EP3601398B1 - Dual cure method using thermally latent tin catalysts - Google Patents

Dual cure method using thermally latent tin catalysts Download PDF

Info

Publication number
EP3601398B1
EP3601398B1 EP18711985.4A EP18711985A EP3601398B1 EP 3601398 B1 EP3601398 B1 EP 3601398B1 EP 18711985 A EP18711985 A EP 18711985A EP 3601398 B1 EP3601398 B1 EP 3601398B1
Authority
EP
European Patent Office
Prior art keywords
build material
free
groups
radical
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18711985.4A
Other languages
German (de)
French (fr)
Other versions
EP3601398A1 (en
Inventor
Dirk Achten
Thomas BÜSGEN
Christoph TOMCZYK
Jan Weikard
Frank Richter
Roland Wagner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Deutschland AG
Original Assignee
Covestro Deutschland AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covestro Deutschland AG filed Critical Covestro Deutschland AG
Publication of EP3601398A1 publication Critical patent/EP3601398A1/en
Application granted granted Critical
Publication of EP3601398B1 publication Critical patent/EP3601398B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C08L75/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/24Catalysts containing metal compounds of tin
    • C08G18/242Catalysts containing metal compounds of tin organometallic compounds containing tin-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/24Catalysts containing metal compounds of tin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • C08G18/792Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/81Unsaturated isocyanates or isothiocyanates
    • C08G18/8141Unsaturated isocyanates or isothiocyanates masked
    • C08G18/815Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen
    • C08G18/8158Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen with unsaturated compounds having only one group containing active hydrogen
    • C08G18/8175Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen with unsaturated compounds having only one group containing active hydrogen with esters of acrylic or alkylacrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/102Printing inks based on artificial resins containing macromolecular compounds obtained by reactions other than those only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/38Inkjet printing inks characterised by non-macromolecular additives other than solvents, pigments or dyes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0002Condition, form or state of moulded material or of the material to be shaped monomers or prepolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials

