EP3612736B1 - Electrohydraulic system for under water use, with an electrohydraulic actuator - Google Patents

Electrohydraulic system for under water use, with an electrohydraulic actuator Download PDF

Info

Publication number
EP3612736B1
EP3612736B1 EP18717311.7A EP18717311A EP3612736B1 EP 3612736 B1 EP3612736 B1 EP 3612736B1 EP 18717311 A EP18717311 A EP 18717311A EP 3612736 B1 EP3612736 B1 EP 3612736B1
Authority
EP
European Patent Office
Prior art keywords
hydraulic
drive device
rotary drive
cylinder
hydraulic cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18717311.7A
Other languages
German (de)
French (fr)
Other versions
EP3612736A1 (en
Inventor
Alexandre ORTH
Gottfried Hendrix
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3612736A1 publication Critical patent/EP3612736A1/en
Application granted granted Critical
Publication of EP3612736B1 publication Critical patent/EP3612736B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/18Combined units comprising both motor and pump
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/02Surface sealing or packing
    • E21B33/03Well heads; Setting-up thereof
    • E21B33/06Blow-out preventers, i.e. apparatus closing around a drill pipe, e.g. annular blow-out preventers
    • E21B33/061Ram-type blow-out preventers, e.g. with pivoting rams
    • E21B33/062Ram-type blow-out preventers, e.g. with pivoting rams with sliding rams
    • E21B33/063Ram-type blow-out preventers, e.g. with pivoting rams with sliding rams for shearing drill pipes
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/02Valve arrangements for boreholes or wells in well heads
    • E21B34/04Valve arrangements for boreholes or wells in well heads in underwater well heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B7/00Systems in which the movement produced is definitely related to the output of a volumetric pump; Telemotors
    • F15B7/005With rotary or crank input
    • F15B7/006Rotary pump input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • B63G2008/002Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
    • B63G2008/004Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned autonomously operating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/26Supply reservoir or sump assemblies
    • F15B1/265Supply reservoir or sump assemblies with pressurised main reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20515Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20561Type of pump reversible

