EP3612713A1 - Tube spiralé à double paroi avec pompe actionnée par écoulement de fond de trou - Google Patents

Tube spiralé à double paroi avec pompe actionnée par écoulement de fond de trou

Info

Publication number
EP3612713A1
EP3612713A1 EP18788267.5A EP18788267A EP3612713A1 EP 3612713 A1 EP3612713 A1 EP 3612713A1 EP 18788267 A EP18788267 A EP 18788267A EP 3612713 A1 EP3612713 A1 EP 3612713A1
Authority
EP
European Patent Office
Prior art keywords
fluid
coiled tubing
flow path
wellbore
tubing string
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP18788267.5A
Other languages
German (de)
English (en)
Other versions
EP3612713A4 (fr
EP3612713B1 (fr
Inventor
Silviu LIVESCU
Timothy T. RAMSEY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Hughes Holdings LLC
Original Assignee
Baker Hughes Inc
Baker Hughes a GE Co LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/488,923 external-priority patent/US10329887B2/en
Application filed by Baker Hughes Inc, Baker Hughes a GE Co LLC filed Critical Baker Hughes Inc
Publication of EP3612713A1 publication Critical patent/EP3612713A1/fr
Publication of EP3612713A4 publication Critical patent/EP3612713A4/fr
Application granted granted Critical
Publication of EP3612713B1 publication Critical patent/EP3612713B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • E21B43/121Lifting well fluids
    • E21B43/129Adaptations of down-hole pump systems powered by fluid supplied from outside the borehole
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/20Flexible or articulated drilling pipes, e.g. flexible or articulated rods, pipes or cables
    • E21B17/203Flexible or articulated drilling pipes, e.g. flexible or articulated rods, pipes or cables with plural fluid passages
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • E21B43/121Lifting well fluids
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • E21B43/121Lifting well fluids
    • E21B43/13Lifting well fluids specially adapted to dewatering of wells of gas producing reservoirs, e.g. methane producing coal beds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B47/00Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps
    • F04B47/06Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps having motor-pump units situated at great depth
    • F04B47/08Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps having motor-pump units situated at great depth the motors being actuated by fluid
    • F04B47/10Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps having motor-pump units situated at great depth the motors being actuated by fluid the units or parts thereof being liftable to ground level by fluid pressure