Definitions

  • the present invention relates to a method for producing an object from a building material, the building material comprising radical crosslinkable groups, NCO groups and groups with Zerewitinoff-active H atoms and the object being a three-dimensional object and / or a layer.
  • the construction material is heated to a temperature of ⁇ 50 ° C. and the construction material comprises one or more special tin compounds.
  • the invention also relates to an object produced by the method according to the invention and the use of special tin compounds in additive manufacturing processes.
  • Coating agents that cure through two independent processes are generally referred to as dual cure systems.
  • the binder components contained usually have different functional groups which, under suitable conditions, generally crosslink with one another independently of one another.
  • Customary prior art dual cure systems have radiation-curable and thermally curable groups, particularly advantageous properties being obtained when isocyanate and hydroxyl groups are used as thermally crosslinking functions.
  • the disadvantage of such solutions is that the reactivity of the NCO groups and / or the presence of catalysts for the second curing mechanism limits the pot life of the coating agent.
  • One class of dual cure systems contains blocked isocyanates. After deblocking at a suitable temperature, the NCO groups are available for reactions with polyols. Disadvantages of using blocked isocyanates are the high viscosity typical of blocked isocyanates and the usually very high deblocking temperature.
  • Dual cure systems can have advantages in so-called shadow curing in coating applications and when used as adhesives. This is to be understood as the hardening mechanism which does not take place photochemically but, for example, thermally. The coating or adhesive can then cure further, even in the case of complex-shaped substrates with shading compared to an exposure lamp.
  • Additive manufacturing processes use different materials and process technologies to build objects up in layers.
  • One group of additive manufacturing processes uses radically crosslinkable resins which, if necessary, obtain their ultimate strength in the object formed via a second hardening mechanism. Examples of such processes are stereolithography processes and the so-called DLP process derived therefrom.
  • US 2016136889 A1 discloses a method for forming a three-dimensional object from a dual-cure system containing a mixture of a first polymerizable liquid component and a second solidifiable component that is different from the first component. This is first irradiated in a 3D printing process in order to build up a solid intermediate product that contains a second solidifiable component that is supported in the framework in non-solidified and / or uncured form. Simultaneously with or after the irradiation step, the second component solidifies in the three-dimensional intermediate product in order to form the three-dimensional object.
  • the disadvantages of conventional dual cure systems with regard to the pot life mean that an unused construction material cannot be reused or the planned construction times for a product must not exceed the pot life.
  • Another object of the present invention is to overcome at least one disadvantage of the prior art, at least in part.
  • Another object of the invention is to provide a manufacturing method in which the objects to be manufactured from a dual cure construction material can be obtained as cost-effectively and / or individualized and / or resource-saving as possible, which particularly relates to the recyclability of construction material.
  • the object is achieved by a method according to claim 1, an object according to claim 14 and a use according to claim 15.
  • Advantageous further developments are specified in the subclaims. They can be combined in any way, unless the context clearly indicates the opposite.
  • the layer obtained by the method according to the invention can contact one or more further surfaces on one side, on several sides or on neither side. Accordingly, the layer can be a coating, an adhesive bond or a self-supporting film act.
  • Three-dimensional objects formed by the method according to the invention can have a height of 1 mm, at least in sections, in the construction direction of its manufacturing method. Coatings and adhesive bonds obtained in this way can have thicknesses of 5 ⁇ m to 800 ⁇ m and films obtained in this way can have thicknesses of 30 ⁇ m to 500 ⁇ m.
  • the tin compounds of the formulas F-I, F-II and F-III have no technically meaningful catalytic activity below a certain temperature for the reaction of NCO groups with functional groups which carry Zerewitinoff-active H atoms. In particular, urethanizations and urea formations should be mentioned here. Above a certain temperature, however, the catalytic activity increases sharply. Without being limited to a theory, it is assumed that the intramolecular donor-acceptor interactions in the hypervalent tin compounds used according to the invention or the secondary products formed from the latter in the matrix are weakened at higher temperature and thus the central atom (reversibly) blocked at low temperature then is available for the catalyzed reaction. In this respect, one can speak of thermally latent catalysts.
  • the building material can also be easily recycled.
  • to activate the Sn catalyst it is heated to a temperature of 50 ° C., preferably ° 65 ° C., more preferably C 80 ° C., particularly preferably 80 ° C. to 200 ° C., so that after the reaction has taken place the NCO -Groups the item is obtained.
  • the heating can take place for a period of ⁇ 1 minute, preferably 5 minutes, more preferably 10 minutes to 24 hours, preferably 8 hours, particularly preferably 4 hours.
  • the catalytic activity of the thermolatent catalyst in the build-up material for the process according to the invention is preferably designed in such a way that the build-up material has a pot life (defined as the time in which the viscosity of the material doubles) at 23 ° C. of> 1 h, preferably> 2 h, particularly preferably> 4 h and very particularly preferably> 6 h.
  • a pot life defined as the time in which the viscosity of the material doubles
  • the catalyst can be incorporated into the product in the polyisocyanate polyaddition reaction.
  • the particular advantage of these built-in catalysts is their greatly reduced fogging behavior.
  • the proportion by weight of the tin compounds of the formulas FI, F-II and / or F-III in the building material can be made dependent on the type of isocyanates on which the build-up material is based.
  • the content can be 100 ppm, based on the total weight of the build-up material.
  • NCO groups bonded to an aliphatic carbon atom dominate the content is 3000 ppm, based on the total weight of the building material.
  • organic aliphatic, cycloaliphatic, araliphatic and / or aromatic polyisocyanates with at least two isocyanate groups per molecule and mixtures thereof, which are known per se to the person skilled in the art, are suitable as sources of NCO groups in the build-up material.
  • NCO-terminated prepolymers can be used.
  • NCO-reactive compounds with Zerewitinoff-active H atoms all compounds known to the person skilled in the art which have an average OH or NH functionality of at least 1.5 can be used. These can be, for example, low molecular weight diols (e.g. 1,2-ethanediol, 1,3- or 1,2-propanediol, 1,4-butanediol, 1,5-petanediol, 1,6-hexanediol), triols (e.g. B. glycerol, trimethylolpropane) and tetraols (e.g.
  • diols e.g. 1,2-ethanediol, 1,3- or 1,2-propanediol, 1,4-butanediol, 1,5-petanediol, 1,6-hexanediol
  • triols e.g. B. glycerol, trimethylolpropane
  • pentaerythritol short-chain amino alcohols
  • polyamines but also higher molecular weight polyhydroxy compounds
  • polyether polyols such as polyether polyols, polyester polyols, polycarbonate polyols, polysiloxane polyols, polyamines and polyether polyamines and polybutadiene polyols.
  • the build-up material comprises free-radically crosslinkable groups, preferably (meth) acrylate groups. They can enter into a crosslinking reaction with one another through thermal and / or through photochemical radical initiators.
  • the building material can therefore also be described as a radically crosslinkable building material or a radically crosslinkable resin. Furthermore, according to the definition above, it is a dual cure system.
  • the free-radically crosslinkable building material preferably comprises a compound which is obtainable from the reaction of an NCO-terminated polyisocyanate prepolymer with a molar deficiency of a hydroxyalkyl (meth) acrylate, based on the free NCO groups.
  • the free-radically crosslinkable building material likewise preferably comprises a compound which is obtainable from the reaction of an NCO-terminated polyisocyanurate with a molar deficit of a hydroxyalkyl (meth) acrylate, based on the free NCO groups.
  • Suitable polyisocyanates for preparing the NCO-terminated polyisocyanurates and prepolymers are, for example, those which have a molecular weight in the range from 140 to 400 g / mol, with aliphatically, cycloaliphatically, araliphatically and / or aromatically attached isocyanate groups, such as. B.
  • 1,4-diisocyanatobutane 1,5-diisocyanatopentane (PDI), 1,6-diisocyanatohexane (HDI), 2-methyl-1,5-diisocyanatopentane, 1,5-diisocyanato-2,2-dimethylpentane , 2,2,4- or 2,4,4-trimethyl-1,6-diisocyanatohexane, 1,10-diisocyanatodecane, 1,3- and 1,4-diisocyanatocyclohexane, 1,4-diisocyanato-3,3, 5-trimethylcyclohexane, 1,3-diisocyanato-2-methylcyclohexane, 1,3-diisocyanato-4-methylcyclohexane, 1-isocyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexane (isophorone diisocyanate; IPD
  • prepolymers bearing aliphatic and / or aromatic isocyanate end groups can also be used as starting materials for isocyanurate formation.
  • Suitable trimerization catalysts are described below in connection with another embodiment.
  • Suitable hydroxyalkyl (meth) acrylates include alkoxyalkyl (meth) acrylates with 2 to 12 carbon atoms in the hydroxyalkyl radical. Preference is given to 2-hydroxyethyl acrylate, the mixture of isomers formed on addition of propylene oxide onto acrylic acid, or 4-hydroxybutyl acrylate.
  • the reaction between the hydroxyalkyl (meth) acrylate and the NCO-terminated polyisocyanurate can be catalyzed by the usual urethanization catalysts such as DBTL.
  • the molar ratio between NCO groups and OH groups of the hydroxyalkyl (meth) acrylate can be in a range from ⁇ 10: 1 to ⁇ 1.1: 1 (preferably ⁇ 5: 1 to ⁇ 1.5: 1, more preferably 4: 1 to 2: 1).
  • the curable compound obtained can have a number average molecular weight M n of ⁇ 200 g / mol to 5000 g / mol. This molecular weight is preferably 300 g / mol to 4000 g / mol, more preferably 400 g / mol to 3000 g / mol.
  • a curable compound obtained from the reaction of an NCO-terminated polyisocyanurate with hydroxethyl (meth) acrylate, the NCO-terminated polyisocyanurate being obtained from 1,6-hexamethylene diisocyanate in the presence of an isocyanate trimerization catalyst.
  • the free-radically crosslinkable building material can furthermore contain additives such as fillers, UV stabilizers, free radical inhibitors, antioxidants, mold release agents, water scavengers, slip additives, defoamers, leveling agents, rheology additives, flame retardants and / or pigments.
  • additives such as fillers, UV stabilizers, free radical inhibitors, antioxidants, mold release agents, water scavengers, slip additives, defoamers, leveling agents, rheology additives, flame retardants and / or pigments.
  • additives such as fillers, UV stabilizers, free radical inhibitors, antioxidants, mold release agents, water scavengers, slip additives, defoamers, leveling agents, rheology additives, flame retardants and / or pigments.
  • These auxiliaries and additives are usually in an amount of less than 50% by weight, preferably less than 30% by weight, particularly preferably up to 20% by weight, particularly preferably up to 10% by weight .
  • Suitable fillers are, for example, AlOH 3 , CaCO 3 , cut glass fibers, carbon fibers, polymer fibers, metal pigments such as TiO 2 and other known customary fillers. These fillers are preferably used in amounts of not more than 70% by weight, preferably not more than 50% by weight, particularly preferably not more than 30% by weight, calculated as the total amount of fillers used based on the total weight of the free-radically crosslinkable resin.
  • Suitable UV stabilizers can preferably be selected from the group consisting of piperidine derivatives, such as 4-benzoyloxy-2,2,6,6-tetramethylpiperidine, 4-benzoyloxy-1,2,2,6,6-pentamethylpiperidine, bis (2,2,6,6-tetra-methyl-4-piperidyl) -sebacate, bis (1,2,2,6,6-pentamethyl-1-4-piperidinyl) -sebacate, bis- (2,2, 6,6-tetrainethyl-4-piperidyl) suberate, bis (2,2,6,6-tetramethyl-4-piperidyl) dodecanedioate; Benzophenone derivatives, such as, for example, 2,4-dihydroxy-, 2-hydroxy-4-methoxy-, 2-hydroxy-4-octoxy-, 2-hydroxy-4-dodecyloxy- or 2,2'-dihydroxy-4-dodecyloxy-benzophenone ; Benzotri
  • UV stabilizers are those which completely absorb radiation of a wavelength ⁇ 400 nm. These include, for example, the benzotriazole derivatives mentioned.
  • Very particularly preferred UV stabilizers are 2- (5-chloro-2H-benzotriazol-2-yl) -6- (1,1-dimethylethyl) -4-methylphenol, 2- (2H-benzotriazol-2-yl) -4 - (1,1,3,3-tetramethylbutyl) phenol and / or 2- (5-chloro-2H-benzotriazol-2-yl) -4,6-bis (1,1-dimethylethyl) phenol.
  • one or more of the UV stabilizers mentioned by way of example are added to the free-radically crosslinkable builder material, preferably in amounts of 0.001 to 3.0% by weight, particularly preferably 0.005 to 2% by weight, calculated as the total amount of UV stabilizers used, based on the Total weight of the free-radically crosslinkable building material, added.
  • Suitable antioxidants are preferably sterically hindered phenols, which can preferably be selected from the group consisting of 2,6-di-tert-butyl-4-methylphenol (Ionol), pentaerythritol tetrakis (3- (3,5-di-tert butyl-4-hydroxyphenyl) propionate), octadecyl 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, triethylene glycol bis (3-tert-butyl-4-hydroxy -5-methylphenyl) propionate, 2,2'-thio-bis (4-methyl-6-tert-butylphenol) and 2,2'-thiodiethyl-bis [3- (3,5-di-tert-butyl-4 hydroxyphenyl) propionate].
  • IIonol 2,6-di-tert-butyl-4-methylphenol
  • pentaerythritol tetrakis (3
  • antioxidants are preferably used in amounts of 0.01 to 3.0% by weight, particularly preferably 0.02 to 2.0% by weight, calculated as the total amount of antioxidants used based on the total weight of the free-radically crosslinkable builder material.
  • Suitable free radical inhibitors or retarders are particularly those which specifically inhibit uncontrolled free radical polymerization of the resin formulation outside the desired (irradiated) area. These are decisive for good edge definition and imaging accuracy in the forerunner. Suitable radical inhibitors must be selected according to the desired radical yield from the irradiation / exposure step and the rate of polymerization and reactivity / selectivity of the double bond carriers. Suitable radical inhibitors are, for. B.
  • antioxidants are preferably used in amounts of 0.001% by weight to 3% by weight.
  • the molar concentration of Zerewitinoff-active H atoms in relation to free isocyanates is preferably ⁇ 0.6 and ⁇ 1.5, preferably ⁇ 0.8 and ⁇ 1.4, particularly preferably ⁇ 0.9 and ⁇ 1, 3, and very particularly preferably ⁇ 1 and ⁇ 1.2.
  • the object is thus obtained by means of an additive manufacturing process and in two manufacturing stages.
  • the first manufacturing stage can be viewed as a build-up stage.
  • This construction section can be implemented by means of optical additive manufacturing processes such as the inkjet process, stereolithography or the DLP (digital light processing) process and is the subject of steps I), II) and III).
  • the second production stage can be regarded as a hardening stage and is the subject of step IV).
  • the precursor or intermediate object obtained after the construction section is converted into a mechanically more durable object without further changing its shape.
  • step I) of this variant of the process a radically crosslinked one is deposited Building material on a carrier. This is usually the first step in inkjet, stereolithography, and DLP processes. In this way, a layer of a building material connected to the carrier is obtained which corresponds to a first selected cross section of the precursor.
  • step II) is repeated until the desired precursor is formed.
  • step II) a radically crosslinked building material is deposited onto a previously applied layer of the building material, so that a further layer of the building material is obtained which corresponds to a further selected cross section of the precursor and which is connected to the previously applied layer.
  • the previously applied layer of the building material can be the first layer from step I) or a layer from a previous run of step II).
  • the deposition of a radically crosslinked building material takes place at least in step II) (preferably also in step I) by exposure and / or irradiation of a selected area of a radically crosslinkable resin, corresponding to the selected cross section of the object.
  • This can be done both by selective exposure (stereolithography, DLP) of the cross-linkable build-up material and also by selective application of the cross-linkable build-up material, followed by an exposure step that no longer needs to be selective due to the previous selective application of the cross-linkable build-up material (inkjet process).
  • the terms “radically crosslinkable building material” and “radically crosslinked building material” are used.
  • the radically crosslinkable building material is converted into the radically crosslinked building material by exposure and / or irradiation, which triggers free radical crosslinking reactions.
  • Exposure is understood here to mean the action of light in the range between near IR and near UV light (1400 nm to 315 nm wavelength). The other shorter wavelength ranges are covered by the term “irradiation”, for example far UV light, X-rays, gamma rays and also electron rays.
  • the respective cross-section is expediently selected using a CAD program with which a model of the object to be manufactured was generated. This operation is also called “slicing” and serves as the basis for controlling the exposure and / or irradiation of the radically crosslinkable resin.
  • the free-radically crosslinkable build-up material has a viscosity (23 ° C., DIN EN ISO 2884-1) of 5 5 mPas to 100 1,000,000 mPas. It is therefore to be regarded as a liquid resin, at least for the purposes of additive manufacturing.
  • the viscosity is preferably 50 mPas to 100,000 mPas, more preferably 500 mPas to 50,000 mPas.
  • the resin which can be crosslinked by free radicals comprises a curable component in which NCO groups and olefinic C CC double bonds are present.
  • the molecular ratio of these functional groups can be determined by integrating the signals of a sample in the 13 C-NMR spectrum.
  • the free-radically crosslinkable building material can also comprise a non-curable component in which, for example, stabilizers, fillers and the like are combined.
  • step IV) is still carried out after step III).
  • the precursor obtained in step III) is heated to a temperature of 50 ° C., preferably ° 65 ° C., more preferably 80 ° C., particularly preferably 80 ° C. to 200 ° C., so that the Object is obtained.
  • the heating can take place for a period of ⁇ 1 minute, preferably 5 minutes, more preferably 10 minutes to 24 hours, preferably 8 hours, particularly preferably 4 hours.
  • the reaction is preferably carried out until 30%, preferably 20% and more preferably 15% of the NCO groups originally present are still present. This can be determined using quantitative IR spectroscopy.
  • step IV) is only carried out when all of the build-up material of the precursor has reached its gel point.
  • the gel point is considered to have been reached when, in a dynamic mechanical analysis (DMA) with a plate / plate oscillation viscometer according to ISO 6721-10 at 20 ° C., the graphs of the storage modulus G 'and the loss modulus G "cross Precursors exposed to further exposure and / or irradiation to complete the radical crosslinking.
  • the radical crosslinked building material can have a storage modulus G '(DMA, plate / plate oscillation viscometer according to ISO 6721-10 at 20 ° C and a shear rate of 1 / s) of ⁇ 10 6 Pa.
  • the additive manufacturing process of stereolithography is covered.
  • the carrier can, for example, be lowered by a predetermined distance of 1 1 ⁇ m to 2000 ⁇ m.
  • the additive manufacturing method of DLP technology is covered when the plurality of energy beams generate the image to be provided by exposure and / or irradiation via an array of individually controllable micromirrors.
  • the carrier can be raised, for example, by a predetermined distance of ⁇ 1 ⁇ m to ⁇ 2000 ⁇ m.
  • the additive manufacturing process of the inkjet method is covered: the crosslinkable build-up material is optionally applied selectively by one or more print heads separately from the catalysts according to the invention the subsequent curing by irradiation and / or exposure can be unselective, for example by a UV lamp.
  • the printhead or printheads for applying the crosslinkable building material can be a (modified) printhead for inkjet printing processes.
  • the carrier can be designed to be movable away from the print head or the print head can be designed to be movable away from the carrier.
  • the increments of the spacing movements between the carrier and the print head can, for example, be in a range from 1 ⁇ m to 2000 ⁇ m.
  • the action of heat can, for example, lead to the thermal decomposition of peroxide-based radical starters.
  • the action of UV radiation takes place by means of UV light (1400 nm to 315 nm wavelength) and activates photochemical radical initiators.
  • the latent Sn urethanization catalyst is activated in order to allow the second hardening mechanism to take place.
  • the action of heat can, for example, lead to the thermal decomposition of peroxide-based radical starters.
  • the action of UV radiation takes place by means of UV light (1400 nm to 315 nm wavelength) and activates photochemical radical initiators.
  • the latent Sn urethanization catalyst is activated in order to allow the second hardening mechanism to take place.
  • the build-up material furthermore comprises a free radical initiator and / or an isocyanate trimerization catalyst.
  • free radical initiators and / or isocyanate trimerization catalysts can only be added to the builder material immediately before the start of the process according to the invention.
  • Thermal and / or photochemical free-radical initiators can be used as free-radical initiators. It is also possible that thermal and photochemical radical initiators are used at the same time. Suitable thermal radical initiators are, for example, (AIBN), dibenzoyl peroxide (DBPO), di-tert-butyl peroxide, dicumyl peroxide and / or inorganic peroxides such as peroxodisulfates.
  • Suitable type (I) systems are aromatic ketone compounds, such as.
  • Type (II) initiators such as benzoin and its derivatives, benzil ketals, acylphosphine oxides, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bisacylphosphine oxides, phenylglyoxylic acid esters, camphorquinone, ⁇ -aminoalkylphenones, ⁇ , ⁇ -dialkoxyacetophenones and ⁇ -hydroxyalkylphenones are also suitable.
  • Irgacur®500 a mixture of benzophenone and (1-hydroxycyclohexyl) phenyl ketone, from Ciba, Lampertheim, DE
  • Irgacure®819 DW phenylbis- (2,4,6-trimethylbenzoyl) phosphine oxide, from Ciba, Lampertheim, DE
  • Esacure® KIP EM Oligo- [2-hydroxy-2-methyl-1- [4- (1-methylvinyl) -phenyl] -propanone], from Lamberti, Aldizzate, Italy
  • Bis- ( 4-methoxybenzoyl) diethylgerman Mixtures of these compounds can also be used.
  • photoinitiators care should be taken to ensure that they have sufficient reactivity to the radiation source used.
  • a wide variety of photoinitiators are known on the market. Commercially available photoinitiators cover the wavelength range in the entire UV-VIS spectrum. Photoinitiators are used in the production of paints, printing inks and adhesives as well as in the dental sector.
  • the photoinitiator is generally used in a concentration of 0.01 to 6.0% by weight, preferably 0.05 to 4.0% by weight, based on the amount of the curable component carrying olefinically unsaturated double bonds used especially preferably from 0.1 to 3.0% by weight are used.
  • the build-up material is obtained from the mixing of a component containing NCO groups and a component containing groups with Zerewitinoff-active H atoms, and the mixing takes place 5 5 minutes before the start of the process.
  • the mixture of the building material is generated continuously and fed to the building process.
  • the other constituents of the build-up material can be present in the component containing Zerewitinoff-active H atoms.
  • D is —N (R1) - and R1 is hydrogen or an alkyl, aralkyl, alkaryl or aryl radical with up to 20 carbon atoms or the radical
  • R1 is hydrogen or a methyl, ethyl, propyl, butyl, hexyl, octyl, Ph or CH 3 Ph radical or the radical and propyl, butyl, hexyl and octyl stand for all isomeric propyl, butyl, hexyl and octyl radicals.
  • D * is -O-.
  • X, Y and Z are preferably the alkylene radicals -C (R2) (R3), -C (R2) (R3) -C (R4) (R5) - or the ortho-arylene radical
  • R2 to R7 are hydrogen or alkyl, aralkyl, alkaryl or aryl radicals with up to 20 carbon atoms, particularly preferably hydrogen or alkyl, aralkyl, alkaryl or aryl radicals with up to 8 carbon atoms. Atoms, very particularly preferably around hydrogen or alkyl radicals with up to 8 carbon atoms, even more preferably around hydrogen or methyl.
  • R8 to R11 are preferably hydrogen or alkyl radicals with up to 8 carbon atoms, particularly preferably hydrogen or methyl.
  • R12 is preferably hydrogen or an alkyl, aralkyl, alkaryl or aryl radical with up to 20 carbon atoms, particularly preferably hydrogen or an alkyl, aralkyl, alkaryl or aryl radical with up to 12 carbon atoms Atoms, very particularly preferably hydrogen or a methyl, ethyl, propyl, butyl, hexyl or octyl radical, with propyl, butyl, hexyl and octyl for all isomeric propyl, butyl, hexyl - as well as octyl residues.
  • L3 and L4 are particularly preferably Cl-, MeO-, EtO-, PrO-, BuO-, HexO-, OctO-, PhO-, formate, acetate, propanoate, butanoate, pentanoate, hexanoate, octanoate, laurate, Lactate or benzoate, where Pr, Bu, Hex and Oct stand for all isomeric propyl, butyl, hexyl and octyl radicals, even more preferably Cl, MeO, EtO, PrO, BuO, HexO, OctO -, PhO, hexanoate, laurate, or benzoate, where Pr, Bu, Hex and Oct stand for all isomeric propyl, butyl, hexyl and octyl radicals.
  • R15 to R20 are preferably hydrogen or alkyl, aralkyl, alkaryl or aryl radicals with up to 20 carbon atoms, particularly preferably hydrogen or alkyl, aralkyl, alkaryl or aryl radicals with up to 12 carbon atoms Atoms, very particularly preferably around hydrogen, methyl, ethyl, propyl, butyl, hexyl, or octyl radicals, with propyl, butyl, hexyl and octyl for all isomeric propyl, butyl, hexyl - as well as octyl residues.
  • the tin atoms are preferably connected to one another via oxygen atoms ("oxygen bridges", vide intra).
  • oxygen bridges oxygen bridges
  • Typical oligomeric complexes are formed, for example, by condensation of the tin atoms over oxygen or sulfur, e.g. with n> 1 (see formula F-II). With low degrees of oligomerization, cyclic oligomers are often found, with higher degrees of oligomerization, linear oligomers with OH or SH end groups (cf. formula F-III).
  • the construction material in the method according to the invention can, for example, have the following composition, where all figures are in% by weight and the figures in% by weight add up to 100% by weight: NCO-functional urethane acrylate 20-30 Acrylate 35-45 Polyol 30-40 Photoinitiator 1 0.1-0.3 Photoinitiator 2 0.1-0.3 UV inhibitor 0.01-0.3 Sn cat 0.01-0.2
  • Another object of the present invention is an object obtained by a method according to the invention, the object having a height of 1 1 mm, preferably 5 mm, at least in sections in the construction direction of its manufacturing process.
  • the invention also relates to the use of cyclic tin compounds of the formula F-I, F-II and / or F-III, as defined in the preceding statements, as thermally latent urethanization catalysts in building materials for additive manufacturing processes.
  • Desmodur ® N 3390 BA is a commercial product from Covestro AG.
  • the characteristics of Desmodur ® N 3390 BA correspond to the information on the data sheet of the same name in the 2017-06-01 edition. It is an aliphatic polyisocyanate (HDI trimer) approx. 90% strength by weight in n-butyl acetate, which is used, among other things, as a hardener component for lightfast polyurethane paint systems.
  • the NCO content is approx. 19.6% by weight (determined in accordance with DIN EN ISO 11 909), the viscosity at 23 ° C is 500 +/- 150 mPas (determined in accordance with DIN EN ISO 3219 / A.3) .
  • Table 1 Composition of the building materials example 1 2 3 4th 5 VB 6 VB 7 VB 8 Feedstock Parts by weight [%] Desmodur® N 3390 62.93 62.92 62.91 62.90 62.92 63.06 63.096 63.10 4.12-bis (cyclopentyl) -1,7,9,15-tetraoxa-4,12-diaza-8-stannaspirole [7.7] pentadecane 0.17 - - - - - - 4, 12-bis (cyclohexyl) -1,7,9,15-tetraoxa-4,12-diaza-8-stannaspirole [7.7] pentadecane - 0.18 - - - - - - 4,12-bis (cyclopentyl) -2,6,10,14-tetramethyl-1,7,9,15-tetraoxa-4,12-diaza
  • the components were placed in a plastic beaker with a lid in the order isocyanate (Desmodur® N 3390 BA), catalyst (if used), hydroxyacrylate and the photoinitiator (2-hydroxy-2-methyl-1-phenyl-propan-1-one Omnirad® 1173 from IGM Resins) .
  • isocyanate Desmodur® N 3390 BA
  • catalyst if used
  • hydroxyacrylate and the photoinitiator (2-hydroxy-2-methyl-1-phenyl-propan-1-one Omnirad® 1173 from IGM Resins) .
  • These starting materials were mixed in a Thinky ARE250 planetary rotary mixer at room temperature for about 2 minutes at a speed of 2000 revolutions per minute. In all formulations there was a stoichiometric ratio of NCO to OH groups of approx. 1: 1.
  • the first viscosity measurement was carried out immediately, i.e. within 2 minutes after mixing for 2 minutes. Further viscosity measurements were then carried out at time intervals, as shown in Table 2. All viscosity measurements which are given in Table 2 were carried out with a viscometer from Anton Paar MCR 51 with a cone-plate measuring system CP25-2 at 23 ° C.
  • Examples 1 to 5 according to the invention showed a doubling of the initial viscosity, determined at time 0 minutes only after a period of> 60 minutes (pot life).
  • Comparative example CE 6 containing 400 ppm DBTL, showed a viscosity of 63,000 mPas immediately after mixing and was polymerized after 30 minutes, which is why it was no longer possible to determine the viscosity.
  • Comparative example CE 8 without catalyst, showed almost no change in viscosity over 240 minutes.
  • the coated glass substrates were then cured in a UV curing system from Superfici with mercury and gallium radiation sources at a belt speed of 5 m / min.
  • the lamp power and belt speed result in a radiation intensity of 1,300 mJ / cm 2 , which acted on the coated substrates.
  • the UV-cured films were then stored on the glass substrates in a drying oven at 150 ° C. under an air atmosphere and removed from the oven at the times listed in Table 3 for the respective IR measurement. After the measurement, the samples were placed back in the oven.
  • Examples 1 to 5 according to the invention showed a significantly more rapid degradation of the NCO integral than comparative examples CE 6 and CE 7, containing 400 and 40 ppm DBTL, respectively.
  • a conversion of the NCO groups of 72 72% already took place after storage for 30 minutes at 150 ° C. in comparative example CE 7, containing 40 ppm DBTL, only 32% of the NCO groups reacted.
  • the NCO conversion for the examples according to the invention is 79%, while for comparative example CE 7 the NCO conversion is only 43%.
  • Comparative example CE 6 containing 400 ppm DBTL, showed immediately after UV curing a very low NCO integral of 50.0, which corresponded to a conversion of 90% of the NCO groups. This is due to a reaction of many isocyanate groups already during the UV exposure and the sample preparation for the infrared measurement, due to the high amount of DBTL. This is also confirmed by the viscosity measurements shown above after different reaction times at 23 ° C.
  • Comparative Example CE 8 without a catalyst, also showed a decrease in the NCO integral over time, but significantly more slowly than in the case of the catalyzed systems. Only after 240 minutes had about half of the NCO groups reacted during storage at 150 ° C.
  • the building materials according to Examples 1 to 5 according to the invention containing a latently reactive catalyst, showed a significantly longer pot life than the building materials catalyzed with DBTL according to Comparative Examples CE 6 and CE 7.
  • the building materials according to the invention reacted significantly faster (NCO-OH reaction). during storage at 150 ° C as a build-up material without a catalyst, such as DBTL, with a long pot life according to Comparative Example CE 8.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines Gegenstands aus einem Aufbaumaterial, wobei das Aufbaumaterial radikalisch vernetzbare Gruppen, NCO-Gruppen sowie Gruppen mit Zerewitinoff-aktiven H-Atomen umfasst und der Gegenstand ein dreidimensionaler Gegenstand und/oder eine Schicht ist. Während und/oder nach der Herstellung des Gegenstands wird das Aufbaumaterial auf eine Temperatur von ≥ 50 °C erwärmt und das Aufbaumaterial umfasst eine oder mehrere spezielle Zinnverbindungen. Die Erfindung betrifft ebenfalls einen durch das erfindungsgemäße Verfahren hergestellten Gegenstand sowie die Verwendung spezieller Zinnverbindungen in additiven Fertigungsverfahren.The present invention relates to a method for producing an object from a building material, the building material comprising radical crosslinkable groups, NCO groups and groups with Zerewitinoff-active H atoms and the object being a three-dimensional object and / or a layer. During and / or after the production of the object, the construction material is heated to a temperature of ≥ 50 ° C. and the construction material comprises one or more special tin compounds. The invention also relates to an object produced by the method according to the invention and the use of special tin compounds in additive manufacturing processes.