Definitions

  • the invention relates to an electrohydraulic system for use under water, in particular at great water depths, with an electrohydraulic actuator.
  • the electrohydraulic actuator is used in particular to operate underwater fittings.
  • the system includes a container that has an interior space that is provided to form a volume that is sealed off from the environment and is intended to hold a hydraulic pressure fluid.
  • the system further includes a hydraulic cylinder and a hydraulic machine located inside the container.
  • Such type of electro-hydraulic systems are mainly used to move an element under water at water depths of up to several thousand meters in connection with the extraction of oil and gas, mining, scientific exploration or infrastructure projects. So there are z. B. in oil or natural gas production systems at sea at great depths, process valves with which the volume flow of the medium to be pumped can be regulated or shut off.
  • An electro-hydraulic system can, for example, after DE 10 2015 213695 A1 be designed with an electrohydraulic actuator, which comprises a container, in the interior of which a hydrostatic machine that can be operated at least as a pump and an electric machine that is mechanically coupled to the hydrostatic machine are arranged.
  • the main drive of the actuator is an electric motor that drives the pump and thus adjusts a hydraulic cylinder with a linear movement.
  • the electric motor consumes considerable electrical energy z. B. must be introduced via sea cable.
  • the actuator adjusts z. B. Large production valves of oil or gas wells that control the flow rate. So that a process valve can also be operated manually by a robot such as B.
  • ROV Remote Operated Vehicle
  • UAV Autonomous Underwater Vehicle
  • the rod may be threaded for movement and co-operate with an internally threaded and axially fixed nut which is rotated to actuate the process valve.
  • a disadvantage of this arrangement is the outlay in terms of investment. This requires a large installation space. In addition, the limited lifespan is annoying.
  • manual actuation stands in the way of frequent adjustment of a process valve during operation.
  • the mechanical arrangement is sensitive to shocks and vibrations that can be caused by the submersible.
  • an electrical charging system for a battery-powered submersible is known.
  • an immersion device can be connected to the immersion body, with the immersion device having a motor which drives a dynamo arranged in the immersion body, so that the battery of the immersion body is charged.
  • an electrohydraulic system for use under water with an electrohydraulic actuator, comprising a hydraulic machine, a rotary drive device and a hydraulic cylinder or hydraulic motor, and with a container, with the hydraulic cylinder or hydraulic motor and the hydraulic machine being present in an interior space of the container.
  • the rotary drive mechanism is mechanically coupled to the hydraulic machine for a common rotating motion.
  • the hydraulic machine can adjust the hydraulic cylinder and/or hydraulic motor.
  • the rotary drive device is used to adjust the hydraulic cylinder.
  • the rotary drive device is arranged outside of the container and set up for coupling to the hydraulic machine and for decoupling from the hydraulic machine.
  • the electrical energy for the rotary drive device located outside the container is independent of the energy consumption of the components inside the container.
  • the components inside the container are supplied with electrical power via an electrical interface on the container.
  • the electrohydraulic system presented here with the electrohydraulic actuator has the advantage that a smaller installation space is combined with an increased service life in a structurally simple manner. In particular, frequent adjustment by the underwater vehicle, for example a robot, is made possible. Finally, undesired shocks and vibrations on the hydraulic cylinder, which can occur due to the submersible, are avoided.
  • the rotary drive device is preferably used for the mechanical emergency adjustment of the hydraulic cylinder.
  • the rotary drive device is expediently used for the constant adjustment of the hydraulic cylinder.
  • the hydraulic cylinder is advantageously a differential cylinder.
  • the hydraulic cylinder is preferably a synchronous cylinder.
  • the hydraulic cylinder is expediently designed with a longitudinally displaceable piston for adjusting a process valve.
  • the hydraulic cylinder preferably includes a helical compression spring for resetting the hydraulic cylinder.
  • At least one solenoid valve is preferably arranged in such a way that a cylinder chamber of the hydraulic cylinder is hydraulically relieved in the event of a failure of the electrical current.
  • an electrical interface to be provided and set up for the emergency stop in such a way that it (only) actuates the safety valves and status monitoring via the (planned) sensors (travel sensors, position indicators, pressure sensors, temperature sensors, etc.)
  • Seat valves or check valves and/or hydraulically lockable valves can be arranged in such a way that when the rotary drive device is decoupled, the position of the hydraulic cylinder remains (essentially) unchanged or is maintained.
  • At least one pressure-limiting valve can be provided, which is arranged and set up in such a way that the maximum hydraulic system pressure can be effectively limited.
  • the hydraulic machine is preferably designed as a hydrostatic transmission.
  • the hydraulic machine can preferably be operated as a hydraulic pump.
  • the rotary drive device expediently comprises an electric motor.
  • the electric motor can be provided outside the container (in the seawater area). It is possible to provide a separate electric motor inside the container as an additional drive.
  • a remote-controlled underwater vehicle advantageously includes the rotary drive device.
  • the rotary drive means is preferably a torque tool of an underwater robot.
  • a coupling device is preferably present between the rotary drive device and the hydraulic machine.
  • a device for arranging under water and for controlling a pumpable volume flow of a gaseous or liquid medium can be provided, which is designed with a process valve.
  • the process valve has a process valve housing, a process valve spool, with which the volume can be controlled.
  • a hydraulic cylinder is also provided, which is assigned to the process valve housing and can be moved with the process valve slide.
  • the device also has an electrohydraulic system with an electrohydraulic actuator, with a rotary drive device being arranged on a remote-controlled underwater vehicle, which drives a hydraulic pump that adjusts the hydraulic cylinder.
  • a rotary hydraulic motor is advantageously used instead of the hydraulic cylinder used.
  • an electrohydraulic system shown in the figures have according to 1 a process valve 1 with a process valve housing 2, through which a process valve channel 3 runs, which is continued at its mouths by pipes, not shown, and in which a gaseous or liquid medium from the seabed to a part of a derrick protruding from the sea or to a drilling ship flows.
  • the direction of flow is indicated by arrow 4.
  • a cavity is formed in the process valve housing 2 which crosses the process valve channel 3 and in which a process valve slide 5 with a flow opening 6 can be moved transversely to the longitudinal direction of the process valve channel 3 .
  • the process valve channel 3 and the flow opening 6 in the process valve spool 5 do not overlap. The process valve is therefore closed.
  • the flow opening 6 and the process valve channel 3 largely overlap.
  • the process valve 1 is almost completely open.
  • a process valve of the type shown and the use described should on the one hand be able to be actuated in a controlled manner and on the other hand also contribute to safety by quickly and reliably assuming a position that corresponds to a safe state in the event of a fault.
  • this safe state is a closed process valve.
  • the process valve 1 is actuated by a compact electro-hydraulic system 7, which is arranged directly on the process valve 1 under water. It is sufficient that only one electrical cable 8 leads from the electro-hydraulic system 7 to the sea surface or another higher-level electrical control located under water.
  • the electrohydraulic system 7 shown as an exemplary embodiment has a container 9 which is fastened to the process valve housing 2 on an open side, so that there is an interior space 10 which is sealed off from the environment and is filled with hydraulic pressure fluid as the working medium.
  • the container 9 For attachment to the process valve housing 2 , the container 9 has an inner flange on its open side, with which it is screwed to the process valve housing 2 .
  • a peripheral seal 11 is arranged radially outside the screw connections between the inner flange of the container 9 and the process valve housing 2 and is inserted into a peripheral groove of the process valve housing 2 .
  • the container 9 is pressure-compensated with respect to the ambient pressure prevailing under water (seawater area 12).
  • a membrane 14 is tightly clamped in a pressure compensator 13 in an opening in the container wall.
  • There are holes in the lid so that the space between the membrane 14 and the lid is part of the environment and is filled with sea water.
  • the interior space 10 is sealed off from the environment by the membrane 14 .
  • the membrane 14 is facing on its first surface of the interior 10 by the pressure in the interior 10 and on its second surface facing the lid, the is about the same size as the first area, is acted upon by the pressure that prevails in the area and always seeks to assume a position and shape in which the sum of all forces acting on it is zero.
  • a hydraulic cylinder 15 with a cylinder housing 16 which is closed at the end by a cylinder base 17 and a cylinder head 18, with a piston 19 which can be displaced in the interior of the cylinder housing 16 in the longitudinal direction of the cylinder housing 16 and with a piston connected to the piston 19 firmly connected and projecting away from the piston 19 on one side, the first piston rod 20 which passes through the cylinder head 18 in a sealed manner and guided in a manner not shown in detail.
  • the gap between the piston rod 20 and the cylinder head 18 is sealed by two seals (not shown) arranged in the cylinder head 18 at an axial distance from one another.
  • the process valve slide 5 is attached to the free end of the piston rod 20 .
  • a second piston rod 21 which is firmly connected to the piston 19 and projects away from the piston 19 on the other side, which is guided in a sealed manner and passes through the cylinder base 17 .
  • the interior of the cylinder housing 16 is divided by the piston 19 into a first cylinder chamber 22 on the cylinder head side and a second cylinder chamber 23 on the bottom side, the volume of which depends on the position of the piston 19 .
  • a helical compression spring 24 is accommodated in the cylinder chamber 22, which surrounds the piston rod 20 and is clamped between the cylinder head 18 and the piston 19, i.e. it acts on the piston 19 in a direction in which the piston rod 20 is retracted and the process valve slide 5 closes the process valve 1 is moved.
  • a hydraulic machine 25 which can be operated as a pump with two conveying directions.
  • the hydraulic machine 25 has a pressure port 26 and a suction port 27 which is open to the interior 10 .
  • the hydraulic machine 25 can deliver pressurized fluid drawn in from the interior 10 via the pressure connection 26 to the cylinder chamber 23 .
  • pressurized fluid can be displaced from the cylinder chamber 23 via the hydraulic machine 25 into the interior 10 of the container 9 .
  • the cylinder chamber 23 is the second cylinder chamber.
  • pressure fluid sucked in from the interior 10 by the hydraulic machine 25 in operation as a pump can be conveyed via the pressure connection 26 to the cylinder chamber 22; conversely, pressurized fluid from the cylinder chamber 22 are displaced via the hydraulic machine 25 into the interior 10 of the container 9.
  • Appropriate valves are provided for this purpose, see Figures 4 to 6 .
  • a rotary drive device 28 is mechanically coupled to the hydraulic machine 25 for a common rotary movement, e.g. B. via a shaft 29.
  • the shaft 29 transmits torque from the rotary drive device 28 to the hydraulic machine 25.
  • the rotary drive device 28 is located outside of the container 9. It is z. B. by a remote-controlled underwater vehicle 31 (ROV) or a robot and preferably has an electric motor as the rotary drive device 28 .
  • ROV remote-controlled underwater vehicle 31
  • FIG. 2 12 schematically illustrates the torque transmission 30 between the rotary drive device 28 and the hydraulic machine 25.
  • a remote-controlled underwater vehicle which includes the rotary drive device 28 is denoted by 31.
  • FIG. 3 Illustrates schematically that the rotary drive device 28 is set up for coupling to and decoupling from the hydraulic machine 25 .
  • a coupling device 33, z. B. a clutch provided between the rotary drive device 28 and the hydraulic machine 25 is a coupling device 33, z. B. a clutch provided.
  • the means for rotating the hydraulic machine 25 are designed in such a way that the tightness of the interior 10 to the outer seawater area 12 is ensured.
  • FIG. 4 shows a first embodiment with (optional) internally arranged main drive 34 (automated cylinder drive) for a hydraulic cylinder 15 without a compression spring.
  • the hydraulic cylinder 15 (actuator) works without a spring-loaded opening and closing function.
  • the rotary drive device 28 on the underwater vehicle 31 (see Figures 2 and 3 ) generates a torque that drives the hydraulic machine 25 (hydraulic pump).
  • the coupling device (connection coupling) is denoted by 33 .
  • the hydraulic machine 25 adjusts the hydraulic cylinder 15.
  • the interior 10 of the container 9 contains: suction valves 37.1, 37.2, check valves 38.1, 38.2, hydraulically lockable valves 39.1, 39.2 and a pressure relief valve 41.
  • the embodiment after 4 is structurally simple, space-saving, robust and offers a low risk of penetrating sea water.
  • another pump with an electric motor operated by electric power can also be used.
  • figure 5 illustrates a second embodiment with an internally arranged main drive 34 for a hydraulic cylinder 15, but with a helical compression spring 24 in the first cylinder chamber 22.
  • FIG 5 are - compared to 4 -
  • Hydraulically lockable valve 39.3 and solenoid valve 40 open when de-energized.
  • This training includes a safety lock for the process valve 1 when the function of the helical compression spring 24 is impaired or fails, z. B. in the event of a fracture or the like.
  • FIG. 6 illustrates a third (opposite figure 5 somewhat simplified) embodiment without internally arranged main drive (see item 34 in 4 and 5 ) for a hydraulic cylinder 15.
  • the drive function for the hydraulic cylinder 15 takes place only via the external rotary drive device 28 in conjunction with the hydraulic machine 25.
  • This training is suitable both for emergency adjustment and - if necessary - for constant adjustment during operation of the hydraulic cylinder 15.
  • this embodiment is extremely compact and requires only little electrical energy consumption. Electrical energy within the electro-hydraulic system is only required for safety signals and sensors.
  • the electrical energy for the rotary drive device 28 located outside the container 9 is independent of the energy consumption of the components inside the container 9.
  • the electrical interface shown above only includes the emergency stop for actuating the safety valves and the sensor signals (position encoder, pressures, . ).

Description

Die Erfindung betrifft ein elektrohydraulisches System für den Einsatz unter Wasser, insbesondere in großen Wassertiefen, mit einem elektrohydraulischen Stellantrieb. Der elektrohydraulische Stellantrieb dient insbesondere zur Betätigung von Unterwasser-Armaturen. Das System umfasst einen Behälter, der einen Innenraum, der zur Bildung eines zur Umgebung abgeschlossenen und zur Aufnahme eines hydraulischen Druckfluids vorgesehenen Volumens vorgesehen ist. Das System umfasst des Weiteren einen Hydrozylinder und eine Hydromaschine, die im Inneren des Behälters angeordnet sind.The invention relates to an electrohydraulic system for use under water, in particular at great water depths, with an electrohydraulic actuator. The electrohydraulic actuator is used in particular to operate underwater fittings. The system includes a container that has an interior space that is provided to form a volume that is sealed off from the environment and is intended to hold a hydraulic pressure fluid. The system further includes a hydraulic cylinder and a hydraulic machine located inside the container.

