EP3612782B1 - Evaporator having an optimized vaporization interface - Google Patents

Evaporator having an optimized vaporization interface Download PDF

Info

Publication number
EP3612782B1
EP3612782B1 EP18717606.0A EP18717606A EP3612782B1 EP 3612782 B1 EP3612782 B1 EP 3612782B1 EP 18717606 A EP18717606 A EP 18717606A EP 3612782 B1 EP3612782 B1 EP 3612782B1
Authority
EP
European Patent Office
Prior art keywords
thin layer
projections
evaporator
primary wick
evaporator according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18717606.0A
Other languages
German (de)
French (fr)
Other versions
EP3612782A1 (en
Inventor
Vincent Dupont
Stéphane Van Oost
Vincent De Troz
Mikael MOHAUPT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Euro Heat Pipes SA
Original Assignee
Euro Heat Pipes SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Euro Heat Pipes SA filed Critical Euro Heat Pipes SA
Publication of EP3612782A1 publication Critical patent/EP3612782A1/en
Application granted granted Critical
Publication of EP3612782B1 publication Critical patent/EP3612782B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/043Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure forming loops, e.g. capillary pumped loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure

Definitions

  • the present invention relates to evaporators usually used in two-phase working fluid heat transfer systems.
  • US 6,227,287 B1 discloses an evaporator with the features of the preamble of claim 1.
  • This type of evaporator is usually used to cool electronic equipment, such as a processor (CPU, GPU), a power module (IGBT, SiC, Gan etc.), or any other electronic component releasing calories, or any other source heat.
  • electronic equipment such as a processor (CPU, GPU), a power module (IGBT, SiC, Gan etc.), or any other electronic component releasing calories, or any other source heat.
  • This type of evaporator is used in a system that includes a condenser and return lines to circulate the fluid between the evaporator and the condenser.
  • the known vaporization interfaces do not make it possible to treat a surface heat flux beyond 20 Watts/cm 2 because the heat exchange coefficients deteriorate very strongly with the increase in the heat flux density of the made of a depression of the vaporization front inside the primary wick.
  • the increase in the number of vapor bubbles inside the wick increases the risk of drying out, that is to say the risk of an interruption of the supply of liquid to this place, a phenomenon which it is should be avoided.
  • thin layer means a layer with a thickness of less than 1 mm. The inventors have found that advantageously a low thickness associated with the projections contributes to obtaining good performance.
  • the thin layer of porous material is in contact with the primary wick at the level of a junction zone, at the location of which at the location of which liquid passes from the primary wick to through the thin layer of porous material forming a so-called secondary wick.
  • the fluid in the liquid phase is pumped by capillarity from the primary wick into the thin layer which coats the projections at the point where the vaporization takes place; the exchange surface is increased.
  • an evaporation interface is obtained capable of processing a heat flux greater than 50 Watts/cm 2 , with heat exchange coefficients W/(m 2 K) much higher than those of the known art and , depending on the various possible configurations, the evaporation interface will even be capable of processing several tens, or even hundreds, of Watts/cm 2 .
  • the heat flux transferred directly to the primary wick is greatly reduced compared to the total heat flux (we mainly vaporize on the sides) and therefore we avoid creating a boiling phenomenon in the zone of contact with the primary wick, in other words, overheating of the the primary wick.
  • the transfer of parasitic flow is limited both by very strongly limiting the penetration of the vaporization front into the primary wick and also by limiting the overheating of the receiving member while promoting the extraction of the vapor created in the channels. dedicated.
  • the thin layer can have a substantially uniform thickness.
  • a relatively simple method of manufacture and assembly can be provided by using a metallic woven weft which is intimately bonded to the surface of the receiving member.
  • the thin layer may have a non-uniform thickness, the thickest part (31) of the thin layer being placed in contact with the primary wick in the vicinity of the top of each projection, and the thickness (EC) of said thin layer decreasing away from the primary wick.
  • This configuration makes it possible to obtain better overall performance in terms of power dissipated per unit area.
  • the heat-receiving member may comprise a plate, which corresponds to a planar configuration for the heat source to be cooled.
  • the heat-receiving member can be generally shaped like a cylinder, which can correspond to a cylindrical configuration for the heat source to be cooled, which happens to be as common as the flat configuration.
  • This cylindrical configuration is common when using a high pressure fluid, such as ammonia for space applications; in this case it is possible to have a flat plate, generally made of aluminium, assembled on the external surface of the cylindrical evaporator.
  • the projections can advantageously be formed in the form of rectilinear ribs of section trapezoidal (even triangular); the calorie receiving member is thus easy to manufacture by extrusion or simple machining (milling). Furthermore, such a trapezoidal section allows robust transmission of the mechanical forces, in particular induced by the assembly in compression of the power modules on the evaporator by screwing (which the thin conventional fins which have a substantially constant thickness do not allow. on their height, especially with copper).
  • each vapor channel (4) has a generally triangular section with one of its points directed towards the base of the receiving member. The density of the zones covered by the thin layer is thus maximized and consequently the heat exchanges too, for a given overall available surface.
  • the section of the projections forms a symmetrical isosceles trapezium (in other words a "tooth"), with the short side having a length at most 20% compared to the length of the long side.
  • D3 ⁇ 0.2 W are formed steam channels of sufficient size, in particular their width between the peaks of the projections allows rapid flow of steam without excessive pressure drops.
  • the short side D3 (that is to say the width of the top) has a dimension ⁇ 0.3 mm.
  • the thinness of the peaks is not problematic and is even an advantage if it is combined with the presence of the thin layer because it avoids the appearance of the vapor phase in the liquid supply zone and limits the transfer of parasitic flux through the primary wick.
  • the half-angle of opening at the top ⁇ is less than 45°, and preferably comprised between 5° and 30°.
  • the primary wick is preferably obtained from a material that is a poor thermal conductor, such as nickel, stainless steel, ceramic or Teflon; typically with a thermal conductivity of less than 100 W/mK. This avoids reheating the liquid located on the other side of the primary wick and greatly limits parasitic thermal leaks.
  • a material that is a poor thermal conductor such as nickel, stainless steel, ceramic or Teflon
  • the thin layer is obtained from a good thermal conductor, such as copper or aluminum; typically with a coefficient greater than 100 W/mK and preferably greater than 380 W/mK.
  • the diameter of the pores of the fine layer is smaller than the diameter of the pores of the primary wick. This promotes the supply of liquid to the thin layer from the primary wick and inside the thin layer from the thickest part of said thin layer.
  • the thickness EC of the thin layer is less than 0.5 mm, preferably wherever the thin layer is in contact with the calorie receiving plate 1.
  • the inventors have found that advantageously such a low thickness was enough to get a good performance.
  • the calorie receiving plate is not flat (presence of projections 11) unlike certain embodiments of the prior art.
  • the thickness H1 of the base is between 0.5 and 5 mm. This thickness is adjusted to obtain sufficient rigidity and solidity for assembly, for example by screwing, of the component to be cooled.
  • the height H2 of the projections is between 0.5 and 3 mm. This height is adjusted to obtain a sufficient passage section for the steam channels to avoid potential pressure drop problems.
  • the projections are formed in the form of circular ribs. This can be used in case the evaporator is in a disc shape.
  • the projections are formed in the form of a conical stud or a pyramidal stud.
  • the surface efficiency can be further improved and, depending on the manufacturing methods adopted, the cost price of the coated heat-receiving plate can remain reasonable.
  • the thickness E2 of the primary wick is constant and preferably between 1 and 8 mm.
  • Such a simple primary wick is available and inexpensive material.
  • the top of the projections is in contact with the primary wick over a surface less than 20% of the useful surface of the primary wick.
  • the invention also relates to a heat transfer system comprising an evaporator as described above, a condenser, fluid pipes with either gravity pumping, namely a thermosiphon configuration (including the so-called “pool boiling” configurations) either capillary pumping only or in combination with a jet, or even an evaporator powered by a mechanical pump.
  • a heat transfer system comprising an evaporator as described above, a condenser, fluid pipes with either gravity pumping, namely a thermosiphon configuration (including the so-called “pool boiling” configurations) either capillary pumping only or in combination with a jet, or even an evaporator powered by a mechanical pump.
  • the figure 1 shows a heat transfer system comprising an evaporator 7 comprising receiving member 1 which makes it possible to evacuate a flow of calories Qin received by the evaporator 7 from a dissipative component ('hot source') in the direction of a condenser COND able to receive those calories and evacuate them Qout to a 'cold source' (ambient air, lukewarm or cold water, radiant panel, etc.).
  • a dissipative component 'hot source'
  • COND condenser COND
  • a steam pipe 8 makes it possible to convey the steam produced in the evaporator to the condenser.
  • a liquid pipe 9 allows the liquid condensed in the condenser to be brought back to the evaporator 7.
  • the condenser and the pipes are assumed to be known per se and will not be described here in more detail.
  • the evaporator, the condenser and the pipes form a heat transfer loop, which works either by using gravity (thermosyphon) or by using capillary pumping, a solution which works both on land and in a zero-gravity configuration or against an acceleration field (gravity, movement of a vehicle) or pumping assisted by a mechanical pump.
  • a tank RES which serves as an expansion vessel for the liquid (thermal expansion of the liquid and variation in the volume of vapor outside the tank); if this tank is present as a separate element, it is called a 'CPL' loop (Capillary Pumped Loop).
  • the reservoir function is provided inside the evaporator and in this case we speak of a so-called 'LHP' loop (Loop Heat Pipe).
  • 'LHP' loop Loop Heat Pipe
  • the evaporator 7 comprises a calorie receiving member marked 1; in the first example illustrated, it is a plate 1 against which is leaned an element to be cooled (not shown) which provides a flow of calories labeled Qin.
  • This plate has a special structure on the inside to the evaporator, this will be detailed later.
  • the evaporator 7 in question is a capillary type evaporator, that is to say it contains a wick, in other words a porous mass, which sucks in by capillarity liquid which is in a liquid compartment 5 in communication with the liquid line 9 and the expansion tank RES.
  • transfer member ” 1 could be used instead of the term “receiving member”.
  • receiving member may also be replaced in certain cases by the term “hot plate” or “receiving plate”.
  • the evaporator 7 comprises the aforementioned hot plate 1 , a capillary structure which will be detailed later, the aforementioned liquid compartment 5 and a casing-cover which makes it possible to assemble the whole and to delimit a sealed interior space of the evaporator. which hermetically contains the working fluid.
  • the capillary structure comprises a primary wick marked 2 completed by a capillary coating structure which forms a thin layer of porous material (reference 3) which will be discussed in more detail below.
  • the hot plate in other words the calorie receiving member 1 , comprises a base 10 which extends along a plane YZ along 2 directions Y, Z perpendicular to the depth axis denoted X , and a plurality of projections 11 , each extending from the base 10 to a top 12 , with side flanks marked 13 .
  • each of said projections 11 decreases with distance from the base.
  • at least one dimension of the projection 11 decreases as one moves away from the base 10.
  • the lateral sides 13 are not not parallel to each other.
  • the section of the projection in the XY plane ( Figs 2 and 4 ) it has a trapezoidal shape with a wide base of dimension denoted W and a narrow top of dimension denoted D3.
  • the base and the top are parallel, here parallel to the Y axis, and the lateral flanks 13 of the projection extend obliquely with an angle ⁇ relative to the base.
  • this projection 11 can also be called a "tooth”.
  • This shape can also be described as frustoconical with a half-angle of opening at the top noted ⁇ .
  • ⁇ 45°, or in other words ⁇ >45°, is chosen.
  • the small side D3 will have a size ⁇ 0.3 mm.
  • the projections extend at a constant section along the direction Z.
  • the projections are formed empty spaces, shaped like grooves 4 and also called in the present context “vaporization channels” 4 or “steam channels”. ".
  • the projections 11 are adjacent to each other, each neighboring projection being separated by a steam channel 4 ; we therefore note a repeating pattern along the Y axis with a pitch corresponding to the dimension W which is none other than the width of the projection 11 at its base.
  • the height of the vaporization channels is marked H2.
  • the projections are formed as straight ribs with a trapezoidal section and W represents the pitch pattern taken along the Y axis.
  • the primary wick, marked 2 is formed as a thick layer of porous material; in the example illustrated, the thickness E2 of this layer is constant over the entire surface of the evaporator, which makes it possible to use an inexpensive standard product.
  • the primary wick 2 has a front face 20 facing the receiving plate 1, and a rear face 25 in contact with the liquid 5.
  • the flat primary wick can be completed by internal walls 28 which form a rigid structure allowing to reinforce the mechanical strength of the evaporator.
  • These internal walls can be porous or non-porous according to the possible needs of liquid distribution functions by capillarity.
  • a rather poor thermal conductor material such as nickel, stainless steel or Teflon is preferably chosen.
  • the sides 13 of the projections are coated with a thin layer 3 of porous material.
  • interface plane P is meant a plane parallel to YZ adjacent to the top 12 of the projections, and which in the assembled state of the evaporator, also coincides with the front face 20 of the primary wick.
  • its thickness is not constant on the flanks 13 of the projections and preferably varies along the flanks away from the primary wick; the thickest part 31 is placed in contact with the primary wick, at the level of an interface 23 placed in the plane P in the vicinity of the top of each projection 12, and the thickness EC of said thin layer decreases as it moves away of the primary wick, to the vicinity of the bottom 41 of the groove where the end portion of the thin layer marked 32 has an almost zero thickness.
  • the thickness EC of the thin layer is everywhere less than 0.5 mm.
  • an axis L is defined along the flank 13 of the projection, the thickness EC equals EC1 at the abscissa L1 and decreases when moves along L towards the bottom 41 of the groove, where the thickness EC3 is almost zero or at the very least notably thinner than the part EC1, passing through intermediate thicknesses EC2.
  • the bottom of the groove 41 is considered to be “punctual”. In reality, due to machining opposites and/or to facilitate the creation of the thin layer 3, there may exist a zone not covered by the thin layer 3 whose dimension is comparable to D3.
  • the thin layer 3 is ideally obtained from a good thermal conductor material, relative to the material constituting the primary wick 2, such as copper, aluminum or nickel, having a thermal conductivity greater than 180 W/mK and preferably greater than 380 W/mK.
  • the diameter of the pores of the thin layer is smaller than the diameter of the pores of the wick primary ; which makes it possible to supply the liquid from the primary wick and promote the release of vapor on the surface of the thin layer.
  • the base 10 of the receiving member has a thickness H1 , typically between 0.5 mm and 5 mm.
  • top 12 of the projections is in contact with the primary wick in a plane P on a surface (D3xZ2) less than 20% of the useful surface of the primary wick.
  • the top of the projection 12 and the primary wick are continuously in contact with one another along the direction Z2 ; in other words, there is no break in contact between the top of the projections and the underside of the primary wick.
  • D2 typically extends over 10% to 50% of the base width W. It is not excluded to go up to 80% in the case where the assembly of the primary wick on all of the teeth is made with fillets ( Fig. 10 right side). This configuration is interesting in the case of a need for high mechanical strength or increased drainage of the two-phase liquid.
  • the Figure 6 and 7 present the operation of the vaporization surface with progressive section (that is to say the thin layer 3 of porous material).
  • the thickness of this projection 11 being large, its effectiveness as a fin is close to 1 and its thermal resistance is at least an order of magnitude lower than that due to vaporization through the thin layer 3. This amounts to, as a first approximation, to consider that the temperature of the trapezoidal projection-fin varies little.
  • the thermal resistance of the thin layer, saturated or partially saturated with liquid, is inversely proportional to its thickness which varies, for example, linearly between EC1 and EC3 ( Fig.4 ). Consequently, the flow rate vaporized locally in layer 3 follows a curve 61 like that illustrated in Figure 6 .
  • the local flow (expressed in W/cm 2 ) is extremely high at the location of the smallest thickness EC3 , that is to say at the base of the trapezoidal tooth 11. Due to the proposed geometry, the flow density heat decreases as one approaches the contact zone 23 with the primary wick. In the illustrated example which also corresponds to the Figure 4 , at the level of the projection vertex 12 , the heat flux density is divided by 20 with respect to the parietal flux, whereas on the evaporators with straight projection or else with reentrant groove of the prior art, devoid of a thin layer 3, the heat flow is multiplied by a factor greater than 1.
  • a phenomenon of boiling at the interface between the top 12 of the projections and the primary wick 2 is thus avoided, or very greatly limited. at 50 Watts/cm 2 on average on the external surface of the evaporator.
  • exchange coefficients heat of the order of 30,000 W/(m 2 K) or higher (reference: contact surface of the receiving plate).
  • the inventors have been able to observe thermal powers transferred per unit area (of the receiving plate) in excess of 110 W/cm 2 .
  • the thin layer makes it possible to transfer a high flow rate of liquid, much greater than the quantity of liquid vaporized at the level of the top 12 of the tooth; the liquid transfer rate in the thin layer is illustrated on curve 62; this curve 62 represents the ratio QLid(h)/QLiq(L1).
  • the abscissa of the Picture 7 is the normalized height, i.e. the h/H2 ratio.
  • H is a variable representing the height relative to the base.
  • H2 is the total height of the projection.
  • the conductive flux QT(h) in the body of the tooth 11 follows the curve marked 63 ; this curve 63 represents the ratio QT(h)/QT(0) or expressed QT(h)/QT(L2) if it is considered that the abscissa L2 corresponds to the base of the projection.
  • the permeability and the distribution of the pores of the thin layer 3 are adapted accordingly to allow vaporization as close as possible to the base 10 in order to limit the vaporization in the primary wick.
  • the linear variation is only an illustrative and simplified case of the present invention.
  • the thin layer may present, either because manufacturing imperfections, either intentionally, double porosity, ie first areas with larger pores compared to other areas where the pores are smaller; in the same spirit, it is not excluded that there are discontinuities in the thin layer 3 that is to say grooves or isolated zones devoid of thin layer 3 on the lateral flank 13 of the projection 11 .
  • the trapezoidal section proposed allows robust transmission of the mechanical forces, in particular in compression (assembly of the power modules by screwing).
  • the general arrangement of the evaporator is cylindrical.
  • the base 10 is a cylinder receiving the flow Qin, however arrangements similar to those already described are applied, mutatis mutandis, for the projections 11, the grooves 4 and the thin layer 3.
  • the primary wick 2 is presented as a tubular sleeve.
  • the liquid compartment 5 is formed by the central zone of the cylindrical interior space.
  • each of the grooves or each vaporization channel 4 is fluidly connected (in vapor or liquid phase) to a collecting channel 40, itself connected to the outlet of the evaporator ( Vap_Out reference) which is connected to the external vapor pipe 8 .
  • the projections 11 are arranged in the form of a conical stud or a pyramidal stud.
  • the steam channels 4 are then formed by the intervals between the pads. According to an advantageous option, the decreasing thickness from the top of the studs confers the advantages in terms of efficiency already described above.
  • the projections can be formed in the form of circular ribs, in the case of an evaporator in the form of a pancake or disc.
  • the thickness EC of the thin layer is almost constant.
  • a thickness EC of the thin layer of between 0.1 mm and 0.8 mm will be chosen. The operation and efficiency of such a configuration are quite satisfactory without however equaling those of the thin layer with decreasing thickness as described above.
  • the thickness of the thin layer decreases rapidly to 0, in other words the bottom of the groove is not coated with material the base plate is bare .
  • a fillet zone 39 as illustrated by a zone shown in dotted lines, which makes it possible to increase the contact surface with the primary wick.
  • the distance denoted D1' is substantially greater than the distance denoted D1.
  • the thickness EC of the thin layer is constant, including in the lower zone 34 and at the bottom of the groove 35. Continuing to the left, there is the portion 36 of the same thickness that covers the flank of the next tooth.
  • a possible solution to form such a thin layer of constant thickness is to use a mesh 38 in the form of a matrix metal sheet unidirectional.
  • the lattice is shaped on the projections including on their sides and is found in intimate contact with the receiving member 1.
  • the contact with the lower zone 34 may have a cavity with a generally triangular section.
  • the preparation of the primary wick 2 consists in cutting out a sheet of porous material of chosen thickness with the correct dimensions, length and width.
  • a copper plate (or nickel, stainless steel or aluminum) of thickness H1+H2 then proceeds to the formation of grooves and projections by removal of material , either by electro-erosion or by conventional machining or by extruding, stamping or by stamping.
  • the thin layer 3 of non-uniform thickness (first embodiment) is formed, for example, by atmospheric plasma spraying or by additive manufacturing (3D printing) or by laying a mesh as illustrated above.
  • An assembly by diffusion makes it possible to link the two porous surfaces at the level of the contact plane P.
  • a contact assembly under compression is another possible option.
  • the thin layer 3 could also cover the top 12 of the tooth before assembly of the primary bit 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