Beschichtungsmittel, die durch zwei unabhängige Prozesse aushärten, werden allgemein als Dual Cure-Systeme bezeichnet. Üblicherweise besitzen die enthaltenen Bindemittelkomponenten dabei unterschiedliche funktionelle Gruppen die unter geeigneten Bedingungen in der Regel unabhängig voneinander miteinander vernetzen. Übliche zum Stand der Technik gehörende Dual Cure-Systeme besitzen strahlen- sowie thermisch härtbare Gruppen, wobei besonders vorteilhafte Eigenschaften bei Verwendung von Isocyanat- und Hydroxygruppen als thermisch vernetzende Funktionen erhalten werden. Nachteilig an solchen Lösungen ist jedoch, dass die Reaktivität der NCO Gruppen und/oder die Anwesenheit von Katalysatoren für den zweiten Härtungsmechnismus die Topfzeit des Beschichtungsmittels begrenzt.Coating agents that cure through two independent processes are generally referred to as dual cure systems. The binder components contained usually have different functional groups which, under suitable conditions, generally crosslink with one another independently of one another. Customary prior art dual cure systems have radiation-curable and thermally curable groups, particularly advantageous properties being obtained when isocyanate and hydroxyl groups are used as thermally crosslinking functions. However, the disadvantage of such solutions is that the reactivity of the NCO groups and / or the presence of catalysts for the second curing mechanism limits the pot life of the coating agent.