Solche Art elektrohydraulischer Systeme werden vor allem dazu benutzt, um unter Wasser in Wassertiefen bis zu mehreren tausend Metern im Zusammenhang mit der Förderung von Erdöl und Erdgas, mit Bergbau, naturwissenschaftlichen Erkundigungen oder Infrastrukturprojekten ein Element zu bewegen. So befinden sich z. B. bei Erdöl- oder Erdgasförderanlagen auf See in großen Tiefen Prozessventile, mit denen der Volumenstrom des zu fördernden Mediums geregelt oder abgesperrt werden kann.Such type of electro-hydraulic systems are mainly used to move an element under water at water depths of up to several thousand meters in connection with the extraction of oil and gas, mining, scientific exploration or infrastructure projects. So there are z. B. in oil or natural gas production systems at sea at great depths, process valves with which the volume flow of the medium to be pumped can be regulated or shut off.

Ein elektrohydraulisches System kann beispielsweise nach der DE 10 2015 213695 A1 mit einem elektrohydraulischen Stellantrieb ausgeführt sein, das einen Behälter umfasst, in dessen Innenraum eine zumindest als Pumpe betreibbare hydrostatische Maschine und eine mit der hydrostatischen Maschine mechanisch gekoppelte Elektromaschine angeordnet sind. Der Hauptantrieb des Stellantriebs erfolgt dabei über einen elektrischen Motor, der die Pumpe antreibt und so einen hydraulischen Zylinder mit einer geradlinigen Bewegung verstellt. Der Elektromotor verbraucht erhebliche elektrische Energie, die z. B. über Seekabel herangeführt werden muss. Der Stellantrieb verstellt z. B. große Produktionsarmaturen von Öl- oder Gasbohrlöchern, die die Fördermenge regeln. Damit ein Prozessventil auch manuell durch einen Roboter, wie z. B. durch ein Remote Operated Vehicle (ROV) oder ein Autonomous Underwater Vehicle (AUV) betätigt werden kann, z. B. in einem Notfall, ist an dem Behälter eine manuelle Schnittstelle vorhanden, von der ausgehend eine Stange mit einem Kolben in dem Zylinder gekoppelt ist. In der Schnittstelle kann die Stange ein Bewegungsgewinde aufweisen und mit einer mit einem Innengewinde versehenen und axial fixierten Schraubenmutter zusammenwirken, die zum Betätigen des Prozessventils gedreht wird. Nachteilig bei dieser Anordnung ist der anlagemäßige Aufwand. Erforderlich hierbei ist ein großer Bauraum. Außerdem stört die begrenzte Lebensdauer. Weiterhin steht die manuelle Betätigung einer häufigen Verstellung eines Prozessventils im Betrieb im Wege. Darüber hinaus ist die mechanische Anordnung empfindlich gegenüber Stößen und Vibrationen, die durch das Unterwasserfahrzeug erfolgen können.An electro-hydraulic system can, for example, after DE 10 2015 213695 A1 be designed with an electrohydraulic actuator, which comprises a container, in the interior of which a hydrostatic machine that can be operated at least as a pump and an electric machine that is mechanically coupled to the hydrostatic machine are arranged. The main drive of the actuator is an electric motor that drives the pump and thus adjusts a hydraulic cylinder with a linear movement. The electric motor consumes considerable electrical energy z. B. must be introduced via sea cable. The actuator adjusts z. B. Large production valves of oil or gas wells that control the flow rate. So that a process valve can also be operated manually by a robot such as B. by a Remote Operated Vehicle (ROV) or an Autonomous Underwater Vehicle (AUV), z. in an emergency, there is a manual interface on the container from which a rod is coupled to a piston in the cylinder. In the interface, the rod may be threaded for movement and co-operate with an internally threaded and axially fixed nut which is rotated to actuate the process valve. A disadvantage of this arrangement is the outlay in terms of investment. This requires a large installation space. In addition, the limited lifespan is annoying. Furthermore, manual actuation stands in the way of frequent adjustment of a process valve during operation. In addition, the mechanical arrangement is sensitive to shocks and vibrations that can be caused by the submersible.

Aus der gattungsfremden JP H07 223589 A ist ein elektrisches Ladesystem für einen batteriebetriebenen Tauchkörper bekannt. Hierfür kann eine Taucheinrichtung mit dem Tauchkörper verbunden werden, wobei in der Taucheinrichtung ein Motor vorhanden ist, der einen in dem Tauchkörper angeordneten Dynamo antreibt, so dass die Batterie des Tauchkörpers geladen wird.From the non-generic JP H07 223589 A an electrical charging system for a battery-powered submersible is known. For this purpose, an immersion device can be connected to the immersion body, with the immersion device having a motor which drives a dynamo arranged in the immersion body, so that the battery of the immersion body is charged.

Hiervon ausgehend ist es Aufgabe der vorliegenden Erfindung, ein elektrohydraulisches System zu schaffen, die die genannten Nachteile lindern oder sogar vermeiden. Insbesondere sollen auf konstruktiv einfache Weise eine kompakte Bauweise, namentlich ein kleiner Bauraum und eine gesteigerte Lebensdauer verwirklicht werden. Außerdem soll eine häufige Verstellung des Stellantriebs auf einfache Art ermöglicht werden.Proceeding from this, it is the object of the present invention to create an electrohydraulic system which alleviates or even avoids the disadvantages mentioned. In particular, a compact design, namely a small installation space and an increased service life, are to be realized in a structurally simple manner. In addition, a frequent adjustment of the actuator should be made possible in a simple manner.

Diese Aufgaben werden gelöst mit einem elektrohydraulischen System gemäß Patentanspruch 1. Weitere Ausgestaltungen der Erfindung sind in den abhängigen Patentansprüchen angegeben. Es ist darauf hinzuweisen, dass die Beschreibung, insbesondere im Zusammenhang mit den Figuren, weitere Einzelheiten und Weiterbildungen der Erfindung anführen, die im Rahmen der Patentansprüche sind.These objects are achieved with an electrohydraulic system according to patent claim 1. Further developments of the invention are specified in the dependent patent claims. It should be pointed out that the description, in particular in connection with the figures, gives further details and developments of the invention which are within the scope of the patent claims.

Hierzu trägt ein elektrohydraulisches System für den Einsatz unter Wasser mit einem elektrohydraulischen Stellantrieb, umfassend eine Hydromaschine, eine Drehantriebseinrichtung und einen Hydrozylinder oder Hydromotor, und mit einem Behälter bei, wobei in einem Innenraum des Behälters der Hydrozylinder oder Hydromotor und die Hydromaschine vorhanden sind. Die Drehantriebseinrichtung ist mit der Hydromaschine für eine gemeinsame drehende Bewegung mechanisch gekoppelt. Die Hydromaschine kann den Hydrozylinder und/oder Hydromotor verstellen. Die Drehantriebseinrichtung dient zur Verstellung des Hydrozylinders. Die Drehantriebseinrichtung ist außerhalb des Behälters angeordnet und für eine Ankopplung an die Hydromaschine und für eine Abkopplung von der Hydromaschine eingerichtet. Die elektrische Energie für die außerhalb des Behälters befindliche Drehantriebseinrichtung ist unabhängig von dem Energieverbrauch der Komponenten innerhalb des Behälters. Die elektrische Energieversorgung der Komponenten innerhalb des Behälters erfolgt über eine elektrische Schnittstelle am Behälter.Contributing to this is an electrohydraulic system for use under water with an electrohydraulic actuator, comprising a hydraulic machine, a rotary drive device and a hydraulic cylinder or hydraulic motor, and with a container, with the hydraulic cylinder or hydraulic motor and the hydraulic machine being present in an interior space of the container. The rotary drive mechanism is mechanically coupled to the hydraulic machine for a common rotating motion. The hydraulic machine can adjust the hydraulic cylinder and/or hydraulic motor. The rotary drive device is used to adjust the hydraulic cylinder. The rotary drive device is arranged outside of the container and set up for coupling to the hydraulic machine and for decoupling from the hydraulic machine. The electrical energy for the rotary drive device located outside the container is independent of the energy consumption of the components inside the container. The components inside the container are supplied with electrical power via an electrical interface on the container.