La présente invention est relative aux évaporateurs, habituellement utilisés dans les systèmes de transfert thermique à fluide de travail diphasique. US 6 227 287 B1 divulgue un évaporateur avec les caractéristiques du préambule de la revendication 1.The present invention relates to evaporators usually used in two-phase working fluid heat transfer systems. US 6,227,287 B1 discloses an evaporator with the features of the preamble of claim 1.

Plus précisément, on s'intéresse à l'interface de vaporisation à l'endroit duquel du liquide se transforme en vapeur en absorbant une quantité importante d'énergie calorifique.More specifically, we are interested in the vaporization interface at the point where liquid is transformed into vapor by absorbing a large quantity of calorific energy.

Ce genre d'évaporateur est utilisé habituellement pour refroidir un équipement électronique, comme un processeur (CPU, GPU), un module de puissance (IGBT, SiC, Gan etc.), ou tout autre composant électronique dégageant des calories, ou toute autre source de chaleur.This type of evaporator is usually used to cool electronic equipment, such as a processor (CPU, GPU), a power module (IGBT, SiC, Gan etc.), or any other electronic component releasing calories, or any other source heat.

Ce genre d'évaporateur est utilisé dans un système qui comprend un condenseur et des conduites aller et retour pour faire circuler le fluide entre l'évaporateur et le condenseur.This type of evaporator is used in a system that includes a condenser and return lines to circulate the fluid between the evaporator and the condenser.

La tendance actuelle de l'électronique amène à devoir évacuer des puissances thermiques importantes sur de petites surfaces.The current trend in electronics leads to having to evacuate significant thermal powers on small surfaces.