Eine Klasse von Dual Cure-Systemen enthält blockierte Isocyanate. Nach einer Deblockierung bei geeigneter Temperatur stehen die NCO-Gruppen für Reaktionen mit Polyolen zur Verfügung. Nachteilig bei der Verwendung von blockierten Isocyanaten sind die für blockierte Isocyanate typische hohe Viskosität und die üblicherweise sehr hohe Deblockierungstemperatur.One class of dual cure systems contains blocked isocyanates. After deblocking at a suitable temperature, the NCO groups are available for reactions with polyols. Disadvantages of using blocked isocyanates are the high viscosity typical of blocked isocyanates and the usually very high deblocking temperature.

Dual Cure-Systeme können in Beschichtungsanwendungen und bei Verwendung als Klebstoffe Vorteile bei der sogenannten Schattenhärtung aufweisen. Hierunter ist derjenige Härtungsmechanismus zu verstehen, welcher nicht photochemisch, sondern beispielsweise thermisch abläuft. Dann kann das Beschichtungs- oder Klebmittel auch bei komplex geformten Substraten mit Abschattungen gegenüber einer Belichtungslampe weiter aushärten.Dual cure systems can have advantages in so-called shadow curing in coating applications and when used as adhesives. This is to be understood as the hardening mechanism which does not take place photochemically but, for example, thermally. The coating or adhesive can then cure further, even in the case of complex-shaped substrates with shading compared to an exposure lamp.

Im Lack- und Klebstoffbereich existieren mehrere Hauptgruppen der Dual Cure-Technologie: zwei verschiedene Radikalstarter (UV und thermisch), UV- und Feuchtigkeitsnachhärtung, UV- und PUR-2K-Härtung und eine kationisch katalysierte UV- und thermisch Härtung. Von der Firma Berlac AG wird beispielsweise unter der Bezeichnung Berlac 082.907 ein Dual Cure-Lacksystem angeboten, in dem zunächst eine Reaktion zwischen NCO-Gruppen und OH-Gruppen ausgelöst wird und dann einer UV-Härtung unterworfen wird.There are several main groups of dual cure technology in the paint and adhesive sector: two different radical starters (UV and thermal), UV and moisture post-curing, UV and PUR 2K curing and a cationically catalyzed UV and thermal curing. Berlac AG, for example, offers a dual cure lacquer system under the name Berlac 082.907, in which a reaction between NCO groups and OH groups is initially triggered and then subjected to UV curing.

Eine weitere denkbare Anwendung von Dual Cure-Systemen ist in additiven Fertigungsverfahren ("3D-Druck"). Als additive Fertigungsverfahren werden solche Verfahren bezeichnet, mit denen Gegenstände schichtweise aufgebaut werden. Sie unterscheiden sich daher deutlich von anderen Verfahren zur Herstellung von Gegenständen wie Fräsen, Bohren oder Zerspanen. Bei letztgenannten Verfahren wird ein Gegenstand so bearbeitet, dass er durch Wegnahme von Material seine Endgeometrie erhält.Another conceivable application of dual cure systems is in additive manufacturing processes ("3D printing"). Processes with which Objects are built up in layers. They therefore differ significantly from other methods of manufacturing objects such as milling, drilling or machining. In the latter process, an object is processed in such a way that it receives its final geometry by removing material.

Additive Fertigungsverfahren nutzen unterschiedliche Materialien und Prozesstechniken, um Gegenstände schichtweise aufzubauen. Eine Gruppe von additiven Fertigungsverfahren setzt radikalisch vernetzbare Harze ein, welche gegebenenfalls über einen zweiten Härtungsmechanismus ihre Endfestigkeit im gebildeten Gegenstand erhalten. Beispiele für solche Verfahren sind Stereolithographieverfahren und das davon abgeleitete sogenannte DLP-Verfahren.Additive manufacturing processes use different materials and process technologies to build objects up in layers. One group of additive manufacturing processes uses radically crosslinkable resins which, if necessary, obtain their ultimate strength in the object formed via a second hardening mechanism. Examples of such processes are stereolithography processes and the so-called DLP process derived therefrom.

US 2016136889 A1 offenbart ein Verfahren zum Bilden eines dreidimensionalen Objekts aus einem Dual-Cure-System, enthaltend eine Mischung von einer ersten polymerisierbaren flüssigen Komponente und einer zweiten verfestigbaren Komponente, die sich von der ersten Komponente unterscheidet. Dieses wird zunächst in einem 3D-Druck-Verfahren bestrahlt, um ein festes Zwischenprodukt aufzubauen, die zweite verfestigbare Komponente enthalten, die in dem Gerüst in nichtverfestigter und / oder ungehärteter Form getragen wird. Gleichzeitig mit oder nach dem Bestrahlungsschritt die zweiten Komponente in dem dreidimensionalen Zwischenprodukt verfestigt, um das dreidimensionale Objekt zu bilden. US 2016136889 A1 discloses a method for forming a three-dimensional object from a dual-cure system containing a mixture of a first polymerizable liquid component and a second solidifiable component that is different from the first component. This is first irradiated in a 3D printing process in order to build up a solid intermediate product that contains a second solidifiable component that is supported in the framework in non-solidified and / or uncured form. Simultaneously with or after the irradiation step, the second component solidifies in the three-dimensional intermediate product in order to form the three-dimensional object.

Für den 3D-Druck bedeuten die Nachteile von konventionellen Dual Cure-Systemen hinsichtlich der Topfzeit, dass ein nicht gebrauchtes Aufbaumaterial schlecht wiederverwendet werden kann bzw. die geplanten Bauzeiten für ein Produkt die Topfzeit nicht überschreiten dürfen.For 3D printing, the disadvantages of conventional dual cure systems with regard to the pot life mean that an unused construction material cannot be reused or the planned construction times for a product must not exceed the pot life.

DE 10 2009 051445 A1 offenbart Polyisocyanat-Polyadditionsprodukte erhältlich aus

  1. a) mindestens einem aliphatischen, cycloaliphatischen, araliphatischen und/oder aromatischen Polyisocyanat
  2. b) mindestens einer NCO-reaktiven Verbindung
  3. c) mindestens einem thermolatenten anorganischen Zinn-enthaltenden Katalysator
  4. d) gegebenenfalls weiteren von c) verschiedenen Katalysatoren und/oder Aktivatoren
  5. e) gegebenenfalls Füllstoffen, Pigmenten, Additiven, Verdickern, Entschäumern und/oder anderen Hilfs- und Zusatzstoffen,
wobei das Verhältnis des Gewichts des Zinns aus Komponente c) und des Gewichts der Komponente a) weniger als 3000 ppm beträgt, wenn Komponente a) ein aliphatisches Polyisocyanat ist und weniger als 95 ppm beträgt, wenn Komponente a) ein aromatisches Polyisocyanat ist und wobei als thermolatente Katalysatoren die folgenden zyklischen Zinnverbindungen eingesetzt werden:
Figure imgb0001
Figure imgb0002
Figure imgb0003
DE 10 2009 051445 A1 discloses polyisocyanate polyadducts obtainable from
  1. a) at least one aliphatic, cycloaliphatic, araliphatic and / or aromatic polyisocyanate
  2. b) at least one NCO-reactive compound
  3. c) at least one thermolatent inorganic tin-containing catalyst
  4. d) optionally further catalysts and / or activators different from c)
  5. e) where appropriate, fillers, pigments, additives, thickeners, defoamers and / or other auxiliaries and additives,
wherein the ratio of the weight of the tin from component c) and the weight of component a) is less than 3000 ppm when component a) is an aliphatic polyisocyanate and is less than 95 ppm when component a) is an aromatic polyisocyanate and where as thermolatent catalysts the following cyclic tin compounds are used:
Figure imgb0001
Figure imgb0002
Figure imgb0003

Eine Aufgabe der vorliegenden Erfindung ist es, mindestens einen Nachteil des Standes der Technik wenigstens zu einem Teil zu überwinden. Weiterhin stellt sich die Erfindung die Aufgabe, ein Fertigungsverfahren bereitzustellen, bei dem die herzustellenden Gegenstände aus einem Dual Cure-Aufbaumaterial möglichst kosteneffizient und/oder individualisiert und/oder ressourcenschonend erhalten werden können, was insbesondere die Wiederverwertbarkeit von Aufbaumaterial betrifft.It is an object of the present invention to overcome at least one disadvantage of the prior art, at least in part. Another object of the invention is to provide a manufacturing method in which the objects to be manufactured from a dual cure construction material can be obtained as cost-effectively and / or individualized and / or resource-saving as possible, which particularly relates to the recyclability of construction material.

Erfindungsgemäß gelöst wird die Aufgabe durch ein Verfahren gemäß Anspruch 1, einen Gegenstand gemäß Anspruch 14 und eine Verwendung gemäß Anspruch 15. Vorteilhafte Weiterbildungen sind in den Unteransprüchen angegeben. Sie können beliebig kombiniert werden, sofern sich aus dem Kontext nicht eindeutig das Gegenteil ergibt.According to the invention, the object is achieved by a method according to claim 1, an object according to claim 14 and a use according to claim 15. Advantageous further developments are specified in the subclaims. They can be combined in any way, unless the context clearly indicates the opposite.

