 1 day minimum, the inflow 612 480 m 3 / d;
o Le volume 621 du compartiment est donc égal à 480 x 1 = 480 m3 ; o Volume 621 of the compartment is therefore equal to 480 x 1 = 480 m 3 ;
- Calcul de la surface (étape 630) :  Calculation of the surface (step 630):
o Afin de favoriser le contact du micropolluant visé avec le sol, et éventuellement les plantes, et favoriser ainsi l'adsorption du micropolluant, le premier compartiment doit avoir une hauteur moyenne 622 faible, comprise dans une plage entre 0,05 et 0,5 m. Une hauteur moyenne 622 de 0,2 m, correspondant à un rendement optimal de l'adsorption est sélectionné ; o La surface 631 du compartiment est alors obtenue en divisant le volume 621 par la hauteur moyenne 622 du compartiment : la surface 631 du compartiment est égale à : 480 / 0,2 = 2400 m2. Cette surface permet une intégration dans le foncier disponible ; o o In order to promote the contact of the micropollut targeted with the soil, and possibly the plants, and thus promote the adsorption of the micropollutant, the first compartment must have a low average height 622, in a range between 0.05 and 0.5 m. An average height 622 of 0.2 m, corresponding to an optimal adsorption efficiency is selected; The surface 631 of the compartment is then obtained by dividing the volume 621 by the average height 622 of the compartment: the area 631 of the compartment is equal to 480 / 0.2 = 2400 m 2 . This surface allows integration into the available land; o
- Calcul du périmètre (étape 640) : o Afin de favoriser l'adsorption et la pousse des végétaux, et d'allonger le cheminement hydraulique, le ratio 632 mètre linéaires de berges / surface du compartiment est choisi dans une plage comprise entre 1 /10e et 1 /6e. Un ratio de 0,15 m//m2 (mètres linéaires par mètres carrés) est sélectionné ; o Le périmètre du compartiment est calculé en multipliant le ratio 632 par la surface 631 : le périmètre 641 est égal à 2400 x 0,15 = 360 m/ (mètres linéaires). Ce périmètre permet une intégration dans le foncier disponible, Perimeter calculation (step 640): o In order to promote the adsorption and the growth of plants, and to lengthen the hydraulic path, the ratio of banks 632 linear meter / surface of the compartment is selected from a range between 1 / 10th and 1/6 e. A ratio of 0.15 m / m 2 (linear meters per square meter) is selected; o The perimeter of the compartment is calculated by multiplying the ratio 632 by the area 631: the perimeter 641 is equal to 2400 x 0.15 = 360 m / (linear meters). This scope allows integration into the available land,
Le dimensionnement permet donc de définir un premier compartiment ayant les dimensions suivantes : The dimensioning thus makes it possible to define a first compartment having the following dimensions:
- Volume : 480 m3 ; - Volume: 480 m 3 ;
- Surface : 2400 m2 ; - Area: 2400 m 2 ;
- Périmètre : 360 m / ;  - Perimeter: 360 m /;
[00128] Le deuxième compartiment peut être dimensionné de la manière suivante : The second compartment can be dimensioned as follows:
- Calcul du volume (étape 620) :  - Calculation of the volume (step 620):
o Le temps de séjour cible 621 est de 2 jours minimum, le débit entrant 612 480 m3 / j ; o The target residence time 621 is 2 days minimum, the inflow 612 480 m 3 / d;
o Le volume 621 du compartiment est donc égal à 480 x 2 = 960 m3 ; o Volume 621 of the compartment is therefore equal to 480 x 2 = 960 m 3 ;
- Calcul de la surface (étape 630) :  Calculation of the surface (step 630):
o Afin de favoriser la photodégradation, le deuxième compartiment doit avoir une hauteur minimum suffisamment importante pour éviter la pousse de végétaux qui empêcheraient les photons de pénétrer le compartiment, et une hauteur maximale suffisamment faible pour que la photodégradation ait lieu sur l'ensemble du compartiment. La plage de hauteurs moyennes 622 possibles est comprise entre 0,7 et 1 ,5 m. Une hauteur moyenne 622 de 0,8 m est sélectionnée. La hauteur de 0,8 m correspond, selon les données expérimentales recueilles par le déposant, au meilleur compromis entre temps de séjour et pénétration de la lumière pour favoriser la dégradation des molécules photosensibles. Dans d'autres modes de réalisation de l'invention, une boucle d'itérations est effectuée sur les valeurs de la hauteur, et les valeurs correspondantes de surface. Ceci permet de sélectionner un hauteur associée à une surface adaptée au foncier disponible ; o In order to promote photodegradation, the second compartment must have a minimum height sufficiently large to prevent the growth of plants that would prevent photons from entering the compartment, and a maximum height sufficiently low for photodegradation to take place on the entire compartment. . The range of average heights 622 is between 0.7 and 1.5 m. An average height 622 of 0.8 m is selected. The height of 0.8 m corresponds, according to the experimental data collected by the applicant, the best compromise between residence time and penetration of light to promote the degradation of photosensitive molecules. In other embodiments of the invention, an iteration loop is performed on the values of the height, and the corresponding values of surface. This makes it possible to select a height associated with a surface adapted to the available land;
o La surface 631 du compartiment est alors obtenue en divisant le volume 621 par la hauteur moyenne 622 du compartiment : la surface 631 du compartiment est égale à : 960 / 0,8 = 1200 m2 ;o The surface 631 of the compartment is then obtained by dividing the volume 621 by the average height 622 of the compartment: the surface 631 of the compartment is equal to: 960 / 0.8 = 1200 m 2 ;
- Calcul du périmètre (étape 640) : Perimeter calculation (step 640):