Das hier vorgestellte elektrohydraulische System mit dem elektrohydraulischen Stellantrieb hat den Vorteil, dass auf konstruktiv einfache Art ein kleinerer Bauraum mit einer gesteigerten Lebensdauer kombiniert sind. Insbesondere ist eine häufige Verstellung durch das Unterwasserfahrzeug, bspw. einen Roboter, ermöglicht. Schließlich werden unerwünschte Stöße und Vibrationen auf den Hydrozylinder vermieden, die durch das Unterwasserfahrzeug auftreten können.The electrohydraulic system presented here with the electrohydraulic actuator has the advantage that a smaller installation space is combined with an increased service life in a structurally simple manner. In particular, frequent adjustment by the underwater vehicle, for example a robot, is made possible. Finally, undesired shocks and vibrations on the hydraulic cylinder, which can occur due to the submersible, are avoided.

Bevorzugt wird die Drehantriebseinrichtung zur mechanischen Notverstellung des Hydrozylinders herangezogen. Zweckmäßig dient die Drehantriebseinrichtung zur ständigen Verstellung des Hydrozylinders.The rotary drive device is preferably used for the mechanical emergency adjustment of the hydraulic cylinder. The rotary drive device is expediently used for the constant adjustment of the hydraulic cylinder.

Mit Vorteil ist der Hydrozylinder ein Differentialzylinder. Vorzugsweise ist der Hydrozylinder ein Gleichgangzylinder.The hydraulic cylinder is advantageously a differential cylinder. The hydraulic cylinder is preferably a synchronous cylinder.

Zweckmäßig ist der Hydrozylinder mit einem längs verschiebbaren Kolben zur Verstellung eines Prozessventils ausgebildet.The hydraulic cylinder is expediently designed with a longitudinally displaceable piston for adjusting a process valve.

Vorzugsweise umfasst der Hydrozylinder eine Schraubendruckfeder zur Rückstellung des Hydrozylinders.The hydraulic cylinder preferably includes a helical compression spring for resetting the hydraulic cylinder.

Bevorzugt ist mindestens ein Magnetventil derart angeordnet, dass bei einem Ausfall des elektrischen Stroms eine Zylinderkammer des Hydrozylinders hydraulisch entlastet wird.At least one solenoid valve is preferably arranged in such a way that a cylinder chamber of the hydraulic cylinder is hydraulically relieved in the event of a failure of the electrical current.

Es kann zweckmäßig sein, dass eine elektrische Schnittstelle vorgesehen und für den Not-Halt so eingerichtet ist, dass diese (nur) die Sicherheitsventile betätigt und eine Zustands-überwachung über die (vorgesehenen) Sensoren (Weggeber, Positionsmelder, Drucksensoren, Temperatursensoren, etc.)It can be expedient for an electrical interface to be provided and set up for the emergency stop in such a way that it (only) actuates the safety valves and status monitoring via the (planned) sensors (travel sensors, position indicators, pressure sensors, temperature sensors, etc.)

Es können Sitzventile bzw. Rückschlagventile und/oder hydraulisch sperrbare Ventile derart angeordnet sein, dass bei Abkoppelung der Drehantriebseinrichtung die Position des Hydrozylinders (im Wesentlichen) unverändert bleibt bzw. aufrecht erhalten wird.Seat valves or check valves and/or hydraulically lockable valves can be arranged in such a way that when the rotary drive device is decoupled, the position of the hydraulic cylinder remains (essentially) unchanged or is maintained.

Es kann mindestens ein Druckbegrenzungsventil vorgesehen sein, das derart angeordnet und eingerichtet ist, dass der maximale hydraulische Systemdruck effektiv begrenzbar ist.At least one pressure-limiting valve can be provided, which is arranged and set up in such a way that the maximum hydraulic system pressure can be effectively limited.

Vorzugsweise ist die Hydromaschine als hydrostatisches Getriebe ausgebildet. Bevorzugt ist die Hydromaschine als hydraulische Pumpe betreibbar.The hydraulic machine is preferably designed as a hydrostatic transmission. The hydraulic machine can preferably be operated as a hydraulic pump.

Zweckmäßig umfasst die Drehantriebseinrichtung einen Elektromotor. Der Elektromotor kann außerhalb des Behälters (im Seewasser-Bereich) vorgesehen sein. Es ist möglich, einen separaten Elektromotor innerhalb des Behälters als zusätzlichen Antrieb vorzusehen.The rotary drive device expediently comprises an electric motor. The electric motor can be provided outside the container (in the seawater area). It is possible to provide a separate electric motor inside the container as an additional drive.

Mit Vorteil umfasst ein ferngesteuertes Unterwasserfahrzeug die Drehantriebseinrichtung. Die Drehantriebseinrichtung ist bevorzugt ein Drehmoment-Werkzeug eines Unterwasser-Roboters.A remote-controlled underwater vehicle advantageously includes the rotary drive device. The rotary drive means is preferably a torque tool of an underwater robot.

Vorzugsweise ist zwischen der Drehantriebseinrichtung und der Hydromaschine eine Kopplungseinrichtung vorhanden.A coupling device is preferably present between the rotary drive device and the hydraulic machine.

Es kann eine Vorrichtung zur Anordnung unter Wasser und zur Steuerung eines förderbaren Volumenstroms eines gasförmigen oder flüssigen Mediums vorgesehen sein, welche mit einem Prozessventil ausgeführt ist. Das Prozessventil hat ein Prozessventilgehäuse, einen Prozessventilschieber, mit dem das Volumen steuerbar ist. Weiter ist ein Hydrozylinder vorgesehen, der dem Prozessventilgehäuse zugeordnet und mit dem Prozessventilschieber bewegbar ist. Die Vorrichtung hat zudem ein elektrohydraulisches System mit einem elektrohydraulischen Stellantrieb, wobei eine Drehantriebseinrichtung an einem ferngesteuerten Unterwasserfahrzeug angeordnet ist, die eine hydraulische Pumpe antreibt, die den Hydrozylinder verstellt. Mit Vorteil wird anstelle des Hydrozylinders ein rotatorischer Hydromotor verwendet. Hinsichtlich der Beschreibung des Aufbaus bzw. der Funktion des elektrohydraulischen Systems kann auf die weiteren Beschreibungen Bezug genommen werden.A device for arranging under water and for controlling a pumpable volume flow of a gaseous or liquid medium can be provided, which is designed with a process valve. The process valve has a process valve housing, a process valve spool, with which the volume can be controlled. A hydraulic cylinder is also provided, which is assigned to the process valve housing and can be moved with the process valve slide. The device also has an electrohydraulic system with an electrohydraulic actuator, with a rotary drive device being arranged on a remote-controlled underwater vehicle, which drives a hydraulic pump that adjusts the hydraulic cylinder. A rotary hydraulic motor is advantageously used instead of the hydraulic cylinder used. With regard to the description of the structure or the function of the electrohydraulic system, reference can be made to the further descriptions.

