EP3612735B1 - Pressure compensation device designed for underwater applications - Google Patents

Pressure compensation device designed for underwater applications Download PDF

Info

Publication number
EP3612735B1
EP3612735B1 EP18713887.0A EP18713887A EP3612735B1 EP 3612735 B1 EP3612735 B1 EP 3612735B1 EP 18713887 A EP18713887 A EP 18713887A EP 3612735 B1 EP3612735 B1 EP 3612735B1
Authority
EP
European Patent Office
Prior art keywords
piston
accumulator
pressure compensation
compensation device
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18713887.0A
Other languages
German (de)
French (fr)
Other versions
EP3612735A1 (en
Inventor
Juergen Schneider
Alexandre ORTH
Gottfried Hendrix
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3612735A1 publication Critical patent/EP3612735A1/en
Application granted granted Critical
Publication of EP3612735B1 publication Critical patent/EP3612735B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/04Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/04Accumulators
    • F15B1/08Accumulators using a gas cushion; Gas charging devices; Indicators or floats therefor
    • F15B1/10Accumulators using a gas cushion; Gas charging devices; Indicators or floats therefor with flexible separating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/04Accumulators
    • F15B1/08Accumulators using a gas cushion; Gas charging devices; Indicators or floats therefor
    • F15B1/10Accumulators using a gas cushion; Gas charging devices; Indicators or floats therefor with flexible separating means
    • F15B1/16Accumulators using a gas cushion; Gas charging devices; Indicators or floats therefor with flexible separating means in the form of a tube
    • F15B1/165Accumulators using a gas cushion; Gas charging devices; Indicators or floats therefor with flexible separating means in the form of a tube in the form of a bladder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/04Accumulators
    • F15B1/08Accumulators using a gas cushion; Gas charging devices; Indicators or floats therefor
    • F15B1/24Accumulators using a gas cushion; Gas charging devices; Indicators or floats therefor with rigid separating means, e.g. pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B20/00Safety arrangements for fluid actuator systems; Applications of safety devices in fluid actuator systems; Emergency measures for fluid actuator systems
    • F15B20/005Leakage; Spillage; Hose burst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/20Accumulator cushioning means
    • F15B2201/21Accumulator cushioning means using springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/30Accumulator separating means
    • F15B2201/31Accumulator separating means having rigid separating means, e.g. pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/30Accumulator separating means
    • F15B2201/31Accumulator separating means having rigid separating means, e.g. pistons
    • F15B2201/312Sealings therefor, e.g. piston rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/30Accumulator separating means
    • F15B2201/315Accumulator separating means having flexible separating means
    • F15B2201/3151Accumulator separating means having flexible separating means the flexible separating means being diaphragms or membranes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/30Accumulator separating means
    • F15B2201/315Accumulator separating means having flexible separating means
    • F15B2201/3152Accumulator separating means having flexible separating means the flexible separating means being bladders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/30Accumulator separating means
    • F15B2201/32Accumulator separating means having multiple separating means, e.g. with an auxiliary piston sliding within a main piston, multiple membranes or combinations thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/40Constructional details of accumulators not otherwise provided for
    • F15B2201/405Housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/50Monitoring, detection and testing means for accumulators
    • F15B2201/515Position detection for separating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/86Control during or prevention of abnormal conditions
    • F15B2211/863Control during or prevention of abnormal conditions the abnormal condition being a hydraulic or pneumatic failure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/875Control measures for coping with failures
    • F15B2211/8757Control measures for coping with failures using redundant components or assemblies