o Afin de favoriser la sédimentation, le ratio 632 mètre linéaires de berges / surface du compartiment est choisi dans une plage comprise entre 0,15 et 0,25. Un ratio de 0,2 m//m2 (mètres linéaires par mètres carrés) est sélectionné, ce ratio correspondant, selon les données expérimentales recueillies par le déposant, au meilleur compromis entre cheminement hydraulique et surface d'exposition à la lumière pour favoriser la dégradation des molécules photosensibles ; o In order to promote sedimentation, the ratio of 632 linear meters of bank / compartment surface is chosen in a range between 0.15 and 0.25. A ratio of 0.2 m // m 2 (linear meters per square meter) is selected, this ratio corresponding, according to the experimental data collected by the applicant, to the best compromise between hydraulic pathway and light exposure surface to favor degradation of photosensitive molecules;
o Le périmètre du compartiment est calculé en multipliant le ratio 632 par la surface 631 : le périmètre 641 est égal à 1200 x 0,2 = 240 m/ (mètres linéaires).  o The perimeter of the compartment is calculated by multiplying the ratio 632 by the area 631: the perimeter 641 is equal to 1200 x 0.2 = 240 m / (linear meters).
Le dimensionnement permet donc de définir un deuxième compartiment ayant les dimensions suivantes : The dimensioning thus makes it possible to define a second compartment having the following dimensions:
- Volume : 960 m3 ; - Volume: 960 m 3 ;
- Surface : 1200 m2 ; - Area: 1200 m 2 ;
- Périmètre : 240 m / ;  - Perimeter: 240 m /;
[00129] La méthode 600 permet, de manière générale, de définir des zones humides ayant des dimensions permettant de favoriser certains réactions, et obtenir des taux d'élimination cibles de polluants. Certaines dimensions peuvent être choisies parmi une plage. Dans un ensemble de modes de réalisations de l'invention, un ensemble d'objectifs secondaires peuvent être atteints. Ces objectifs peuvent être par exemple une intégration dans un paysage donné ou une adaptation au foncier disponible. La méthode 600 peut comprendre, pour tenir ces objectifs, des itérations. Par exemple, si la surface 631 est trop importante pour le foncier disponible, la méthode 600 peut comprendre un retour à l'étape 630 de calcul de la surface, au cours de laquelle une hauteur plus grande sera sélectionnée, afin de réduire la surface 631 du compartiment. De la même manière, si le périmètre 641 du compartiment est trop petit ou trop long pour s'adapter au foncier disponible, la méthode 600 peut comprendre un retour à l'étape 640 de calcul du périmètre, au cours de laquelle un ratio périmètre/surface 632 plus ou moins important sera sélectionné, afin d'obtenir le périmètre voulu. The method 600 allows, in general, define wet areas having dimensions to promote certain reactions, and obtain target pollutant removal rates. Some dimensions can be chosen from a range. In a set of embodiments of the invention, a set of secondary objectives can be achieved. These objectives can be, for example, integration into a given landscape or adaptation to available land. Method 600 may include, for these purposes, iterations. For example, if the surface 631 is too large for the available land, the method 600 may include a return to the surface calculation step 630, during which a larger height will be selected, in order to reduce the surface area. compartment. In the same way, if the 641 perimeter of the compartment is too small or too long to adapt to the available land, method 600 may include a return to step 640 perimeter calculation, during which a perimeter / area ratio 632 more or less important will be selected, so to get the desired perimeter.
[00130] Dans un ensemble de modes de réalisation de l'invention, la méthode 600 peut comprendre la sélection de la hauteur ou du ratio périmètre/surface permettant de favoriser le plus possible la réaction voulue puis, tant que la surface et/ou le périmètre du compartiment ne permettent pas de s'adapter au foncier disponible, des itérations de sélection d'une surface et/ou d'un ratio périmètre surface permettant de mieux s'adapter au fonction disponible. In one set of embodiments of the invention, the method 600 may comprise the selection of the height or the perimeter / surface ratio making it possible to promote the desired reaction as much as possible and then, as long as the surface and / or the perimeter of the compartment do not allow to adapt to the available land, iterations of selection of a surface and / or ratio perimeter surface to better adapt to the available function.
[00131 ] D'autres paramètres de forme peuvent être ajustés. Par exemple, les points d'entrée et sortie des compartiments peuvent être positionnés de manière à maximiser le cheminement hydraulique.  [00131] Other shape parameters can be adjusted. For example, the entry and exit points of the compartments can be positioned to maximize the hydraulic path.
EXEMPLE DE DIMENSIONNEMENT 2 SAMPLE EXAMPLE 2
[00132] Le deuxième exemple porte sur le dimensionnement d'une zone humide artificielle pour l'élimination de l'ibuprofène. The second example relates to the design of an artificial wetland for the removal of ibuprofen.
[00133] L'ibuprofène peut être éliminé par une zone humide artificielle selon l'invention comportant quatre compartiments, favorisant respectivement les réactions suivantes : Ibuprofen can be removed by an artificial wetland according to the invention comprising four compartments, favoring respectively the following reactions:
- Premier et troisième compartiment :  - First and third compartment:
o Biodégradation via microorganismes sur le substrat ; o De manière optionnelle, adsorption sur les matières en suspension ;  o Biodegradation via microorganisms on the substrate; o Optionally, adsorption on suspended solids;
o De manière optionnelle, absorption par les plantes : o Optionally, absorption by plants:
- Deuxième et quatrième compartiment : - Second and fourth compartment:
o Biodégradation via biomasse libre ;  o Biodegradation via free biomass;