Die Erfindung und das technische Umfeld werden nachfolgend anhand von Figuren näher erläutert. Dabei sind gleiche Bauteile mit gleichen Bezugszeichen gekennzeichnet. Die Darstellungen sind schematisch und nicht zur Veranschaulichung von Größenverhältnissen vorgesehen. Die mit Bezug auf einzelne Details einer Figur angeführten Erläuterungen sind extrahierbar und mit Sachverhalten aus anderen Figuren oder der vorstehenden Beschreibung frei kombinierbar, es sei denn, dass sich für einen Fachmann zwingend etwas anderes ergibt bzw. eine solche Kombination hier explizit untersagt wird. Es zeigen schematisch:

Fig. 1:
eine Seitenansicht der Vorrichtung bei geschlossenem Prozessventil;
Fig. 2:
ein Blockschaltbild mit Drehantriebseinrichtung, Drehmomentübertragung und Hydromaschine,
Fig. 3:
ein Blockschaltbild wie Fig. 2, jedoch mit einer Kopplungseinrichtung,
Fig. 4:
eine erste Ausführungsform mit innen angeordnetem Hauptantrieb für einen Hydrozylinder ohne Druckfeder,
Fig. 5:
eine zweite Ausführungsform mit innen angeordnetem Hauptantrieb für einen Hydrozylinder mit Druckfeder und
Fig. 6:
eine dritte Ausführungsform ohne innen angeordneten Hauptantrieb für einen Hydrozylinder.
The invention and the technical environment are explained in more detail below with reference to figures. The same components are marked with the same reference symbols. The illustrations are schematic and not intended to illustrate proportions. The explanations given with reference to individual details of a figure can be extracted and freely combined with facts from other figures or the above description, unless something else is absolutely necessary for a person skilled in the art or such a combination is explicitly prohibited here. They show schematically:
Figure 1:
a side view of the device with the process valve closed;
Figure 2:
a block diagram with rotary drive device, torque transmission and hydraulic machine,
Figure 3:
a block diagram like 2 , but with a coupling device,
Figure 4:
a first embodiment with an internally arranged main drive for a hydraulic cylinder without a compression spring,
Figure 5:
a second embodiment with an internally arranged main drive for a hydraulic cylinder with compression spring and
Figure 6:
a third embodiment without an internally arranged main drive for a hydraulic cylinder.

Die in den Figuren gezeigten Ausführungsbeispiele eines elektrohydraulischen Systems weisen gemäß Fig. 1 ein Prozessventil 1 mit einem Prozessventilgehäuse 2 auf, durch das ein Prozessventilkanal 3 hindurch fährt, der an seinen Mündungen durch nicht dargestellte Rohre fortgeführt wird und in dem ein gasförmiges oder flüssiges Medium vom Meeresboden zu einem aus dem Meer herausragenden Teil eines Bohrturms oder zu einem Bohrschiff fließt. Die Flussrichtung sei durch den Pfeil 4 angegeben.The embodiments of an electrohydraulic system shown in the figures have according to 1 a process valve 1 with a process valve housing 2, through which a process valve channel 3 runs, which is continued at its mouths by pipes, not shown, and in which a gaseous or liquid medium from the seabed to a part of a derrick protruding from the sea or to a drilling ship flows. The direction of flow is indicated by arrow 4.

In dem Prozessventilgehäuse 2 ist ein Hohlraum ausgebildet, der den Prozessventilkanal 3 quert und in dem ein Prozessventilschieber 5 mit einer Durchflussöffnung 6 quer zur Längsrichtung des Prozessventilkanals 3 bewegbar ist. In dem Zustand nach der Fig. 1 überdecken sich der Prozessventilkanal 3 und die Durchflussöffnung 6 im Prozessventilschieber 5 nicht. Das Prozessventil ist also geschlossen. In einem (nicht dargestellten) Zustand überdecken sich die Durchflussöffnung 6 und der Prozessventilkanal 3 weitgehend. Das Prozessventil 1 ist fast ganz offen.A cavity is formed in the process valve housing 2 which crosses the process valve channel 3 and in which a process valve slide 5 with a flow opening 6 can be moved transversely to the longitudinal direction of the process valve channel 3 . In the state after 1 The process valve channel 3 and the flow opening 6 in the process valve spool 5 do not overlap. The process valve is therefore closed. In a state (not shown), the flow opening 6 and the process valve channel 3 largely overlap. The process valve 1 is almost completely open.

Ein Prozessventil der gezeigten Art und der beschriebenen Verwendung soll einerseits kontrolliert betätigt werden können und andererseits auch zur Sicherheit beitragen, indem es bei einer Störung schnell und zuverlässig eine Stellung einnimmt, die einem sicheren Zustand entspricht. Vorliegend ist dieser sichere Zustand ein geschlossenes Prozessventil.A process valve of the type shown and the use described should on the one hand be able to be actuated in a controlled manner and on the other hand also contribute to safety by quickly and reliably assuming a position that corresponds to a safe state in the event of a fault. In the present case, this safe state is a closed process valve.

Das Prozessventil 1 wird durch ein kompaktes elektrohydraulisches System 7 betätigt, das unter Wasser direkt am Prozessventil 1 angeordnet ist. Es genügt, dass von dem elektrohydraulischen System 7 aus nur ein elektrisches Kabel 8 an die Meeresoberfläche oder eine andere unter Wasser befindliche übergeordnete elektrische Steuerung führt.The process valve 1 is actuated by a compact electro-hydraulic system 7, which is arranged directly on the process valve 1 under water. It is sufficient that only one electrical cable 8 leads from the electro-hydraulic system 7 to the sea surface or another higher-level electrical control located under water.

Das als Ausführungsbeispiel gezeigte elektrohydraulische System 7 weist einen Behälter 9 auf, der an einer offenen Seite am Prozessventilgehäuse 2 befestigt ist, so dass ein zur Umgebung abgeschlossener Innenraum 10 vorhanden ist, der mit einem hydraulischen Druckfluid als Arbeitsmittel gefüllt ist. Zur Befestigung an dem Prozessventilgehäuse 2 besitzt der Behälter 9 an seiner offenen Seite einen Innenflansch, mit dem er am Prozessventilgehäuse 2 verschraubt ist. Radial außerhalb der Schraubverbindungen ist zwischen dem Innenflansch des Behälters 9 und dem Prozessventilgehäuse 2 eine umlaufende Dichtung 11 angeordnet, die in eine umlaufende Nut des Prozessventilgehäuses 2 eingelegt ist.The electrohydraulic system 7 shown as an exemplary embodiment has a container 9 which is fastened to the process valve housing 2 on an open side, so that there is an interior space 10 which is sealed off from the environment and is filled with hydraulic pressure fluid as the working medium. For attachment to the process valve housing 2 , the container 9 has an inner flange on its open side, with which it is screwed to the process valve housing 2 . A peripheral seal 11 is arranged radially outside the screw connections between the inner flange of the container 9 and the process valve housing 2 and is inserted into a peripheral groove of the process valve housing 2 .

Der Behälter 9 ist gegenüber dem unter Wasser herrschenden Umgebungsdruck (Seewasserbereich 12) druckkompensiert. Dazu ist bei einem Druckkompensator 13 in einer Öffnung in der Behälterwand eine Membran 14 dicht eingeklemmt. Im Deckel befinden sich Löcher, so dass der Raum zwischen Membran 14 und Deckel Teil der Umgebung ist und mit Seewasser gefüllt ist. Durch die Membran 14 ist also der Innenraum 10 gegen die Umgebung abgeschottet. Die Membran 14 wird an ihrer dem Innenraum 10 zugekehrten ersten Fläche von dem Druck im Innenraum 10 und an ihrer dem Deckel zugekehrten zweiten Fläche, die etwa genauso groß wie die erste Fläche ist, von dem Druck, der in der Umgebung herrscht, beaufschlagt und sucht immer eine Lage und Form einzunehmen, in der die Summe aller an ihr eingreifenden Kräfte Null ist.The container 9 is pressure-compensated with respect to the ambient pressure prevailing under water (seawater area 12). For this purpose, a membrane 14 is tightly clamped in a pressure compensator 13 in an opening in the container wall. There are holes in the lid so that the space between the membrane 14 and the lid is part of the environment and is filled with sea water. The interior space 10 is sealed off from the environment by the membrane 14 . The membrane 14 is facing on its first surface of the interior 10 by the pressure in the interior 10 and on its second surface facing the lid, the is about the same size as the first area, is acted upon by the pressure that prevails in the area and always seeks to assume a position and shape in which the sum of all forces acting on it is zero.