Ein Verfahren zur Herstellung eines Gegenstands aus einem Aufbaumaterial, wobei das Aufbaumaterial radikalisch vernetzbare Gruppen, NCO-Gruppen sowie Gruppen mit Zerewitinoff-aktiven H-Atomen umfasst und der Gegenstand ein dreidimensionaler Gegenstand und/oder eine Schicht ist, zeichnet sich dadurch aus, dass während und/oder nach der Herstellung des Gegenstands das Aufbaumaterial auf eine Temperatur von ≥ 50 °C erwärmt wird und dass das Aufbaumaterial eine oder mehrere zyklische Zinnverbindungen der Formel F-I, F-II und/oder F-III umfasst:

Figure imgb0004
Figure imgb0005
Figure imgb0006
wobei gilt:

  • D steht für -O-, -S- oder -N(R1)-
    wobei R1 für einen gesättigten oder ungesättigten, linearen oder verzweigten, aliphatischen oder cycloaliphatischen oder einen gegebenenfalls substituierten, aromatischen oder araliphatischen Rest mit bis zu 20 Kohlenstoffatomen steht, der gegebenenfalls Heteroatome aus der Reihe Sauerstoff, Schwefel, Stickstoff enthalten kann, oder für Wasserstoff oder den Rest
    Figure imgb0007
    steht, oder R1 und L3 zusammen für -Z-L5- stehen;
  • D* steht für -O- oder -S-;
  • X, Y und Z stehen für gleiche oder unterschiedliche Reste ausgewählt aus Alkylenresten der Formeln -C(R2)(R3)-, -C(R2)(R3)-C(R4)(R5)- oder -C(R2)(R3)-C(R4)(R5)-C(R6)(R7)- oder ortho-Arylenresten der Formeln
    Figure imgb0008
    oder
    Figure imgb0009
    wobei R2 bis R11 unabhängig voneinander für gesättigte oder ungesättigte, lineare oder verzweigte, aliphatische oder cycloaliphatische oder gegebenenfalls substituierte, aromatische oder araliphatische Reste mit bis zu 20 Kohlenstoffatomen stehen, die gegebenenfalls Heteroatome aus der Reihe Sauerstoff, Schwefel, Stickstoff enthalten können, oder für Wasserstoff stehen;
  • L1, L2 und L5 stehen unabhängig voneinander für -O-, -S-, -OC(=O)-, -OC(=S)-, -SC(=O)-, - SC(=S)-, -OS(=O)2O-, -OS(=O)2- oder -N(R12)-,
    wobei R12 für einen gesättigten oder ungesättigten, linearen oder verzweigten, aliphatischen oder cycloaliphatischen oder einen gegebenenfalls substituierten, aromatischen oder araliphatischen Rest mit bis zu 20 Kohlenstoffatomen steht, der gegebenenfalls Heteroatome aus der Reihe Sauerstoff, Schwefel, Stickstoff enthalten kann, oder für Wasserstoff steht;
  • L3 und L4 stehen unabhängig voneinander für -OH, -SH, -OR13, -Ha1, -OC(=O)R14, -SR15, - OC(=S)R16, -OS(=O)2OR17, -OS(=O)2R18 oder -NR19R20, oder L3 und L4 zusammen stehen für -L1-X-D-Y-L2-,
    wobei für R13 bis R20 unabhängig voneinander für gesättigte oder ungesättigte, lineare oder verzweigte, aliphatische oder cycloaliphatische oder gegebenenfalls substituierte, aromatische oder araliphatische Reste mit bis zu 20 Kohlenstoffatomen stehen, die gegebenenfalls Heteroatome aus der Reihe Sauerstoff, Schwefel, Stickstoff enthalten können, oder für Wasserstoff stehen.
A method for producing an object from a building material, wherein the building material comprises radically crosslinkable groups, NCO groups and groups with Zerewitinoff-active H atoms and the object is a three-dimensional object and / or a layer, is characterized in that during and / or after the object has been manufactured, the construction material is heated to a temperature of ≥ 50 ° C and that the construction material comprises one or more cyclic tin compounds of the formula FI, F-II and / or F-III:
Figure imgb0004
Figure imgb0005
Figure imgb0006
where:
  • D stands for -O-, -S- or -N (R1) -
    where R1 is a saturated or unsaturated, linear or branched, aliphatic or cycloaliphatic or an optionally substituted, aromatic or araliphatic radical with up to 20 carbon atoms, which may optionally contain heteroatoms from the series oxygen, sulfur, nitrogen, or hydrogen or the rest
    Figure imgb0007
    or R1 and L3 together represent -Z-L5-;
  • D * stands for -O- or -S-;
  • X, Y and Z stand for identical or different radicals selected from alkylene radicals of the formulas -C (R2) (R3) -, -C (R2) (R3) -C (R4) (R5) - or -C (R2) ( R3) -C (R4) (R5) -C (R6) (R7) - or ortho-arylene radicals of the formulas
    Figure imgb0008
    or
    Figure imgb0009
    where R2 to R11 independently represent saturated or unsaturated, linear or branched, aliphatic or cycloaliphatic or optionally substituted, aromatic or araliphatic radicals with up to 20 carbon atoms, which may optionally contain heteroatoms from the series oxygen, sulfur, nitrogen, or hydrogen stand;
  • L1, L2 and L5 stand independently for -O-, -S-, -OC (= O) -, -OC (= S) -, -SC (= O) -, - SC (= S) -, - OS (= O) 2 O-, -OS (= O) 2 - or -N (R12) -,
    where R12 stands for a saturated or unsaturated, linear or branched, aliphatic or cycloaliphatic or an optionally substituted, aromatic or araliphatic radical with up to 20 carbon atoms, which can optionally contain heteroatoms from the series oxygen, sulfur, nitrogen, or stands for hydrogen;
  • L3 and L4 stand independently for -OH, -SH, -OR13, -Ha1, -OC (= O) R14, -SR15, - OC (= S) R16, -OS (= O) 2 OR17, -OS ( = O) 2 R18 or -NR19R20, or L3 and L4 together stand for -L1-XDY-L2-,
    where R13 to R20 independently represent saturated or unsaturated, linear or branched, aliphatic or cycloaliphatic or optionally substituted, aromatic or araliphatic radicals with up to 20 carbon atoms, which may optionally contain heteroatoms from the series oxygen, sulfur, nitrogen, or for Stand for hydrogen.

Die durch das erfindungsgemäße Verfahren erhaltene Schicht kann an einer Seite, an mehreren Seiten oder an keiner Seite eine oder mehrere weitere Oberflächen kontaktieren. Demgemäß kann es sich bei der Schicht um eine Beschichtung, eine Klebeverbindung oder einen freitragenden Film handeln.The layer obtained by the method according to the invention can contact one or more further surfaces on one side, on several sides or on neither side. Accordingly, the layer can be a coating, an adhesive bond or a self-supporting film act.

Durch das erfindungsgemäße Verfahren gebildete dreidimensionale Gegenstände können Gegenstand in Aufbaurichtung seines Herstellungsverfahrens wenigstens abschnittsweise eine Höhe von ≥ 1 mm aufweisen. So erhaltene Beschichtungen und Klebeverbindungen können Dicken von ≥ 5 µm bis ≤ 800 µm aufweisen und so erhaltene Filme Dicken von ≥ 30 µm bis ≤ 500 µm.Three-dimensional objects formed by the method according to the invention can have a height of 1 mm, at least in sections, in the construction direction of its manufacturing method. Coatings and adhesive bonds obtained in this way can have thicknesses of 5 µm to 800 µm and films obtained in this way can have thicknesses of 30 µm to 500 µm.

Die Zinnverbindungen der Formeln F-I, F-II und F-III weisen unterhalb einer bestimmten Temperatur keine technisch sinnvolle katalytische Aktivität für die Reaktion von NCO-Gruppen mit funktionellen Gruppen, welche Zerewitinoff-aktive H-Atome tragen, auf. Insbesondere seien hierbei Urethanisierungen und Harnstoffbildungen zu nennen. Oberhalb einer bestimmten Temperatur steigt jedoch die katalytische Aktivität stark an. Ohne auf eine Theorie beschränkt zu sein wird angenommen, dass die intramolekularen Donor-Akzeptor-Wechselwirkungen in den erfindungsgemäß eingesetzten hypervalenten Zinnverbindungen bzw. aus letzteren in der Matrix gebildeten Folgeprodukten bei höherer Temperatur geschwächt werden und somit das bei niedriger Temperatur (reversibel) blockierte Zentralatom dann für die katalysierte Reaktion zur Verfügung steht. Insofern lässt sich von thermisch latenten Katalysatoren sprechen. Dadurch, dass die im Aufbaumaterial vorliegenden NCO-Gruppen unterhalb dieser Temperatur nicht abreagieren, kann das Aufbaumaterial auch leicht wiederverwertet werden. Erfindungsgemäß wird zur Aktivierung des Sn-Katalysators auf eine Temperatur von ≥ 50 °C, vorzugsweise ≥ 65 °C, mehr bevorzugt ≥ 80 °C, besonders bevorzugt ≥ 80 °C bis ≤ 200 °C erwärmt, so dass nach erfolgter Reaktion der NCO-Gruppen der Gegenstand erhalten wird. Das Erwärmen kann für eine Zeitspanne von ≥ 1 Minute, bevorzugt ≥ 5 Minuten, mehr bevorzugt ≥ 10 Minuten bis ≤ 24 Stunden bevorzugt ≤ 8 Stunden, besonders bevorzugt < 4 Stunden, erfolgen.The tin compounds of the formulas F-I, F-II and F-III have no technically meaningful catalytic activity below a certain temperature for the reaction of NCO groups with functional groups which carry Zerewitinoff-active H atoms. In particular, urethanizations and urea formations should be mentioned here. Above a certain temperature, however, the catalytic activity increases sharply. Without being limited to a theory, it is assumed that the intramolecular donor-acceptor interactions in the hypervalent tin compounds used according to the invention or the secondary products formed from the latter in the matrix are weakened at higher temperature and thus the central atom (reversibly) blocked at low temperature then is available for the catalyzed reaction. In this respect, one can speak of thermally latent catalysts. Because the NCO groups present in the building material do not react below this temperature, the building material can also be easily recycled. According to the invention, to activate the Sn catalyst, it is heated to a temperature of 50 ° C., preferably ° 65 ° C., more preferably C 80 ° C., particularly preferably 80 ° C. to 200 ° C., so that after the reaction has taken place the NCO -Groups the item is obtained. The heating can take place for a period of ≥ 1 minute, preferably 5 minutes, more preferably 10 minutes to 24 hours, preferably 8 hours, particularly preferably 4 hours.

Vorzugsweise ist die katalytische Aktivität des thermolatenten Katalysators in dem Aufbaumaterial für das erfindungsgemäße Verfahren so gestaltet, das das Aufbaumaterial eine Topfzeit (definiert als die Zeit, in der sich die Viskosität des Materials verdoppelt) bei 23°C von > 1 h, bevorzugt > 2 h, besonders bevorzugt > 4 h und ganz besonders bevorzugt > 6 h aufweist.The catalytic activity of the thermolatent catalyst in the build-up material for the process according to the invention is preferably designed in such a way that the build-up material has a pot life (defined as the time in which the viscosity of the material doubles) at 23 ° C. of> 1 h, preferably> 2 h, particularly preferably> 4 h and very particularly preferably> 6 h.