o De manière optionnelle, décantation des matières en suspension sur lesquelles se sont adsorbées les molécules d'ibuprofène dans le premier compartiment ;  o Optionally, decantation of suspended solids on which the ibuprofen molecules adsorbed in the first compartment;
o Photodégradation.  o Photodegradation.
[00134] Sur la base d'une combinaison de tests préalablement effectués par le déposant, un taux cible d'élimination de 50% de l'ibuprofène peut être atteint, si les dimensions des premier et deuxième compartiments permettent de favoriser les réactions citées ci-dessus, et si le temps de séjour dans les compartiments sont : On the basis of a combination of tests previously carried out by the applicant, a target elimination rate of 50% of the ibuprofen may be reached, if the dimensions of the first and second compartments favor the reactions mentioned above, and if the residence time in the compartments are:
- Au moins 1 jour dans le premier compartiment ;  - At least 1 day in the first compartment;
- Au moins 2 jours dans le deuxième compartiment ;  - At least 2 days in the second compartment;
- Au moins 2 jours dans le troisième compartiment ;  - At least 2 days in the third compartment;
- Au moins 2 jours dans le quatrième compartiment ;  - At least 2 days in the fourth compartment;
[00135] La zone humide artificielle à dimensionner doit être située à l'aval d'une STation d'EPuration (abréviée ci-dessous STEP) de 3200 Equivalent Homme (abbrévié ci-dessous EH), ce qui correspond à un débit d'effluent de 480 m3 / j. Comme évoqué précédemment, le ratio de conversion entre nombre d'habitants et débit peut être variable selon les pays ou régions. The artificial wet area to be sized must be located downstream of a treatment STation (abbreviated below STEP) of 3200 male equivalent (abbreviated below EH), which corresponds to a flow rate of effluent of 480 m 3 / d. As mentioned above, the conversion ratio between population and flow can vary from one country to another.
[00136] Le premier compartiment peut alors être dimensionné de la manière suivante : The first compartment can then be dimensioned as follows:
- Calcul du volume (étape 620) :  - Calculation of the volume (step 620):
o Le temps de séjour cible 621 est de 1 jour minimum, le débit entrant 612 480 m3 / j ; o The target residence time 621 is 1 day minimum, the inflow 612 480 m 3 / d;
o Le volume 621 du compartiment est donc égal à 480 x 1 = 480 m3 ; o Volume 621 of the compartment is therefore equal to 480 x 1 = 480 m 3 ;
- Calcul de la surface (étape 630) :  Calculation of the surface (step 630):
o Afin de favoriser le contact du micropolluant visé avec le sol, et éventuellement les plantes, et favoriser ainsi la biodégradation via microorganismes sur substrat, le premier compartiment doit avoir une hauteur moyenne 622 faible, comprise dans une plage entre 0,05 et 0,5 m. Une hauteur moyenne 622 de 0,2 m est sélectionnée, cette hauteur correspondant, selon les données expérimentales recueillies par le déposant, au meilleur compromis entre biodégradation et pousse des végétaux ;  o In order to promote the contact of the micropollut targeted with the soil, and possibly the plants, and thus promote biodegradation via microorganisms on the substrate, the first compartment must have a mean low height 622, in a range between 0.05 and 0, 5 m. An average height 622 of 0.2 m is selected, this height corresponding, according to the experimental data collected by the applicant, the best compromise between biodegradation and plant growth;
o La surface 631 du compartiment est alors obtenue en divisant le volume 621 par la hauteur moyenne 622 du compartiment : la surface 631 du compartiment est égale à : 480 / 0,2 = 2400 m2 ;o The surface 631 of the compartment is then obtained by dividing the volume 621 by the average height 622 of the compartment: the area 631 of the compartment is equal to: 480 / 0.2 = 2400 m 2 ;
- Calcul du périmètre (étape 640) : Perimeter calculation (step 640):
o Afin de favoriser l'adsorption et la pousse des végétaux, le ratio 632 mètre linéaires de berges / surface du compartiment est choisi dans une plage comprise entre 1 /10e et 1 /6e. Un ratio de 0,1 5 ml/m2 (mètres linéaires par mètres carrés) est sélectionné, ce ratio correspondant, selon les données expérimentales recueillies par le déposant, au meilleur compromis entre allongement du cheminement hydraulique et augmentation de la surface de contact entre l'eau, le substrat et les végétaux ; o Le périmètre du compartiment est calculé en multipliant le ratio 632 par la surface 631 : le périmètre 641 est égal à 2400 x 0,1 5 = 360 ml (mètres linéaires). o In order to promote the adsorption and the growth of plants, the ratio of banks 632 linear meter / surface of the compartment is selected from a range between 1 / 10th and 1/6 e. A ratio of 0.1 5 ml / m 2 (linear meters per square meters) is selected, this ratio corresponding, according to the experimental data collected by the depositor, to the best compromise between elongation of the hydraulic path and increase of the contact surface between the water , substrate and plants; o The perimeter of the compartment is calculated by multiplying the ratio 632 by the area 631: the perimeter 641 is equal to 2400 x 0.1 5 = 360 ml (linear meters).
Le dimensionnement permet donc de définir un premier compartiment ayant les dimensions suivantes : The dimensioning thus makes it possible to define a first compartment having the following dimensions:
- Volume : 480 m3 ; - Volume: 480 m 3 ;
- Surface : 2400 m2 ; - Area: 2400 m 2 ;
- Périmètre : 360 ml ;  - Perimeter: 360 ml;
[00137] Le deuxième compartiment peut être dimensionné de la manière suivante :  The second compartment can be dimensioned as follows:
- Calcul du volume (étape 620) :  - Calculation of the volume (step 620):
o Le temps de séjour cible 621 est de 2 jours minimum, le débit entrant 61 2 480 m3 / j ; o The target residence time 621 is at least 2 days, the inflow 61 2480 m 3 / d;