Definitions

  • the invention relates generally to the use of strings of coiled tubing to dispose flow actuated pumps into a wellbore and operation of such pumps.
  • Downhole pumps are used to pump hydrocarbon fluids and/or water from subterranean locations.
  • Electric submersible pumps (“ESPs") require electrical power to be supplied to them from surface.
  • a typical ESP assembly includes a centrifugal pump that is mounted to an electrical motor.
  • a power cable extends from the surface to the motor of the ESP assembly.
  • Flow actuated pumps are also known which utilize a piston or plunger to flow fluid, as opposed to a centrifugal pumping mechanism.
  • a flow actuated pump is described in U.S. Patent No. 7,789,131 entitled “Hydraulic Pump System for Deliquifying Low Rate Gas Wells. " The 131 patent is owned by the assignee of the present invention and is hereby incorporated by reference in its entirety.
  • the flow actuated pump described in the 131 patent uses a power fluid supplied from surface to operate the pumping mechanism rather than electrical power.
  • Most flow actuated pumps return exhausted power fluid with the wellbore fluid (water, gas, etc.) being produced.
  • some flow actuated pumps may have separate outputs for the exhausted power fluid and the wellbore fluid.
  • Dual-walled piping has been used in subsea applications to raise production fluid from a pump located on a seabed and not directly into a well. Such an arrangement is described in U.S. Patent Publication 2003/0170077 by Herd et al.
  • dual-walled coiled tubing has not heretofore been successfully used in subterranean wellbores in conjunction with fluid driven or flow actuated pumps or for dewatering gas wells.
  • the high pressure, high temperature conditions associated with a subterranean wellbore make the use of risers and flexible tubing impractical.
  • the invention provides systems and methods for disposing a flow actuated pump into a wellbore using running arrangements which incorporate a dual-walled coiled tubing running string having inner and outer coiled tubing strings.
  • Fluid pumping arrangements are described in which the dual-walled coiled tubing running string supports the flow actuated pump and provides first and second fluid flow paths for fluid communication between the pump and the surface.
  • An annulus is defined between the outer coiled tubing string and the wall of the wellbore. The annulus serves as a third fluid flow path for thefluid pumping
  • a flow actuated pump is interconnected with the running string so that power fluid is provided to the pump via the first fluid flow path and the production fluid is returned via the second fluid flow path. Exhausted power fluid is returned via the third fluid flow path.
  • a flow actuated pump is interconnected with the running string so that power fluid is provided to the pump via the first fluid flow path and exhausted power fluid is returned via the second fluid flow path. Production fluid is returned via the third fluid flow path.
  • the flow actuated pump is of the type which provides only a single output for intermingled water and power fluid, either or both of the second and third flow paths may be used to return the commingled fluid to the surface.
  • Figure 1 is a side, cross-sectional view of an exemplary wellbore within which is disposed a fluid pumping assembly in accordance with the present invention.
  • Figure 2 is an enlarged cross-sectional view of the flow actuated pump portion of the fluid pumping assembly of Figure 1 and associated components.
  • Figure 3 is a cross-sectional view taken along lines 3-3 in Figure 2.
  • Figure 4 is a side, cross-sectional view of a wellbore within which is disposed an alternative dual-walled coiled tubing running arrangement with flow actuated pump.
  • dual-walled is intended to refer broadly to arrangements wherein an inner tubular string or member is located radially within an outer tubular string or member to provide a dual-walled tubing structure.
  • a structure can be dual-walled without regard to whether the inner and outer tubular strings are coaxial or 5 concentric.
  • Figure 1 depicts an exemplary wellbore 10 that has been drilled through the earth 12 from the surface 14 down to a hydrocarbon-bearing formation 16. It is desired to pump fluids from the formation 16 to the surface 14. It is noted that, while wellbore 10 is illustrated as a substantially vertical wellbore, it might, in practice, have portions that are inclined or horizontally-oriented.
  • the wellbore 10 is lined with metallic casing 18 in a manner known in the art. Perforations 20 pass through the casing 18 and into the formation 16.
  • the formation 16 is a gas formation which contains water 22. It is desired to remove the water 22 from the formation 16.
  • a fluid pumping arrangement is disposed within the wellbore 10.
  • the fluid pumping arrangement 20 is used to remove fluids from a subterranean location, such as formation 16. In the depicted embodiment, it is desired to pump the water 22 from the wellbore 10 to surface 14.
  • a fluid pump 26 is located at the surface 14 and is operable to pump fluid down through the fluid pumping assembly 24.
  • the fluid pumping arrangement 24 includes a flow actuated pump 28 and a dual-walled coiled tubing running string 30.
  • the flow actuated pump 28 is a non-electric fluid pump that is hydraulically-powered by a power fluid which is pumped by pump 26 from surface 14.