Im Innenraum 10 des Behälters 9 ist ein Hydrozylinder 15 mit einem Zylindergehäuse 16 vorhanden, das stirnseitig durch einen Zylinderboden 17 und einen Zylinderkopf 18 verschlossen ist, mit einem im Inneren des Zylindergehäuses 16 in Längsrichtung des Zylindergehäuses 16 verschiebbaren Kolben 19 und mit einer mit dem Kolben 19 fest verbundenen und einseitig von dem Kolben 19 wegragenden ersten Kolbenstange 20, die abgedichtet und in nicht näher dargestellter Weise geführt durch den Zylinderkopf 18 hindurchtritt. Abgedichtet ist der Spalt zwischen der Kolbenstange 20 und dem Zylinderkopf 18 durch zwei (nicht dargestellte) im Zylinderkopf 18 in einem axialen Abstand zueinander angeordnete Dichtungen. Am freien Ende der Kolbenstange 20 ist der Prozessventilschieber 5 befestigt. Weiterhin ist eine mit dem Kolben 19 fest verbundene und zur anderen Seite von dem Kolben 19 wegragende zweite Kolbenstange 21 vorhanden, die abgedichtet geführt und durch den Zylinderboden 17 hindurchtritt. Durch den Kolben 19 ist das Innere des Zylindergehäuses 16 in eine zylinderkopfseitige erste Zylinderkammer 22 und in eine bodenseitige zweite Zylinderkammer 23 unterteilt, deren Volumen von der Position des Kolbens 19 abhängen.In the interior 10 of the container 9 there is a hydraulic cylinder 15 with a cylinder housing 16 which is closed at the end by a cylinder base 17 and a cylinder head 18, with a piston 19 which can be displaced in the interior of the cylinder housing 16 in the longitudinal direction of the cylinder housing 16 and with a piston connected to the piston 19 firmly connected and projecting away from the piston 19 on one side, the first piston rod 20 which passes through the cylinder head 18 in a sealed manner and guided in a manner not shown in detail. The gap between the piston rod 20 and the cylinder head 18 is sealed by two seals (not shown) arranged in the cylinder head 18 at an axial distance from one another. The process valve slide 5 is attached to the free end of the piston rod 20 . Furthermore, there is a second piston rod 21 which is firmly connected to the piston 19 and projects away from the piston 19 on the other side, which is guided in a sealed manner and passes through the cylinder base 17 . The interior of the cylinder housing 16 is divided by the piston 19 into a first cylinder chamber 22 on the cylinder head side and a second cylinder chamber 23 on the bottom side, the volume of which depends on the position of the piston 19 .

In der Zylinderkammer 22 ist eine Schraubendruckfeder 24 untergebracht, die die Kolbenstange 20 umgibt und zwischen dem Zylinderkopf 18 und dem Kolben 19 eingespannt ist, den Kolben 19 also in eine Richtung beaufschlagt, in die die Kolbenstange 20 eingefahren und der Prozessventilschieber 5 zum Schließen des Prozessventils 1 bewegt wird.A helical compression spring 24 is accommodated in the cylinder chamber 22, which surrounds the piston rod 20 and is clamped between the cylinder head 18 and the piston 19, i.e. it acts on the piston 19 in a direction in which the piston rod 20 is retracted and the process valve slide 5 closes the process valve 1 is moved.

Im Innenraum 10 des Behälters 9 befindet sich auch eine Hydromaschine 25, die als Pumpe mit zwei Förderrichtungen betreibbar ist. Die Hydromaschine 25 hat einen Druckanschluss 26 und einen Sauganschluss 27, der zum Innenraum 10 offen ist. Von der Hydromaschine 25 kann im Betrieb als Pumpe aus dem Innenraum 10 angesaugtes Druckfluid über den Druckanschluss 26 zu der Zylinderkammer 23 gefördert werden. Umgekehrt kann Druckfluid aus der Zylinderkammer 23 über die Hydromaschine 25 in den Innenraum 10 des Behälters 9 verdrängt werden. In diesem Sinne ist beim Ausführungsbeispiel die Zylinderkammer 23 die zweite Zylinderkammer. In entsprechender Weise kann von der Hydromaschine 25 im Betrieb als Pumpe aus dem Innenraum 10 angesaugtes Druckfluid über den Druckanschluss 26 zu der Zylinderkammer 22 gefördert werden; umgekehrt kann Druckfluid aus der Zylinderkammer 22 über die Hydromaschine 25 in den Innenraum 10 des Behälters 9 verdrängt werden. Dazu sind entsprechende Ventile vorgesehen, siehe Fig. 4 bis 6.In the interior 10 of the container 9 there is also a hydraulic machine 25 which can be operated as a pump with two conveying directions. The hydraulic machine 25 has a pressure port 26 and a suction port 27 which is open to the interior 10 . When operating as a pump, the hydraulic machine 25 can deliver pressurized fluid drawn in from the interior 10 via the pressure connection 26 to the cylinder chamber 23 . Conversely, pressurized fluid can be displaced from the cylinder chamber 23 via the hydraulic machine 25 into the interior 10 of the container 9 . In this sense, in the exemplary embodiment, the cylinder chamber 23 is the second cylinder chamber. In a corresponding manner, pressure fluid sucked in from the interior 10 by the hydraulic machine 25 in operation as a pump can be conveyed via the pressure connection 26 to the cylinder chamber 22; conversely, pressurized fluid from the cylinder chamber 22 are displaced via the hydraulic machine 25 into the interior 10 of the container 9. Appropriate valves are provided for this purpose, see Figures 4 to 6 .

Mit der Hydromaschine 25 ist eine Drehantriebseinrichtung 28 für eine gemeinsame drehende Bewegung mechanisch gekoppelt, z. B. über eine Welle 29. Die Welle 29 überträgt ein Drehmoment von der Drehantriebseinrichtung 28 zu der Hydromaschine 25. Die Drehantriebseinrichtung 28 befindet sich außerhalb des Behälters 9. Sie ist z. B. von einem ferngesteuerten Unterwasserfahrzeug 31 (ROV) bzw. einem Roboter umfasst und weist als Drehantriebseinrichtung 28 bevorzugt einen Elektromotor auf.A rotary drive device 28 is mechanically coupled to the hydraulic machine 25 for a common rotary movement, e.g. B. via a shaft 29. The shaft 29 transmits torque from the rotary drive device 28 to the hydraulic machine 25. The rotary drive device 28 is located outside of the container 9. It is z. B. by a remote-controlled underwater vehicle 31 (ROV) or a robot and preferably has an electric motor as the rotary drive device 28 .

Damit das Prozessventil 1 durch einen Roboter, wie z. B. durch ein ROV, betätigt werden kann, ist an dem Behälter 9 eine Schnittstelle 32 vorhanden, von der ausgehend im Innenraum 10 die Welle 29 mit der Hydromaschine 25 gekoppelt ist.So that the process valve 1 by a robot such. B. by an ROV, an interface 32 is present on the container 9 , starting from which the shaft 29 is coupled to the hydraulic machine 25 in the interior 10 .

Fig. 2 verdeutlicht schematisch die Drehmomentübertragung 30 zwischen der Drehantriebseinrichtung 28 und der Hydromaschine 25. Mit 31 ist ein ferngesteuertes Unterwasserfahrzeug bezeichnet, das die Drehantriebseinrichtung 28 umfasst. 2 12 schematically illustrates the torque transmission 30 between the rotary drive device 28 and the hydraulic machine 25. A remote-controlled underwater vehicle which includes the rotary drive device 28 is denoted by 31.

Fig. 3 veranschaulicht schematisch, dass die Drehantriebseinrichtung 28 für eine An- und Abkopplung an die bzw. von der Hydromaschine 25 eingerichtet ist. Hierzu ist zwischen der Drehantriebseinrichtung 28 und der Hydromaschine 25 eine Kopplungseinrichtung 33, z. B. eine Kupplung, vorgesehen. Die Mittel zum Drehantrieb der Hydromaschine 25 sind so gestaltet, dass die Dichtheit des Innenraums 10 zum äußeren Seewasserbereich 12 gewährleistet ist. 3 Illustrates schematically that the rotary drive device 28 is set up for coupling to and decoupling from the hydraulic machine 25 . For this purpose, between the rotary drive device 28 and the hydraulic machine 25 is a coupling device 33, z. B. a clutch provided. The means for rotating the hydraulic machine 25 are designed in such a way that the tightness of the interior 10 to the outer seawater area 12 is ensured.