o Le volume 621 du compartiment est donc égal à 480 x 2 = 960 m3 ; o Volume 621 of the compartment is therefore equal to 480 x 2 = 960 m 3 ;
- Calcul de la surface (étape 630) :  Calculation of the surface (step 630):
o Afin de favoriser la décantation et dégradation sur biomasse libre, la plage de hauteurs moyennes 622 possibles est comprise entre 0,7 et 1 ,5 m. Une hauteur moyenne 622 de 0,8 m est sélectionnée, cette hauteur correspondant, selon les données expérimentales recueillies par le déposant, au meilleur compromis entre la hauteur maximale favorisant la biodégradation par oxygénation et pénétration de la lumière, et la hauteur minimale assurant un temps de séjour minimum ; o La surface 631 du compartiment est alors obtenue en divisant le volume 621 par la hauteur moyenne 622 du compartiment : la surface 631 du compartiment est égale à : 960 / 0,8 = 1 200 m2 ;o In order to promote decantation and degradation on free biomass, the range of average heights 622 possible is between 0.7 and 1.5 m. An average height 622 of 0.8 m is selected, this height corresponding, according to the experimental data collected by the applicant, to the best compromise between the maximum height favoring the biodegradation by oxygenation and penetration of the light, and the minimum height ensuring a time minimum stay; o The surface 631 of the compartment is then obtained by dividing the volume 621 by the average height 622 of the compartment: the surface 631 of the compartment is equal to: 960 / 0.8 = 1200 m 2 ;
- Calcul du périmètre (étape 640) : Perimeter calculation (step 640):
o Afin de favoriser la sédimentation, le ratio 632 mètre linéaires de berges / surface du compartiment est choisi dans une plage comprise entre 0,15 et 0,25. Un ratio de 0,2 m// m2 (mètres linéaires par mètres carrés) est sélectionné, ce ratio correspondant, selon les données expérimentales recueillies par le déposant, au meilleur compromis entre allongement du cheminement hydraulique et garantie d'un temps de séjour au moins égale au temps de séjour minimum; o In order to promote sedimentation, the ratio of 632 linear meters of bank / compartment surface is chosen in a range between 0.15 and 0.25. A ratio of 0.2 m // m 2 (linear meters per square meter) is selected, this ratio corresponding, according to the experimental data collected by the applicant, to the best compromise between lengthening of the hydraulic path and guarantee of a residence time. at least equal to the minimum residence time;
o Le périmètre du compartiment est calculé en multipliant le ratio 632 par la surface 631 : le périmètre 641 est égal à 1200 x 0,2 = 240 m/ (mètres linéaires),  o The perimeter of the compartment is calculated by multiplying the ratio 632 by the area 631: the perimeter 641 is equal to 1200 x 0.2 = 240 m / (linear meters),
Le dimensionnement permet donc de définir un deuxième compartiment ayant les dimensions suivantes : The dimensioning thus makes it possible to define a second compartment having the following dimensions:
- Volume : 960 m3 ; - Volume: 960 m 3 ;
- Surface : 1200 m2 ; - Area: 1200 m 2 ;
- Périmètre : 240 m / ;  - Perimeter: 240 m /;
[00138] Le troisième compartiment peut alors être dimensionné de la manière suivante : The third compartment can then be dimensioned as follows:
- Calcul du volume (étape 620) :  - Calculation of the volume (step 620):
o Le temps de séjour cible 621 est de 2 jours minimum, le débit entrant 612 480 m3 / j ; o The target residence time 621 is 2 days minimum, the inflow 612 480 m 3 / d;
o Le volume 621 du compartiment est donc égal à 480 x 2 = 960 m3 ; o Volume 621 of the compartment is therefore equal to 480 x 2 = 960 m 3 ;
- Calcul de la surface (étape 630) :  Calculation of the surface (step 630):
o Afin de favoriser le contact du micropolluant viser avec le sol, et éventuellement les plantes, et favoriser ainsi la biodégradation via microorganismes sur substrat, le troisième compartiment doit avoir une hauteur moyenne 622 faible, comprise dans une plage entre 0,05 et 0,5 m. Une hauteur moyenne 622 de 0,5 m est sélectionnée, cette hauteur correspondant, selon les données expérimentales recueillies par le déposant, au meilleur compromis entre allongement du cheminement hydraulique et ralentissement de la vitesse de l'écoulement ;  o In order to promote the contact of the micropollutant with the soil, and possibly the plants, and thus promote biodegradation via microorganisms on a substrate, the third compartment must have a low average height 622, in a range between 0.05 and 0, 5 m. An average height 622 of 0.5 m is selected, this height corresponding, according to the experimental data collected by the depositor, the best compromise between elongation of the hydraulic path and slowing of the speed of the flow;
o La surface 631 du compartiment est alors obtenue en divisant le volume 621 par la hauteur moyenne 622 du compartiment : la surface 631 du compartiment est égale à : 960 / 0,5 = 1920 m2 ; - Calcul du périmètre (étape 640) : o Afin de favoriser un contact important avec le substrat, le ratio 632 mètre linéaires de berges / surface du compartiment est choisi dans une plage comprise entre 0,05 et 0,55. Un ratio de 0,5 m//m2 (mètres linéaires par mètres carrés) est sélectionné, ce ratio correspondant, selon les données expérimentales recueillies par le déposant, au meilleur compromis entre allongement du cheminement hydraulique et garantie d'un temps de séjour minimum ; The surface 631 of the compartment is then obtained by dividing the volume 621 by the average height 622 of the compartment: the surface 631 of the compartment is equal to: 960 / 0.5 = 1920 m 2 ; Perimeter calculation (step 640): In order to promote an important contact with the substrate, the ratio 632 linear meters of banks / surface of the compartment is chosen in a range between 0.05 and 0.55. A ratio of 0.5 m // m 2 (linear meters per square meters) is selected, this ratio corresponding, according to the experimental data collected by the depositor, to the best compromise between lengthening of the hydraulic path and guarantee of a residence time. minimum;