Vor allem in den Fällen, in denen die Zinnverbindungen der Formeln F-I, F-II und/oder F-III Liganden mit freien OH- und/oder NH-Resten aufweisen, kann der Katalysator bei der Polyisocyanat-Polyadditionsreaktion in das Produkt eingebaut werden. Besonderer Vorteil dieser einbaubaren Katalysatoren ist ihr stark reduziertes Fogging-Verhalten.Especially in those cases in which the tin compounds of the formulas F-I, F-II and / or F-III have ligands with free OH and / or NH radicals, the catalyst can be incorporated into the product in the polyisocyanate polyaddition reaction. The particular advantage of these built-in catalysts is their greatly reduced fogging behavior.

Die verschiedenen Herstellungsmethoden für die erfindungsgemäß zu verwendenden Zinn(IV)-Verbindungen bzw. ihrer Zinn(II)-Precursoren sind u.a. beschrieben in: J. Organomet. Chem. 2009 694 3184-3189 , Chem. Heterocycl. Comp. 2007 43 813-834 , Indian J. Chem. 1967 5 643-645 sowie in darin angeführter Literatur.The various production methods for the tin (IV) compounds or their tin (II) precursors to be used according to the invention are described, inter alia, in: J. Organomet. Chem. 2009 694 3184-3189 , Chem. Heterocycl. Comp. 2007 43 813-834 , Indian J. Chem. 1967 5,643-645 as well as in the literature cited therein.

Der Gewichtsanteil der Zinnverbindungen der Formeln F-I, F-II und/oder F-III im Aufbaumaterial kann vom Typ der dem Aufbaumaterial zugrunde liegenden Isocyanate abhängig gemacht werden. So kann, wenn an ein aromatisches C-Atom gebundene NCO-Gruppen dominieren, der Gehalt ≤ 100 ppm, bezogen auf das Gesamtgewicht des Aufbaumaterials, betragen. Wenn an ein aliphatisches C-Atom gebundene NCO-Gruppen dominieren, der Gehalt ≤ 3000 ppm, bezogen auf das Gesamtgewicht des Aufbaumaterials, betragen.The proportion by weight of the tin compounds of the formulas FI, F-II and / or F-III in the building material can be made dependent on the type of isocyanates on which the build-up material is based. Thus, if NCO groups bonded to an aromatic carbon atom dominate, the content can be 100 ppm, based on the total weight of the build-up material. If NCO groups bonded to an aliphatic carbon atom dominate, the content is 3000 ppm, based on the total weight of the building material.

Als Quelle von NCO-Gruppen im Aufbaumaterial eignen sich die dem Fachmann an sich bekannten organischen aliphatischen, cycloaliphatischen, araliphatischen und/oder aromatischen Polyisocyanate mit mindestens zwei Isocyanatgruppen pro Molekül sowie Gemische davon. Beispielsweise können NCO-terminierte Prepolymere eingesetzt werden.The organic aliphatic, cycloaliphatic, araliphatic and / or aromatic polyisocyanates with at least two isocyanate groups per molecule and mixtures thereof, which are known per se to the person skilled in the art, are suitable as sources of NCO groups in the build-up material. For example, NCO-terminated prepolymers can be used.

Als NCO-reaktive Verbindungen mit Zerewitinoff-aktiven H-Atomen können alle dem Fachmann bekannten Verbindungen eingesetzt werden, welche eine mittlere OH- bzw. NH-Funktionalität von mindestens 1,5 aufweisen. Dies können beispielsweise niedermolekulare Diole (z. B. 1,2-Ethandiol, 1,3- bzw. 1,2-Propandiol, 1,4-Butandiol, 1,5-Petandiol, 1,6-Hexandiol), Triole (z. B. Glycerin, Trimethylolpropan) und Tetraole (z. B. Pentaerythrit) sein, kurzkettige Aminoalkohole, Polyamine aber auch höhermolekulare Polyhydroxyverbindungen wie Polyetherpolyole, Polyesterpolyole, Polycarbonatpolyole, Polysiloxanpolyole, Polyamine und Polyetherpolyamine sowie Polybutadienpolyole.As NCO-reactive compounds with Zerewitinoff-active H atoms, all compounds known to the person skilled in the art which have an average OH or NH functionality of at least 1.5 can be used. These can be, for example, low molecular weight diols (e.g. 1,2-ethanediol, 1,3- or 1,2-propanediol, 1,4-butanediol, 1,5-petanediol, 1,6-hexanediol), triols (e.g. B. glycerol, trimethylolpropane) and tetraols (e.g. pentaerythritol), short-chain amino alcohols, polyamines but also higher molecular weight polyhydroxy compounds such as polyether polyols, polyester polyols, polycarbonate polyols, polysiloxane polyols, polyamines and polyether polyamines and polybutadiene polyols.

Das Aufbaumaterial umfasst radikalisch vernetzbare Gruppen, vorzugsweise (Meth)Acrylatgruppen. Sie können durch thermische und/oder durch photochemische Radikalstarter eine Vernetzungsreaktion untereinander eingehen. Daher lässt sich das Aufbaumaterial auch als radikalisch vernetzbares Aufbaumaterial oder radikalisch vernetzbares Harz beschreiben. Ferner handelt es sich gemäß der obigen Definition um ein Dual Cure-System.The build-up material comprises free-radically crosslinkable groups, preferably (meth) acrylate groups. They can enter into a crosslinking reaction with one another through thermal and / or through photochemical radical initiators. The building material can therefore also be described as a radically crosslinkable building material or a radically crosslinkable resin. Furthermore, according to the definition above, it is a dual cure system.

Vorzugsweise umfasst das radikalisch vernetzbare Aufbaumaterial eine Verbindung, die aus der Reaktion eines NCO-terminierten Polyisocyanatprepolymers mit einem, bezogen auf die freien NCO-Gruppen, molaren Unterschuss eines Hydroxyalkyl(meth)acrylats erhältlich ist.The free-radically crosslinkable building material preferably comprises a compound which is obtainable from the reaction of an NCO-terminated polyisocyanate prepolymer with a molar deficiency of a hydroxyalkyl (meth) acrylate, based on the free NCO groups.

Ebenfalls vorzugsweise umfasst das radikalisch vernetzbare Aufbaumaterial eine Verbindung, die aus der Reaktion eines NCO-terminierten Polyisocyanurats mit einem, bezogen auf die freien NCO-Gruppen, molaren Unterschuss eines Hydroxyalkyl(meth)acrylats erhältlich ist.The free-radically crosslinkable building material likewise preferably comprises a compound which is obtainable from the reaction of an NCO-terminated polyisocyanurate with a molar deficit of a hydroxyalkyl (meth) acrylate, based on the free NCO groups.

Geeignete Polyisocyanate zur Herstellung der NCO-terminierten Polyisocyanurate und Prepolymere sind beispielsweise solche, die ein Molekulargewicht im Bereich von 140 bis 400 g/mol aufweisen, mit aliphatisch, cycloaliphatisch, araliphatisch und/oder aromatisch gebundenen Isocyanatgruppen, wie z. B. 1,4-Diisocyanatobutan (BDI), 1,5-Diisocyanatopentan (PDI), 1,6-Diisocyanatohexan (HDI), 2-Methyl-1,5-diisocyanatopentan, 1,5-Diisocyanato-2,2-dimethylpentan, 2,2,4- bzw. 2,4,4-Trimethyl-1,6-diisocyanatohexan, 1,10-Diisocyanatodecan, 1,3- und 1,4-Diisocyanatocyclohexan, 1,4-Diisocyanato-3,3,5-trimethylcyclohexan, 1,3-Diisocyanato-2-methylcyclohexan, 1,3-Diisocyanato-4-methylcyclohexan, 1-Isocyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexan (Isophorondiisocyanat; IPDI), 1-Isocyanato-1-methyl-4(3)-isocyanatomethylcyclohexan, 2,4'- und 4,4'-Diisocyanatodicyclohexylmethan (H12MDI), 1,3- und 1,4-Bis(isocyanatomethyl)cyclohexan, Bis-(isocyanatomethyl)-norbornan (NBDI), 4,4'-Diisocyanato-3,3'-dimethyldicyclohexylmethan, 4,4'-Diisocyanato-3,3',5,5'-tetramethyldicyclohexylmethan, 4,4'-Diisocyanato-1,1'-bi(cyclohexyl), 4,4'-Diisocyanato-3,3'-dimethyl-1,1'-bi(cyclohexyl), 4,4'-Diisocyanato-2,2',5,5'-tetra-methyl-1,1'-bi(cyclohexyl), 1,8-Diisocyanato-p-menthan, 1,3-Diisocyanato-adamantan, 1,3-Dimethyl-5,7-diisocyanatoadamantan, 1,3- und 1,4-Bis-(isocyanatomethyl)benzol (Xyxlylendiisocyanat; XDI), 1,3- und 1,4-Bis(1-isocyanato-l-methylethyl)-benzol (TMXDI) und Bis(4-(1-isocyanato-1-methylethyl)phenyl)-carbonat, 2,4- und 2,6-Diisocyanatotoluol (TDI), 2,4'- und 4,4'-Diisocyanatodiphenylmethan (MDI), 1,5-Diisocyanatonaphthalin sowie beliebige Gemische solcher Diisocyanate.Suitable polyisocyanates for preparing the NCO-terminated polyisocyanurates and prepolymers are, for example, those which have a molecular weight in the range from 140 to 400 g / mol, with aliphatically, cycloaliphatically, araliphatically and / or aromatically attached isocyanate groups, such as. B. 1,4-diisocyanatobutane (BDI), 1,5-diisocyanatopentane (PDI), 1,6-diisocyanatohexane (HDI), 2-methyl-1,5-diisocyanatopentane, 1,5-diisocyanato-2,2-dimethylpentane , 2,2,4- or 2,4,4-trimethyl-1,6-diisocyanatohexane, 1,10-diisocyanatodecane, 1,3- and 1,4-diisocyanatocyclohexane, 1,4-diisocyanato-3,3, 5-trimethylcyclohexane, 1,3-diisocyanato-2-methylcyclohexane, 1,3-diisocyanato-4-methylcyclohexane, 1-isocyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexane (isophorone diisocyanate; IPDI), 1-isocyanato-1-methyl-4 (3) -isocyanatomethylcyclohexane, 2, 4'- and 4,4'-diisocyanatodicyclohexylmethane (H 12 MDI), 1,3- and 1,4-bis (isocyanatomethyl) cyclohexane, bis (isocyanatomethyl) norbornane (NBDI), 4,4'-diisocyanato-3 , 3'-dimethyldicyclohexylmethane, 4,4'-diisocyanato-3,3 ', 5,5'-tetramethyldicyclohexylmethane, 4,4'-diisocyanato-1,1'-bi (cyclohexyl), 4,4'-diisocyanato-3 , 3'-dimethyl-1,1'-bi (cyclohexyl), 4,4'-diisocyanato-2,2 ', 5,5'-tetra-methyl-1,1'-bi (cyclohexyl), 1,8 -Diisocyanato-p-menthane, 1,3-diisocyanato-adamantane, 1,3-dimethyl-5,7-diisocyanatoadamantane, 1,3- and 1,4-bis (isocyanatomethyl) benzene (xyxlylene diisocyanate; XDI), 1, 3- and 1,4-bis (1-isocyanato-1-methylethyl) benzene (TMXDI) and bis (4- (1-isocyanato-1-methylethyl) phenyl) carbonate, 2,4- and 2,6- Diisocyanatotoluene (TDI), 2,4'- and 4,4'-diisocyanatodiphenylmethane (MDI), 1,5-diisocyanatonaphthalene and any ge mixtures of such diisocyanates.