Fig. 4 zeigt eine erste Ausführungsform mit (optional) innen angeordnetem Hauptantrieb 34 (automatisierter Zylinderantrieb) für einen Hydrozylinder 15 ohne Druckfeder. Der Hydrozylinder 15 (Aktuator) arbeitet ohne federbelastete Öffnungs- und Schließfunktion. Es ist ein hydrostatisches Getriebe für den gradlinig arbeitenden Hydrozylinder 15 vorhanden. Die Drehantriebseinrichtung 28 am Unterwasserfahrzeug 31 (siehe Fig. 2 und 3) erzeugt ein Drehmoment, das die Hydromaschine 25 (hydraulische Pumpe) antreibt. Mit 33 ist die Kopplungseinrichtung (Anschlusskupplung) bezeichnet. Die Hydromaschine 25 verstellt den Hydrozylinder 15. Für eine Notbetätigung zum Ein- und Ausfahren des Prozessventilschiebers 5 (siehe Fig. 1) schießt oder öffnet die erste Zylinderkammer 22 das externe Prozessventil 1 (siehe Fig. 1). Weiterhin sind im Innenraum 10 des Behälters 9 vorhanden: Saugventile 37.1, 37.2, Rückschlagventile 38.1, 38.2, hydraulisch sperrbare Ventile 39.1, 39.2 und ein Druckbegrenzungsventil 41. 4 shows a first embodiment with (optional) internally arranged main drive 34 (automated cylinder drive) for a hydraulic cylinder 15 without a compression spring. The hydraulic cylinder 15 (actuator) works without a spring-loaded opening and closing function. There is a hydrostatic transmission for the hydraulic cylinder 15 working in a straight line. The rotary drive device 28 on the underwater vehicle 31 (see Figures 2 and 3 ) generates a torque that drives the hydraulic machine 25 (hydraulic pump). The coupling device (connection coupling) is denoted by 33 . The hydraulic machine 25 adjusts the hydraulic cylinder 15. For an emergency actuation to retract and extend the process valve spool 5 (see 1 ) the first cylinder chamber 22 closes or opens the external process valve 1 (please refer 1 ). Furthermore, the interior 10 of the container 9 contains: suction valves 37.1, 37.2, check valves 38.1, 38.2, hydraulically lockable valves 39.1, 39.2 and a pressure relief valve 41.

Die Ausführungsform nach Fig. 4 ist konstruktiv einfach, platzsparend, robust und bietet geringes Risiko gegen eindringendes Seewasser. Alternativ kann auch eine andere Pumpe mit einem Elektromotor angewandt werden, die durch elektrische Energie betrieben wird.The embodiment after 4 is structurally simple, space-saving, robust and offers a low risk of penetrating sea water. Alternatively, another pump with an electric motor operated by electric power can also be used.

Fig. 5 veranschaulicht eine zweite Ausführungsform mit einem innen angeordneten Hauptantrieb 34 für einen Hydrozylinder 15, jedoch mit einer Schraubendruckfeder 24 in der ersten Zylinderkammer 22. In Fig. 5 sind - im Vergleich zu Fig. 4 - außer der Schraubendruckfeder 24 noch zusätzlich vorhanden: Hydraulisch sperrbares Ventil 39.3 und Magnetventil 40 (stromlos offen). Diese Ausbildung beinhaltet einen Sicherheitsverschluss für das Prozessventil 1, wenn die Funktion der Schraubendruckfeder 24 beeinträchtigt ist oder ausfällt, z. B. bei einem Bruch oder dergleichen. figure 5 illustrates a second embodiment with an internally arranged main drive 34 for a hydraulic cylinder 15, but with a helical compression spring 24 in the first cylinder chamber 22. In figure 5 are - compared to 4 - In addition to the helical compression spring 24 also available: Hydraulically lockable valve 39.3 and solenoid valve 40 (open when de-energized). This training includes a safety lock for the process valve 1 when the function of the helical compression spring 24 is impaired or fails, z. B. in the event of a fracture or the like.

Fig. 6 veranschaulicht eine dritte (gegenüber Fig. 5 etwas vereinfachte) Ausführungsform ohne innen angeordneten Hauptantrieb (siehe Position 34 in Fig. 4 und 5) für einen Hydrozylinder 15. Die Antriebsfunktion für den Hydrozylinder 15 erfolgt nur über die externe Drehantriebseinrichtung 28 in Verbindung mit der Hydromaschine 25. Diese Ausbildung eignet sich sowohl zur Notverstellung als auch - bei Bedarf - zur ständigen Verstellung im Betrieb des Hydrozylinders 15. Durch den Wegfall des Hauptantriebs 34 ist diese Ausführungsform extrem kompakt und erfordert nur geringen elektrischen Energieverbrauch. Elektrische Energie innerhalb des elektrohydraulischen Systems wird nur für Sicherheitssignale und Sensoren benötigt. Die elektrische Energie für die außerhalb des Behälters 9 befindliche Drehantriebseinrichtung 28 ist unabhängig von dem Energieverbrauch der Komponenten innerhalb des Behälters 9. Die oben dargestellte elektrische Schnittstelle umfasst nur den Not-Halt zur Betätigung der Sicherheitsventile und die Sensor-Signale (Positionsencoder, Drücke, ....). 6 illustrates a third (opposite figure 5 somewhat simplified) embodiment without internally arranged main drive (see item 34 in 4 and 5 ) for a hydraulic cylinder 15. The drive function for the hydraulic cylinder 15 takes place only via the external rotary drive device 28 in conjunction with the hydraulic machine 25. This training is suitable both for emergency adjustment and - if necessary - for constant adjustment during operation of the hydraulic cylinder 15. By the Omission of the main drive 34, this embodiment is extremely compact and requires only little electrical energy consumption. Electrical energy within the electro-hydraulic system is only required for safety signals and sensors. The electrical energy for the rotary drive device 28 located outside the container 9 is independent of the energy consumption of the components inside the container 9. The electrical interface shown above only includes the emergency stop for actuating the safety valves and the sensor signals (position encoder, pressures, . ...).

BezugszeichenlisteReference List

11
Prozessventilprocess valve
22
Prozessventilgehäuseprocess valve body
33
Prozessventilkanalprocess valve channel
44
PfeilArrow
55
Prozessventilschieberprocess valve spool
66
Durchflussöffnungflow opening
77
elektrohydraulisches Systemelectrohydraulic system
88th
KabelCable
99
Behältercontainer
1010
Innenraum von 9interior of 9
1111
Dichtungpoetry
1212
Seewasserbereichlake water area
1313
Druckkompensatorpressure compensator
1414
Membranmembrane
1515
Hydrozylinderhydraulic cylinder
1616
Zylindergehäusecylinder body
1717
Zylinderbodencylinder bottom
1818
Zylinderkopfcylinder head
1919
KolbenPistons
2020
erste Kolbenstangefirst piston rod
2121
zweite Kolbenstangesecond piston rod
2222
erste Zylinderkammerfirst cylinder chamber
2323
zweite Zylinderkammersecond cylinder chamber
2424
Schraubendruckfederhelical compression spring
2525
Hydromaschinehydro machine
2626
Druckanschlusspressure connection
2727
Sauganschlusssuction port
2828
Drehantriebseinrichtungrotary drive device
2929
WelleWave
3030
Drehmomentübertragungtorque transmission
3131
ferngesteuertes Unterwasserfahrzeugremote controlled underwater vehicle
3232
Schnittstelleinterface
3333
Kopplungseinrichtungcoupling device
3434
Hauptantrieb von 15Main drive from 15
3535
Hydropumpehydro pump
3636
Elektromotorelectric motor
37.137.1
Saugventilsuction valve
37.237.2
Saugventilsuction valve
38.138.1
Rückschlagventilcheck valve
38.238.2
Rückschlagventilcheck valve
39.139.1
hydraulisch sperrbares Ventilhydraulically lockable valve
39.239.2
hydraulisch sperrbares Ventilhydraulically lockable valve
39.339.3
hydraulisch sperrbares Ventilhydraulically lockable valve
4040
Magnetventilmagnetic valve
4141
Druckbegrenzungsventilpressure relief valve

Claims (11)