o Le périmètre du compartiment est calculé en multipliant le ratio 632 par la surface 631 : le périmètre 641 est égal à 1200 x 0,5 = 960 m/ (mètres linéaires).  o The perimeter of the compartment is calculated by multiplying the ratio 632 by the area 631: the perimeter 641 is equal to 1200 x 0.5 = 960 m / (linear meters).
Le dimensionnement permet donc de définir un troisième compartiment ayant les dimensions suivantes :  The dimensioning thus makes it possible to define a third compartment having the following dimensions:
- Volume : 960 m3 ; - Volume: 960 m 3 ;
- Surface : 1920 m2 ; - Area: 1920 m 2 ;
- Périmètre : 960 m / ;  - Perimeter: 960 m /;
[00139] Le quatrième compartiment peut être dimensionné de la manière suivante :  The fourth compartment can be dimensioned as follows:
- Calcul du volume (étape 620) :  - Calculation of the volume (step 620):
o Le temps de séjour cible 621 est de 2 jours minimum, le débit entrant 612 480 m3 / j ; o The target residence time 621 is 2 days minimum, the inflow 612 480 m 3 / d;
o Le volume 621 du compartiment est donc égal à 480 x 2 = 960 m3 ; o Volume 621 of the compartment is therefore equal to 480 x 2 = 960 m 3 ;
- Calcul de la surface (étape 630) :  Calculation of the surface (step 630):
o Afin de favoriser la décantation et dégradation sur biomasse libre, la plage de hauteurs moyennes 622 possibles est comprise entre 0,7 et 1 ,5 m. Une hauteur moyenne 622 de 0,8 m est sélectionnée, cette hauteur correspondant, selon les données expérimentales recueillies par le déposant, au meilleur compromis entre la hauteur maximale favorisant la biodégradation par oxygénation et pénétration de la lumière, et la hauteur minimale assurant un temps de séjour minimum ; o La surface 631 du compartiment est alors obtenue en divisant le volume 621 par la hauteur moyenne 622 du compartiment : la surface 631 du compartiment est égale à : 960 / 0,8 = 1200 m2 ; - Calcul du périmètre (étape 640) : o In order to promote decantation and degradation on free biomass, the range of average heights 622 possible is between 0.7 and 1.5 m. An average height 622 of 0.8 m is selected, this height corresponding, according to the experimental data collected by the applicant, to the best compromise between the maximum height favoring the biodegradation by oxygenation and penetration of the light, and the minimum height ensuring a time minimum stay; o The surface 631 of the compartment is then obtained by dividing the volume 621 by the average height 622 of the compartment: the surface 631 of the compartment is equal to: 960 / 0.8 = 1200 m 2 ; Perimeter calculation (step 640):
o Afin de favoriser la sédimentation, le ratio 632 mètre linéaires de berges / surface du compartiment est choisi dans une plage comprise entre 0,15 et 0,25. Un ratio de 0,1 m//m2 (mètres linéaires par mètres carrés) est sélectionné, ce ratio correspondant, selon les données expérimentales recueillies par le déposant, au meilleur compromis entre allongement du cheminement hydraulique et garantie d'un temps de séjour minimum. Il permet également de limiter la prolifération des végétaux sur l'ensemble du compartiment, favoriser ne bonne pénétration de la lumière, optimiser le volume de stockage pour gérer le temps de séjour minimum, et optimiser la pente des fonds de compartiments ; o In order to promote sedimentation, the ratio of 632 linear meters of bank / compartment surface is chosen in a range between 0.15 and 0.25. A ratio of 0.1 m // m 2 (linear meters per square meter) is selected, this ratio corresponding, according to the experimental data collected by the depositor, to the best compromise between lengthening of the hydraulic path and guarantee of a residence time. minimum. It also makes it possible to limit the proliferation of plants throughout the compartment, promote good penetration of light, optimize the storage volume to manage the minimum residence time, and optimize the slope of compartment funds;
o Le périmètre du compartiment est calculé en multipliant le ratio 632 par la surface 631 : le périmètre 641 est égal à 1200 x 0,17 o The perimeter of the compartment is calculated by multiplying the ratio 632 by the surface 631: the perimeter 641 is equal to 1200 x 0.17
= 204 m/ (mètres linéaires). = 204 m / (linear meters).
Le dimensionnement permet donc de définir un quatrième compartiment ayant les dimensions suivantes : The dimensioning thus makes it possible to define a fourth compartment having the following dimensions:
- Volume : 960 m3 ; - Volume: 960 m 3 ;
- Surface : 1200 m2 ; - Area: 1200 m 2 ;
- Périmètre : 204 m / ;  - Perimeter: 204 m /;
[00140] Une fois ces dimensions déterminées, les formes des compartiments peuvent être définies en fonction d'objectifs supplémentaires. Par exemple, les points d'entrée et sortie des compartiments peuvent être positionnés de manière à maximiser le cheminement hydraulique.  Once these dimensions have been determined, the shapes of the compartments can be defined according to additional objectives. For example, the entry and exit points of the compartments can be positioned to maximize the hydraulic path.
[00141] Les exemples ci-dessus démontrent la capacité des zones humides selon l'invention à traiter des polluants, tout en ayant une emprise au sol limitée. Ils ne sont cependant donnés qu'à titre d'exemple et ne limitent en aucun cas la portée de l'invention, définie dans les revendications ci-dessous. The above examples demonstrate the ability of wetlands according to the invention to treat pollutants, while having a limited footprint. They are however given only by way of example and in no way limit the scope of the invention, defined in the claims below.