Definitions

  • the present invention relates to a pressure compensation device for a hydraulic system designed for underwater applications.
  • hydraulic and / or electrical and / or mechanical components under water is problematic because the components can be damaged by water, in particular sea water.
  • the high ambient pressure of the water makes pressure compensation necessary.
  • Hydraulic pressure compensators can be used for this, which can raise the pressure level of a hydraulic system used in the underwater area to the ambient pressure prevailing in the water.
  • membranes can be used which are exposed to the surrounding seawater on one side and which are connected to a reservoir of the hydraulic system on the other side.
  • a disadvantage of this arrangement is that if the membrane which forms an interface is damaged, seawater can penetrate the hydraulic system.
  • the membrane can be loaded with a compression spring, the spring force of which can decrease and thus the maintenance-free operating time can be limited.
  • DE 10 2011 009276 A1 discloses a device for transmitting a hydraulic working pressure in a pressure fluid for pressure actuation of hydraulic devices of deep-sea systems, in particular a so-called "blow-out preventer” (BOP), which is arranged as a safety system in a deep water borehole at great depths of the sea.
  • BOP low-out preventer
  • the working pressure in the cylinder arrangement is not generated or transmitted by means of the seawater acting directly on a piston arrangement, but a pressure accumulator is connected upstream of the cylinder arrangement, from which the cylinder arrangement can be supplied with an actuating fluid that is under deep sea pressure.
  • the movable separating element of the Pressure accumulator before the actuating fluid with the existing deep sea pressure.
  • U.S. 3,581,774 discloses another known device adapted for underwater applications.
  • a pressure compensation device which is set up for applications under water, contributes to this. It serves to seal an interior of a housing, which itself forms an (inner) fluid area, from the surrounding seawater area, with the pressure compensation device being able to raise a pressure level of the fluid area to at least the ambient pressure prevailing in the seawater area.
  • the hydraulic system which is set up for applications under water, can consequently comprise an interior of a housing (for example a hydraulic and / or electrical component, such as an electric motor, a pump, a tank or the like), which forms a fluid area which is opposite the surrounding seawater area is sealed.
  • the at least one hydraulic pressure compensation device which can raise the pressure level of the fluid (hydraulic fluid, transformer oil, lubricant, etc.) in the fluid area to at least the ambient pressure prevailing in the (surrounding) seawater area.
  • the pressure compensation device is constructed in two stages such that at least one accumulator with a flexible wall area and at least one piston accumulator with a displaceable piston are arranged in series.
  • the device proposed here with a fluid-filled system (or hydraulic system or electrical system with transformer oil or mechanical system with lubricant) arranged under water has the particular advantage that underwater pressure compensation with a double (redundant) barrier against penetration of Lake water is realized.
  • the two barriers are arranged and connected in series.
  • the movement of the flexible wall can then (separated from the direct influence of the seawater) be transferred to a movement of the piston in the piston accumulator located downstream.
  • a transmission medium, in particular a liquid, can be used for this purpose.
  • the (resulting) movement of the piston can (directly) lead to a pressure adjustment in the fluid area, for which purpose the piston is preferably in direct contact with the fluid area.
  • the piston is preferably in direct contact with the fluid area.
  • the internal fluid e.g. a hydraulic medium, transformer oil or lubricant
  • the internal fluid is insulated and can therefore have a pressure that is essentially the same or even higher than that of the environment (e.g. seawater).
  • the two barriers flexible wall and piston
  • the two barriers mean that the seawater has to pass two sealing points (membrane and piston seal) before it can penetrate the system (redundancy to prevent system errors).
  • Another factor contributing to reliability is that no compression spring directly acts on or loads the flexible wall (e.g. in the manner of a membrane), which significantly increases the service life of the system.
  • the piston of the piston accumulator is loaded by at least one compression spring.
  • the compression spring can be used to set a predeterminable bias, for. B. to set an increased pressure level on the fluid area compared to the pressure generated by the seawater.
  • the piston is designed in particular with a rigid piston plate on which the compression spring acts. Damage or overloading of this rigid piston due to the compression spring load can thus be permanently avoided.
  • the fluid in the fluid area is preferably pretensioned at 0.5 to 10 bar with respect to the pressure of the surrounding seawater area.
  • a correspondingly designed compression spring can be provided in the piston accumulator, with which the preload above the seawater pressure level can be adjusted.
  • the storage tank (in operative connection with the seawater) with a flexible wall area can be a membrane storage tank or a bladder storage tank.
  • a diaphragm accumulator a diaphragm can be provided which is essentially plate-shaped, the circumference of which is (firmly) connected to a memory wall, and which is movable radially inwardly in response to a pressure prevailing there.
  • a bladder accumulator can be designed with a flexible wall which encloses a predeterminable bladder accumulator volume and can move axially and radially in response to a pressure prevailing there.
  • the flexible wall and / or the membrane are in particular fluid-tight and resistant to contact with seawater under high pressure.
  • a displacement sensor is advantageously assigned to the piston of the piston accumulator.
  • the displacement sensor is set up in particular to detect the current stroke or the current position of the piston with reference to a reference position or the piston accumulator.
  • a displacement transducer in this sense is in particular a sensor by means of which a position of the piston can be determined or measured directly / indirectly.
  • the sensor can comprise a limit switch, a pressure switch. This enables a possible leakage to be monitored by observing the position of the piston, e.g. B. if a movement of the piston is determined with unchanged pressure conditions.
  • the piston of the piston accumulator can comprise a plurality of sealing devices arranged downstream (in the effective direction of the pressure).
  • the piston can preferably seal an opening of a second interior space of the piston accumulator with respect to the fluid area.
  • the piston can additionally have at least one seal that can swell (on contact with seawater) compared to a cylinder tube (piston-cylinder housing).
  • an intermediate space is formed which is filled with a transmission medium (fluid and / or gas).
  • a (outlet-side) second interior space of a diaphragm or bladder accumulator and a (inlet-side) first interior space of a piston accumulator advantageously form an intermediate space (partially or completely) filled with a fluid and / or gas.
  • the fluid (or transmission fluid) in the (output-side) second interior space of the accumulator with a flexible wall area and the (input-side) first interior space of the piston accumulator is preferably a hydraulic fluid, a mechanical grease-like medium or a dielectric transformer oil.
  • the fluid in the (outlet-side) second interior space of the piston accumulator and in the fluid area is advantageously an oil, in particular a transformer oil.
  • the pressure compensation device is further preferably designed in the manner of a hollow cylinder in such a way that an internal bladder accumulator is surrounded by an external piston accumulator.
  • This enables a particularly compact design.
  • seawater can expand / shrink the bladder accumulator inside the piston accumulator (axially and / or radially) according to the ambient pressure underwater.
  • the resulting change in volume of the bladder accumulator shifts z.
  • a piston plate can interact with the bladder accumulator loosely or only via the transmission medium.
  • An arrangement is expedient in which several pressure compensation elements are arranged in bores in the drum shell of a type of drum, through the central opening of which an adjusting axis of an electronic or hydraulic component can be guided.
  • the drum can have a plurality of bores arranged distributed over a drum circumference and a central passage opening.
  • the holes are suitable for holding pressure compensation elements.
  • the pressure compensation elements can be connected in parallel and / or in series with one another in order to increase the redundancy in the event of a failure and / or to adapt the stroke compensation (jointly).
  • the central passage opening can be arranged (sealing) around an adjusting axis of an electronic or hydraulic component (electric motor, pump, cylinder compensation, etc.).
  • a pressure compensation device proposed here (or the above arrangement with a drum) for applying pressure to at least one housing filled with fluid (e.g. with hydraulic fluid, oil, grease, lubricant, etc.) for a hydraulic adjusting axis of an electric motor, a Suggested pump and / or cylinder compensation.
  • the at least one pressure compensation device is used in particular to apply ambient pressure (water pressure) to an integrated hydraulic adjusting axis (electric motor, pump, cylinder compensation) in its oil-filled housing.
  • the (several) pressure compensators are preferably accommodated in a type of drum.
  • the cylinder or a rod of the cylinder can be filled through the central opening of the drum, which enables a space-saving, integrated design.
  • the measures proposed here are based in particular on the idea of designing a two-stage pressure compensator with a bladder or diaphragm accumulator that forms the seawater / intermediate pressure space interface and a piston or spring-piston accumulator that makes contact with the hydraulic reservoir. Instead of one, there are now two interfaces; this increases the tightness and durability.
  • a spring can be used to set a prestress in the piston or spring-piston accumulator which is above the seawater pressure level.
  • Fig. 1 shows the basic representation of a circuit diagram of a pressure compensation device 1 with - arranged and connected in series - a memory 2 with a flexible wall area 4 and a piston memory 3 with a displaceable piston 5.
  • the memory 2 with flexible wall area 4 is in the Fig. 1, 2 and 3rd using the example of a diaphragm accumulator and in the Fig. 4 and 5 explained using the example of a bladder accumulator.
  • the flexible wall 4 is in the Fig. 1, 2 and 3rd using the example of an impenetrable membrane 9 and in the Fig. 4 and 5 explained using the example of an impenetrable bladder 23.
  • the diaphragm accumulator 2 has a first interior space 2.1 (on the inlet side) and a second interior space 2.2 (on the outlet side). on, which by a flexible wall area 4, z. B. an elastic metal membrane (or according to Fig. 4 a rubber bladder), separated from each other and sealed against each other.
  • the piston accumulator 3 has a first inner space 3.1 (on the inlet side) and a second inner space 3.2 (on the outlet side), which are separated from one another by the displaceable piston 5 and sealed from one another by seals. 6 with a dash-dotted line denotes a schematic dividing line, on the right-hand side of which the seawater area 7 is located and on the left-hand side of which the (inner) fluid area 8 is located.
  • a filter 35 for the seawater is upstream of the membrane storage tank. The seawater filter can be used to prevent dirt particles from clogging the bore to the membrane.
  • a displacement sensor 10 is assigned to the displaceable piston 5 of the piston accumul
  • Fig. 2 illustrates a block diagram of the pressure compensation device 1, e.g. B. also according to Fig. 1 , between the seawater area 7 and the fluid area 8.
  • the first interior space 2.1 of the membrane reservoir 2 is connected to the seawater area 7 and the second interior space 3.2. of the piston accumulator 3 is connected to the fluid area 8.
  • the second interior 2.2 of the diaphragm accumulator 2 and the first interior 3.1 of the piston accumulator 3 functionally form a common interspace 11.
  • the interspace 11 can be designed as a single space.
  • the intermediate space 11 can also consist of two individual spaces, that is to say of the second interior 2.2 and the first interior 3.1, which are connected to one another by a pipeline or the like.
  • first limit e.g. B. a membrane 9
  • second limit z. B. a piston 5
  • the two boundaries 12, 13 form a twofold security (redundancy) against the ingress of sea water into the fluid area 8.
  • the first interior space 2.1 of the membrane reservoir 2 is filled with seawater (first medium 27) which loads one side of the membrane 9 with the ambient pressure prevailing in the water.
  • the water pressure in the sea water area 7 and in the first interior space 2.1 is the same.
  • a second medium 28 transmission medium
  • the second medium 28 is pressurized through the other side of the membrane 9, so that the intermediate space 11 forms an intermediate pressure space.
  • the pressure of the medium 28 continues to load one side of the piston 5 of the piston accumulator 3.
  • the second interior 3.2 of the piston accumulator 3 is filled with a third medium 29, preferably with transformer oil.
  • the other side of the piston 5 exerts pressure on the medium 29.
  • This pressure also acts on the medium 29, which the (not shown) downstream devices such. B. tank, housing, fills.
  • the pressure in the inner fluid area 8 and in the second interior 3.2 of the piston accumulator 3 is therefore the same.
  • the system device connected downstream of the pressure compensation device 1 can be designed as a container-like module, with several modules of this type being able to be deposited on the seabed.
  • the container is filled with a dielectric liquid, e.g. B. a hydraulic oil, filled so that all components in the module are immersed in the liquid.
  • the pressure compensation device 1 achieves pressure compensation between the interior of the container and the external environment (seawater area 7) in such a way that the liquid in the container is put under the same pressure as is prevailing in the external environment.
  • the pressure compensation device 1 has two separating surfaces or boundary surfaces: a flexible separating element (membrane 9 or bladder) 23), which is in contact on one side with the sea water, and a piston 5, which is acted upon on its other side by the liquid in the container.
  • the space 11 is arranged between the two separating elements.
  • the pressure compensation device 1 presented here has the particular advantage that seawater that has unintentionally penetrated through the membrane 9 does not (directly) enter the container, but remains in the intermediate space 11, hindered by the piston 5, and can be removed there. There is thus a double security against ingress of sea water.
  • An additional further safeguard is that the piston 5 of the piston accumulator 3 is secured by a compression spring 22 (see also Fig.
  • the preload pressure is slightly greater than the ambient pressure, e.g. B. 0.5 to 10 bar, so that the ingress of seawater into the downstream device is prevented.
  • the piston 5 is assigned the displacement sensor 10, which monitors the position of the piston 5.
  • Fig. 3 shows a circuit diagram of a pressure compensation device, such as. B. also after Fig. 1 , but with two membrane accumulators 2a, 2b and three piston accumulators 3a, 3b, 3c, which are each arranged and connected parallel to one another. In this way, a larger volume of the interior spaces of the diaphragm accumulators 2a, 2b and the piston accumulators 3a, 3b, 3c is realized.
  • the Fig. 4 illustrates a structural embodiment of a pressure compensation device 1, in particular also according to the in FIG Fig. 1 shown circuit diagram.
  • the embodiment is characterized in that the accumulator 2 with the flexible wall area 4 and the piston accumulator 3 are designed in the manner of a compact cylinder, whereby a particularly space-saving design is realized.
  • the pressure compensation device 1 is designed like a hollow cylinder in such a way that an internal bladder accumulator 2 is surrounded by an external piston accumulator 3.
  • the piston accumulator 3 consists of a cylinder tube 14 and a piston 5 as a separating element.
  • On a first end face 14.1 of the cylinder tube 14 there is a closure cover 15 which has a central through opening 16.
  • the bladder 23 has two (axially) opposite end regions, with the end regions facing the piston 5 or the closure cover 15 and the central region facing the hollow cylinders 20, 21, each at a distance, in such a way that an intermediate space 11 is formed.
  • the lower end region of the bladder 23 merges into a hollow cylinder-like, continuous connection 24 with an opening 34 for the passage of seawater (first medium 27) which extends through the opening 16.
  • the mode of operation is that a first medium 27 (seawater) loaded with pressure fills the bladder 23, which expands under the pressure and thus in turn displaces a second medium 28 outside the bladder 23.
  • This medium 28 is in turn clamped between the bladder 23 and the piston 5 and, by expanding the bladder 23 and the medium 28, drives it in the axial direction (cylinder function).
  • the piston 5 additionally seals against the cylinder tube 14 by means of a piston seal 19 (redundant).
  • the piston 5 is preloaded with a compression spring 22 and thus ensures that the system is pretensioned against the pressure from the first medium 27.
  • there is a medium on the piston side which is a third medium 29 or the same medium as the second medium 28 can be separated from and loaded with a bias against the first medium 27.
  • the pressure compensation can be safeguarded against a possible leakage of the first medium 27 by damaging the bladder 23 when the preload is fully discharged (piston 5 in end position) as well as with pressure compensation, e.g. B. Leakage of the piston seal 19 may be provided.
  • the piston 5 of the pressure compensation moves into the end position by the spring 22 and thus closes the opening 18 at the outlet by an (ring-shaped) seal 25 on the piston 5.
  • a cylindrical projection 30 on the piston 5 preferably engages in the opening 18 in a form-fitting manner.
  • protection can optionally be provided by an additional sealing ring 31 on the piston 5, which swells, for example, through contact with another medium, apart from the operating fluid or transmission fluid.
  • the swelling of the sealing ring 31 results in a form fit, which creates a seal between the piston 5 and the cylinder tube 14.
  • the pressure compensation is used to balance two pressures in a system that work with media that are used separately, such as. B. Oil and water.
  • media that are used separately, such as. B. Oil and water.
  • one side with a higher pressure can be pretensioned by means of the spring 22 in order to prevent the other medium with a lower pressure from penetrating into the system.
  • the separation is redundant, since here two different methods of separating liquid or gaseous media are arranged in series without requiring a large amount of space.
  • Fig. 5 shows an arrangement for a plurality of pressure compensation devices 1 (for example according to FIG Fig. 4 ) in a common holding element.
  • the pressure compensation devices 1 are arranged parallel to one another in the longitudinal direction. This creates a larger volume for pressure compensation (redundancy).
  • a hollow cylinder 32 in the manner of a drum - in Fig. 5 cut open in half - has a cylinder jacket 32.1 (hollow cylinder wall) and a cylinder interior 32.2.
  • the cylinder jacket 32.1 is penetrated by a plurality of through bores 33.1, 33.2 aligned in the longitudinal direction parallel to the central axis, into each of which a pressure compensation device 1 is inserted in a form-fitting manner.
  • Fig. 5 only one pressure compensation device 1 arranged in a bore 33 - cut open in half - is shown.
  • the hollow cylinder 32 is formed as a drum similar to a revolver magazine.
  • the pressure compensation device 1 can be used to apply ambient pressure (water pressure) to an integrated hydraulic adjusting axis 17 (electric motor, pump, cylinder compensation) in its oil-filled housing.
  • the (several) pressure compensators 1 are accommodated in a type of drum for this purpose.
  • the cylinder or a rod of the cylinder can be guided through the central opening or the cylinder interior 32.2 of the drum, which enables a space-saving, integrated design.

Description

Die vorliegende Erfindung betrifft eine Druckkompensationseinrichtung für ein hydraulisches System eingerichtet für Anwendungen unter Wasser.The present invention relates to a pressure compensation device for a hydraulic system designed for underwater applications.