Ferner können erfindungsgemäß auch aliphatische und/oder aromatische Isocyanat-Endgruppen tragende Prepolymere, wie beispielsweise aliphatische oder aromatische Isocyanat-Endgruppentragende Polyether-, Polyester-, Polyacrylat, Polyepoxyd oder Polycarbonat-Prepolymere als Edukte der Isocyanurat-Bildung eingesetzt werden. Geeignete Trimerisierungskatalysatoren werden weiter unten im Zusammenhang mit einer anderen Ausführungsform beschrieben.According to the invention, prepolymers bearing aliphatic and / or aromatic isocyanate end groups, such as, for example, aliphatic or aromatic isocyanate end groups, can also be used as starting materials for isocyanurate formation. Suitable trimerization catalysts are described below in connection with another embodiment.

Geeignete Hydroxyalkyl(meth)acrylate sind unter anderem Alkoxyalkyl(meth)acrylate mit 2 bis 12 Kohlenstoffatomen im Hydroxyalkylrest. Bevorzugt sind 2-Hydroxyethylacrylat, das bei der Anlagerung von Propylenoxid an Acrylsäure entstehende Isomerengemisch oder 4-Hydroxybutylacrylat.Suitable hydroxyalkyl (meth) acrylates include alkoxyalkyl (meth) acrylates with 2 to 12 carbon atoms in the hydroxyalkyl radical. Preference is given to 2-hydroxyethyl acrylate, the mixture of isomers formed on addition of propylene oxide onto acrylic acid, or 4-hydroxybutyl acrylate.

Die Reaktion zwischen dem Hydroxyalkyl(meth)acrylat und dem NCO-terminierten Polyisocyanurat kann durch die üblichen Urethanisierungskatalysatoren wie DBTL katalysiert werden. Bei dieser Reaktion kann das molare Verhältnis zwischen NCO-Gruppen und OH-Gruppen des Hydroxyalkyl(meth)acrylats in einem Bereich von ≥10:1 bis ≤ 1,1:1 (bevorzugt ≥ 5:1 bis ≤ 1,5:1, mehr bevorzugt ≥ 4:1 bis ≤ 2:1) liegen. Die erhaltene härtbare Verbindung kann ein zahlenmittleres Molekulargewicht Mn von ≥ 200 g/mol bis ≤ 5000 g/mol aufweisen. Vorzugsweise beträgt dieses Molekulargewicht ≥ 300 g/mol bis ≤ 4000 g/mol, mehr bevorzugt ≥ 400 g/mol bis ≤ 3000 g/mol.The reaction between the hydroxyalkyl (meth) acrylate and the NCO-terminated polyisocyanurate can be catalyzed by the usual urethanization catalysts such as DBTL. In this reaction, the molar ratio between NCO groups and OH groups of the hydroxyalkyl (meth) acrylate can be in a range from ≥10: 1 to ≤ 1.1: 1 (preferably ≥ 5: 1 to ≤ 1.5: 1, more preferably 4: 1 to 2: 1). The curable compound obtained can have a number average molecular weight M n of ≥ 200 g / mol to 5000 g / mol. This molecular weight is preferably 300 g / mol to 4000 g / mol, more preferably 400 g / mol to 3000 g / mol.

Besonders bevorzugt ist eine härtbare Verbindung, die aus der Reaktion eines NCO-terminierten Polyisocyanurats mit Hydroxethyl(meth)acrylat erhalten wurde, wobei das NCO-terminierte Polyisocyanurat aus 1,6-Hexamethylendiisocyanat in Gegenwart eines Isocyanat-Trimerisierungskatalysators erhalten wurde. Diese härtbare Verbindung hat ein zahlenmittleres Molekulargewicht Mn von ≥ 400 g/mol bis ≤ 3000 g/mol und ein molares Verhältnis von NCO-Gruppen und olefinischen C=C-Doppelbindungen in einem Bereich von ≥ 1:5 bis ≤ 5:1. besonders bevorzugt ≥1:3 bis ≤ 3:1, ganz besonders bevorzugt. ≥1:2 bis ≤ 2:1.Particularly preferred is a curable compound obtained from the reaction of an NCO-terminated polyisocyanurate with hydroxethyl (meth) acrylate, the NCO-terminated polyisocyanurate being obtained from 1,6-hexamethylene diisocyanate in the presence of an isocyanate trimerization catalyst. This curable compound has a number average molecular weight M n of ≥ 400 g / mol to 3000 g / mol and a molar ratio of NCO groups and olefinic C = C double bonds in a range from 1: 5 to 5: 1. particularly preferably 1: 3 to 3: 1, very particularly preferably. ≥1: 2 to ≤ 2: 1.

Das radikalisch vernetzbare Aufbaumaterial kann weiterhin Additive wie Füllstoffe, UV-Stabilisatoren, Radikalinhibitoren, Antioxidantien, Formtrennmittel, Wasserfänger, Slipadditive, Entschäumer, Verlaufsmittel, Rheologieadditive, Flammschutzmittel und/oder Pigmente enthalten. Diese Hilfs- und Zusatzmittel, ausgenommen Füllstoffe und Flammschutzmittel, liegen üblicherweise in einer Menge von weniger als 50 Gew.-%, vorzugsweise weniger als 30 Gew.-%, besonders bevorzugt bis zu 20 Gew.-%, besonders bevorzugt bis zu 10 Gew.-%, bezogen auf das radikalisch vernetzbare Harz vor. Flammschutzmittel liegen üblicherweise in Mengen von höchstens 70 Gew.-%, vorzugsweise höchstens 50 Gew.-%, besonders bevorzugt höchstens 30 Gew.-%, berechnet als Gesamtmenge an eingesetzten Flammschutzmitteln bezogen auf das Gesamtgewicht des radikalisch vernetzbaren Aufbaumaterials vor.The free-radically crosslinkable building material can furthermore contain additives such as fillers, UV stabilizers, free radical inhibitors, antioxidants, mold release agents, water scavengers, slip additives, defoamers, leveling agents, rheology additives, flame retardants and / or pigments. These auxiliaries and additives, with the exception of fillers and flame retardants, are usually in an amount of less than 50% by weight, preferably less than 30% by weight, particularly preferably up to 20% by weight, particularly preferably up to 10% by weight .-%, based on the radically crosslinkable resin. Flame retardants are usually present in amounts of not more than 70% by weight, preferably not more than 50% by weight, particularly preferably not more than 30% by weight, calculated as the total amount of flame retardants used based on the total weight of the free-radically crosslinkable builder material.

Geeignete Füllstoffe sind beispielsweise AlOH3, CaCO3, geschnittene Glasfasern, Karbonfasern, Polymerfasern, Metallpigmente wie TiO2 und weitere bekannte übliche Füllstoffe. Diese Füllstoffe werden vorzugsweise in Mengen von höchstens 70 Gew.-%, bevorzugt höchstens 50 Gew.-%, besonders bevorzugt höchstens 30 Gew.-%, berechnet als Gesamtmenge an eingesetzten Füllstoffen bezogen auf das Gesamtgewicht des radikalisch vernetzbaren Harzes, eingesetzt.Suitable fillers are, for example, AlOH 3 , CaCO 3 , cut glass fibers, carbon fibers, polymer fibers, metal pigments such as TiO 2 and other known customary fillers. These fillers are preferably used in amounts of not more than 70% by weight, preferably not more than 50% by weight, particularly preferably not more than 30% by weight, calculated as the total amount of fillers used based on the total weight of the free-radically crosslinkable resin.

Geeignete UV-Stabilisatoren können vorzugsweise ausgewählt werden aus der Gruppe, bestehend aus Piperidinderivaten, wie z.B. 4-Benzoyloxy-2,2,6,6-tetramethylpiperidin, 4-Benzoyloxy-1,2,2,6,6-pentamethylpiperidin, Bis-(2,2,6,6-tetra-methyl-4-piperidyl)-sebacat, Bis(1,2,2,6,6-pentamethyL-1-4-piperidinyl)-sebacat, Bis-(2,2,6,6-tetrainethyl-4-piperidyl)-suberat, Bis-(2,2,6,6-tetramethyl-4-piperidyl)-dodecandioat; Benzophenonderivaten, wie z.B. 2,4-Dihydroxy-, 2-Hydroxy-4-methoxy-, 2-Hydroxy-4-octoxy-, 2-Hydroxy-4-dodecyloxy- oder 2,2'-Dihydroxy-4-dodecyloxy-benzophenon; Benztriazolderivaten, wie z.B. 2-(2H-Benzotriazol-2-yl)-4,6-di-tert-pentylphenol, 2-(2H-Benzotriazol-2-yl)-6-dodecyl-4-methylphenol, 2-(2H-Benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol, 2-(5-Chlor-2H-benzotriazol-2-yl)-6-(1,1-dimethylethyl)-4-methylphenol, 2-(2H-benzotriazol-2-yl)-4-(1,1,3,3 -tetramethylbutyl)phenol, 2-(2H-Benzotriazol-2-yl)-6-(1-methyl-1 -phenylethyl)-4-(1,1,3,3 -tetramethylbutyl)phenol, Isooctyl-3-(3 -(2H-benzotriazol-2-yl)-5-(1,1-dimethylethyl)-4-hydroxyphenylpropionat), 2-(2H-Benzotriazol-2-yl)-4,6-bis(1,1-dimethylethyl)phenol, 2-(2H-Benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol, 2-(5-Chlor-2H-benzotriazol-2-yl)-4,6-bis(1,1-dimethylethyl)phenol; Oxalaniliden, wie z.B. 2-Ethyl-2'-ethoxy- oder 4-Methyl-4'-methoxyoxalanilid; Salicylsäureestern, wie z.B. Salicylsäurephenylester, Salicylsäure-4-tert-butylphenylester, Salicylsäure-4-tert-octylphenylester; Zimtsäureesterderivaten, wie z.B. α-Cyano-β-methyl-4-methoxyzimtsäuremethylester, α-Cyano-β-methyl-4-methoxyzimtsäurebutyl-ester, α-Cyano-β-phenylzimtsäureethylester, α-Cyano-β-phenylzimtsäureisooctylester; und Malonesterderivaten, wie z.B. 4-Methoxybenzylidenmalonsäuredimethylester, 4-Methoxybenzylidenmalonsäurediethylester, 4-Butoxybenzylidenmalonsäuredimethylester. Diese bevorzugten Lichtstabilisatoren können sowohl einzeln als auch in beliebigen Kombinationen untereinander zum Einsatz kommen.Suitable UV stabilizers can preferably be selected from the group consisting of piperidine derivatives, such as 4-benzoyloxy-2,2,6,6-tetramethylpiperidine, 4-benzoyloxy-1,2,2,6,6-pentamethylpiperidine, bis (2,2,6,6-tetra-methyl-4-piperidyl) -sebacate, bis (1,2,2,6,6-pentamethyl-1-4-piperidinyl) -sebacate, bis- (2,2, 6,6-tetrainethyl-4-piperidyl) suberate, bis (2,2,6,6-tetramethyl-4-piperidyl) dodecanedioate; Benzophenone derivatives, such as, for example, 2,4-dihydroxy-, 2-hydroxy-4-methoxy-, 2-hydroxy-4-octoxy-, 2-hydroxy-4-dodecyloxy- or 2,2'-dihydroxy-4-dodecyloxy-benzophenone ; Benzotriazole derivatives such as 2- (2H-benzotriazol-2-yl) -4,6-di-tert-pentylphenol, 2- (2H-benzotriazol-2-yl) -6-dodecyl-4-methylphenol, 2- (2H -Benzotriazol-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol, 2- (5-chloro-2H-benzotriazol-2-yl) -6- (1,1-dimethylethyl) - 4-methylphenol, 2- (2H-benzotriazol-2-yl) -4- (1,1,3,3 -tetramethylbutyl) phenol, 2- (2H-benzotriazol-2-yl) -6- (1-methyl- 1-phenylethyl) -4- (1,1,3,3-tetramethylbutyl) phenol, isooctyl 3- (3 - (2H-benzotriazol-2-yl) -5- (1,1-dimethylethyl) -4-hydroxyphenyl propionate ), 2- (2H-benzotriazol-2-yl) -4,6-bis (1,1-dimethylethyl) phenol, 2- (2H-benzotriazol-2-yl) -4,6-bis (1-methyl- 1-phenylethyl) phenol, 2- (5-chloro-2H-benzotriazol-2-yl) -4,6-bis (1,1-dimethylethyl) phenol; Oxalanilides, such as, for example, 2-ethyl-2'-ethoxy- or 4-methyl-4'-methoxyoxalanilide; Salicylic acid esters, such as, for example, salicylic acid phenyl ester, salicylic acid 4-tert-butylphenyl ester, salicylic acid 4-tert-octylphenyl ester; Cinnamic acid ester derivatives, such as, for example, α-cyano-β-methyl-4-methoxycinnamate, alpha-cyano-beta-methyl-4-methoxycinnamate, ethyl alpha-cyano-beta-phenylcinnamate, isooctyl alpha-cyano-beta-phenylcinnamate; and malonic ester derivatives such as dimethyl 4-methoxybenzylidene malonate, diethyl 4-methoxybenzylidene malonate, dimethyl 4-butoxybenzylidene malonate. These preferred light stabilizers can be used either individually or in any combination with one another.