Dans l'évaporateur, on prévoit au niveau de l'interface entre la mèche capillaire (qui amène le liquide) et l'organe ou la plaque de réception/transfert de calories (en contact avec la source chaude primaire qui amène les calories) des espaces vides qui forment des canaux d'évacuation de la vapeur. Ces canaux de vapeur sont aménagés soit dans la mèche capillaire soit dans l'organe de réception des calories. Le plus courant est de prévoir des rainures de section rectangulaire pour former de tels canaux vapeur, comme par exemple enseigné par le document US5725049 [NASA ].In the evaporator, provision is made at the level of the interface between the capillary wick (which brings the liquid) and the organ or the calorie reception/transfer plate (in contact with the primary hot source which brings the calories) empty spaces that form channels for the escape of steam. These steam channels are arranged either in the capillary wick or in the heat-receiving member. The most common is to provide grooves of rectangular section to form such steam channels, as for example taught by the document US5725049 [NASA ].

Certains ont essayé d'accroître la capacité thermique en dessinant des canaux vapeur de formes différentes pour accroître la capacité en termes de flux thermique. En effet la présence des canaux vapeur entraine une concentration de la densité de flux de chaleur au contact de la mèche ce qui a conduit les développeurs à privilégier des rainures dites « ré-entrantes » comme par exemple dans le document EP0987509 [Matra Marconi Space ].Some have tried to increase the heat capacity by drawing steam channels of different shapes to increase the capacity in terms of heat flow. In fact, the presence of vapor channels leads to a concentration of the density of heat flow in contact with the wick, which has led the developers to favor so-called “re-entrant” grooves, as for example in the document EP0987509 [Matra Marconi Space ].

D'autres ont essayé de minimiser les fuites thermiques parasites, comme par exemple dans le document US6330907 [Mitsubishi ], mais la formation de bulles de vapeur dans la zone de contact avec la mèche n'est pas évitée ce qui menace un bon approvisionnement en liquide vers la zone de vaporisation.Others have tried to minimize parasitic thermal leakage, as for example in the document US6330907 [Mitsubishi ], but the formation of vapor bubbles in the contact zone with the wick is not avoided, which threatens a good supply of liquid to the vaporization zone.

Mais on constate que les interfaces de vaporisation connues ne permettent pas de traiter un flux thermique surfacique au-delà de 20 Watts/cm2 car les coefficients d'échange thermique se dégradent très fortement avec l'accroissement de la densité de flux de chaleur du fait d'un enfoncement du front de vaporisation à l'intérieur de la mèche primaire. L'accroissement du nombre de bulles de vapeur à l'intérieur de la mèche accroît le risque d'assèchement, c'est-à-dire le risque d'une interruption de l'approvisionnement en liquide à cet endroit, phénomène qu'il convient d'éviter.But it is noted that the known vaporization interfaces do not make it possible to treat a surface heat flux beyond 20 Watts/cm 2 because the heat exchange coefficients deteriorate very strongly with the increase in the heat flux density of the made of a depression of the vaporization front inside the primary wick. The increase in the number of vapor bubbles inside the wick increases the risk of drying out, that is to say the risk of an interruption of the supply of liquid to this place, a phenomenon which it is should be avoided.

Or, il s'avère que les besoins sont désormais plus importants c'est pourquoi les inventeurs ont cherché à optimiser l'interface de vaporisation des évaporateurs dans les boucles de transfert thermique à fluide de travail diphasique.However, it turns out that the needs are now greater, which is why the inventors sought to optimize the vaporization interface of the evaporators in the two-phase working fluid heat transfer loops.

Dans ce but, l'invention a pour objet un évaporateur à capillaire pour système de transfert thermique, l'évaporateur comprenant :

  • un organe de réception (1) des calories comprenant une base (10) et une pluralité de projections (11), chaque projection s'étendant à partir de la base jusqu'à un sommet (12), et dont la taille décroît avec l'éloignement par rapport à la base, chaque projection ayant des flancs latéraux (13),
  • une mèche primaire (2) en premier matériau poreux et présentant une face frontale (20) adjacente au sommet des projections, les flancs latéraux des projections délimitant avec la mèche primaire des espaces vides formant des canaux de vapeur (4), caractérisé en ce que les flancs latéraux des projections sont revêtus d'une couche fine (3) de matériau poreux, de préférence d'un second matériau différent du premier matériau.
For this purpose, the subject of the invention is a capillary evaporator for a heat transfer system, the evaporator comprising:
  • a calorie receiving member (1) comprising a base (10) and a plurality of projections (11), each projection extending from the base to an apex (12), and whose size decreases with distance from the base, each projection having side flanks (13),
  • a primary wick (2) made of a first porous material and having a front face (20) adjacent to the top of the projections, the lateral flanks of the projections delimiting with the primary wick of the empty spaces forming vapor channels (4), characterized in that the side flanks of the projections are coated with a thin layer (3) of porous material, preferably of a second material different from the first material.

Par le vocable « couche fine », on entend une couche d'épaisseur inférieure à 1 mm. Les inventeurs ont constaté qu'avantageusement une épaisseur faible associée aux projections concourait à l'obtention d'une bonne performance.The term " thin layer" means a layer with a thickness of less than 1 mm. The inventors have found that advantageously a low thickness associated with the projections contributes to obtaining good performance.

Il faut noter que la couche fine de matériau poreux est en contact avec la mèche primaire au niveau d'une zone de jonction, à l'endroit de laquelle à l'endroit de laquelle transite du liquide depuis la mèche primaire vers par la couche fine de matériau poreux formant une mèche dite secondaire.It should be noted that the thin layer of porous material is in contact with the primary wick at the level of a junction zone, at the location of which at the location of which liquid passes from the primary wick to through the thin layer of porous material forming a so-called secondary wick.

Par le vocable « dont la taille décroît avec l'éloignement par rapport à la base», il faut comprendre qu'au moins une dimension de la projection (11) décroît au fur et à mesure que l'on s'éloignait de la base (10).By the term " whose size decreases with distance from the base", it should be understood that at least one dimension of the projection (11) decreases as one moves away from the base. (10).

Avantageusement, le fluide en phase liquide est pompé par capillarité depuis la mèche primaire jusque dans la couche fine qui revêt les projections à l'endroit duquel la vaporisation a lieu ; la surface d'échange est augmentée. Grâce à ces dispositions, on obtient une interface d'évaporation capable de traiter un flux thermique supérieur à 50 Watts/cm2, avec des coefficients d'échanges thermiques W/(m2K) bien supérieurs à ceux de l'art connu et, en fonction des différentes configurations possibles l'interface d'évaporation sera même capable de traiter plusieurs dizaines, voire centaines, de Watts/cm2.Advantageously, the fluid in the liquid phase is pumped by capillarity from the primary wick into the thin layer which coats the projections at the point where the vaporization takes place; the exchange surface is increased. Thanks to these provisions, an evaporation interface is obtained capable of processing a heat flux greater than 50 Watts/cm 2 , with heat exchange coefficients W/(m 2 K) much higher than those of the known art and , depending on the various possible configurations, the evaporation interface will even be capable of processing several tens, or even hundreds, of Watts/cm 2 .

Aussi, on remarque que dans la zone du sommet des projections, le flux thermique transféré directement à la mèche primaire est fortement réduit vis-à-vis du flux thermique total (on vaporise principalement sur les flancs) et par conséquent on évite de créer un phénomène d'ébullition dans la zone de contact avec la mèche primaire, autrement dit on évite la surchauffe de la mèche primaire. Ainsi on limite le transfert de flux parasite à la fois en limitant très fortement la pénétration du front de vaporisation dans la mèche primaire et aussi en limitant la surchauffe de l'organe de réception tout en favorisant l'extraction de la vapeur créée dans les canaux dédiés.Also, we note that in the area of the top of the projections, the heat flux transferred directly to the primary wick is greatly reduced compared to the total heat flux (we mainly vaporize on the sides) and therefore we avoid creating a boiling phenomenon in the zone of contact with the primary wick, in other words, overheating of the the primary wick. Thus, the transfer of parasitic flow is limited both by very strongly limiting the penetration of the vaporization front into the primary wick and also by limiting the overheating of the receiving member while promoting the extraction of the vapor created in the channels. dedicated.

Dans divers modes de réalisation de l'invention, on peut éventuellement avoir recours en outre à l'une et/ou à l'autre des dispositions suivantes :
Selon une option, la couche fine peut présenter une épaisseur substantiellement uniforme. Selon cette configuration, on peut prévoir un procédé de fabrication et d'assemblage relativement simple en utilisant une trame tissée métallique qui soit intimement liée à la surface de l'organe de réception.
In various embodiments of the invention, one and/or the other of the following provisions may also be used:
According to one option, the thin layer can have a substantially uniform thickness. According to this configuration, a relatively simple method of manufacture and assembly can be provided by using a metallic woven weft which is intimately bonded to the surface of the receiving member.

Selon une option, la couche fine peut présenter une épaisseur non uniforme, la partie la plus épaisse (31) de la couche fine étant disposée au contact de la mèche primaire au voisinage du sommet de chaque projection, et l'épaisseur (EC) de ladite couche fine diminuant en s'éloignant de la mèche primaire. Cette configuration permet d'obtenir une performance globale meilleure en termes de puissance dissipée par unité de surface.According to one option, the thin layer may have a non-uniform thickness, the thickest part (31) of the thin layer being placed in contact with the primary wick in the vicinity of the top of each projection, and the thickness (EC) of said thin layer decreasing away from the primary wick. This configuration makes it possible to obtain better overall performance in terms of power dissipated per unit area.

Selon une option, l'organe de réception des calories peut comporter une plaque, ce qui correspond à une configuration plane pour la source de chaleur à refroidir.According to one option, the heat-receiving member may comprise a plate, which corresponds to a planar configuration for the heat source to be cooled.

Selon une autre option, l'organe de réception des calories peut être formé généralement comme un cylindre, ce qui peut correspondre à une configuration cylindrique pour la source de chaleur à refroidir, qui se trouve être aussi courante que la configuration à plat. Cette configuration cylindrique est courante lors de l'emploi d'un fluide à haute pression, comme l'ammoniac pour les applications spatiales ; dans ce cas on peut avoir une semelle plane, généralement en aluminium, assemblée sur la surface externe de l'évaporateur cylindrique.According to another option, the heat-receiving member can be generally shaped like a cylinder, which can correspond to a cylindrical configuration for the heat source to be cooled, which happens to be as common as the flat configuration. This cylindrical configuration is common when using a high pressure fluid, such as ammonia for space applications; in this case it is possible to have a flat plate, generally made of aluminium, assembled on the external surface of the cylindrical evaporator.

Selon une option, les projections peuvent être avantageusement formées sous forme de nervures rectilignes de section trapézoïdale (voire triangulaire); l'organe de réception des calories est ainsi facile à fabriquer par extrusion ou usinage simple (fraisage). Par ailleurs, une telle section trapézoïdale permet une transmission robuste des efforts mécaniques, en particulier induits par l'assemblage en compression des modules de puissance sur l'évaporateur par vissage (ce que ne permettent pas les ailettes conventionnelles fines qui présentent une épaisseur sensiblement constante sur leur hauteur, en particulier avec le cuivre).According to one option, the projections can advantageously be formed in the form of rectilinear ribs of section trapezoidal (even triangular); the calorie receiving member is thus easy to manufacture by extrusion or simple machining (milling). Furthermore, such a trapezoidal section allows robust transmission of the mechanical forces, in particular induced by the assembly in compression of the power modules on the evaporator by screwing (which the thin conventional fins which have a substantially constant thickness do not allow. on their height, especially with copper).