Der Einsatz von hydraulischen und/oder elektrischen und/oder mechanischen Komponenten unter Wasser, insbesondere in großen Tiefen, ist problematisch, weil die Komponenten durch Wasser, insbesondere Seewasser, geschädigt werden können. Insbesondere der hohe Umgebungsdruck des Wassers macht eine Druckkompensation erforderlich. Hierfür können hydraulische Druckkompensatoren eingesetzt werden, die das Druckniveau eines im Unterwasserbereich eingesetzten hydraulischen Systems auf den im Wasser vorherrschenden Umgebungsdruck anheben können. Dazu können Membranen eingesetzt werden, die auf einer Seite mit Seewasser der Umgebung beaufschlagt sind und auf der anderen Seite mit einem Reservoir des hydraulischen Systems in Verbindung stehen. Ein Nachteil dieser Anordnung besteht darin, dass bei einer Beschädigung der Membran, die eine Grenzfläche bildet, Seewasser in das hydraulische System eindringen kann. Außerdem ist zu berücksichtigen, dass die Membran mit einer Druckfeder belastet sein kann, deren Federkraft nachlassen und somit die wartungsfreie Betriebszeit begrenzt sein kann.The use of hydraulic and / or electrical and / or mechanical components under water, in particular at great depths, is problematic because the components can be damaged by water, in particular sea water. In particular, the high ambient pressure of the water makes pressure compensation necessary. Hydraulic pressure compensators can be used for this, which can raise the pressure level of a hydraulic system used in the underwater area to the ambient pressure prevailing in the water. For this purpose, membranes can be used which are exposed to the surrounding seawater on one side and which are connected to a reservoir of the hydraulic system on the other side. A disadvantage of this arrangement is that if the membrane which forms an interface is damaged, seawater can penetrate the hydraulic system. In addition, it must be taken into account that the membrane can be loaded with a compression spring, the spring force of which can decrease and thus the maintenance-free operating time can be limited.

DE 10 2011 009276 A1 offenbart eine Vorrichtung zum Übertragen eines hydraulischen Arbeitsdruckes in einer Druckflüssigkeit zur Druckbetätigung hydraulischer Einrichtungen von Tiefseeanlagen, insbesondere einem sog. "Blow-out-Preventer" (BOP), der als Sicherheitsanlage bei einer Tiefwasserbohrung in großer Meerestiefe angeordnet ist. Dabei der Arbeitsdruck in der Zylinderanordnung nicht mittels des auf eine Kolbenanordnung unmittelbar einwirkenden Seewassers erzeugt oder übertragen, sondern der Zylinderanordnung ist ein Druckspeicher vorgeschaltet, aus dem der Zylinderanordnung ein Betätigungsfluid, das unter dem Tiefseedruck steht, zuführbar ist. Dabei spannt das bewegliche Trennelement des Druckspeichers das Betätigungsfluid mit dem vorliegenden Tiefseedruck vor. Damit wird ein Energiespeicher für eine einmalige Schließbewegung der Zylinderanordnung offenbart. Eine solche Vorrichtung ist aber nicht eingerichtet, eine Druckkompensation für ein hydraulisches System auch bei sich ändernden, insbesondere wieder reduzierten Umgebungsdrücken durchzuführen, wie es gegebenenfalls bei beweglichen Vorrichtungen gewünscht ist, wie beispielsweise bei Tauchbooten, ROV's (Remotely Operated Vehicle) oder AUV's (Autonomous Underwater Vehicle). DE 10 2011 009276 A1 discloses a device for transmitting a hydraulic working pressure in a pressure fluid for pressure actuation of hydraulic devices of deep-sea systems, in particular a so-called "blow-out preventer" (BOP), which is arranged as a safety system in a deep water borehole at great depths of the sea. The working pressure in the cylinder arrangement is not generated or transmitted by means of the seawater acting directly on a piston arrangement, but a pressure accumulator is connected upstream of the cylinder arrangement, from which the cylinder arrangement can be supplied with an actuating fluid that is under deep sea pressure. The movable separating element of the Pressure accumulator before the actuating fluid with the existing deep sea pressure. An energy store for a single closing movement of the cylinder arrangement is thus disclosed. However, such a device is not set up to carry out pressure compensation for a hydraulic system even when ambient pressures change, in particular reduced again, as may be desired for movable devices, such as diving boats, ROVs ( Remotely Operated Vehicles ) or AUVs ( Autonomous Underwater) Vehicle ) .

US 3 581 774 offenbart eine andere bekannte Vorrichtung, die für Anwendungen unter Wasser eingerichtet ist. U.S. 3,581,774 discloses another known device adapted for underwater applications.

Hiervon ausgehend ist es Aufgabe der vorliegenden Erfindung, eine Druckkompensationseinrichtung zu schaffen und eine Verwendung anzugeben, die die genannten Nachteile lindern oder sogar vermeiden. Insbesondere soll auf konstruktiv einfache Weise ein Eindringen von Seewasser in das hydraulische System zuverlässig vermieden werden. Weiterhin soll die Betriebsdauer der Druckkompensationseinrichtung signifikant gesteigert werden.Proceeding from this, it is the object of the present invention to create a pressure compensation device and to specify a use which alleviates or even avoids the disadvantages mentioned. In particular, the ingress of seawater into the hydraulic system is to be reliably prevented in a structurally simple manner. Furthermore, the service life of the pressure compensation device should be increased significantly.

Diese Aufgaben werden gelöst mit einer Druckkompensationseinrichtung und einer Verwendung gemäß den unabhängigen Patentansprüchen. Weitere Ausgestaltungen der Erfindung sind in den abhängigen Patentansprüchen angegeben. Es ist darauf hinzuweisen, dass die Beschreibung, insbesondere im Zusammenhang mit den Figuren, weitere Einzelheiten und Weiterbildungen der Erfindung anführen, die mit den Merkmalen aus den Patentansprüchen kombinierbar sind.These objects are achieved with a pressure compensation device and a use according to the independent patent claims. Further refinements of the invention are specified in the dependent claims. It should be pointed out that the description, in particular in connection with the figures, cites further details and developments of the invention which can be combined with the features from the patent claims.

Hierzu trägt eine Druckkompensationseinrichtung bei, welche für Anwendungen unter Wasser eingerichtet ist. Sie dient dazu, einem Innenraum eines Gehäuses, der selbst einen (inneren) Fluidbereich bildet, gegenüber dem umgebenden Seewasserbereich abzudichten, wobei mit der Druckkompensationseinrichtung ein Druckniveau des Fluidbereichs mindestens auf den im Seewasserbereich vorherrschenden Umgebungsdruck anhebbar ist. Das hydraulische System, welches eingerichtet für Anwendungen unter Wasser ist, kann folglich einen Innenraum eines Gehäuses (z.B. einer hydraulischen und/oder elektrischen Komponente, wie einem Elektromotor, einer Pumpe, einen Tank oder ähnlichem) umfassen, der einen Fluidbereich bildet, welcher gegenüber dem umgebenden Seewasserbereich abgedichtet ist. Hierfür ist die zumindest eine hydraulische Druckkompensationseinrichtung vorgesehen, die das Druckniveau des Fluides (Hydraulikflüssigkeit, Trafo-Öl, Schmiermittel, etc.) im Fluidbereich mindestens auf den im (umliegenden) Seewasserbereich vorherrschenden Umgebungsdruck anheben kann.A pressure compensation device, which is set up for applications under water, contributes to this. It serves to seal an interior of a housing, which itself forms an (inner) fluid area, from the surrounding seawater area, with the pressure compensation device being able to raise a pressure level of the fluid area to at least the ambient pressure prevailing in the seawater area. The hydraulic system, which is set up for applications under water, can consequently comprise an interior of a housing (for example a hydraulic and / or electrical component, such as an electric motor, a pump, a tank or the like), which forms a fluid area which is opposite the surrounding seawater area is sealed. For this purpose, the at least one hydraulic pressure compensation device is provided, which can raise the pressure level of the fluid (hydraulic fluid, transformer oil, lubricant, etc.) in the fluid area to at least the ambient pressure prevailing in the (surrounding) seawater area.

Die Druckkompensationseinrichtung ist derart zweistufig aufgebaut ist, dass mindestens ein Speicher mit einem flexiblen Wandbereich und mindestens ein Kolbenspeicher mit einem verschiebbaren Kolben in Reihe angeordnet sind.The pressure compensation device is constructed in two stages such that at least one accumulator with a flexible wall area and at least one piston accumulator with a displaceable piston are arranged in series.

Die hier vorgeschlagene Vorrichtung bei einem unter Wasser angeordneten mit einem Fluid gefüllten System (bzw. hydraulische Anlage oder elektrisches System mit Trafo-Öl oder mechanisches System mit Schmiermittel) hat den besonderen Vorteil, dass eine Unterwasserdruckkompensation mit einer zweifachen (redundanten) Barriere gegen Eindringen von Seewasser verwirklicht ist. Die beiden Barrieren sind in Reihe angeordnet und geschaltet. Das heißt mit anderen Worten insbesondere, dass zunächst der mindestens eine Speicher mit dem flexiblen Wandbereich mit dem Seewasser beaufschlagbar ist, wodurch die flexible Wand in Reaktion auf den Seewasserdruck bewegbar ist. Die Bewegung der flexiblen Wand kann dann (vom unmittelbaren Einfluss des Seewassers getrennt) auf eine Bewegung des Kolbens in dem nachgelagerten Kolbenspeicher übertragen werden. Hierfür kann ein Übertragungsmedium eingesetzt werden, insbesondere eine Flüssigkeit. Die (daraus resultierende) Bewegung des Kolbens kann (unmittelbar) zu einer Druckanpassung in dem Fluidbereich führen, wofür der Kolben bevorzugt unmittelbar in Kontakt mit dem Fluidbereich steht. Folglich müssten bei dieser Anordnung zwei getrennte Bauteilversagen (bei dem Speicher und dem Kolbenspeicher) eintreten, bevor Seewasser in den inneren Bereich des Systems eindringen kann. Die Vorrichtung zeichnet sich folglich durch eine hohe Zuverlässigkeit aus, so dass das System z. B. für 20 Jahre und mehr Betriebszeit ausgelegt ist und ein Minimum, bevorzugt keine Wartung erfordert.The device proposed here with a fluid-filled system (or hydraulic system or electrical system with transformer oil or mechanical system with lubricant) arranged under water has the particular advantage that underwater pressure compensation with a double (redundant) barrier against penetration of Lake water is realized. The two barriers are arranged and connected in series. In other words, this means, in particular, that the at least one reservoir with the flexible wall area can be acted upon by the seawater, as a result of which the flexible wall can be moved in response to the seawater pressure. The movement of the flexible wall can then (separated from the direct influence of the seawater) be transferred to a movement of the piston in the piston accumulator located downstream. A transmission medium, in particular a liquid, can be used for this purpose. The (resulting) movement of the piston can (directly) lead to a pressure adjustment in the fluid area, for which purpose the piston is preferably in direct contact with the fluid area. As a result, with this arrangement, two separate component failures (the accumulator and the piston accumulator) would have to occur before seawater can penetrate the interior of the system. The device is therefore characterized by high reliability, so that the system z. B. is designed for 20 years and more operating time and requires a minimum, preferably no maintenance.