  1. Electrohydraulic system (7) for underwater use, with an electrohydraulic actuating drive, comprising a hydraulic machine (25), a rotary drive device (28) and a hydraulic cylinder (15) or hydraulic motor, and with a container (9), wherein the hydraulic cylinder (15) or hydraulic motor and the hydraulic machine (25) are present in an interior space (10) of the container (9), wherein the rotary drive device (28) and the hydraulic machine (25) are mechanically coupled for a common rotary movement and the hydraulic machine (25) adjusts at least the hydraulic cylinder (15) or hydraulic motor, wherein the rotary drive device (28) serves for adjusting the hydraulic cylinder (15), wherein the electrical supply of energy to the components within the container (9) is realized via an electrical interface at the container (9),
    characterized in that
    the rotary drive device (28) is arranged outside the container (9) and is configured for coupling to the hydraulic machine (25) and decoupling from the hydraulic machine (25), and the electrical energy for the rotary drive device (28) is independent of the electrical energy consumption of the components within the container (9).
  2. Electrohydraulic system according to Patent Claim 1, wherein the hydraulic cylinder (15) is a differential cylinder or a synchronous cylinder.
  3. Electrohydraulic system according to either of the preceding patent claims, wherein the hydraulic cylinder (15) is designed with a displaceable piston (19) for adjustment of a process valve (1).
  4. Electrohydraulic system according to one of the preceding patent claims, wherein the hydraulic cylinder (15) comprises a helical compression spring (24) for resetting the hydraulic cylinder (15).
  5. Electrohydraulic system according to one of the preceding patent claims, wherein at least one solenoid valve (40) is arranged in such a way that, in the event of an electrical power failure, a cylinder chamber (23) of the hydraulic cylinder (15) is relieved hydraulically.
  6. Electrohydraulic system according to one of the preceding patent claims, wherein at least at least one check valve (38.1, 38.2) or at least one hydraulically blockable valve (39.1, 39.2, 39.3) is arranged in such a way that, when the rotary drive device (28) is decoupled, the position of the hydraulic cylinder (15) remains unchanged.
  7. Electrohydraulic system according to one of the preceding patent claims, wherein provision is made of at least one pressure-limiting valve (41) which is arranged and configured in such a way that the maximum hydraulic system pressure can be effectively limited.
  8. Electrohydraulic system according to one of the preceding patent claims, wherein the hydraulic machine (25) is in the form of a hydrostatic transmission or hydraulic pump.
  9. Electrohydraulic system according to one of the preceding patent claims, wherein the rotary drive device (28) comprises an electric motor (36).
  10. Electrohydraulic system according to one of the preceding patent claims, wherein a remote-controlled underwater vehicle (31) comprises the rotary drive device (28).
  11. Electrohydraulic system according to one of the preceding patent claims, wherein a coupling device (33) is present between the rotary drive device (28) and the hydraulic machine (25).
EP18717311.7A 2017-04-19 2018-04-06 Electrohydraulic system for under water use, with an electrohydraulic actuator Active EP3612736B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017206596.6A DE102017206596A1 (en) 2017-04-19 2017-04-19 Electrohydraulic system for underwater use with an electrohydraulic actuator
PCT/EP2018/058888 WO2018192783A1 (en) 2017-04-19 2018-04-06 Electrohydraulic system for use under water, comprising an electrohydraulic actuator

Publications (2)

Publication Number Publication Date
EP3612736A1 EP3612736A1 (en) 2020-02-26
EP3612736B1 true EP3612736B1 (en) 2022-12-14

Family

ID=61965973

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18717311.7A Active EP3612736B1 (en) 2017-04-19 2018-04-06 Electrohydraulic system for under water use, with an electrohydraulic actuator

Country Status (4)

Country Link
US (1) US11448243B2 (en)
EP (1) EP3612736B1 (en)
DE (1) DE102017206596A1 (en)
WO (1) WO2018192783A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018217150A1 (en) 2018-10-08 2020-04-09 Robert Bosch Gmbh Hydraulic system for use under water with a hydraulic actuator
DE102019131171A1 (en) 2019-11-19 2021-05-20 Voith Patent Gmbh Electro-hydraulic actuator for use under water and electrically driven pump for such an electro-hydraulic actuator
DE102021200100A1 (en) * 2021-01-08 2022-07-14 Robert Bosch Gesellschaft mit beschränkter Haftung Hydraulic gear unit, especially for deep sea applications
US11732550B2 (en) * 2021-01-26 2023-08-22 Halliburton Energy Services, Inc. Low power consumption electro-hydraulic system with pilot cartridge

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2942581A (en) * 1958-03-12 1960-06-28 Fisher Governor Co Hydraulic operator
US3572032A (en) * 1968-07-18 1971-03-23 William M Terry Immersible electrohydraulic failsafe valve operator
DE3019602C2 (en) * 1980-05-22 1984-10-11 Kraftwerk Union AG, 4330 Mülheim Electro-hydraulic actuator for turbine valves
JPH07223589A (en) 1994-02-07 1995-08-22 Mitsubishi Heavy Ind Ltd Electric charging system for submersible body
GB0301607D0 (en) * 2003-01-24 2003-02-26 Subsea 7 Uk Apparatus
DE102008014539A1 (en) * 2008-03-15 2009-09-17 Hoerbiger Automatisierungstechnik Holding Gmbh Hydromechanical system
JP6084300B2 (en) * 2012-11-07 2017-02-22 トランスオーシャン セドコ フォレックス ベンチャーズ リミテッド Underwater energy storage for BOP
EP3033475B1 (en) * 2013-08-15 2020-02-12 Transocean Innovation Labs Ltd Subsea pumping apparatuses and related methods
GB2521626C (en) * 2013-12-23 2019-10-30 Subsea 7 Ltd Transmission of power underwater
DE102015213695A1 (en) 2014-08-13 2016-02-18 Robert Bosch Gmbh Electrohydraulic system for underwater use and process valve with such electrohydraulic system
US10808485B2 (en) * 2016-03-11 2020-10-20 Onesubsea Ip Uk Limited Subsea electric actuator system

Also Published As

Publication number Publication date
WO2018192783A1 (en) 2018-10-25
US11448243B2 (en) 2022-09-20
DE102017206596A1 (en) 2018-10-25
US20210190099A1 (en) 2021-06-24
EP3612736A1 (en) 2020-02-26

Similar Documents

Publication Publication Date Title
EP3612736B1 (en) Electrohydraulic system for under water use, with an electrohydraulic actuator
WO2016023712A1 (en) Electrohydraulic system for use under water, and process valve having an electrohydraulic system of said type
DE69914968T2 (en) Electro-hydraulic control unit
DE102014012694B3 (en) Hydraulic device
WO2018192747A1 (en) Electrohydraulic system for use under water, comprising an electrohydraulic actuator
US20060283600A1 (en) Electric-hydraulic power unit
DE102010053811A1 (en) Fault-proof actuation system
DE2142123A1 (en) Device for guiding a tool through a pipeline system
US8997626B2 (en) Electro-hydraulic actuator including a release valve assembly
DE102017219084A1 (en) Electro-hydraulic system with a hydraulic axis and at least one closed hydraulic circuit
DE60221254T2 (en) VALVE SYSTEM AND METHOD
WO2019072728A1 (en) Electrohydraulic system having an adjustment apparatus for a valve
DE3322878A1 (en) REMOTE CONTROLLED THROTTLE DEVICE
EP3864300B1 (en) Hydraulic system for underwater use with a hydraulic actuator
EP3954929A1 (en) Submarine shut-off device
SG191489A1 (en) Power assisted manual valve system
EP3384164B1 (en) Monitoring device for tool turret
US10472924B2 (en) Apparatus and methods for manual override of hydraulic choke or valve actuators
DE102022201230B4 (en) Safety device for a linearly actuated process valve and system comprising the safety device
DE102017206902A1 (en) Arrangement for underwater use with a hydraulic coupling
DE102012101385A1 (en) Clutch actuator for dual clutch transmission of motor vehicle, has ball head for guiding connecting rod, which is enclosed between lower handle and central cover
WO2023148217A1 (en) Linear actuator for actuating a process valve
DE102020128530A1 (en) Device for controlling a valve
DE102013214613A1 (en) Hydraulic component and hydraulic control

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191119

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220919

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018011225

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1537815

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230115

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20221214

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20221214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230315

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230414

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230418

Year of fee payment: 6

Ref country code: DE

Payment date: 20230627

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230414

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018011225

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230420

Year of fee payment: 6

26N No opposition filed

Effective date: 20230915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230406

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230406