Selon une option, les projections sont adjacentes les unes aux autres et chaque canal de vapeur (4) présente une section généralement triangulaire avec une de ses pointes dirigée vers la base de l'organe de réception. La densité des zones recouvertes par la couche fine est ainsi maximisée et par conséquent les échanges thermiques aussi, pour une surface globale disponible donnée.According to one option, the projections are adjacent to each other and each vapor channel (4) has a generally triangular section with one of its points directed towards the base of the receiving member. The density of the zones covered by the thin layer is thus maximized and consequently the heat exchanges too, for a given overall available surface.

Selon une option, la section des projections forme un trapèze isocèle symétrique (autrement dit une « dent »), avec le petit côté ayant une longueur au plus de 20 % par rapport à la longueur du grand côté. Autrement dit D3 < 0,2 W ; ainsi sont formés des canaux vapeur de dimension suffisante notamment leur largeur entre les sommets des projections permet un écoulement rapide de la vapeur sans pertes de charge excessives.According to one option, the section of the projections forms a symmetrical isosceles trapezium (in other words a "tooth"), with the short side having a length at most 20% compared to the length of the long side. In other words D3 < 0.2 W ; thus are formed steam channels of sufficient size, in particular their width between the peaks of the projections allows rapid flow of steam without excessive pressure drops.

Selon une option, le petit côté D3 (c'est-à-dire la largeur du sommet) a une dimension < 0,3 mm. Les inventeurs ont remarqué que, contrairement aux préjugés de l'homme de l'art, la finesse des sommets n'est pas problématique et est même un avantage si celle-ci est conjuguée avec la présence de la couche fine car elle évite l'apparition de la phase vapeur dans la zone d'approvisionnement en liquide et limite le transfert de flux parasite à travers la mèche primaire.According to one option, the short side D3 (that is to say the width of the top) has a dimension <0.3 mm. The inventors have noticed that, contrary to the prejudices of those skilled in the art, the thinness of the peaks is not problematic and is even an advantage if it is combined with the presence of the thin layer because it avoids the appearance of the vapor phase in the liquid supply zone and limits the transfer of parasitic flux through the primary wick.

Selon une option, s'agissant de la géométrie de la section de la projection, le demi-angle d'ouverture au sommet α est inférieur à 45°, et de préférence compris entre 5° et 30°.According to one option, with regard to the geometry of the section of the projection, the half-angle of opening at the top α is less than 45°, and preferably comprised between 5° and 30°.

Ceci correspond au fait que la hauteur des projections H2 est supérieure à 1/2 de leur emprise W sur la base ce qui explique en partie l'augmentation d'efficacité des échanges par une augmentation de la surface efficace.This corresponds to the fact that the height of the projections H2 is greater than 1/2 of their influence W on the base, which partly explains the increase in efficiency of the exchanges by an increase in the effective surface.

Selon une option, la mèche primaire est obtenue préférentiellement à partir d'un matériau mauvais conducteur thermique, comme le nickel, l'inox, la céramique ou le téflon ; avec typiquement une conductivité thermique inférieure à 100 W/mK. On évite ainsi de réchauffer le liquide situé de l'autre côté de la mèche primaire et on limite fortement les fuites thermiques parasites.According to one option, the primary wick is preferably obtained from a material that is a poor thermal conductor, such as nickel, stainless steel, ceramic or Teflon; typically with a thermal conductivity of less than 100 W/mK. This avoids reheating the liquid located on the other side of the primary wick and greatly limits parasitic thermal leaks.

Selon une option, la couche fine est obtenue à partir d'un bon conducteur thermique, comme le cuivre ou l'aluminium; avec typiquement un coefficient supérieur à 100 W/mK et de préférence supérieur à 380 W/mK.According to one option, the thin layer is obtained from a good thermal conductor, such as copper or aluminum; typically with a coefficient greater than 100 W/mK and preferably greater than 380 W/mK.

On favorise ainsi une bonne diffusion de la chaleur dans la couche fine et une bonne répartition des endroits de vaporisation.This promotes good diffusion of the heat in the thin layer and good distribution of the places of vaporization.

Selon une option, le diamètre des pores de la couche fine est inférieur au diamètre des pores de la mèche primaire. On favorise ainsi l'approvisionnement de liquide de la couche fine depuis la mèche primaire et à l'intérieur de la couche fine à partir de la partie la plus épaisse de ladite couche fine.According to one option, the diameter of the pores of the fine layer is smaller than the diameter of the pores of the primary wick. This promotes the supply of liquid to the thin layer from the primary wick and inside the thin layer from the thickest part of said thin layer.

Selon une option, l'épaisseur EC de la couche fine est inférieure à 0,5 mm, de préférence partout où la couche fine est en contact avec la plaque de réception des calories 1. Les inventeurs ont constaté qu'avantageusement une épaisseur aussi faible suffisait à obtenir une bonne performance. Par ailleurs, on remarque que la plaque de réception des calories n'est pas plate (présence des projections 11) contrairement à certaines réalisations de l'art antérieur.According to one option, the thickness EC of the thin layer is less than 0.5 mm, preferably wherever the thin layer is in contact with the calorie receiving plate 1. The inventors have found that advantageously such a low thickness was enough to get a good performance. Furthermore, it is noted that the calorie receiving plate is not flat (presence of projections 11) unlike certain embodiments of the prior art.

Selon une option, l'épaisseur H1 de la base est comprise entre 0.5 et 5 mm. On ajuste cette épaisseur pour obtenir une rigidité et une solidité suffisantes en vue de l'assemblage, par exemple par vissage, du composant à refroidir.According to one option, the thickness H1 of the base is between 0.5 and 5 mm. This thickness is adjusted to obtain sufficient rigidity and solidity for assembly, for example by screwing, of the component to be cooled.

Selon une option, la hauteur H2 des projections est comprise entre 0.5 et 3 mm. On ajuste cette hauteur pour obtenir une section de passage suffisante pour les canaux vapeur pour éviter des problèmes potentiels de pertes de charges.According to one option, the height H2 of the projections is between 0.5 and 3 mm. This height is adjusted to obtain a sufficient passage section for the steam channels to avoid potential pressure drop problems.

Selon une option, les projections sont formées sous forme de nervures circulaires. Ceci peut être utilisé dans le cas où l'évaporateur se présente sous une forme de disque.According to one option, the projections are formed in the form of circular ribs. This can be used in case the evaporator is in a disc shape.

Selon une option, les projections sont formées sous forme de plot conique ou de plot pyramidal. L'efficacité surfacique peut être encore améliorée et suivant les méthodes de fabrication retenues, le prix de revient de la plaque de réception des calories revêtue peut rester raisonnable.According to one option, the projections are formed in the form of a conical stud or a pyramidal stud. The surface efficiency can be further improved and, depending on the manufacturing methods adopted, the cost price of the coated heat-receiving plate can remain reasonable.

Selon une option, l'épaisseur E2 de la mèche primaire est constante et de préférence comprise entre 1 et 8 mm. Une telle mèche primaire simple est un matériel disponible et peu coûteux. Selon une option, le sommet des projections est au contact de la mèche primaire sur une surface inférieure à 20 % de la surface utile de la mèche primaire.According to one option, the thickness E2 of the primary wick is constant and preferably between 1 and 8 mm. Such a simple primary wick is available and inexpensive material. According to one option, the top of the projections is in contact with the primary wick over a surface less than 20% of the useful surface of the primary wick.

Par ailleurs, l'invention vise également un système de transfert thermique comprenant un évaporateur tel que décrit ci-dessus, un condenseur, des conduites fluides avec soit un pompage par gravité à savoir une configuration thermosiphon (incluant les configurations dites « pool boiling ») soit un pompage uniquement capillaire ou en combinaison avec un jet, soit encore un évaporateur alimenté par une pompe mécanique.Furthermore, the invention also relates to a heat transfer system comprising an evaporator as described above, a condenser, fluid pipes with either gravity pumping, namely a thermosiphon configuration (including the so-called "pool boiling" configurations) either capillary pumping only or in combination with a jet, or even an evaporator powered by a mechanical pump.

D'autres aspects, buts et avantages de l'invention apparaîtront à la lecture de la description suivante d'un mode de réalisation de l'invention, donné à titre d'exemple non limitatif. L'invention sera également mieux comprise en regard des dessins joints sur lesquels :

  • la figure 1 est une vue générale schématique d'un système de transfert thermique incluant un évaporateur selon l'invention,
  • la figure 2 est une vue en coupe transversale partielle d'un évaporateur selon un premier mode de réalisation, selon un plan de coupe II-II visible à la figure 1,
  • la figure 3 représente une vue schématique partielle en perspective de l'évaporateur,
  • la figure 4 représente plus en détail une portion de la coupe transversale illustrant une projection et son revêtement poreux,
  • la figure 5 représente un second mode de réalisation de type évaporateur cylindrique (au lieu de plan),
  • la figure 6 représente la répartition du flux de vaporisation le long du flanc des projections revêtues de la couche fine de matériau poreux,
  • la figure 7 représente le flux de chaleur à l'intérieur de la projection ainsi que le flux d'approvisionnement de liquide le long de la couche fine,
  • la figure 8 illustre l'agencement des canaux vapeur dans une coupe horizontale selon un plan de coupe VIII-VIII visible à la figure 2,
  • la figure 9 est une vue en coupe horizontale schématique d'un évaporateur à plots qui représente une autre variante de réalisation.
  • la figure 10 illustre deux variantes de réalisation concernant la configuration de la couche fine de matériau poreux.
Other aspects, objects and advantages of the invention will appear on reading the following description of an embodiment of the invention, given by way of non-limiting example. The invention will also be better understood with regard to the attached drawings in which:
  • the figure 1 is a schematic general view of a heat transfer system including an evaporator according to the invention,
  • the picture 2 is a partial cross-sectional view of an evaporator according to a first embodiment, along a section plane II-II visible at figure 1 ,
  • the picture 3 represents a partial schematic perspective view of the evaporator,
  • the figure 4 shows in more detail a portion of the cross-section illustrating a projection and its porous coating,
  • the figure 5 represents a second embodiment of the cylindrical evaporator type (instead of plan),
  • the figure 6 represents the distribution of the vaporization flux along the side of the projections coated with the thin layer of porous material,
  • the figure 7 represents the heat flux inside the projection as well as the liquid supply flux along the thin layer,
  • the figure 8 illustrates the arrangement of the steam channels in a horizontal section according to a cutting plane VIII-VIII visible at figure 2 ,
  • the figure 9 is a schematic horizontal sectional view of a stud evaporator which represents another alternative embodiment.
  • the figure 10 illustrates two variant embodiments concerning the configuration of the thin layer of porous material.

Sur les différentes figures, les mêmes références désignent des éléments identiques ou similaires. Pour des raisons de clarté de l'exposé, certaines dimensions ne sont pas représentées à l'échelle.In the various figures, the same references designate identical or similar elements. For reasons of clarity of the description, certain dimensions are not represented to scale.