Das innenliegende Fluid (z. B. ein hydraulisches Medium, Trafo-Öl oder Schmiermittel) ist isoliert und kann somit einen im Wesentlichen gleichen oder sogar höheren Druck gegenüber der Umgebung (z. B. Seewasser) aufweisen. Die beiden Barrieren (flexible Wand und Kolben) haben zur Folge, dass das Seewasser zwei Dichtpunkte (Membran und Kolbendichtung) passieren muss, bevor es in das System eindringen könnte (Redundanz zur Verhinderung von Systemfehlern). Zur Zuverlässigkeit trägt weiterhin bei, dass keine Druckfeder die flexible Wand (z. B. nach Art einer Membran) direkt beaufschlagt oder belastet, wodurch die Lebenszeit des Systems erheblich erhöht wird.The internal fluid (e.g. a hydraulic medium, transformer oil or lubricant) is insulated and can therefore have a pressure that is essentially the same or even higher than that of the environment (e.g. seawater). The two barriers (flexible wall and piston) mean that the seawater has to pass two sealing points (membrane and piston seal) before it can penetrate the system (redundancy to prevent system errors). Another factor contributing to reliability is that no compression spring directly acts on or loads the flexible wall (e.g. in the manner of a membrane), which significantly increases the service life of the system.

Weiter ist der Kolben des Kolbenspeichers durch mindestens eine Druckfeder belastet. Die Druckfeder kann zur Einstellung einer vorgebbaren Vorspannung dienen, z. B. um ein gegenüber dem vom Seewasser erzeugten Druck auf den Fluidbereich erhöhtes Druckniveau einzustellen. Der Kolben ist insbesondere mit einem starren Kolbenteller ausgeführt, auf den die Druckfeder einwirkt. Eine Beschädigung bzw. Überlastung dieses starren Kolbens aufgrund der Druckfederbelastung kann somit dauerhaft vermieden werden.Furthermore, the piston of the piston accumulator is loaded by at least one compression spring. The compression spring can be used to set a predeterminable bias, for. B. to set an increased pressure level on the fluid area compared to the pressure generated by the seawater. The piston is designed in particular with a rigid piston plate on which the compression spring acts. Damage or overloading of this rigid piston due to the compression spring load can thus be permanently avoided.

Bevorzugt ist das Fluid in dem Fluidbereich gegenüber dem Druck des umgebenden Seewasserbereichs mit 0,5 bis 10 bar vorgespannt. Hierfür kann eine entsprechend ausgelegte Druckfeder in dem Kolbenspeicher vorgesehen sein, mit der die über dem Seewasserdruckniveau liegende Vorspannung eingestellt werden kann.The fluid in the fluid area is preferably pretensioned at 0.5 to 10 bar with respect to the pressure of the surrounding seawater area. For this purpose, a correspondingly designed compression spring can be provided in the piston accumulator, with which the preload above the seawater pressure level can be adjusted.

Der (mit dem Seewasser in Wirkverbindung stehende) Speicher mit einem flexiblen Wandbereich kann ein Membranspeicher oder ein Blasenspeicher sein. Bei einem Membranspeicher kann eine Membran vorgesehen sein, die im Wesentlichen tellerförmig ausgestaltet ist, deren Umfang (fest) mit einer Speicherwand verbunden ist, und die radial innen in Reaktion auf einen dort vorherrschenden Druck beweglich ist. Ein Blasenspeicher kann mit einer flexiblen Wand ausgeführt sein, die ein vorgebbares Blasenspeichervolumen einschließt und sich axial und radial in Reaktion auf einen dort vorherrschenden Druck bewegen kann. Die flexible Wand und/oder die Membran sind insbesondere fluiddicht und beständig hinsichtlich eines Kontakts mit Seewasser unter hohem Druck.The storage tank (in operative connection with the seawater) with a flexible wall area can be a membrane storage tank or a bladder storage tank. In the case of a diaphragm accumulator, a diaphragm can be provided which is essentially plate-shaped, the circumference of which is (firmly) connected to a memory wall, and which is movable radially inwardly in response to a pressure prevailing there. A bladder accumulator can be designed with a flexible wall which encloses a predeterminable bladder accumulator volume and can move axially and radially in response to a pressure prevailing there. The flexible wall and / or the membrane are in particular fluid-tight and resistant to contact with seawater under high pressure.

Mit Vorteil ist dem Kolben des Kolbenspeichers ein Weggeber zugeordnet. Der Weggeber ist insbesondere eingerichtet, den aktuellen Hub bzw. die aktuelle Position des Kolbens mit Bezug auf eine Referenzlage bzw. den Kolbenspeicher zu detektieren. Ein Weggeber in diesem Sinn ist insbesondere ein Sensor, mittels dem eine Position des Kolbens direkt/indirekt bestimmbar bzw. messbar ist. Der Sensor kann einen Endlagen-Schalter, einen Druckschalter umfassen. Dadurch ist eine Überwachung einer möglichen Leckage durch Beobachtung der Position des Kolbens ermöglicht, z. B. falls bei unveränderten Druckbedingungen eine Bewegung des Kolbens ermittelt wird.A displacement sensor is advantageously assigned to the piston of the piston accumulator. The displacement sensor is set up in particular to detect the current stroke or the current position of the piston with reference to a reference position or the piston accumulator. A displacement transducer in this sense is in particular a sensor by means of which a position of the piston can be determined or measured directly / indirectly. The sensor can comprise a limit switch, a pressure switch. This enables a possible leakage to be monitored by observing the position of the piston, e.g. B. if a movement of the piston is determined with unchanged pressure conditions.

Der Kolben des Kolbenspeichers kann mehrere (in Wirkrichtung des Drucks) nachgeordnete Dichtungseinrichtungen umfassen. Vorzugsweise kann der Kolben eine Öffnung eines zweiten Innenraums des Kolbenspeichers gegenüber dem Fluidbereich abdichten. Der Kolben kann gegenüber einem Zylinderrohr (Kolbenzylindergehäuse) zusätzlich zumindest eine (bei Kontakt mit Seewasser) quellbare Dichtung aufweisen.The piston of the piston accumulator can comprise a plurality of sealing devices arranged downstream (in the effective direction of the pressure). The piston can preferably seal an opening of a second interior space of the piston accumulator with respect to the fluid area. The piston can additionally have at least one seal that can swell (on contact with seawater) compared to a cylinder tube (piston-cylinder housing).

Bevorzugt ist, dass mit dem mindestens einen Speicher mit einem flexiblen Wandbereich und dem mindestens einen Kolbenspeicher ein Zwischenraum gebildet ist, der mit einem Übertragungsmedium (Fluid und/oder Gas) gefüllt ist. Mit Vorteil bilden ein (ausgangsseitiger) zweiter Innenraum eines Membran- oder Blasenspeichers und ein (eingangsseitiger) erster Innenraum eines Kolbenspeichers einen (teilweise oder vollständig) mit einem Fluid und/oder Gas gefüllten Zwischenraum. Bevorzugt ist das Fluid (bzw. Übertragungsfluid) in dem (ausgangsseitigen) zweiten Innenraum des Speichers mit einem flexiblen Wandbereich und dem (eingangsseitigen) ersten Innenraum des Kolbenspeichers ein hydraulisches Fluid, ein mechanisches fettartiges Medium oder ein dielektrisches Trafoöl.It is preferred that with the at least one reservoir with a flexible wall area and the at least one piston reservoir, an intermediate space is formed which is filled with a transmission medium (fluid and / or gas). A (outlet-side) second interior space of a diaphragm or bladder accumulator and a (inlet-side) first interior space of a piston accumulator advantageously form an intermediate space (partially or completely) filled with a fluid and / or gas. The fluid (or transmission fluid) in the (output-side) second interior space of the accumulator with a flexible wall area and the (input-side) first interior space of the piston accumulator is preferably a hydraulic fluid, a mechanical grease-like medium or a dielectric transformer oil.

Mit Vorteil ist das Fluid in dem (ausgangsseitigen) zweiten Innenraum des Kolbenspeichers und in dem Fluidbereich ein Öl, insbesondere ein Trafo-Öl.The fluid in the (outlet-side) second interior space of the piston accumulator and in the fluid area is advantageously an oil, in particular a transformer oil.

Weiter bevorzugt ist die Druckkompensationseinrichtung hohlzylinderartig derart gestaltet, dass ein innenliegender Blasenspeicher von einem außenliegenden Kolbenspeicher umgeben ist. Dadurch ist eine besonders kompakte Bauweise ermöglicht. Damit kann Seewasser entsprechend des Umgebungsdrucks unter Wasser den Blasenspeicher im Inneren des Kolbenspeichers (axial und/oder radial) ausdehnen/verkleinern. Die resultierende Volumenänderung des Blasenspeichers verlagert z. B. ein außen anliegendes (bevorzugt im Wesentlichen inkompressibles) Übertragungsmedium, das wiederum eine Verlagerung (Verschiebung) des Kolbens einwärts/auswärts zur Folge hat. Hierfür kann ein Kolbenteller lose bzw. nur über das Übertragungsmedium mit dem Blasenspeicher zusammenwirken.The pressure compensation device is further preferably designed in the manner of a hollow cylinder in such a way that an internal bladder accumulator is surrounded by an external piston accumulator. This enables a particularly compact design. In this way, seawater can expand / shrink the bladder accumulator inside the piston accumulator (axially and / or radially) according to the ambient pressure underwater. The resulting change in volume of the bladder accumulator shifts z. B. an externally lying (preferably essentially incompressible) transmission medium, which in turn results in a displacement (displacement) of the piston inwards / outwards. For this purpose, a piston plate can interact with the bladder accumulator loosely or only via the transmission medium.