  • the flow actuated pump 28 may be a pump of the type described in U.S. Patent No. 7,789, 131 entitled "Hydraulic Pump System for Deliquifying Low Rate Gas Wells.”
  • the '131 patent is owned by the assignee of the present application/patent and is hereby incorporated by reference in its entirety. The pump described in the 131 patent will return exhausted power fluid intermingled with the wellbore fluid being produced.
  • the flow actuated pump 28 might also be a pump which operates by returning the exhausted power fluid and the produced fluid separately. In that case, the pump 28 would require two separate flow paths back to the surface 14.
  • water 22 is drawn into fluid inlets 32 of the flow actuated pump 28 and exits proximate the upper axial end of the pump 28 as will be described.
  • the dual-walled coiled tubing running string 30 includes an inner coiled tubing string 34 and an outer coiled tubing string 36 which radially surrounds the inner coiled tubing string 34.
  • the inner coiled tubing string 34 defines a central axial fluid flow path along its length.
  • a first fluid flow path 38 is in turn defined along this central axial fluid flow path.
  • the outer coiled tubing string 36 defines an outer coiled tubing fluid flow path along its length, and a second fluid flow path 40 is defined radially between the inner and outer coiled tubing strings 34, 36.
  • Exemplary sizes for the inner and outer coiled tubing strings 34, 36 are: 1.25" O.D.
  • the inner and outer coiled tubing strings 34, 36 are normally connected together mechanically at surface and downhole ends and both would be hung off from the wellhead. Therefore, both strings 34, 36 may aid in supporting the weight of the flow actuated pump 28 as well as the inner and outer coiled tubing strings 34, 36.
  • a third fluid flow path 42 is formed by the annulus between the outer coiled tubing string 36 and the casing 18. The presence of three separate fluid flow paths 38, 40 and 42 allows for a power fluid, used to actuate the flow actuated pump 28, to be flowed down to the flow actuated pump 28 and returned to surface 14.
  • Figure 2 illustrates a first exemplary fluid pumping arrangement wherein a power fluid, used to actuate the flow actuated pump 28, is flowed down through the first fluid flow path 38, as indicated by arrow 44. Exhausted power fluid is flowed back to the surface 14 via the second fluid flow path 40 (arrow 46). Water 22 is flowed to surface 14 via the third fluid flow path 42, as indicated by arrow 48.
  • the flow actuated pump 28 is of the type which provides only a single output for intermingled water 22 and power fluid
  • either or both of the second and third flow paths 40, 42 may be used to return the commingled fluid to the surface 14.
  • An assembled dual-walled coiled tubing assembly 30 can be wound onto a coiled tubing reel of a type known in the art for retaining spools of coiled tubing and transported to a well site for use.
  • a flow actuated pump assembly, such as pump 28, is then affixed to the coiled tubing assembly 30 and run into the wellbore 10 in conventional fashion.
  • the dual-walled coiled tubing assembly 30 may be assembled by inserting the inner coiled tubing string 34 into the outer coiled tubing string 36.
  • An assembled dual-walled coiled tubing assembly 30 can be wound onto a coiled tubing reel of a type known in the art for retaining spools of coiled tubing and transported to a well site for use.
  • a flow actuated pump 28 is then affixed to the coiled tubing assembly 30 and run into the wellbore 10.
  • the invention provides methods of pumping fluid from a subterranean location in a wellbore.
  • a fluid pumping arrangement 24 is disposed into a wellbore 10 so that the pump 28 is located proximate the formation 16 from which it is desired to remove liquid (water 22).
  • Power fluid is then pumped by pump 26 through the first fluid flow path 38 to the pump 28 to actuate the pump 28 to flow water 22 to surface 14 via either the second or third flow paths 40 or 42.
  • Exhausted power fluid is returned to surface 14 via either the second or third flow paths 40 or 42.
  • Figure 4 illustrates an exemplary fluid pumping arrangement 50 which is being used for artificial lift of hydrocarbon production fluid from a wellbore 10.
  • the fluid pumping arrangement 50 of Figure 4 includes a packer 52 which is set against the casing 18 to isolate the flow actuated pump 28 below the packer 52.
  • the flow actuated pump 28 of the fluid pumping arrangement 28 is carried by dual-walled coiled tubing running string assembly 30.
  • the dual-walled coiled tubing assembly 30 includes an inner coiled tubing string 34 and an outer coiled tubing string 36.
  • the flow actuated pump 28 is of the type which provides a fluid output which is commingled exhausted power fluid and well fluid to be produced.
  • a first fluid flow path 38 is defined radially within the inner coiled tubing string 34
  • a second fluid flow path 40 is defined radially between the inner coiled tubing string 34 and the outer coiled tubing string 36.
  • the exemplary pumping arrangement 50 allows for zonal isolation within wellbores and permits fluids to be readily flowed past a packer 52 within a wellbore 10.
  • the flow actuated pump 28 can be installed at a certain depth and one or more packers 52 are used to isolate well fluids above and below the flow actuated pump 28. Well fluids below the packer 52 can be lifted by the flow actuated pump 28 past the packer 52 via the second flow path 40.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Reciprocating Pumps (AREA)