La figure 1 montre un système de transfert thermique comprenant un évaporateur 7 comprenant organe de réception 1 qui permet d'évacuer un flux de calories Qin reçues par l'évaporateur 7 depuis un composant dissipatif ('source chaude') en direction d'un condenseur COND pouvant recevoir ces calories et les évacuer Qout vers une 'source froide' (air ambiant, eau tiède ou froide, panneau radiatif, etc....).The figure 1 shows a heat transfer system comprising an evaporator 7 comprising receiving member 1 which makes it possible to evacuate a flow of calories Qin received by the evaporator 7 from a dissipative component ('hot source') in the direction of a condenser COND able to receive those calories and evacuate them Qout to a 'cold source' (ambient air, lukewarm or cold water, radiant panel, etc....).

Une conduite vapeur 8 permet d'acheminer la vapeur produite dans l'évaporateur vers le condenseur. Une conduite liquide 9 permet de ramener le liquide condensé dans le condenseur vers l'évaporateur 7. Le condenseur et les conduites sont supposées connus en soi et ne seront pas décrites ici plus en détail. L'évaporateur, le condenseur et les conduites forment une boucle de transfert thermique, qui fonctionne soit en utilisant la gravité (thermosiphon) soit en utilisant un pompage par capillarité, solution qui fonctionne à la fois sur terre et en configuration d'apesanteur ou contre un champ d'accélération (gravité, mouvement d'un véhicule) soit encore un pompage assisté par une pompe mécanique.A steam pipe 8 makes it possible to convey the steam produced in the evaporator to the condenser. A liquid pipe 9 allows the liquid condensed in the condenser to be brought back to the evaporator 7. The condenser and the pipes are assumed to be known per se and will not be described here in more detail. The evaporator, the condenser and the pipes form a heat transfer loop, which works either by using gravity (thermosyphon) or by using capillary pumping, a solution which works both on land and in a zero-gravity configuration or against an acceleration field (gravity, movement of a vehicle) or pumping assisted by a mechanical pump.

Dans l'exemple illustré à la figure 1 , il est représenté un réservoir RES qui sert de vase d'expansion au liquide (dilatation thermique du liquide et variation du volume de vapeur en dehors du réservoir); dans le cas où ce réservoir est présent comme élément séparé on parle d'une boucle dite 'CPL' (Capillary Pumped Loop). Selon une autre configuration, la fonction réservoir est prévue à l'intérieur de l'évaporateur et dans ce cas on parle d'une boucle dite 'LHP' (Loop Heat Pipe'). Dans le cas d'une configuration « thermosiphon » la présence du réservoir n'est pas nécessaire.In the example shown in figure 1 , there is shown a tank RES which serves as an expansion vessel for the liquid (thermal expansion of the liquid and variation in the volume of vapor outside the tank); if this tank is present as a separate element, it is called a 'CPL' loop (Capillary Pumped Loop). According to another configuration, the reservoir function is provided inside the evaporator and in this case we speak of a so-called 'LHP' loop (Loop Heat Pipe). In the case of a “thermosyphon” configuration, the presence of the tank is not necessary.

Le fonctionnement de la boucle en général, avec notamment la conduite vapeur, la conduite liquide et le condenseur est connu en soi, il ne sera pas détaillé dans la suite. Dans la suite, la description sera centrée sur l'évaporateur et sa structure interne.The operation of the loop in general, with in particular the vapor line, the liquid line and the condenser is known per se, it will not be detailed below. In the following, the description will focus on the evaporator and its internal structure.

L'évaporateur 7 comprend un organe de réception des calories repéré 1; dans le premier exemple illustré, il s'agit d'une plaque 1 à laquelle est adossée un élément à refroidir (non représenté) qui apporte un flux de calories repérée Qin. Cette plaque est munie d'une structure particulière du côté intérieur à l'évaporateur, ceci sera détaillé plus loin.The evaporator 7 comprises a calorie receiving member marked 1; in the first example illustrated, it is a plate 1 against which is leaned an element to be cooled (not shown) which provides a flow of calories labeled Qin. This plate has a special structure on the inside to the evaporator, this will be detailed later.

L'évaporateur 7 en question est un évaporateur de type capillaire, c'est-à-dire qu'il contient une mèche, autrement dit une masse poreuse, qui aspire par capillarité du liquide qui se trouve dans un compartiment liquide 5 en communication avec la conduite liquide 9 et le réservoir d'expansion RES. The evaporator 7 in question is a capillary type evaporator, that is to say it contains a wick, in other words a porous mass, which sucks in by capillarity liquid which is in a liquid compartment 5 in communication with the liquid line 9 and the expansion tank RES.

Il faut noter que, si on se place d'un point de vue plus large que celui de l'évaporateur, le terme « organe de transfert » 1 pourrait être utilisé à la place du terme « organe de réception ». Dans la suite, le terme « organe de réception » pourra aussi être remplacé dans certains cas par le terme « plaque chaude » ou « plaque de réception ».It should be noted that, if we take a broader view than that of the evaporator, the term “transfer member 1 could be used instead of the term “receiving member”. In the following, the term "receiving member" may also be replaced in certain cases by the term "hot plate" or "receiving plate".

Structurellement, l'évaporateur 7 comprend la plaque chaude 1 susmentionnée, une structure capillaire qui sera détaillée plus loin, le compartiment liquide 5 susmentionné et un carter-couvercle qui permet d'assembler le tout et de délimiter un espace intérieur étanche de l'évaporateur qui contient hermétiquement le fluide de travail.Structurally, the evaporator 7 comprises the aforementioned hot plate 1 , a capillary structure which will be detailed later, the aforementioned liquid compartment 5 and a casing-cover which makes it possible to assemble the whole and to delimit a sealed interior space of the evaporator. which hermetically contains the working fluid.

Plus précisément, la structure capillaire comprend une mèche primaire repérée 2 complétée par une structure de revêtement capillaire qui forme une couche mince de matériau poreux (repère 3) dont il sera question plus en détails ci-après.More precisely, the capillary structure comprises a primary wick marked 2 completed by a capillary coating structure which forms a thin layer of porous material (reference 3) which will be discussed in more detail below.

Selon un premier mode de réalisation illustré en particulier aux figures 2 à 4 , la plaque chaude, autrement dit l'organe de réception 1 des calories, comprend une base 10 qui s'étend selon un plan YZ selon 2 directions Y,Z perpendiculaires à l'axe de profondeur noté X, et une pluralité de projections 11, chacune s'étendant à partir de la base 10 jusqu'à un sommet 12, avec des flancs latéraux repérés 13.According to a first embodiment illustrated in particular in figures 2 to 4 , the hot plate, in other words the calorie receiving member 1 , comprises a base 10 which extends along a plane YZ along 2 directions Y, Z perpendicular to the depth axis denoted X , and a plurality of projections 11 , each extending from the base 10 to a top 12 , with side flanks marked 13 .

Avantageusement, la taille (la dimension) de chacune desdites projections 11 décroît avec l'éloignement par rapport à la base. Autrement dit, au moins une dimension de la projection 11 décroît au fur et à mesure que l'on s'éloignait de la base 10. Autrement dit dans la pratique, les flancs latéraux 13 ne sont pas parallèles entre eux.Advantageously, the size (dimension) of each of said projections 11 decreases with distance from the base. In other words, at least one dimension of the projection 11 decreases as one moves away from the base 10. In other words, in practice, the lateral sides 13 are not not parallel to each other.

Plus précisément, si on considère la section de la projection dans le plan XY ( Figs 2 et 4 ), celle-ci présente une forme trapézoïdale avec une base large de dimension notée W et un sommet étroit de dimension notée D3. La base et le sommet sont parallèles, ici parallèles à l'axe Y, et les flancs latéraux 13 de la projection s'étendent en oblique avec un angle β par rapport à la base.More precisely, if we consider the section of the projection in the XY plane ( Figs 2 and 4 ), it has a trapezoidal shape with a wide base of dimension denoted W and a narrow top of dimension denoted D3. The base and the top are parallel, here parallel to the Y axis, and the lateral flanks 13 of the projection extend obliquely with an angle β relative to the base.

En regardant la section, on peut aussi appeler cette projection 11 une « dent ».Looking at the section, this projection 11 can also be called a "tooth".

Dans l'exemple illustré, il y a une symétrie de la forme trapézoïdale, plus précisément avec une forme de trapèze isocèle symétrique, avec D3 < 0,2 W. In the example shown, there is a symmetry of the trapezoidal shape, more precisely with a symmetrical isosceles trapezium shape, with D3 < 0.2 W.

On peut aussi qualifier cette forme de tronconique avec un demi-angle d'ouverture au sommet noté α. On choisit de préférence α < 45°, ou dit autrement β > 45°.This shape can also be described as frustoconical with a half-angle of opening at the top noted α. Preferably, α <45°, or in other words β >45°, is chosen.

De préférence, on pourra choisir pour demi-angle d'ouverture au sommet α compris entre 5° et 30°.Preferably, it will be possible to choose for half-angle of opening at the top α comprised between 5° and 30°.

Selon un exemple de réalisation particulier, le petit côté D3 aura une taille < 0,3 mm.According to a particular embodiment, the small side D3 will have a size <0.3 mm.

Comme visible à la figure 3 , les projections s'étendent à section constante le long de la direction Z. Ainsi, entre lesdites projections, sont formés des espaces vides, formés comme des rainures 4 et aussi appelés dans le présent contexte « canaux de vaporisation » 4 ou « canaux vapeur ».As seen at picture 3 , the projections extend at a constant section along the direction Z. Thus, between said projections, are formed empty spaces, shaped like grooves 4 and also called in the present context "vaporization channels" 4 or "steam channels". ".

Avantageusement, on prévoit que les projections 11 soient adjacentes les unes aux autres, chaque projections voisines étant séparées par un canal vapeur 4 ; on remarque donc un motif à répétition le long de l'axe Y avec un pas (pitch en anglais) correspondant à la dimension W qui n'est autre que la largeur de la projection 11 à sa base.Advantageously, it is provided that the projections 11 are adjacent to each other, each neighboring projection being separated by a steam channel 4 ; we therefore note a repeating pattern along the Y axis with a pitch corresponding to the dimension W which is none other than the width of the projection 11 at its base.

La hauteur des canaux de vaporisation est repérée H2. Dans cet exemple, les projections sont formées sous forme de nervures rectilignes de section trapézoïdale et W représente le pas/pitch de répétition pris le long de l'axe Y. The height of the vaporization channels is marked H2. In this example, the projections are formed as straight ribs with a trapezoidal section and W represents the pitch pattern taken along the Y axis.

La mèche primaire, repérée 2, est formée comme une couche épaisse de matériau poreux ; dans l'exemple illustré, l'épaisseur E2 de cette couche est constante sur toute la surface de l'évaporateur ce qui permet d'utiliser un produit standard bon marché. On peut choisir typiquement pour l'épaisseur E2 de cette mèche primaire une valeur comprise entre 1 et 8 mm, de préférence comprise entre 2 mm et 5 mm.The primary wick, marked 2, is formed as a thick layer of porous material; in the example illustrated, the thickness E2 of this layer is constant over the entire surface of the evaporator, which makes it possible to use an inexpensive standard product. One can typically choose for the thickness E2 of this primary wick a value comprised between 1 and 8 mm, preferably comprised between 2 mm and 5 mm.

La mèche primaire 2 présente une face frontale 20 faisant face à la plaque de réception 1, et une face arrière 25 au contact du liquide 5. Optionnellement, la mèche primaire plane peut être complétée par des parois internes 28 ce qui forme une structure rigide permettant de renforcer la tenue mécanique de l'évaporateur. Ces parois internes peuvent être poreuses ou non-poreuses suivant les besoins éventuels de fonctions de distribution de liquide par capillarité.The primary wick 2 has a front face 20 facing the receiving plate 1, and a rear face 25 in contact with the liquid 5. Optionally, the flat primary wick can be completed by internal walls 28 which form a rigid structure allowing to reinforce the mechanical strength of the evaporator. These internal walls can be porous or non-porous according to the possible needs of liquid distribution functions by capillarity.