Zweckmäßig ist eine Anordnung, bei der mehrere Druckkompensationselemente in Bohrungen im Trommelmantel einer Art Trommel angeordnet sind, durch deren zentrale Öffnung eine Stellachse einer elektronischen oder hydraulischen Komponente führbar ist. Die Trommel kann hierfür eine Mehrzahl über einen Trommelumfang verteilt angeordnete Bohrungen und eine zentrale Durchlassöffnung aufweisen. Die Bohrungen sind zur Aufnahme von Druckkompensationselementen geeignet. Die Druckkompensationselemente können hierbei parallel und/oder in Reihe zueinander verschaltet sein, um die Redundanz bei einem Ausfall zu erhöhen und/oder den Hubausgleich (gemeinsam) anzupassen. Die zentrale Durchlassöffnung kann (dichtend) um eine Stellachse einer elektronischen oder hydraulischen Komponente (Elektromotor, Pumpe, Zylinderkompensation, etc.) angeordnet werden.An arrangement is expedient in which several pressure compensation elements are arranged in bores in the drum shell of a type of drum, through the central opening of which an adjusting axis of an electronic or hydraulic component can be guided. For this purpose, the drum can have a plurality of bores arranged distributed over a drum circumference and a central passage opening. The holes are suitable for holding pressure compensation elements. The pressure compensation elements can be connected in parallel and / or in series with one another in order to increase the redundancy in the event of a failure and / or to adapt the stroke compensation (jointly). The central passage opening can be arranged (sealing) around an adjusting axis of an electronic or hydraulic component (electric motor, pump, cylinder compensation, etc.).

Gemäß einem anderen Aspekt wird die Verwendung einer hier vorgeschlagenen Druckkompensationseinrichtung (oder vorstehender Anordnung mit einer Trommel) zur Druckbeaufschlagung von zumindest einem mit Fluid (z.B. mit Hydraulikflüssigkeit, Öl, Fett, Schmiermittel, etc.) gefüllten Gehäuse für eine hydraulische Stellachse eines Elektromotors, einer Pumpe und/oder einer Zylinderkompensation vorgeschlagen. Die mindestens eine Druckkompensationseinrichtung wird insbesondere verwendet, um eine integrierte hydraulische Stellachse (Elektromotor, Pumpe, Zylinderkompensation) in ihrem ölgefüllten Gehäuse mit Umgebungsdruck (Wasserdruck) zu beaufschlagen. Die (mehreren) Druckkompensatoren sind dazu bevorzugt in einer Art Trommel untergebracht. Durch die zentrale Öffnung der Trommel kann der Zylinder oder eine Stange des Zylinders gefüllt sein, was eine platzsparende integrierte Bauweise ermöglicht.According to another aspect, the use of a pressure compensation device proposed here (or the above arrangement with a drum) for applying pressure to at least one housing filled with fluid (e.g. with hydraulic fluid, oil, grease, lubricant, etc.) for a hydraulic adjusting axis of an electric motor, a Suggested pump and / or cylinder compensation. The at least one pressure compensation device is used in particular to apply ambient pressure (water pressure) to an integrated hydraulic adjusting axis (electric motor, pump, cylinder compensation) in its oil-filled housing. For this purpose, the (several) pressure compensators are preferably accommodated in a type of drum. The cylinder or a rod of the cylinder can be filled through the central opening of the drum, which enables a space-saving, integrated design.

Den hier vorgeschlagenen Maßnahmen liegt insbesondere der Gedanke zugrunde, einen zweistufigen Druckkompensator mit einem Blasen- oder Membranspeicher auszubilden, der die Grenzfläche Seewasser/Zwischendruckraum bildet und einem Kolben- bzw. Feder-Kolbenspeicher, der den Kontakt zum Hydraulikreservoir herstellt. Statt einer sind nun zwei Grenzflächen vorhanden; dies erhöht die Dichtigkeit und die Betriebsfestigkeit. Außerdem kann in dem Kolben- bzw. Feder-Kolbenspeicher durch eine Feder eine über dem Seewasserdruckniveau liegende Vorspannung eingestellt werden.The measures proposed here are based in particular on the idea of designing a two-stage pressure compensator with a bladder or diaphragm accumulator that forms the seawater / intermediate pressure space interface and a piston or spring-piston accumulator that makes contact with the hydraulic reservoir. Instead of one, there are now two interfaces; this increases the tightness and durability. In addition, a spring can be used to set a prestress in the piston or spring-piston accumulator which is above the seawater pressure level.

Die Erfindung und das technische Umfeld werden nachfolgend anhand von Figuren näher erläutert. Dabei sind gleiche Bauteile mit gleichen Bezugszeichen gekennzeichnet. Die Darstellungen sind schematisch und nicht zur Veranschaulichung von Größenverhältnissen vorgesehen. Die mit Bezug auf einzelne Details einer Figur angeführten Erläuterungen sind extrahierbar und mit Sachverhalten aus anderen Figuren oder der vorstehenden Beschreibung frei kombinierbar, es sei denn, dass sich für einen Fachmann zwingend etwas anderes ergibt bzw. eine solche Kombination hier explizit untersagt wird. Es zeigen schematisch:

Fig. 1:
einen Schaltplan einer Druckkompensationseinrichtung mit - in Reihe angeordnet-einem Membranspeicher und einem Kolbenspeicher,
Fig. 2:
Blockschaltbild einer Druckkompensationseinrichtung zwischen Seewasser- und (innerem) Fluidbereich,
Fig. 3:
einen Schaltplan einer Druckkompensationseinrichtung mit zwei Membranspeichern und drei Kolbenspeichern, die jeweils parallel zueinander angeordnet sind,
Fig. 4:
eine konstruktive Ausführungsform einer Druckkompensationseinrichtung, und
Fig. 5:
eine Anordnung einer Mehrzahl von Druckkompensationseinrichtungen in einem gemeinsamen trommelartigen Halteelement.
The invention and the technical environment are explained in more detail below with reference to figures. The same components are identified by the same reference numerals. The representations are schematic and not intended to illustrate proportions. The explanations given with reference to individual details of a figure can be extracted and freely combined with facts from other figures or the above description, unless something else is mandatory for a person skilled in the art or such a combination is explicitly prohibited here. They show schematically:
Fig. 1:
a circuit diagram of a pressure compensation device with - arranged in series - a diaphragm accumulator and a piston accumulator,
Fig. 2:
Block diagram of a pressure compensation device between the seawater and (inner) fluid area,
Fig. 3:
a circuit diagram of a pressure compensation device with two membrane accumulators and three piston accumulators, which are each arranged parallel to one another,
Fig. 4:
a structural embodiment of a pressure compensation device, and
Fig. 5:
an arrangement of a plurality of pressure compensation devices in a common drum-like holding element.

Fig. 1 zeigt die prinzipielle Darstellung eines Schaltplans einer Druckkompensationseinrichtung 1 mit - in Reihe angeordnet und geschaltet - einem Speicher 2 mit einem flexiblen Wandbereich 4 und einem Kolbenspeicher 3 mit einem verschiebbaren Kolben 5. Der Speicher 2 mit flexiblem Wandbereich 4 wird in den Fig. 1, 2 und 3 am Beispiel eines Membranspeichers und in den Fig. 4 und 5 am Beispiel eines Blasenspeichers erläutert. Weiterhin wird die flexible Wand 4 in den Fig. 1, 2 und 3 am Beispiel einer undurchdringlichen Membran 9 und in den Fig. 4 und 5 am Beispiel einer undurchdringlichen Blase 23 erläutert. Fig. 1 shows the basic representation of a circuit diagram of a pressure compensation device 1 with - arranged and connected in series - a memory 2 with a flexible wall area 4 and a piston memory 3 with a displaceable piston 5. The memory 2 with flexible wall area 4 is in the Fig. 1, 2 and 3rd using the example of a diaphragm accumulator and in the Fig. 4 and 5 explained using the example of a bladder accumulator. Furthermore, the flexible wall 4 is in the Fig. 1, 2 and 3rd using the example of an impenetrable membrane 9 and in the Fig. 4 and 5 explained using the example of an impenetrable bladder 23.

Der Membranspeicher 2 weist einen (eingangsseitigen) ersten Innenraum 2.1 und einen (ausgangsseitigen) zweiten Innenraum 2.2. auf, die durch einen flexiblen Wandbereich 4, z. B. eine elastische Metallmembran (oder gemäß Fig. 4 eine Gummiblase), voneinander getrennt und gegeneinander abgedichtet sind. Der Kolbenspeicher 3 besitzt einen (eingangsseitigen) ersten Innenraum 3.1 und einen (ausgangsseitigen) zweiten Innenraum 3.2, die durch den verschiebbaren Kolben 5 voneinander getrennt und durch Dichtungen gegeneinander abgedichtet sind. Mit 6 ist strichpunktiert eine schematische Trennlinie bezeichnet, auf deren rechter Seite sich der Seewasserbereich 7 und auf deren linker Seite sich der (innere) Fluidbereich 8 befindet. Dem Membranspeicher ist ein Filter 35 für das Seewasser vorgelagert. Der Seewasser-Filter kann dazu dienen zu vermeiden, dass Schmutzpartikel die Bohrung zu der Membran verstopfen. Weiterhin ist dem verschiebbaren Kolben 5 des Kolbenspeichers 3 ein Weggeber 10 zugeordnet.The diaphragm accumulator 2 has a first interior space 2.1 (on the inlet side) and a second interior space 2.2 (on the outlet side). on, which by a flexible wall area 4, z. B. an elastic metal membrane (or according to Fig. 4 a rubber bladder), separated from each other and sealed against each other. The piston accumulator 3 has a first inner space 3.1 (on the inlet side) and a second inner space 3.2 (on the outlet side), which are separated from one another by the displaceable piston 5 and sealed from one another by seals. 6 with a dash-dotted line denotes a schematic dividing line, on the right-hand side of which the seawater area 7 is located and on the left-hand side of which the (inner) fluid area 8 is located. A filter 35 for the seawater is upstream of the membrane storage tank. The seawater filter can be used to prevent dirt particles from clogging the bore to the membrane. Furthermore, a displacement sensor 10 is assigned to the displaceable piston 5 of the piston accumulator 3.