Claims

REVENDICATIONS
1 . Zone humide artificielle d'épuration d'effluents liquides d'au moins un polluant cible, ladite zone humide artificielle comprenant au moins un premier compartiment étiré en longueur, ou formant des méandres (1 10, 21 1 ) et un deuxième compartiment formant un bassin (120, 220, 221 , 222) alimenté par un effluent dudit premier compartiment, ladite zone humide artificielle étant caractérisée en ce que : 1. An artificial wetland for purifying liquid effluents from at least one target pollutant, said artificial wetland comprising at least one first compartment stretched in length, or forming meanders (1 10, 21 1) and a second compartment forming a pond (120, 220, 221, 222) fed with an effluent of said first compartment, said artificial wetland being characterized in that:
- ledit au moins un premier compartiment a un périmètre en mètres linéaires supérieur ou égal à 5% de sa surface en mètres carrés, et inférieur ou égal à 55% de sa surface en mètres carrés, de préférence ledit au moins un premier compartiment a un périmètre en mètres linéaires supérieur ou égal à 16% de sa surface en mètres carrés, et inférieur ou égal à 55% de sa surface en mètres carrés, par exemple égal à la moitié de sa surface en mètres carrés de préférence égal à la moitié de sa surface en mètres carrés ;  said at least one first compartment has a perimeter in linear meters greater than or equal to 5% of its area in square meters, and less than or equal to 55% of its area in square meters, preferably said at least one first compartment has a perimeter in linear meters greater than or equal to 16% of its area in square meters, and less than or equal to 55% of its area in square meters, for example equal to half of its area in square meters preferably equal to half of its area in square meters;
- ledit au moins un premier compartiment a une hauteur d'eau moyenne comprise entre 10 et 70 cm, et de préférence égale à 50 cm ; said at least one first compartment has an average water height of between 10 and 70 cm, and preferably equal to 50 cm;
- ledit au moins un deuxième compartiment a un périmètre en mètres linéaires inférieur ou égal à un quart de sa surface en mètres carrés, et de préférence égal à 17% de sa surface en mètres carrés ; said at least one second compartment has a perimeter in linear meters less than or equal to one quarter of its area in square meters, and preferably equal to 17% of its area in square meters;
- ledit au moins un deuxième compartiment a une hauteur d'eau moyenne comprise entre 70 et 150 cm.  said at least one second compartment has an average water height of between 70 and 150 cm.
2. Zone humide artificielle selon la revendication 1 , caractérisée en ce que : 2. Artificial wetland according to claim 1, characterized in that:
- le volume dudit au moins un premier compartiment est égal à la multiplication d'un premier temps de séjour des effluents liquides dans ledit au moins un premier compartiment par un débit entrant dans ledit premier compartiment ;  the volume of said at least one first compartment is equal to the multiplication of a first residence time of the liquid effluents in said at least one first compartment by a flow rate entering said first compartment;
- le volume dudit au moins un deuxième compartiment est égal à la multiplication d'un deuxième temps de séjour des effluents liquides dans ledit au moins un deuxième compartiment, par un débit entrant dudit au moins un deuxième compartiment.  the volume of said at least one second compartment is equal to the multiplication of a second residence time of the liquid effluents in said at least one second compartment, by an inflow of said at least one second compartment.
3. Zone humide artificielle selon la revendication 2, caractérisée en ce que les premier et deuxième temps de séjour sont des temps de séjour déterminés expérimentalement permettant d'atteindre un taux d'élimination minimal de l'au moins un polluant cible en sortie dudit au moins un deuxième compartiment. 3. Artificial wetland according to claim 2, characterized in that the first and second residence times are residence times determined experimentally to achieve a minimum elimination rate of the at least one target pollutant output of said at least a second compartment.
4. Zone humide artificielle selon l'une des revendications 1 à 2, caractérisée en ce qu'elle comprend au moins un compartiment au moins un compartiment additionnel, et : 4. Artificial wetland according to one of claims 1 to 2, characterized in that it comprises at least one compartment at least one additional compartment, and:
- ledit au moins un compartiment additionnel a un périmètre en mètres linéaires supérieur ou égal à un dixième de sa surface en mètres carrés, inférieur ou égal à un sixième de sa surface en mètres carrés, et de préférence égal à 15% de sa surface en mètres carrés ; - said at least one additional compartment has a perimeter in linear meters greater than or equal to one-tenth of its area in square meters, less than or equal to one sixth of its area in square meters, and preferably equal to 15% of its area in square meters ;
- ledit au moins un compartiment additionnel a une hauteur d'eau moyenne comprise entre 10 et 50 cm, et de préférence égale à 20 cm. said at least one additional compartment has a mean water level of between 10 and 50 cm, and preferably equal to 20 cm.
5. Zone humide artificielle selon la revendication 4, dépendant de la revendication 2, caractérisée en ce que le volume du compartiment additionnel est choisi pour permettre un temps de séjour des effluents liquides dans le ledit au moins un premier compartiment compris entre 0,5 et 3 jours en fonction d'un débit entrant dudit au moins un premier compartiment. 5. Artificial wetland according to claim 4, dependent on claim 2, characterized in that the volume of the additional compartment is chosen to allow a residence time of the liquid effluents in the said at least a first compartment between 0.5 and 3 days depending on an inflow of said at least one first compartment.
6. Zone humide artificielle selon la revendication 2, caractérisée en ce que le volume de l'au moins un premier compartiment est configuré pour permettre un temps de séjour des effluents liquides dans le ledit au moins un premier compartiment est compris entre 1 et 2 jours, en fonction d'un débit entrant dudit au moins un premier compartiment. 6. artificial wetland according to claim 2, characterized in that the volume of the at least a first compartment is configured to allow a residence time of liquid effluents in the said at least a first compartment is between 1 and 2 days , according to an inflow of said at least one first compartment.
7. Zone humide artificielle selon la revendication 2, caractérisée en ce que le volume dudit au moins un deuxième compartiment est configuré pour permettre un temps de séjour des effluents liquides dans le ledit au moins un deuxième compartiment compris entre 1 et 5 jours en fonction d'un débit entrant dudit au moins un premier compartiment. 7. artificial wetland according to claim 2, characterized in that the volume of said at least one second compartment is configured to allow a residence time of liquid effluents in said at least a second compartment between 1 and 5 days depending on an inflow of said at least one first compartment.
8. Zone humide artificielle selon l'une des revendications 1 à 7, caractérisée en ce que l'un au moins desdits au moins un premier compartiment et au moins un deuxième compartiment est équipé de noues sur une longueur supérieure ou égale à la moitié de sa largeur maximale. 8. artificial wetland according to one of claims 1 to 7, characterized in that at least one of said at least one first compartment and at least one second compartment is equipped with valleys over a length greater than or equal to half of its maximum width.