Il n'est pas exclu d'avoir une mèche primaire d'épaisseur non constante, comme il sera vu plus loin.It is not excluded to have a primary wick of non-constant thickness, as will be seen later.

Pour cette mèche primaire 2, on choisit de préférence un matériau plutôt mauvais conducteur thermique comme le nickel, l'inox ou le téflon. D'une manière générale on choisira de préférence un matériau ayant une conductivité thermique inférieure à 70 W/mK, de préférence inférieure à 20 W/mK.For this primary wick 2, a rather poor thermal conductor material such as nickel, stainless steel or Teflon is preferably chosen. In general, a material having a thermal conductivity of less than 70 W/mK, preferably less than 20 W/mK, will preferably be chosen.

Avantageusement selon l'invention, les flancs 13 des projections sont revêtus d'une couche fine 3 de matériau poreux.Advantageously according to the invention, the sides 13 of the projections are coated with a thin layer 3 of porous material.

Par couche fine, il faut comprendre généralement une couche d'épaisseur inférieure à 1 mm.By thin layer, it is generally necessary to understand a layer with a thickness of less than 1 mm.

On désigne par plan d'interface P un plan parallèle à YZ adjacent au sommet 12 des projections, et qui dans l'état assemblé de l'évaporateur, coïncide aussi avec la face frontale 20 de la mèche primaire.By interface plane P is meant a plane parallel to YZ adjacent to the top 12 of the projections, and which in the assembled state of the evaporator, also coincides with the front face 20 of the primary wick.

On note que les flancs 13 des projections munis de leur revêtement délimitent avec la face frontale 20 de la mèche primaire la section de passage des canaux de vapeur 4. It is noted that the sides 13 of the projections provided with their coating delimit with the front face 20 of the primary wick the passage section of the steam channels 4.

Pour en revenir à la couche fine 3 de matériau poreux, selon le premier exemple de réalisation, notamment illustré à la figure 4 , son épaisseur n'est pas constante sur les flancs 13 des projections et varie de préférence le long des flancs en s'éloignant de la mèche primaire ; la partie la plus épaisse 31 est disposée au contact de la mèche primaire, au niveau d'une interface 23 placée dans le plan P au voisinage du sommet de chaque projection 12, et l'épaisseur EC de ladite couche fine diminue en s'éloignant de la mèche primaire, jusqu'au voisinage du fond 41 de la rainure où la portion d'extrémité de la couche fine repérée 32 présente une épaisseur quasiment nulle.Going back to the thin layer 3 of porous material, according to the first embodiment, particularly illustrated in figure 4 , its thickness is not constant on the flanks 13 of the projections and preferably varies along the flanks away from the primary wick; the thickest part 31 is placed in contact with the primary wick, at the level of an interface 23 placed in the plane P in the vicinity of the top of each projection 12, and the thickness EC of said thin layer decreases as it moves away of the primary wick, to the vicinity of the bottom 41 of the groove where the end portion of the thin layer marked 32 has an almost zero thickness.

Avantageusement, l'épaisseur EC de la couche fine est partout inférieure à 0,5 mm.Advantageously, the thickness EC of the thin layer is everywhere less than 0.5 mm.

Selon une autre possibilité, on peut choisir pour limite supérieure d'épaisseur EC une valeur inférieure à 0,2 x W. According to another possibility, one can choose for upper limit of thickness EC a value lower than 0,2 x W.

Dans une configuration théorique préférée, en partant de l'interface 23 au contact de la mèche primaire 2, on définit un axe L le long du flanc 13 de la projection, l'épaisseur EC vaut EC1 à l'abscisse L1 et diminue lorsque on se déplace selon L vers le du fond 41 de la rainure, où l'épaisseur EC3 est quasi nulle ou à tout le moins notablement plus fine que la partie EC1, en passant par des épaisseurs intermédiaires EC2. In a preferred theoretical configuration, starting from the interface 23 in contact with the primary wick 2, an axis L is defined along the flank 13 of the projection, the thickness EC equals EC1 at the abscissa L1 and decreases when moves along L towards the bottom 41 of the groove, where the thickness EC3 is almost zero or at the very least notably thinner than the part EC1, passing through intermediate thicknesses EC2.

À noter que sur les différentes figures, le fond de la rainure 41 est considéré comme « ponctuel ». En réalité, du fait des contraires d'usinage et/ou pour faciliter la création de la couche fine 3, il peut exister une zone non couverte par la couche fine 3 dont la dimension est comparable à D3. It should be noted that in the various figures, the bottom of the groove 41 is considered to be “punctual”. In reality, due to machining opposites and/or to facilitate the creation of the thin layer 3, there may exist a zone not covered by the thin layer 3 whose dimension is comparable to D3.

La couche fine 3 est idéalement obtenue à partir d'un matériau bon conducteur thermique, relativement au matériau constituant la mèche primaire 2, comme le cuivre, l'aluminium ou le nickel, ayant une conductivité thermique supérieure à 180 W/mK et de préférence supérieure à 380 W/mK.The thin layer 3 is ideally obtained from a good thermal conductor material, relative to the material constituting the primary wick 2, such as copper, aluminum or nickel, having a thermal conductivity greater than 180 W/mK and preferably greater than 380 W/mK.

Selon un aspect avantageux, le diamètre des pores de la couche fine est inférieur au diamètre des pores de la mèche primaire ; ce qui permet d'approvisionner le liquide depuis la mèche primaire et favoriser la libération de la vapeur en surface de la couche fine.According to an advantageous aspect, the diameter of the pores of the thin layer is smaller than the diameter of the pores of the wick primary ; which makes it possible to supply the liquid from the primary wick and promote the release of vapor on the surface of the thin layer.

La base 10 de l'organe de réception présente une épaisseur H1, typiquement comprise entre 0,5 mm et 5 mm.The base 10 of the receiving member has a thickness H1 , typically between 0.5 mm and 5 mm.

On remarque que le sommet 12 des projections est au contact de la mèche primaire dans un plan P sur une surface (D3xZ2) inférieure à 20 % de la surface utile de la mèche primaire.Note that the top 12 of the projections is in contact with the primary wick in a plane P on a surface (D3xZ2) less than 20% of the useful surface of the primary wick.

Comme visible à la figure 3 , le sommet de la projection 12 et la mèche primaire sont continûment au contact l'un de l'autre le long de la direction Z2 ; autrement dit, il n'y a pas d'interruption de contact entre le sommet des projections et la face inférieure de la mèche primaire.As seen at picture 3 , the top of the projection 12 and the primary wick are continuously in contact with one another along the direction Z2 ; in other words, there is no break in contact between the top of the projections and the underside of the primary wick.

Pour ce qui est de la surface de contact entre la mèche primaire et la couche fine, de chaque côté de la section, on a une largeur notée D1 avec D 1 = EC 1 / cos α .

Figure imgb0001
As regards the contact surface between the primary wick and the thin layer, on each side of the section, there is a width noted D1 with D 1 = CE 1 / cos α .
Figure imgb0001

La surface totale contactée entre la mèche primaire et la plaque de réception revêtue est donc représentée D2 : D 2 = D 1 + D 3 + D 1

Figure imgb0002
The total surface contacted between the primary wick and the coated receiving plate is therefore represented D2: D 2 = D 1 + D 3 + D 1
Figure imgb0002

On note que D2 s'étend typiquement sur 10% à 50% de la largeur de base W. Il n'est pas exclu de monter jusqu'à 80% dans le cas où l'assemblage de la mèche primaire sur l'ensemble des dents est réalisé avec des congés de raccordement (Fig. 10 partie droite). Cette configuration est intéressante dans le cas d'un besoin de tenue mécanique importante ou d'un drainage accru du liquide diphasique.Note that D2 typically extends over 10% to 50% of the base width W. It is not excluded to go up to 80% in the case where the assembly of the primary wick on all of the teeth is made with fillets ( Fig. 10 right side). This configuration is interesting in the case of a need for high mechanical strength or increased drainage of the two-phase liquid.

Par ailleurs, D3 < 0,3 mm.Furthermore, D3 < 0.3 mm.

Par ailleurs, il possible d'avoir D3 = 0, voire un non contact entre la dent et la mèche primaire, à condition d'avoir une épaisseur de couche fine 3 entre le sommet et la mèche primaire 2. Cette configuration permettrait d'augmenter l'effet d'isolation thermique de la zone de transfert liquide entre la mèche primaire et la couche fine.Furthermore, it is possible to have D3=0, or even a non-contact between the tooth and the primary wick, on condition of having a thin layer thickness 3 between the top and the primary wick 2. This configuration would make it possible to increase the thermal insulation effect of the liquid transfer zone between the primary wick and the fine layer.

Les Figures 6 et 7 présentent le fonctionnement de la surface de vaporisation à section progressive (c'est-à-dire la couche fine 3 de matériau poreux). L'épaisseur de cette projection 11 étant importante, son efficacité en tant qu'ailette est proche de 1 et sa résistance thermique est au moins un ordre de grandeur inférieure à celle due à la vaporisation à travers la couche fine 3. Ce qui revient, en première approximation, à considérer que la température de la projection-ailette trapézoïdale varie peu.The Figure 6 and 7 present the operation of the vaporization surface with progressive section (that is to say the thin layer 3 of porous material). The thickness of this projection 11 being large, its effectiveness as a fin is close to 1 and its thermal resistance is at least an order of magnitude lower than that due to vaporization through the thin layer 3. This amounts to, as a first approximation, to consider that the temperature of the trapezoidal projection-fin varies little.

La résistance thermique de la couche fine, saturée ou partiellement saturée de liquide, est inversement proportionnelle à son épaisseur qui varie, à titre d'exemple de façon linéaire entre EC1 et EC3 ( Fig.4 ). En conséquence, le débit vaporisé localement dans la couche 3 suit une courbe 61 comme celle illustrée à la Figure 6 . The thermal resistance of the thin layer, saturated or partially saturated with liquid, is inversely proportional to its thickness which varies, for example, linearly between EC1 and EC3 ( Fig.4 ). Consequently, the flow rate vaporized locally in layer 3 follows a curve 61 like that illustrated in Figure 6 .

Le débit local (exprimé en W/cm2) est extrêmement important à l'endroit de plus faible épaisseur EC3 c'est-à-dire à la base de la dent trapézoïdale 11. Du fait de la géométrie proposée, la densité de flux de chaleur décroit au fur et à mesure que l'on se rapproche de la zone de contact 23 avec la mèche primaire. Dans l'exemple illustré qui correspond également à la Figure 4 , au niveau du sommet 12 de projection, la densité de flux de chaleur est divisée par 20 par rapport au flux pariétal, alors que sur les évaporateurs à projection droite ou bien à rainure réentrante de l'art antérieur, dépourvue de couche fine 3, le flux de chaleur est multiplié par un facteur supérieur à 1.The local flow (expressed in W/cm 2 ) is extremely high at the location of the smallest thickness EC3 , that is to say at the base of the trapezoidal tooth 11. Due to the proposed geometry, the flow density heat decreases as one approaches the contact zone 23 with the primary wick. In the illustrated example which also corresponds to the Figure 4 , at the level of the projection vertex 12 , the heat flux density is divided by 20 with respect to the parietal flux, whereas on the evaporators with straight projection or else with reentrant groove of the prior art, devoid of a thin layer 3, the heat flow is multiplied by a factor greater than 1.