Abstract

Des ensembles de tubes spiralés à double paroi sont utilisés pour disposer une pompe actionnée par écoulement dans un puits de forage. Des ensembles de tubes spiralés à double paroi comprennent une colonne de tube spiralé interne et une colonne de tube spiralé externe.
EP18788267.5A 2017-04-17 2018-04-13 Tube spiralé à double paroi avec pompe actionnée par écoulement de fond de trou Active EP3612713B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/488,923 US10329887B2 (en) 2015-03-02 2017-04-17 Dual-walled coiled tubing with downhole flow actuated pump
PCT/US2018/027553 WO2018194927A1 (fr) 2017-04-17 2018-04-13 Tube spiralé à double paroi avec pompe actionnée par écoulement de fond de trou

Publications (3)

Publication Number Publication Date
EP3612713A1 true EP3612713A1 (fr) 2020-02-26
EP3612713A4 EP3612713A4 (fr) 2020-09-16
EP3612713B1 EP3612713B1 (fr) 2023-07-26

Family

ID=63856854

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18788267.5A Active EP3612713B1 (fr) 2017-04-17 2018-04-13 Tube spiralé à double paroi avec pompe actionnée par écoulement de fond de trou

Country Status (7)

Country Link
EP (1) EP3612713B1 (fr)
CN (1) CN110537001B (fr)
AU (1) AU2018255209B2 (fr)
CA (1) CA3060000C (fr)
CO (1) CO2019012358A2 (fr)
RU (1) RU2726704C1 (fr)
WO (1) WO2018194927A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113969887A (zh) * 2021-10-26 2022-01-25 河海大学 一种流体驱动的泵装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001252234A1 (en) * 2000-03-27 2001-10-08 Rockwater Limited Riser with retrievable internal services
US20030196797A1 (en) * 2002-04-22 2003-10-23 Crawford James B. Coiled tubing having multiple strings of smaller tubing embedded therein
US20050274527A1 (en) * 2004-04-05 2005-12-15 Misselbrook John G Apparatus and method for dewatering low pressure gradient gas wells
GB2413600A (en) * 2004-04-30 2005-11-02 Leslie Eric Jordan Hydraulically powered borehole pump
RU2322570C2 (ru) * 2005-03-29 2008-04-20 Республиканское унитарное предприятие "Производственное объединение "Белоруснефть" (РУП "Производственное объединение "Белоруснефть") Способ и устройство для добычи нефти
US20110061873A1 (en) * 2008-02-22 2011-03-17 Conocophillips Company Hydraulically Driven Downhole Pump Using Multi-Channel Coiled Tubing
US7789131B2 (en) * 2008-09-03 2010-09-07 Baker Hughes Incorporated Hydraulic pump system for deliquifying low rate gas wells
US8276658B2 (en) * 2009-01-30 2012-10-02 Conocophillips Company Multi-channel, combination coiled tubing strings for hydraulically driven downhole pump
CA2796079A1 (fr) * 2010-04-07 2011-10-13 David Randolph Smith Systemes hydrauliques immerges d'ascension artificielle et leurs procedes d'exploitation
US20130022480A1 (en) * 2011-07-18 2013-01-24 Baker Hughes Incorporated Mechanical-Hydraulic Pumping System
CN104141463B (zh) * 2013-05-07 2016-05-11 中国石油化工股份有限公司 同心双层连续油管拖动喷射泵水平井负压排砂装置及方法
RU2550842C1 (ru) * 2014-06-02 2015-05-20 Ривенер Мусавирович Габдуллин Скважинная штанговая насосная установка (варианты)
US10246954B2 (en) * 2015-01-13 2019-04-02 Saudi Arabian Oil Company Drilling apparatus and methods for reducing circulation loss
US20160258231A1 (en) * 2015-03-02 2016-09-08 Baker Hughes Incorporated Dual-Walled Coiled Tubing Deployed Pump

Also Published As

Publication number Publication date
AU2018255209B2 (en) 2020-09-17
EP3612713A4 (fr) 2020-09-16
RU2726704C1 (ru) 2020-07-15
CO2019012358A2 (es) 2020-02-28
CA3060000C (fr) 2022-07-05
AU2018255209A1 (en) 2019-11-21
CN110537001A (zh) 2019-12-03
CN110537001B (zh) 2022-04-19
WO2018194927A1 (fr) 2018-10-25
EP3612713B1 (fr) 2023-07-26
CA3060000A1 (fr) 2018-10-25
BR112019019815A2 (pt) 2020-04-22

Similar Documents

Publication Publication Date Title
US10378322B2 (en) Prevention of gas accumulation above ESP intake with inverted shroud
US9909400B2 (en) Gas separator assembly for generating artificial sump inside well casing
US6179056B1 (en) Artificial lift, concentric tubing production system for wells and method of using same
US5154588A (en) System for pumping fluids from horizontal wells
US20090145595A1 (en) Gas assisted downhole pump
US4266607A (en) Method for protecting a carbon dioxide production well from corrosion
US8613311B2 (en) Apparatus and methods for well completion design to avoid erosion and high friction loss for power cable deployed electric submersible pump systems
US9869164B2 (en) Inclined wellbore optimization for artificial lift applications
CN110234836B (zh) 带罩电潜泵
AU2018255209B2 (en) Dual-walled coiled tubing with downhole flow actuated pump
US10329887B2 (en) Dual-walled coiled tubing with downhole flow actuated pump
WO2024044382A1 (fr) Système de garniture d'étanchéité réinitialisable pour opérations de pompage
WO2018183584A1 (fr) Esp déployé par câble métallique comportant un câble autoporteur
US10087719B2 (en) Systems and methods for artificial lift subsurface injection and downhole water disposal
RU2713290C1 (ru) Скважинная насосная установка для одновременно-раздельной эксплуатации двух пластов
US6076599A (en) Methods using dual acting pumps or dual pumps to achieve core annular flow in producing wells
US10989025B2 (en) Prevention of gas accumulation above ESP intake
US11499563B2 (en) Self-balancing thrust disk
US20210198987A1 (en) Gas operated, retrievable well pump for assisting gas lift
BR112019019815B1 (pt) Arranjo de bombeamento de fluido e método para bombear fluido de furo do poço
WO2016094053A1 (fr) Complétion esp de puits horizontal à court rayon

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191108

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20200813

RIC1 Information provided on ipc code assigned before grant

Ipc: E21B 33/12 20060101ALI20200807BHEP

Ipc: E21B 43/12 20060101AFI20200807BHEP

Ipc: E21B 17/20 20060101ALI20200807BHEP

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LIVESCU, SILVIU

Inventor name: RAMSEY, TIMOTHY T.

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220726

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAKER HUGHES HOLDINGS LLC

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230515

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018054123

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20230726

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1592114

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231127

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231126

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231027

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240320

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018054123

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240320

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20240322

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240429