9. Zone humide artificielle selon l'une des revendications 1 à 8, caractérisée en ce que ledit au moins un deuxième compartiment comprend au moins une zone à hauts-fonds. 9. artificial wetland according to one of claims 1 to 8, characterized in that said at least one second compartment comprises at least one shoal area.
10. Zone humide artificielle selon la revendication 9, caractérisée en ce que ladite au moins une zone à hauts-fonds a une largeur décroissante de la berge vers le centre dudit au moins un deuxième compartiment. 10. Artificial wetland according to claim 9, characterized in that said at least one shallow area has a decreasing width of the bank towards the center of said at least one second compartment.
1 1 . Zone humide artificielle selon l'une des revendications 1 à 10, caractérisée en ce qu'elle est connectée en sortie à un dispositif de filtration sur média (330) comprenant au moins deux ouvrages en parallèle pouvant être alimentés en alternance. 1 1. Artificial wetland according to one of claims 1 to 10, characterized in that it is connected at the output to a media filtering device (330) comprising at least two parallel works that can be powered alternately.
12. Zone humide artificielle selon la revendication 1 1 , caractérisée en ce que ledit dispositif de filtration est planté de roseaux. 12. artificial wetland according to claim 1 1, characterized in that said filtering device is planted with reeds.
13. Méthode (500) d'aménagement d'une zone humide artificielle d'épuration d'effluents liquides d'au moins un polluant cible, ladite méthode comprenant : 13. Method (500) for developing an artificial wetland for the purification of liquid effluents from at least one target pollutant, said method comprising:
- la définition (510) d'au moins un premier compartiment étiré en longueur, ou formant des méandres, ayant :  the definition (510) of at least one first compartment stretched in length, or forming meanders, having:
o un périmètre en mètres linéaires supérieur ou égal à 5% de sa surface en mètres carrés, inférieur ou égal à 55% de sa surface en mètres carrés, de préférence égal à la moitié de sa surface en mètres carrés ;  o a perimeter in linear meters greater than or equal to 5% of its area in square meters, less than or equal to 55% of its area in square meters, preferably equal to half of its area in square meters;
o une hauteur d'eau moyenne comprise entre 5 et 70 cm ;  o an average water level of between 5 and 70 cm;
o hauteur d'eau moyenne comprise entre 10 et 70 cm ; o Average water level between 10 and 70 cm;
- la définition (520) d'au moins deuxième compartiment formant un bassin alimenté par un effluent dudit premier compartiment, ayant : the definition (520) of at least second compartment forming a basin fed by an effluent of said first compartment, having:
o un périmètre en mètres linéaires inférieur ou égal à un quart de sa surface en mètres carrés, et de préférence égal à 17% de sa surface en mètres carrés ;  o a perimeter in linear meters less than or equal to one quarter of its area in square meters, and preferably equal to 17% of its area in square meters;
o une hauteur d'eau moyenne comprise entre 70 et 150 cm.  o average water level between 70 and 150 cm.
14. Méthode d'aménagement selon la revendication 13, comprenant, pour au moins un compartiment : 14. Management method according to claim 13, comprising, for at least one compartment:
- une définition (610) d'un temps de séjour (61 1 ) dans ledit au moins un compartiment, en fonction d'au moins un type de réaction (601 ) devant avoir lieu dans l'au moins un compartiment, et d'un taux d'élimination cible (602) de l'au moins un polluant cible ; - un calcul (620) d'un volume (621 ) de l'au moins un compartiment en fonction dudit temps de séjour (61 1 ), et d'un débit entrant (612) d'effluents dans ledit au moins un compartiment ; a definition (610) of a residence time (61 1) in said at least one compartment, as a function of at least one type of reaction (601) to take place in the at least one compartment, and a target elimination rate (602) of the at least one target pollutant; calculating (620) a volume (621) of the at least one compartment as a function of said residence time (61 1), and an inflow (612) of effluents in said at least one compartment;
- un calcul (620) d'une surface de l'au moins un compartiment (631 ) en fonction dudit volume (621 ), et d'une hauteur d'eau moyenne (622) de l'au moins un compartiment choisie en fonction de l'au moins un type de réaction (601 ) ;  a calculation (620) of a surface of the at least one compartment (631) as a function of said volume (621), and a mean water level (622) of the at least one compartment selected according to at least one type of reaction (601);
- un calcul (640) d'un périmètre (641 ) de l'au moins un compartiment en fonction de ladite surface (631 ), et d'un ratio (632) entre le périmètre (641 ) en mètres linéaires de l'au moins un compartiment, et la surface (631 ) de l'au moins un compartiment, ledit ratio (632) étant choisi en fonction de l'au moins un type de réaction (601 ).  a calculation (640) of a perimeter (641) of the at least one compartment as a function of said area (631), and a ratio (632) between the perimeter (641) in linear meters of the minus one compartment, and the surface (631) of the at least one compartment, said ratio (632) being selected according to the at least one type of reaction (601).
15. Méthode d'épuration d'effluents liquides d'au moins un polluant cible par une zone humide artificielle, ladite méthode comprenant successivement : 15. A method of purifying liquid effluents from at least one target pollutant by an artificial wetland, said method comprising successively:
- le traitement des effluents par au moins un premier compartiment (1 10, 21 1 ) de la zone humide artificielle étiré en longueur, ou formant des méandres, ledit au moins un premier compartiment ayant :  the treatment of the effluents by at least a first compartment (1 10, 21 1) of the artificial wet zone stretched in length, or forming meanders, said at least one first compartment having:
o un périmètre en mètres linéaires supérieur ou égal à 5% de sa surface en mètres carrés, inférieur ou égal à 55% de sa surface en mètres carrés, de préférence égal à la moitié de sa surface en mètres carrés ;  o a perimeter in linear meters greater than or equal to 5% of its area in square meters, less than or equal to 55% of its area in square meters, preferably equal to half of its area in square meters;
o une hauteur d'eau moyenne comprise entre 5 et 70 cm ;  o an average water level of between 5 and 70 cm;
- le traitement des effluents par au moins un deuxième compartiment (120, 220, 221 , 222) de la zone humide artificielle formant un bassin, ledit au moins un deuxième compartiment ayant :  the treatment of the effluents by at least a second compartment (120, 220, 221, 222) of the artificial wetland forming a basin, said at least one second compartment having:
o un périmètre en mètres linéaires inférieur ou égal à un quart de sa surface en mètres carrés, et de préférence égal à 17% de sa surface en mètres carrés  o a perimeter in linear meters less than or equal to one quarter of its area in square meters, and preferably equal to 17% of its area in square meters
o une hauteur d'eau moyenne comprise entre 70 et 150 cm.  o average water level between 70 and 150 cm.
EP18717095.6A 2017-04-28 2018-04-19 Artificial wetland sized for removing pollutants Pending EP3615479A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1753726A FR3065720B1 (en) 2017-04-28 2017-04-28 ARTIFICIAL WET ZONE DIMENSIONED FOR POLLUTANT ELIMINATION
PCT/EP2018/060021 WO2018197329A1 (en) 2017-04-28 2018-04-19 Artificial wetland sized for removing pollutants