On évite, ou on limite très fortement, ainsi un phénomène d'ébullition à l'interface entre le sommet 12 des projections et la mèche primaire 2. Grâce à ces dispositions, on obtient une interface d'évaporation capable de traiter un flux thermique supérieur à 50 Watts/cm2 en moyenne sur la surface externe de l'évaporateur.A phenomenon of boiling at the interface between the top 12 of the projections and the primary wick 2 is thus avoided, or very greatly limited. at 50 Watts/cm 2 on average on the external surface of the evaporator.

On atteint avantageusement des coefficients d'échange thermique de l'ordre de 30 000 W/(m2K) ou supérieur (référence : surface de contact de la plaque de réception).Advantageously, exchange coefficients heat of the order of 30,000 W/(m 2 K) or higher (reference: contact surface of the receiving plate).

Les inventeurs ont pu constater des puissances thermiques transférées par unité de surface (de la plaque de réception) au-delà de 110 W/cm2.The inventors have been able to observe thermal powers transferred per unit area (of the receiving plate) in excess of 110 W/cm 2 .

Sur la Figure 7 , on voit que la couche fine permet de transférer un débit important de liquide, très supérieur à la quantité de liquide vaporisé au niveau du sommet 12 de la dent; le taux de transfert de liquide dans la couche fine est illustré sur la courbe 62 ; cette courbe 62 représente le ratio QLid(h) / QLiq(L1).On the Picture 7 , it can be seen that the thin layer makes it possible to transfer a high flow rate of liquid, much greater than the quantity of liquid vaporized at the level of the top 12 of the tooth; the liquid transfer rate in the thin layer is illustrated on curve 62; this curve 62 represents the ratio QLid(h)/QLiq(L1).

L'abscisse de la Figure 7 est la hauteur normalisée, c'est-à-dire le ratio h/H2. H est une variable représentant la hauteur par rapport à la base. H2 est la hauteur totale de la projection.The abscissa of the Picture 7 is the normalized height, i.e. the h/H2 ratio. H is a variable representing the height relative to the base. H2 is the total height of the projection.

Le flux conductif QT(h) dans le corps de la dent 11, par rapport à la hauteur normalisée, suit la courbe repérée 63. ; cette courbe 63 représente le ratio QT(h) / QT(0) ou exprimé QT(h) / QT(L2) si on considère que l'abscisse L2 correspond à la base de la projection.The conductive flux QT(h) in the body of the tooth 11 , with respect to the normalized height, follows the curve marked 63 ; this curve 63 represents the ratio QT(h)/QT(0) or expressed QT(h)/QT(L2) if it is considered that the abscissa L2 corresponds to the base of the projection.

On note que la majorité de la puissance thermique transite par la partie inférieure de la dent et par la portion la moins épaisse 32 de la couche fine 3. It is noted that the majority of the thermal power passes through the lower part of the tooth and through the thinnest portion 32 of the thin layer 3.

Cette proportion et les variations naturelles de l'épaisseur de la couche fine 3 lors de la fabrication ainsi que la présence de défauts peuvent faire varier ces profils. La perméabilité et la distribution des pores de la couche fine 3 sont adaptées en conséquence pour permettre la vaporisation au plus près de la base 10 afin de limiter la vaporisation dans la mèche primaire. De même il est possible de faire varier l'épaisseur de la couche fine de façon non linéaire pour améliorer les propriétés hydrauliques et/ou thermiques. La variation linéaire n'est qu'un cas illustratif et simplifié de la présente invention.This proportion and the natural variations in the thickness of the thin layer 3 during manufacture as well as the presence of defects can cause these profiles to vary. The permeability and the distribution of the pores of the thin layer 3 are adapted accordingly to allow vaporization as close as possible to the base 10 in order to limit the vaporization in the primary wick. Similarly, it is possible to vary the thickness of the thin layer in a non-linear manner to improve the hydraulic and/or thermal properties. The linear variation is only an illustrative and simplified case of the present invention.

On remarque que la couche fine peut présenter, soit du fait des imperfections de fabrication, soit intentionnellement, une double porosité, à savoir des premières zones avec des pores plus grands comparés à d'autres zones ou les pores sont plus petits ; dans le même esprit, il n'est pas exclu qu'il y ait des discontinuités dans la couche fine 3 c'est-à-dire des rainures ou des zones isolées dépourvues de couche fine 3 sur le flanc latéral 13 de la projection 11. Note that the thin layer may present, either because manufacturing imperfections, either intentionally, double porosity, ie first areas with larger pores compared to other areas where the pores are smaller; in the same spirit, it is not excluded that there are discontinuities in the thin layer 3 that is to say grooves or isolated zones devoid of thin layer 3 on the lateral flank 13 of the projection 11 .

Par ailleurs, on remarque que s'agissant de l'assemblage de l'évaporateur, la section trapézoïdale proposée permet une transmission robuste des efforts mécaniques, en particulier en compression (assemblage des modules de puissance par vissage).Furthermore, it should be noted that with regard to the assembly of the evaporator, the trapezoidal section proposed allows robust transmission of the mechanical forces, in particular in compression (assembly of the power modules by screwing).

Selon un autre mode de réalisation représenté à la figure 5 , la disposition générale de l'évaporateur est cylindrique. La base 10 est un cylindre recevant le flux Qin, toutefois on applique des dispositions similaires à celles déjà décrites, mutatis mutandis, pour les projections 11, les rainures 4 et la couche fine 3. La mèche primaire 2 se présente comme un manchon tubulaire. Le compartiment liquide 5 est formé par la zone centrale de l'espace intérieur cylindrique. Le fonctionnement au niveau de l'interface de vaporisation et les avantages conférés par la couche fine ne sont pas décrits en détail, ils sont tout à fait similaires à ce qui a été décrit précédemment.According to another embodiment shown in figure 5 , the general arrangement of the evaporator is cylindrical. The base 10 is a cylinder receiving the flow Qin, however arrangements similar to those already described are applied, mutatis mutandis, for the projections 11, the grooves 4 and the thin layer 3. The primary wick 2 is presented as a tubular sleeve. The liquid compartment 5 is formed by the central zone of the cylindrical interior space. The operation at the level of the vaporization interface and the advantages conferred by the thin layer are not described in detail, they are completely similar to what has been described previously.

En référence à la figure 8 , chacune des rainures ou chaque canal de vaporisation 4 est raccordée fluidiquement (en phase vapeur ou liquide) à un canal collecteur 40, lui-même relié à la sortie de l'évaporateur (repère Vap_Out) qui est raccordée à la canalisation vapeur 8 externe.With reference to the figure 8 , each of the grooves or each vaporization channel 4 is fluidly connected (in vapor or liquid phase) to a collecting channel 40, itself connected to the outlet of the evaporator ( Vap_Out reference) which is connected to the external vapor pipe 8 .

Selon un autre exemple de réalisation représenté à la figure 9 , selon un plan de coupe analogue à celui de la figure 8, les projections 11 sont agencées sous forme de plot conique ou de plot pyramidal. Les canaux vapeur 4 sont alors formés par les intervalles entre les plots. Selon une option avantageuse, l'épaisseur décroissante à partir du sommet des plots confère les avantages en termes d'efficacité déjà décrite précédemment.According to another exemplary embodiment shown in figure 9 , according to a section plane similar to that of the figure 8 , the projections 11 are arranged in the form of a conical stud or a pyramidal stud. The steam channels 4 are then formed by the intervals between the pads. According to an advantageous option, the decreasing thickness from the top of the studs confers the advantages in terms of efficiency already described above.

Selon un autre exemple de réalisation non représenté aux figures, les projections peuvent être formées sous forme de nervures circulaires, dans le cas d'un évaporateur en forme de galette ou de disque.According to another exemplary embodiment not shown in the figures, the projections can be formed in the form of circular ribs, in the case of an evaporator in the form of a pancake or disc.

Sur la figure 10 , sont représentés deux variantes, une sur la partie gauche de la figure (10-L) une autre sur la partie droite de la figure (10-R).On the figure 10 , are represented two variants, one on the left part of the figure (10-L) another on the right part of the figure (10-R).

Sur la partie droite, selon un autre exemple de réalisation, l'épaisseur EC de la couche fine est quasi constante. D'une manière générale, dans cette configuration, on choisira une épaisseur EC de la couche fine comprise entre 0,1 mm et 0,8 mm. Le fonctionnement et l'efficacité d'une telle configuration sont tout à fait satisfaisants sans toutefois égaler ceux de la couche fine à épaisseur décroissante tel que décrit ci-dessus. Dans une région proche du fond de la rainure (repère 33), l'épaisseur de la couche fine diminue rapidement jusqu'à 0, en d'autres termes le fond de rainure n'est pas revêtu de matériau la plaque de base est nue.On the right part, according to another exemplary embodiment, the thickness EC of the thin layer is almost constant. In general, in this configuration, a thickness EC of the thin layer of between 0.1 mm and 0.8 mm will be chosen. The operation and efficiency of such a configuration are quite satisfactory without however equaling those of the thin layer with decreasing thickness as described above. In a region close to the bottom of the groove (item 33), the thickness of the thin layer decreases rapidly to 0, in other words the bottom of the groove is not coated with material the base plate is bare .

Dans la partie au contact avec la mèche primaire, il peut être prévu une zone de congé 39 comme illustré par une zone représentée en pointillé, ce qui permet d'augmenter la surface de contact avec la mèche primaire. En effet on voit que la distance notée D1' est substantiellement supérieure à la distance notée D1. In the part in contact with the primary wick, there may be provided a fillet zone 39 as illustrated by a zone shown in dotted lines, which makes it possible to increase the contact surface with the primary wick. In fact, it can be seen that the distance denoted D1' is substantially greater than the distance denoted D1.

Sur la partie gauche 10L, selon un autre exemple de réalisation, l'épaisseur EC de la couche fine est constante, y compris en zone basse 34 et au fond de la rainure 35. En poursuivant vers la gauche, on trouve la portion 36 de la même épaisseur qui recouvre le flanc de la dent suivante.On the left part 10L, according to another exemplary embodiment, the thickness EC of the thin layer is constant, including in the lower zone 34 and at the bottom of the groove 35. Continuing to the left, there is the portion 36 of the same thickness that covers the flank of the next tooth.

Une solution possible pour former une telle couche fine d'épaisseur constante (FIG. 10, coté 'L') est d'utiliser un treillis 38 sous forme d'une feuille métallique à matrice unidirectionnelle. Le treillis est conformé sur les projections y compris sur leurs flancs et se retrouve en contact intime avec l'organe de réception 1.A possible solution to form such a thin layer of constant thickness ( FIG. 10 , side 'L') is to use a mesh 38 in the form of a matrix metal sheet unidirectional. The lattice is shaped on the projections including on their sides and is found in intimate contact with the receiving member 1.

Pour ce processus d'assemblage particulier, le contact avec la zone basse 34 peut présenter une cavité de section globalement triangulaire.For this particular assembly process, the contact with the lower zone 34 may have a cavity with a generally triangular section.