Fig. 2 veranschaulicht ein Blockschaltbild der Druckkompensationseinrichtung 1, z. B. auch gemäß Fig. 1, zwischen dem Seewasserbereich 7 und dem Fluidbereich 8. Der erste Innenraum 2.1 des Membranspeichers 2 steht mit dem Seewasserbereich 7 und der zweite Innenraum 3.2. des Kolbenspeichers 3 steht mit dem Fluidbereich 8 in Verbindung. Der zweite Innenraum 2.2 des Membranspeichers 2 und der erste Innenraum 3.1 des Kolbenspeichers 3 bilden funktional einen gemeinsamen Zwischenraum 11. Konstruktiv kann der Zwischenraum 11 als ein einziger Raum ausgebildet sein. Der Zwischenraum 11 kann auch aus zwei einzelnen Räumen, das heißt aus dem zweiten Innenraum 2.2 und dem ersten Innenraum 3.1 bestehen, die durch eine Rohrleitung oder dergleichen miteinander verbunden sind. Mit 12 ist eine erste Grenze, z. B. eine Membran 9, und mit 13 ist eine zweite Grenze, z. B. ein Kolben 5, bezeichnet. Die beiden Grenzen 12, 13 bilden eine zweifache Sicherheit (Redundanz) gegen Eindringen von Seewasser in den Fluidbereich 8. Fig. 2 illustrates a block diagram of the pressure compensation device 1, e.g. B. also according to Fig. 1 , between the seawater area 7 and the fluid area 8. The first interior space 2.1 of the membrane reservoir 2 is connected to the seawater area 7 and the second interior space 3.2. of the piston accumulator 3 is connected to the fluid area 8. The second interior 2.2 of the diaphragm accumulator 2 and the first interior 3.1 of the piston accumulator 3 functionally form a common interspace 11. In terms of construction, the interspace 11 can be designed as a single space. The intermediate space 11 can also consist of two individual spaces, that is to say of the second interior 2.2 and the first interior 3.1, which are connected to one another by a pipeline or the like. At 12 there is a first limit, e.g. B. a membrane 9, and with 13 is a second limit, z. B. a piston 5, designated. The two boundaries 12, 13 form a twofold security (redundancy) against the ingress of sea water into the fluid area 8.

Der erste Innenraum 2.1 des Membranspeichers 2 ist mit Seewasser (erstes Medium 27) angefüllt, das mit dem im Wasser vorherrschenden Umgebungsdruck die eine Seite der Membran 9 belastet. Der Wasserdruck im Seewasserbereich 7 und im ersten Innenraum 2.1 ist gleich. Im Zwischenraum 11 befindet sich ein zweites Medium 28 (Übertragungsmedium), z. B. ein hydraulisches Fluid, eine fettartige Substanz, ein dielektrisches Trafo-Öl oder ein Gas, insbesondere Stickstoff. Das zweite Medium 28 wird durch die andere Seite der Membran 9 druckbeaufschlagt, so dass der Zwischenraum 11 einen Zwischendruckraum bildet. Der Druck des Mediums 28 belastet weiterhin die eine Seite des Kolbens 5 des Kolbenspeichers 3. Der zweite Innenraum 3.2 des Kolbenspeichers 3 ist mit einem dritten Medium 29 gefüllt, vorzugsweise mit Trafoöl. Hierbei übt die andere Seite des Kolbens 5 Druck auf das Medium 29 aus. Dieser Druck wirkt zugleich auf das Medium 29, das die (nicht dargestellt) nachgeschalteten Einrichtungen, z. B. Tank, Gehäuse, ausfüllt. Somit ist der Druck im inneren Fluidbereich 8 und im zweiten Innenraum 3.2 des Kolbenspeichers 3 gleich.The first interior space 2.1 of the membrane reservoir 2 is filled with seawater (first medium 27) which loads one side of the membrane 9 with the ambient pressure prevailing in the water. The water pressure in the sea water area 7 and in the first interior space 2.1 is the same. In the space 11 there is a second medium 28 (transmission medium), e.g. B. a hydraulic fluid, a fatty substance, a dielectric transformer oil or a gas, especially nitrogen. The second medium 28 is pressurized through the other side of the membrane 9, so that the intermediate space 11 forms an intermediate pressure space. The pressure of the medium 28 continues to load one side of the piston 5 of the piston accumulator 3. The second interior 3.2 of the piston accumulator 3 is filled with a third medium 29, preferably with transformer oil. Here, the other side of the piston 5 exerts pressure on the medium 29. This pressure also acts on the medium 29, which the (not shown) downstream devices such. B. tank, housing, fills. The pressure in the inner fluid area 8 and in the second interior 3.2 of the piston accumulator 3 is therefore the same.

Die der Druckkompensationseinrichtung 1 nachgeschaltete Systemeinrichtung kann als containerartiges Modul ausgebildet sein, wobei mehrere derartige Module auf dem Meeresboden abgesetzt sein können. Der Container ist mit einer dielektrischen Flüssigkeit, z. B. einem Hydrauliköl, gefüllt, so dass alle Komponenten in dem Modul in die Flüssigkeit eingetaucht sind. Durch die Druckkompensationseinrichtung 1 wird eine Druckkompensation zwischen dem Inneren des Containers und der äußerem Umgebung (Seewasserbereich 7) derart erreicht, dass die Flüssigkeit im Container unter den gleichen Druck gesetzt ist, wie er in der äußeren Umgebung herrscht. Dazu besitzt die Druckkompensationseinrichtung 1 zwei Trennflächen bzw. Grenzflächen: ein nachgiebiges Trennelement (Membran 9 oder Blase 23), das auf seiner einen Seite mit dem Meerwasser in Kontakt steht, und einen Kolben 5, der auf seiner anderen Seite von der Flüssigkeit, die sich in dem Container befindet, beaufschlagt wird. Zwischen den beiden Trennelementen ist der Zwischenraum 11 angeordnet. Die hier vorgestellte Druckkompensationseinrichtung 1 weist den besonderen Vorteil auf, dass unbeabsichtigt durch die Membran 9 eingedrungenes Seewasser nicht (direkt) in den Container gelangt, sondern gehindert durch den Kolben 5 im Zwischenraum 11 verbleibt und dort entfernt werden kann. Es ist somit eine doppelte Sicherheit gegen eingedrungenes Seewasser vorhanden. Eine zusätzliche weitere Sicherung besteht darin, dass der Kolben 5 des Kolbenspeichers 3 durch eine Druckfeder 22 (siehe auch Fig. 4) beaufschlagt ist, wodurch das Medium 29 unter einer Vorspannung steht. Der Vorspannungsdruck ist geringfügig größer als der Umgebungsdruck, z. B. 0,5 bis 10 bar, so dass ein Eindringen von Seewasser in die nachgeschaltete Einrichtung verhindert wird. Um eine Leckage im Kolbenspeicher 3 zu detektieren, ist dem Kolben 5 der Weggeber 10 zugeordnet, der die Position des Kolbens 5 überwacht.The system device connected downstream of the pressure compensation device 1 can be designed as a container-like module, with several modules of this type being able to be deposited on the seabed. The container is filled with a dielectric liquid, e.g. B. a hydraulic oil, filled so that all components in the module are immersed in the liquid. The pressure compensation device 1 achieves pressure compensation between the interior of the container and the external environment (seawater area 7) in such a way that the liquid in the container is put under the same pressure as is prevailing in the external environment. For this purpose, the pressure compensation device 1 has two separating surfaces or boundary surfaces: a flexible separating element (membrane 9 or bladder) 23), which is in contact on one side with the sea water, and a piston 5, which is acted upon on its other side by the liquid in the container. The space 11 is arranged between the two separating elements. The pressure compensation device 1 presented here has the particular advantage that seawater that has unintentionally penetrated through the membrane 9 does not (directly) enter the container, but remains in the intermediate space 11, hindered by the piston 5, and can be removed there. There is thus a double security against ingress of sea water. An additional further safeguard is that the piston 5 of the piston accumulator 3 is secured by a compression spring 22 (see also Fig. 4 ) is applied, whereby the medium 29 is under a bias. The preload pressure is slightly greater than the ambient pressure, e.g. B. 0.5 to 10 bar, so that the ingress of seawater into the downstream device is prevented. In order to detect a leak in the piston accumulator 3, the piston 5 is assigned the displacement sensor 10, which monitors the position of the piston 5.

Fig. 3 zeigt einen Schaltplan einer Druckkompensationseinrichtung, wie z. B. auch nach Fig. 1, jedoch mit zwei Membranspeichern 2a, 2b und drei Kolbenspeichern 3a, 3b, 3c, die jeweils parallel zueinander angeordnet und geschaltet sind. Auf diese Weise wird ein größeres Volumen der Innenräume der Membranspeicher 2a, 2b und der Kolbenspeicher 3a, 3b, 3c verwirklicht. Fig. 3 shows a circuit diagram of a pressure compensation device, such as. B. also after Fig. 1 , but with two membrane accumulators 2a, 2b and three piston accumulators 3a, 3b, 3c, which are each arranged and connected parallel to one another. In this way, a larger volume of the interior spaces of the diaphragm accumulators 2a, 2b and the piston accumulators 3a, 3b, 3c is realized.

Die Fig. 4 veranschaulicht eine konstruktive Ausführungsform einer Druckkompensationseinrichtung 1, insbesondere auch gemäß des in Fig. 1 dargestellten Schaltplans. Die Ausführungsform zeichnet sich dadurch aus, dass der Speicher 2 mit dem flexiblen Wandbereich 4 und der Kolbenspeicher 3 nach Art eines kompakten Zylinders ausgebildet sind, wodurch eine besonders platzsparende Bauweise verwirklicht ist. Die Druckkompensationseinrichtung 1 ist hohlzylinderartig derart gestaltet, dass ein innen liegender Blasenspeicher 2 von einem außen liegenden Kolbenspeicher 3 umgeben ist. Wie Fig. 4 veranschaulicht, besteht der Kolbenspeicher 3 aus einem Zylinderrohr 14 und einem Kolben 5 als Trennelement. An einer ersten Stirnseite 14.1 des Zylinderrohrs 14 ist ein Verschlussdeckel 15 vorhanden, der eine zentrale durchgehende Öffnung 16 aufweist. An der anderen zweiten Stirnseite 14.2 des Zylinderrohrs 14 ist eine zentrale durchgehenden Öffnung 18 vorhanden, die mit dem innenliegenden Fluidbereich mündet. Der Kolben 5 ist mit Dichtungen 19 gegen die Innenmantelfläche 14.3 des Zylinderrohrs 14 abgedichtet. Aus der der Öffnung 16 zugewandten Fläche des Kolbens 5 wächst ein erster Hohlzylinder 20 heraus, aus der der Öffnung 18 zugewandten Fläche des Verschlussdeckels 15 wächst ein weiter Hohlzylinder 21 heraus, deren offene Enden einander überlappen. Zwischen dem außen liegenden ersten Hohlzylinder 20 und der Innenmantelfläche 14.3 ist eine Druckfeder 22 angeordnet, die sich mit dem einen Ende am Verschlussdeckel 15 und mit dem anderen Ende am Kolben 5 abstützt. In dem von den Hohlzylindern 20 und 21 gebildeten Innenhohlraum befindet sich eine Blase 23, z. B. aus einem Elastomer, eines Blasenspeichers 2, die als Trennwand dient. Die Blase 23 weist zwei (axial) gegenüberliegende Endbereiche auf, wobei - jeweils in einem Abstand - die Endbereiche dem Kolben 5 bzw. dem Verschlussdeckel 15 und der Mittelbereich den Hohlzylindern 20, 21 derart gegenüberliegen, dass ein Zwischenraum 11 gebildet ist. Der untere Endbereich der Blase 23 geht in einen hohlzylinderartig durchgehenden Anschluss 24 mit einer Öffnung 34 für den Durchtritt von Seewasser (erstes Medium 27) über, der die Öffnung 16 durchgreift.The Fig. 4 illustrates a structural embodiment of a pressure compensation device 1, in particular also according to the in FIG Fig. 1 shown circuit diagram. The embodiment is characterized in that the accumulator 2 with the flexible wall area 4 and the piston accumulator 3 are designed in the manner of a compact cylinder, whereby a particularly space-saving design is realized. The pressure compensation device 1 is designed like a hollow cylinder in such a way that an internal bladder accumulator 2 is surrounded by an external piston accumulator 3. How Fig. 4 illustrated, the piston accumulator 3 consists of a cylinder tube 14 and a piston 5 as a separating element. On a first end face 14.1 of the cylinder tube 14 there is a closure cover 15 which has a central through opening 16. On the other, second end face 14.2 of the cylinder tube 14, there is a central through opening 18 which opens with the inner fluid area. The piston 5 is sealed with seals 19 against the inner circumferential surface 14.3 of the cylinder tube 14. From the surface facing the opening 16 A first hollow cylinder 20 grows out of the piston 5, and a further hollow cylinder 21, the open ends of which overlap one another, grows out of the surface of the closure cap 15 facing the opening 18. A compression spring 22 is arranged between the outer first hollow cylinder 20 and the inner jacket surface 14.3, one end of which is supported on the closure cover 15 and the other end on the piston 5. In the inner cavity formed by the hollow cylinders 20 and 21 there is a bladder 23, for. B. made of an elastomer, a bladder accumulator 2, which serves as a partition. The bladder 23 has two (axially) opposite end regions, with the end regions facing the piston 5 or the closure cover 15 and the central region facing the hollow cylinders 20, 21, each at a distance, in such a way that an intermediate space 11 is formed. The lower end region of the bladder 23 merges into a hollow cylinder-like, continuous connection 24 with an opening 34 for the passage of seawater (first medium 27) which extends through the opening 16.