Publications (1)

Publication Number Publication Date
EP3615479A1 true EP3615479A1 (en) 2020-03-04

Family

ID=60080868

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18717095.6A Pending EP3615479A1 (en) 2017-04-28 2018-04-19 Artificial wetland sized for removing pollutants

Country Status (4)

Country Link
EP (1) EP3615479A1 (en)
CN (1) CN110678421A (en)
FR (1) FR3065720B1 (en)
WO (1) WO2018197329A1 (en)

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6558555B1 (en) * 2001-07-03 2003-05-06 David A. Flowers Process and system for enhanced phosphorus removal in a wetland wastewater treatment facility
CN1314601C (en) * 2004-07-02 2007-05-09 北京师范大学 Treating method and system for sectioned free surface flow artificial wet land
EP1791793B1 (en) 2004-09-16 2010-11-03 Phytorestore Method for treating pollutants by phytoleaching
FR2886639B1 (en) 2005-06-03 2008-04-04 Suez Environnement Sa METHOD AND INSTALLATION FOR TREATING EFFLUENTS OF COMMUNITIES
CN101585581A (en) * 2008-05-20 2009-11-25 海斯博特(北京)科技有限公司 Combined type artificial wetland sewage treatment system
CN101337742A (en) * 2008-07-31 2009-01-07 环境保护部华南环境科学研究所 In-one-pond system together with water quality purification and agricultural industry function
KR101079051B1 (en) * 2009-02-04 2011-11-02 주식회사 골든포우 Sustainable Structured Permeability Controlling System
FR2961504A1 (en) 2010-06-17 2011-12-23 Phytorestore DETERMINATION TREATMENT OF WATER CONTAMINATED BY MICRO-POLLUTANTS AND / OR EMERGING POLLUTANTS, PARTICULARLY FROM ORGANOCHLORINATED COMPOUNDS
CN101973637B (en) * 2010-11-04 2012-06-27 南京大学 River channel purification system for processing rural domestic sewage
WO2012129604A1 (en) * 2011-03-29 2012-10-04 The Water & Carbon Group Pty Ltd Method and system for treating water
CN103241893B (en) * 2013-04-24 2015-07-29 中国林业科学研究院林业新技术研究所 A kind of " serial-parallel " adjustable composite constructed wetland system
US9681029B2 (en) 2014-10-02 2017-06-13 Gopro, Inc. Swivel camera mount
US20160167994A1 (en) 2014-12-11 2016-06-16 The Council For Scientific And Industrial Research (Csir) Treatment of waste water
US9796611B2 (en) 2015-01-13 2017-10-24 Environmental Dynamics International, Inc. Wastewater treatment system and method
CN105036343B (en) * 2015-07-02 2017-03-01 东南大学 Efficiently remove the ecological engineering of lipotropy trace organic substance in low-pollution water
CN205115138U (en) 2015-10-26 2016-03-30 天津大学 Little aeration systems of constructed wetland solar energy intermittent type

Also Published As

Publication number Publication date
FR3065720A1 (en) 2018-11-02
CN110678421A (en) 2020-01-10
FR3065720B1 (en) 2020-10-30
WO2018197329A1 (en) 2018-11-01

Similar Documents

Publication Publication Date Title
Stefanakis The role of constructed wetlands as green infrastructure for sustainable urban water management
Libhaber et al. Sustainable Treatment and Reuse of Municipal Wastewater: For decision makers and practising engineers
Rai et al. Constructed wetland as an ecotechnological tool for pollution treatment for conservation of Ganga river
CA2606062A1 (en) Method for purifying effluent in an anaerobic reactor
EP3242859B1 (en) Sewage treatment device, such as a vertical-percolation planted filter, comprising a system for active aeration of a saturated lower layer
Yi et al. Sieved transport and redistribution of bioavailable phosphorus from watershed with complex river networks to lake
FR2997075A1 (en) ENERGY SAFE WATER TREATMENT USING MICROALGUES
Alsubih et al. Performance evaluation of constructed wetland for removal of pharmaceutical compounds from hospital wastewater: Seasonal perspective
KR101951294B1 (en) Filtering Equipment for Wastewater
Angelakis et al. Wastewater management: from ancient greece to modern times and future
WO2017103479A1 (en) Method for bio-solar purification of wastewater with a view to recycling water
EP3615479A1 (en) Artificial wetland sized for removing pollutants
Kavanagh et al. Engineered ecosystem for sustainable on-site wastewater treatment
Maniquiz et al. System design and treatment efficiency of a surface flow constructed wetland receiving runoff impacted stream water
EP2802539B1 (en) Device for purifying liquid wastewater, and method for cleaning liquid wastewater using said device
EP3286147A1 (en) Wastewater purification device and water treatment process
Mander et al. Wetland pollutant dynamics and control
Hoang et al. Floating treatment wetlands to improve the water quality of the Hang Bang canal, Ho Chi Minh City, Vietnam: Effect of plant species
LAMARI et al. Etude technico-économique des installations hydrauliques destinées à l’irrigation par la réutilisation des eaux usées épurées
Napaldet et al. Rehabilitation of eutrophic rivers through phytoremediation in constructed wetland: The case of Balili River in Benguet, Philippines
EP3214049A1 (en) Device for treating wastewater comprising a microbiological bed
Hussain et al. Feasibility of Purple Nutsedge anchored in wood based charcoal for effective greywater treatment
ROKBANE Epuration des Eaux Usées par Filtre Planté (Phytoépuration) et Réutilisation pour l’Irrigation. Application à la Ville d’Ouled Djellal
Roy et al. Decentralized Integrated Approach of Water and Wastewater Management in Rural West Bengal
FR2906239A1 (en) BASIN FOR THE TREATMENT OF WASTE WATER BY BEDS WITH MACROPHYTES.

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191030

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220323

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SUEZ INTERNATIONAL

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230606