Concernant le procédé de fabrication, et de façon non exhaustive, la préparation de la mèche primaire 2 consiste à découper une nappe de poreux d'épaisseur choisie aux bonnes dimensions, longueur et largeur. Pour l'organe de réception 1, on part d'une plaque de cuivre (ou de Nickel, d'inox ou d'aluminium) d'épaisseur H1+H2 puis on procède à la formation des rainures et des projections par enlèvement de matière, soit par électro-érosion soit par usinage conventionnel ou encore par extrudage, emboutissage ou par matriçage.Regarding the manufacturing process, and in a non-exhaustive manner, the preparation of the primary wick 2 consists in cutting out a sheet of porous material of chosen thickness with the correct dimensions, length and width. For the receiving member 1, one starts with a copper plate (or nickel, stainless steel or aluminum) of thickness H1+H2 then proceeds to the formation of grooves and projections by removal of material , either by electro-erosion or by conventional machining or by extruding, stamping or by stamping.

Puis on forme la couche fine 3 à épaisseur non uniforme (premier mode de réalisation), par exemple, par projection de plasma atmosphérique ou par fabrication additive (impression 3D) ou par pose d'un treillis comme illustré plus haut. Un assemblage par diffusion permet de lier les deux surfaces poreuses au niveau du plan de contact P. Then the thin layer 3 of non-uniform thickness (first embodiment) is formed, for example, by atmospheric plasma spraying or by additive manufacturing (3D printing) or by laying a mesh as illustrated above. An assembly by diffusion makes it possible to link the two porous surfaces at the level of the contact plane P.

Un assemblage par contact sous compression est une autre option possible.A contact assembly under compression is another possible option.

Il faut aussi remarquer que la couche fine 3 pourrait aussi recouvrir le sommet 12 de la dent avant assemblage de la mèche primaire 2. It should also be noted that the thin layer 3 could also cover the top 12 of the tooth before assembly of the primary bit 2.

Claims (11)

  1. A capillary evaporator for a heat transfer system, the evaporator comprising:
    - a heat energy receiving member (1) comprising a base (10) and a plurality of projections (11), each projection extending from the base to a top (12), and whose size decreases with the distance from the base, each projection having lateral flanks (13),
    - a primary wick (2) made of a first porous material and having a front face (20) adjacent to the top of the projections, the lateral flanks of the projections delimiting with the primary wick empty spaces forming vapour channels (4),
    characterised in that the lateral flanks (13) of the projections are coated with a thin layer (3) of porous material, made of a second material different from the first material.
  2. The evaporator according to claim 1, wherein the thin layer (3) has a substantially uniform thickness.
  3. The evaporator according to claim 1, wherein the thin layer (3) has a non-uniform thickness, the thickest part (31) of the thin layer being disposed in contact with the primary wick near the top of each projection, and the thickness (EC) of said thin layer decreasing away from the primary wick.
  4. The evaporator according to one of claims 1 to 3, wherein the projections are formed in the shape of rectilinear ribs of trapezoidal section.
  5. The evaporator according to claim 4, wherein the projections are adjacent to each other and each vapour channel has a generally triangular section with the tip directed towards the base of the receiving member.
  6. The evaporator according to claim 5, wherein the section is formed as a symmetrical isosceles trapezoid, with a base W and a short side D3 such that D3 < 0.2 W, and the short side D3 has a size < 0.3 mm.
  7. The evaporator according to one of claims 4 to 6, wherein the half-angle of opening at the top α is less than 45° and is preferably comprised between 5° and 30°.
  8. The evaporator according to one of claims 1 to 7, wherein the primary wick (2) is obtained from a first material that is a poor heat conductor, such as ceramic, stainless steel or Teflon.
  9. The evaporator according to one of claims 1 to 8, wherein the thin layer (3) is obtained from a second material that is a good heat conductor, such as copper, aluminium or nickel.
  10. The evaporator according to one of claims 1 to 9, wherein the diameter of the pores of the thin layer (3) is smaller than the diameter of the pores of the primary wick (2).
  11. A heat transfer system comprising an evaporator according to one of the preceding claims, a condenser, fluid pipes with either gravity pumping, namely a thermosiphon configuration, or capillary pumping only or in combination with a jet or mechanical pumping.
EP18717606.0A 2017-04-18 2018-04-12 Evaporator having an optimized vaporization interface Active EP3612782B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1753365A FR3065279B1 (en) 2017-04-18 2017-04-18 EVAPORATOR WITH OPTIMIZED VAPORIZATION INTERFACE
PCT/EP2018/059450 WO2018192839A1 (en) 2017-04-18 2018-04-12 Evaporator having an optimized vaporization interface

Publications (2)

Publication Number Publication Date
EP3612782A1 EP3612782A1 (en) 2020-02-26
EP3612782B1 true EP3612782B1 (en) 2022-05-11

Family

ID=59070886

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18717606.0A Active EP3612782B1 (en) 2017-04-18 2018-04-12 Evaporator having an optimized vaporization interface

Country Status (6)

Country Link
US (1) US11300361B2 (en)
EP (1) EP3612782B1 (en)
JP (1) JP7100665B2 (en)
CN (1) CN110741215B (en)
FR (1) FR3065279B1 (en)
WO (1) WO2018192839A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3913312B1 (en) * 2020-05-19 2023-03-08 Accelsius, LLC Heat exchanger apparatus and cooling systems comprising heat exchanger apparatus
JP7444704B2 (en) 2020-06-04 2024-03-06 古河電気工業株式会社 Heat transfer member and cooling device having heat transfer member
US20210396477A1 (en) * 2020-06-18 2021-12-23 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Architecture and Operational Modes of Pump-Augmented Loop Heat Pipe with Multiple Evaporators
CN114383447A (en) * 2020-10-22 2022-04-22 南京中兴软件有限责任公司 Evaporator and loop heat pipe
TWI767421B (en) * 2020-11-24 2022-06-11 財團法人金屬工業研究發展中心 Heat transferring system

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3598180A (en) * 1970-07-06 1971-08-10 Robert David Moore Jr Heat transfer surface structure
JPH0814785A (en) * 1994-07-01 1996-01-19 Mitsubishi Cable Ind Ltd Heat exchanger tube
US5725049A (en) 1995-10-31 1998-03-10 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Capillary pumped loop body heat exchanger
JP3450148B2 (en) 1997-03-07 2003-09-22 三菱電機株式会社 Loop type heat pipe
US6227287B1 (en) * 1998-05-25 2001-05-08 Denso Corporation Cooling apparatus by boiling and cooling refrigerant
FR2783313A1 (en) 1998-09-15 2000-03-17 Matra Marconi Space France HEAT TRANSFER DEVICE
US7775261B2 (en) * 2002-02-26 2010-08-17 Mikros Manufacturing, Inc. Capillary condenser/evaporator
WO2003073032A1 (en) 2002-02-26 2003-09-04 Mikros Manufacturing, Inc. Capillary evaporator
US20050022976A1 (en) * 2003-06-26 2005-02-03 Rosenfeld John H. Heat transfer device and method of making same
JP4718350B2 (en) * 2006-03-14 2011-07-06 株式会社フジクラ Evaporator and loop heat pipe using this evaporator
US20090314472A1 (en) * 2008-06-18 2009-12-24 Chul Ju Kim Evaporator For Loop Heat Pipe System
US20130219954A1 (en) * 2010-11-02 2013-08-29 Nec Corporation Cooling device and method for producing the same
JP2012132661A (en) * 2010-12-01 2012-07-12 Fujitsu Ltd Cooling device and electronic device
US8811014B2 (en) * 2011-12-29 2014-08-19 General Electric Company Heat exchange assembly and methods of assembling same
CN102425968B (en) * 2012-01-04 2014-03-26 中国电子科技集团公司第三十八研究所 Compact type loop heat pipe device
CN102878845A (en) * 2012-09-18 2013-01-16 华南理工大学 Inner groove porous strengthened boiling micro-channel structure, manufacture method and application
CN103629963B (en) * 2013-12-16 2015-06-24 华北电力大学 Multi-scale capillary core flat plate loop heat pipe type heat-dissipation device
JP5759606B1 (en) 2014-09-30 2015-08-05 株式会社フジクラ heat pipe
CN105352349B (en) * 2015-11-27 2017-12-22 华中科技大学 A kind of secondary core evaporator and its application

Also Published As

Publication number Publication date
FR3065279B1 (en) 2019-06-07
EP3612782A1 (en) 2020-02-26
US11300361B2 (en) 2022-04-12
WO2018192839A1 (en) 2018-10-25
JP7100665B2 (en) 2022-07-13
CN110741215A (en) 2020-01-31
US20200124354A1 (en) 2020-04-23
FR3065279A1 (en) 2018-10-19
CN110741215B (en) 2021-11-02
JP2020516845A (en) 2020-06-11

Similar Documents

Publication Publication Date Title
EP3612782B1 (en) Evaporator having an optimized vaporization interface
EP3027994B1 (en) Evaporator with simplified assembly for diphasic loop
EP3207324B1 (en) Flat heat pipe with reservoir function
EP2181301B1 (en) Thermal regulation passive device with fluid micro loop and capillary pumping
EP3553445B1 (en) Improved heat pipe with capillar structures having reentering slots
EP3355019B1 (en) Cooling device
FR2599131A1 (en) PANEL AND THERMAL TRANSFER SYSTEM WITH CAPILLARITY PUMPING
EP0567393B1 (en) High thermal performance plate evaporator working under nucleate boiling conditions
EP1068481B1 (en) Heat exchanging device with active two-phase fluid and method for making same
EP3553444B1 (en) Improved heat pipe
EP3027995B1 (en) Evaporator with non-return device for diphasic loop
FR2998095A1 (en) COOLING MODULE OF THERMAL PANEL
FR3043448A1 (en) COOL-COOLED LIGHT MODULE WITH TEXTURED SURFACE
FR3080173A1 (en) THERMOSIPHON AND PULSE CALCULATION OF SIMPLIFIED REALIZATION
FR3138942A1 (en) Capillary pumping type heat pipe, with reentrant grooves integrating at least one porous substrate into the evaporator.
FR3138687A1 (en) HEAT EXCHANGER
EP4345575A1 (en) Method for manufacturing heat sink
EP3207326B1 (en) Heat exchanger
WO2004102100A2 (en) Heat exchanging plate, method for the production thereof, corresponding plate heat exchanger and use thereof
FR3081214A1 (en) EVAPORATOR OF A FLUID LOOP AND FLUID LOOP COMPRISING SUCH EVAPORATOR
FR3128278A1 (en) MODULE FOR THE MANUFACTURING OF A CAPILLARY PUMP HEAT PIPE WITH RE-ENTRATING GROOVES
FR3128279A1 (en) Capillary pumped type heat pipe with reentrant grooves with increased boiling and capillary limits.
FR3138941A1 (en) Capillary pumping type heat pipe, with reentrant grooves transverse to the longitudinal axis of the heat pipe.
FR3098079A1 (en) Method of integrating a heat pipe into a plate intended to form an electrical contact
FR3051548A1 (en) COOLING DEVICE WITH PULSE CALODUC

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191011

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211221

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1491737

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018035407

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220511

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1491737

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220912

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220811

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220812

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220811

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018035407

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

26N No opposition filed

Effective date: 20230214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230412

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230424

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230424

Year of fee payment: 6

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230412

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240321

Year of fee payment: 7