Die Funktionsweise ist, dass ein mit Druck belastetes erstes Medium 27 (Seewasser) die Blase 23 füllt, welche sich unter dem Druck weitet und so wiederum ein zweites Medium 28 außerhalb der Blase 23 verdrängt. Dieses Medium 28 wiederum ist zwischen der Blase 23 und dem Kolben 5 verspannt und treibt durch das Weiten der Blase 23 und das Medium 28 diesen in axiale Richtung (Funktion Zylinder). Der Kolben 5 dichtet zum Zylinderrohr 14 mittels einer Kolbendichtung 19 zusätzlich ab (redundant). Der Kolben 5 ist mit einer Druckfeder 22 vorbelastet und sorgt so für eine Vorspannung des Systems gegenüber dem Druck vom ersten Medium 27. Somit ist (ausgangsseitig) ein Medium auf der Kolbenseite, welches ein drittes Medium 29 oder auch das gleiche Medium wie das zweite Medium 28 sein kann, getrennt vom und mit einer Vorspannung gegenüber dem ersten Medium 27 belastet.The mode of operation is that a first medium 27 (seawater) loaded with pressure fills the bladder 23, which expands under the pressure and thus in turn displaces a second medium 28 outside the bladder 23. This medium 28 is in turn clamped between the bladder 23 and the piston 5 and, by expanding the bladder 23 and the medium 28, drives it in the axial direction (cylinder function). The piston 5 additionally seals against the cylinder tube 14 by means of a piston seal 19 (redundant). The piston 5 is preloaded with a compression spring 22 and thus ensures that the system is pretensioned against the pressure from the first medium 27. Thus (on the output side) there is a medium on the piston side, which is a third medium 29 or the same medium as the second medium 28 can be separated from and loaded with a bias against the first medium 27.

Optional kann eine Absicherung der Druckkompensation vor möglichem Austritt von erstem Medium 27 durch Beschädigung der Blase 23 bei voller Entladung der Vorspannung (Kolben 5 in Endstellung) sowie bei Druckausgleich, z. B. Undichtigkeit der Kolbendichtung 19, vorgesehen sein. Der Kolben 5 der Druckkompensation bewegt sich durch die Feder 22 in Endstellung und verschließt so die Öffnung 18 am Ausgang durch eine (ringförmige) Dichtung 25 am Kolben 5. Hierbei greift bevorzugt ein zylinderförmiger Ansatz 30 am Kolben 5 formschlüssig in die Öffnung 18 ein.Optionally, the pressure compensation can be safeguarded against a possible leakage of the first medium 27 by damaging the bladder 23 when the preload is fully discharged (piston 5 in end position) as well as with pressure compensation, e.g. B. Leakage of the piston seal 19 may be provided. The piston 5 of the pressure compensation moves into the end position by the spring 22 and thus closes the opening 18 at the outlet by an (ring-shaped) seal 25 on the piston 5. A cylindrical projection 30 on the piston 5 preferably engages in the opening 18 in a form-fitting manner.

Weiterhin kann optional eine Absicherung durch einen zusätzlichen Dichtring 31 am Kolben 5 vorhanden sein, welcher z.B. durch Kontakt mit einem anderen Medium, außer dem Betriebsfluid bzw. Übertragungsfluid, quillt. Das Quellen des Dichtrings 31 hat einen Formschluss zur Folge, welcher eine Dichtheit zwischen Kolben 5 und dem Zylinderrohr 14 herstellt.Furthermore, protection can optionally be provided by an additional sealing ring 31 on the piston 5, which swells, for example, through contact with another medium, apart from the operating fluid or transmission fluid. The swelling of the sealing ring 31 results in a form fit, which creates a seal between the piston 5 and the cylinder tube 14.

Die Druckkompensation dient zum Ausgleich zweier Drücke in einem System, welche mit Medien arbeiten, die getrennt voneinander genutzt werden, wie z. B. Öl und Wasser. Durch diese Druckkompensation kann mittels der Feder 22 eine Seite mit höherem Druck vorgespannt werden, um so ein Eindringen des anderen Mediums mit geringerem Druck ins System zu verhindern. Zudem ist die Trennung redundant, da hier zwei verschiedene Verfahren einer Trennung von liquiden oder gasförmigen Medien in Reihe angeordnet sind, ohne größeren Raumbedarf zu fordern.The pressure compensation is used to balance two pressures in a system that work with media that are used separately, such as. B. Oil and water. As a result of this pressure compensation, one side with a higher pressure can be pretensioned by means of the spring 22 in order to prevent the other medium with a lower pressure from penetrating into the system. In addition, the separation is redundant, since here two different methods of separating liquid or gaseous media are arranged in series without requiring a large amount of space.

Fig. 5 zeigt eine Anordnung für eine Mehrzahl Druckkompensationseinrichtungen 1 (z.B. gemäß Fig. 4) in einem gemeinsamen Halteelement. Die Druckkompensationseinrichtungen 1 sind in Längsrichtung parallel zueinander angeordnet. Dadurch wird ein größeres Volumen für die Druckkompensation (Redundanz) verwirklicht. Ein Hohlzylinder 32 nach Art einer Trommel - in Fig. 5 zur Hälfte aufgeschnitten - weist einen Zylindermantel 32.1 (Hohlzylinderwand) und einen Zylinderinnenraum 32.2 auf. Den Zylindermantel 32.1 durchdringt eine Mehrzahl von in Längsrichtung parallel zur Mittelachse ausgerichtete durchgehende Bohrungen 33.1, 33.2, in die jeweils eine Druckkompensationseinrichtung 1 formschlüssig eingesteckt ist. In Fig. 5 ist nur eine in einer Bohrung 33 angeordnete Druckkompensationseinrichtung 1 - zur Hälfte aufgeschnitten - dargestellt. Der Hohlzylinder 32 ist als Trommel ähnlich einem Revolvermagazin gebildet. Fig. 5 shows an arrangement for a plurality of pressure compensation devices 1 (for example according to FIG Fig. 4 ) in a common holding element. The pressure compensation devices 1 are arranged parallel to one another in the longitudinal direction. This creates a larger volume for pressure compensation (redundancy). A hollow cylinder 32 in the manner of a drum - in Fig. 5 cut open in half - has a cylinder jacket 32.1 (hollow cylinder wall) and a cylinder interior 32.2. The cylinder jacket 32.1 is penetrated by a plurality of through bores 33.1, 33.2 aligned in the longitudinal direction parallel to the central axis, into each of which a pressure compensation device 1 is inserted in a form-fitting manner. In Fig. 5 only one pressure compensation device 1 arranged in a bore 33 - cut open in half - is shown. The hollow cylinder 32 is formed as a drum similar to a revolver magazine.

Die Druckkompensationseinrichtung 1 nach Fig. 5 kann verwendet werden, um eine integrierte hydraulische Stellachse 17 (Elektromotor, Pumpe, Zylinderkompensation) in ihrem vom Öl gefüllten Gehäuse mit Umgebungsdruck (Wasserdruck) zu beaufschlagen. Die (mehreren) Druckkompensatoren 1 sind dazu in einer Art Trommel untergebracht. Durch die zentrale Öffnung bzw. den Zylinderinnenraum 32.2 der Trommel kann der Zylinder oder eine Stange des Zylinders geführt sein, was eine platzsparende integrierte Bauweise ermöglicht.The pressure compensation device 1 according to Fig. 5 can be used to apply ambient pressure (water pressure) to an integrated hydraulic adjusting axis 17 (electric motor, pump, cylinder compensation) in its oil-filled housing. The (several) pressure compensators 1 are accommodated in a type of drum for this purpose. The cylinder or a rod of the cylinder can be guided through the central opening or the cylinder interior 32.2 of the drum, which enables a space-saving, integrated design.

BezugszeichenlisteList of reference symbols

11
DruckkompensationseinrichtungPressure compensation device
2, 2a, 2b2, 2a, 2b
Speicher mit flexiblem WandbereichStorage with flexible wall area
2.12.1
erster Innenraumfirst interior
2,22.2
zweiter Innenraumsecond interior
3, 3a bis 3c3, 3a to 3c
KolbenspeicherPiston accumulator
3.13.1
erster Innenraumfirst interior
3.23.2
zweiter Innenraumsecond interior
44th
flexibler Wandbereichflexible wall area
55
Kolbenpiston
66th
Trennlinieparting line
77th
SeewasserbereichSeawater area
88th
FluidbereichFluid area
99
Membranmembrane
10, 10a, 10b10, 10a, 10b
WeggeberWeggeber
1111
ZwischenraumSpace
1212th
erste Grenzefirst limit
1313th
zweite Grenzesecond limit
1414th
ZylinderrohrCylinder tube
14.114.1
erste Stirnseitefirst face
14.214.2
zweite Stirnseitesecond face
14.314.3
InnenmantelflächeInner circumferential surface
1515th
VerschlussdeckelSealing cap
1616
Öffnungopening
1717th
StellachsePositioning axis
1818th
Öffnungopening
1919th
Dichtungpoetry
2020th
erster Hohlzylinderfirst hollow cylinder
2121
zweiter Hohlzylindersecond hollow cylinder
2222nd
DruckfederCompression spring
2323
Blasebladder
2424
Anschlussconnection
2525th
Dichtungpoetry
2626th
Dichtungpoetry
2727
erstes Mediumfirst medium
2828
zweites Mediumsecond medium
2929
drittes Mediumthird medium
3030th
Ansatzapproach
3131
DichtringSealing ring
3232
HohlzylinderHollow cylinder
32.132.1
ZylindermantelCylinder jacket
32.232.2
ZylinderinnenraumCylinder interior
33.1, 33.233.1, 33.2
BohrungenDrilling
3434
Öffnungopening
3535
Filterfilter

Claims (9)

  1. Pressure compensation device (1) designed for underwater applications, by means of which an interior of a housing which forms a fluid region (8) can be sealed with respect to the surrounding seawater region (7), wherein a pressure level of the fluid region (8) can be raised at least to the ambient pressure prevailing in the seawater region (7) by means of the pressure compensation device (1), wherein the pressure compensation device (1) is constructed in two stages in such a way that
    - at least one accumulator (2; 2a, 2b) with a first interior (2.1) connected to the seawater region (7), with a second interior (2.2), and with a flexible wall region (4) therebetween, and also
    - at least one piston accumulator (3; 3a to 3c) with a displaceable piston (5), which seals a first interior (3.1) connected to the second interior (2.2) of the accumulator (2; 2a, 2b) with respect to a second interior (3.2) connected to the fluid region (8) and is loaded by means of at least one compressions spring (22), are arranged in series.
  2. Pressure compensation device (1) according to Patent Claim 1, wherein the compression spring is designed in such a way that it sets a prestress of 0.5 to 10 bar in the piston accumulator (3; 3a to 3c).
  3. Pressure compensation device (1) according to Patent Claim 1 or 2, wherein the accumulator with a flexible wall region (4) is a diaphragm accumulator or bladder accumulator.
  4. Pressure compensation device (1) according to one of the preceding patent claims, wherein the piston (5) of the piston accumulator (3, 3a to 3c) is assigned a displacement transducer (10a, 10b).
  5. Pressure compensation device (1) according to one of the preceding patent claims, wherein the piston (5) of the piston accumulator comprises a plurality of downstream sealing devices (19, 25, 31).
  6. Pressure compensation device (1) according to one of the preceding patent claims, wherein an interspace (11), which is filled with a transmission medium, is formed by the at least one accumulator (2; 2a, 2b) with a flexible wall region (4) and by the at least one piston accumulator (3; 3a to 3c).
  7. Pressure compensation device (1) according to one of Patent Claims 1-2, 4-6, wherein said device is designed in the manner of a hollow cylinder in such a way that an inner accumulator (2; 2a, 2b) with a flexible bladder (23) is surrounded by an outer piston accumulator (3).
  8. Arrangement comprising a plurality of pressure compensation devices (1) according to one of the preceding patent claims, which are arranged in bores (33.1, 33.2) in a cylinder jacket (32.1) of a hollow cylinder (32) in the manner of a drum through whose central opening an actuating shaft (17) of an electronic or hydraulic component can be guided.
  9. Use of the pressure compensation device (1) according to one of Patent Claims 1-7 for pressurizing at least one fluid-filled housing for an hydraulic actuating shaft of an electric motor, of a pump or of a cylinder compensator.
EP18713887.0A 2017-04-18 2018-03-26 Pressure compensation device designed for underwater applications Active EP3612735B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017206498.6A DE102017206498A1 (en) 2017-04-18 2017-04-18 Pressure compensation device set up for underwater applications
PCT/EP2018/057579 WO2018192749A1 (en) 2017-04-18 2018-03-26 Pressure compensation device designed for underwater applications

Publications (2)

Publication Number Publication Date
EP3612735A1 EP3612735A1 (en) 2020-02-26
EP3612735B1 true EP3612735B1 (en) 2021-06-09

Family

ID=61801949

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18713887.0A Active EP3612735B1 (en) 2017-04-18 2018-03-26 Pressure compensation device designed for underwater applications

Country Status (4)

Country Link
US (1) US11674529B2 (en)
EP (1) EP3612735B1 (en)
DE (1) DE102017206498A1 (en)
WO (1) WO2018192749A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109162310A (en) * 2018-10-31 2019-01-08 徐工集团工程机械有限公司 A kind of underwater construction equipment boost compensator
CN110469563A (en) * 2019-09-16 2019-11-19 中国铁建重工集团股份有限公司 Hydraulic compensating device and hydraulic system under a kind of Combined water
US20230160403A1 (en) * 2020-03-23 2023-05-25 Advanced Energy Storage, Llc Deployable energy supply and management system
CN114321101B (en) * 2021-11-27 2023-11-07 宜昌测试技术研究所 Integrated underwater hydraulic power source
DE102022201230B4 (en) * 2022-02-07 2023-12-14 Robert Bosch Gesellschaft mit beschränkter Haftung Safety device for a linearly actuated process valve and system comprising the safety device

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2085777A (en) * 1935-03-27 1937-07-06 John C Williams Corp Pressure-balance sealed bearing
US2418194A (en) * 1944-04-19 1947-04-01 Shasta Pump Company Sealing means for submersible electric motor-pump units
US2958795A (en) * 1958-07-07 1960-11-01 Us Electrical Motors Inc Internal fluid circulating system for submersible motors or the like
US3230975A (en) * 1959-12-09 1966-01-25 Mercier Olaer Patent Corp Composite movable partition for pressure vessel
US3581774A (en) 1969-04-01 1971-06-01 Us Navy Constant pressure accumulator
US3555834A (en) * 1969-05-06 1971-01-19 Clement Walker Weston Jr Deep submersible power unit
GB1334496A (en) * 1971-08-03 1973-10-17 Alinari C Instrument for indicating decompression pauses for underwater divers
US4185652A (en) * 1977-10-31 1980-01-29 Nl Industries, Inc. Subaqueous sequence valve mechanism
DE3246338A1 (en) 1982-12-15 1984-06-20 Robert Bosch Gmbh, 7000 Stuttgart Piston accumulator
US5607165A (en) * 1995-06-07 1997-03-04 Cooper Cameron Corporation Sealing system for a valve having biassed sealant under pressure
WO2001075312A2 (en) * 2000-04-04 2001-10-11 Continental Teves Ag & Co. Ohg Hydraulic fluid accumulator
GB2373546A (en) 2001-03-19 2002-09-25 Abb Offshore Systems Ltd Apparatus for pressurising a hydraulic accumulator
US7380589B2 (en) * 2002-12-13 2008-06-03 Varco Shaffer, Inc. Subsea coiled tubing injector with pressure compensation
DE10310428A1 (en) * 2003-03-11 2004-09-30 Hydac Technology Gmbh piston accumulators
WO2009015035A1 (en) * 2007-07-20 2009-01-29 Schlumberger Canada Limited Pump motor protector with redundant shaft seal
NO332974B1 (en) * 2010-06-22 2013-02-11 Vetco Gray Scandinavia As Pressure equalization control system for barrier and lubricating fluids for an undersea engine and pump module
DE102011009276A1 (en) 2011-01-25 2012-07-26 Hydac Technology Gmbh Device for transferring a hydraulic working pressure in a pressure fluid for pressure actuation of hydraulic devices of deep-sea installations
US9574557B2 (en) * 2014-07-24 2017-02-21 Oceaneering International, Inc. Subsea pressure compensating pump apparatus
CN105605033B (en) * 2014-11-24 2018-05-01 徐工集团工程机械股份有限公司 Self contained pressure compensating system and its pressure monitoring method

Also Published As

Publication number Publication date
US11674529B2 (en) 2023-06-13
EP3612735A1 (en) 2020-02-26
WO2018192749A1 (en) 2018-10-25
DE102017206498A1 (en) 2018-10-18
US20200166056A1 (en) 2020-05-28

Similar Documents

Publication Publication Date Title
EP3612735B1 (en) Pressure compensation device designed for underwater applications
EP3017140B1 (en) Device for adjusting a media pressure relative to an ambient pressure
DE4426854C2 (en) Hydraulic underwater coupling with drain valve
EP2668403B1 (en) Device for transmitting a hydraulic working pressure in a fluid for actuating hydraulic devices in deep seawater
DE102015213695A1 (en) Electrohydraulic system for underwater use and process valve with such electrohydraulic system
EP1133641A1 (en) Pressure means storage device
DE102017206506A1 (en) Electrohydraulic system for underwater use with an electrohydraulic actuator
EP3695124A1 (en) Electrohydraulic system with a hydraulic spindle and at least one closed hydraulic circuit
EP3612736B1 (en) Electrohydraulic system for under water use, with an electrohydraulic actuator
DE102016218768A1 (en) Underwater BOP control system with double acting check valve
EP3864302B1 (en) Pressure compensating device, adapted to be used under water
DE202011052463U1 (en) Hydropulsvorrichtung, in particular internal pressure pulse
DE102018201456A1 (en) Hydraulic unit and independent servohydraulic linear axis with such a hydraulic unit
DE102022201230B4 (en) Safety device for a linearly actuated process valve and system comprising the safety device
DE19906800A1 (en) Pressure fluid accumulator
EP3864300A1 (en) Hydraulic system for use under water with a hydraulic actuating drive
DE2227905C2 (en) Compensation system for high-pressure power cables impregnated with insulating oil
DE2818952A1 (en) LIQUID-FILLED FLEXIBLE SEALING JOINT
WO2018014996A1 (en) Tensioning cylinder device
EP0965009B1 (en) Pressure piston arrangement comprising a seal device
DE19647106A1 (en) Pretensioning device for sealing unit of stuffing box seal
DE102022201228A1 (en) Linear actuator for actuating a process valve
WO2008055968A2 (en) Device for degassing a liquid
DE102017206902A1 (en) Arrangement for underwater use with a hydraulic coupling

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191118

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210316

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1400738

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018005628

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210909

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20210609

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211011

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018005628

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

26N No opposition filed

Effective date: 20220310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220326

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220326

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230321

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230323

Year of fee payment: 6

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230509

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230524

Year of fee payment: 6