Besonders bevorzugte UV-Stabilisatoren sind solche, die Strahlung einer Wellenlänge < 400 nm vollständig absorbieren. Hierzu zählen beispielsweise die genannten Benztriazolderivate. Ganz besonders bevorzugte UV-Stabilisatoren sind 2-(5-Chlor-2H-benzotriazol-2-yl)-6-(1,1-dimethylethyl)-4-methylphenol, 2-(2H-benzotriazol-2-yl)-4-(1,1,3,3 -tetramethylbutyl)phenol und/oder 2-(5-Chlor-2H-benzotriazol-2-yl)-4,6-bis(1,1-dimethylethyl)phenol.Particularly preferred UV stabilizers are those which completely absorb radiation of a wavelength <400 nm. These include, for example, the benzotriazole derivatives mentioned. Very particularly preferred UV stabilizers are 2- (5-chloro-2H-benzotriazol-2-yl) -6- (1,1-dimethylethyl) -4-methylphenol, 2- (2H-benzotriazol-2-yl) -4 - (1,1,3,3-tetramethylbutyl) phenol and / or 2- (5-chloro-2H-benzotriazol-2-yl) -4,6-bis (1,1-dimethylethyl) phenol.

Gegebenenfalls werden ein oder mehrere der beispielhaft genannten UV-Stabilisatoren dem radikalisch vernetzbaren Aufbaumaterial vorzugsweise in Mengen von 0,001 bis 3,0 Gew.-%, besonders bevorzugt 0,005 bis 2 Gew.-%, berechnet als Gesamtmenge an eingesetzten UV-Stabilisatoren bezogen auf das Gesamtgewicht des radikalisch vernetzbaren Aufbaumaterials, zugesetzt.Optionally, one or more of the UV stabilizers mentioned by way of example are added to the free-radically crosslinkable builder material, preferably in amounts of 0.001 to 3.0% by weight, particularly preferably 0.005 to 2% by weight, calculated as the total amount of UV stabilizers used, based on the Total weight of the free-radically crosslinkable building material, added.

Geeignete Antioxidantien sind vorzugsweise sterisch gehinderten Phenole, welche vorzugsweise ausgewählt werden können aus der Gruppe, bestehend aus 2,6-Di-tert-butyl-4-methylphenol (Ionol), Pentaerythrit-tetrakis(3-(3,5-di-tert-butyl-4-hydroxy-phenyl)-propionat), Octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionat, Triethylen-glykol-bis(3-tert-butyl-4-hydroxy-5-methylphenyl)propionat, 2,2'-Thio-bis(4-methyl-6-tert-butylphenol) und 2,2'-Thiodiethyl-bis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionat]. Diese können bei Bedarf sowohl einzeln als auch in beliebigen Kombinationen untereinander eingesetzt werden. Diese Antioxidantien werden vorzugsweise in Mengen von 0,01 bis 3,0 Gew.-%, besonders bevorzugt 0,02 bis 2,0 Gew.-%, berechnet als Gesamtmenge an eingesetzten Antioxidantien bezogen auf das Gesamtgewicht des radikalisch vernetzbaren Aufbaumaterials, eingesetzt.Suitable antioxidants are preferably sterically hindered phenols, which can preferably be selected from the group consisting of 2,6-di-tert-butyl-4-methylphenol (Ionol), pentaerythritol tetrakis (3- (3,5-di-tert butyl-4-hydroxyphenyl) propionate), octadecyl 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, triethylene glycol bis (3-tert-butyl-4-hydroxy -5-methylphenyl) propionate, 2,2'-thio-bis (4-methyl-6-tert-butylphenol) and 2,2'-thiodiethyl-bis [3- (3,5-di-tert-butyl-4 hydroxyphenyl) propionate]. If required, these can be used individually or in any combination with one another. These antioxidants are preferably used in amounts of 0.01 to 3.0% by weight, particularly preferably 0.02 to 2.0% by weight, calculated as the total amount of antioxidants used based on the total weight of the free-radically crosslinkable builder material.

Geeignete Radikalinhibitoren bzw. Verzögerer sind besonders solche, die eine unkontrollierte radikalische Polymerisation der Harzformulierung außerhalb des gewünschten (bestrahlten) Bereiches gezielt inhibieren. Diese sind für eine gute Randschärfe und Abbildungsgenauigkeit im Vorläufer entscheidend. Geeignete Radikalinhibitoren müssen entsprechend der gewünschten Radikalausbeute aus dem Bestrahlungs-/Belichtungsschritt und der Polymerisationsgeschwindigkeit und Reaktivität/Selektivität der Doppelbindungsträger ausgesucht werden. Geeignete Radikalinhibitoren sind z. B. 2,2-(2,5-thiophencliyl)bis(5-tertbutylbenzoxazol), Phenothiazin, Hydrochinone, Hydrochinonether, Quinonalkyde und Nitroxylverbindungen sowie Mischungen davon, Benzoquinone, Kupfer Salze, Brenzcatechine, Cresole, Nitrobenzol und Sauerstoff. Diese Antioxidantien werden vorzugsweise in Mengen von 0,001 Gew% bis 3 Gew.% eingesetzt.Suitable free radical inhibitors or retarders are particularly those which specifically inhibit uncontrolled free radical polymerization of the resin formulation outside the desired (irradiated) area. These are decisive for good edge definition and imaging accuracy in the forerunner. Suitable radical inhibitors must be selected according to the desired radical yield from the irradiation / exposure step and the rate of polymerization and reactivity / selectivity of the double bond carriers. Suitable radical inhibitors are, for. B. 2,2- (2,5-thiophencliyl) bis (5-tertbutylbenzoxazole), phenothiazine, hydroquinones, hydroquinone ethers, quinone alkyds and nitroxyl compounds and mixtures thereof, benzoquinones, copper salts, catechols, cresols, nitrobenzene and oxygen. These antioxidants are preferably used in amounts of 0.001% by weight to 3% by weight.

Vorzugsweise ist die molare Konzentration von Zerewitinoff-aktiven H-Atomen im Verhältnis zu freien Isocyanaten ≥ 0,6 und ≤ 1,5, bevorzugt, ≥ 0,8 und ≤ 1,4, besonders bevorzugt, ≥ 0,9 und ≤ 1,3, und ganz besonders bevorzugt ≥ 1und ≤ 1,2.The molar concentration of Zerewitinoff-active H atoms in relation to free isocyanates is preferably ≥ 0.6 and ≤ 1.5, preferably ≥ 0.8 and ≤ 1.4, particularly preferably ≥ 0.9 and ≤ 1, 3, and very particularly preferably ≥ 1 and ≤ 1.2.

In einer bevorzugten Ausführungsform ist der Gegenstand ein dreidimensionaler Gegenstand, der Gegenstand wird aus einem Vorläufer erhalten und das Verfahren umfasst die Schritte:

  1. I) Abscheiden von radikalisch vernetztem Aufbaumaterial auf einem Träger, so dass eine Lage eines mit dem Träger verbundenen Aufbaumaterials erhalten wird, welche einem ersten ausgewählten Querschnitt des Vorläufers entspricht;
  2. II) Abscheiden von radikalisch vernetztem Aufbaumaterial auf eine zuvor aufgetragene Lage des Aufbaumaterials, so dass eine weitere Lage des Aufbaumaterials erhalten wird, welche einem weiteren ausgewählten Querschnitt des Vorläufers entspricht und welche mit der zuvor aufgetragenen Lage verbunden ist;
  3. III) Wiederholen des Schritts II), bis der Vorläufer gebildet ist;
    wobei das Abscheiden von radikalisch vernetztem Aufbaumaterial wenigstens in Schritt II) durch Belichten und/oder Bestrahlen eines ausgewählten Bereichs eines radikalisch vernetzbaren Aufbaumaterials, entsprechend dem jeweils ausgewählten Querschnitt des Vorläufers, erfolgt und wobei das radikalisch vernetzbare Aufbaumaterial eine Viskosität (23 °C, DIN EN ISO 2884-1) von ≥ 5 mPas bis ≤ 1000000 mPas aufweist,
    wobei das radikalisch vernetzbare Aufbaumaterial eine härtbare Komponente umfasst, in der NCO-Gruppen und olefinische C=C-Doppelbindungen vorliegen und nach Schritt III) weiterhin Schritt IV) durchgeführt wird:
  4. IV) Erwärmen des nach Schritt III) erhaltenen Vorläufers auf eine Temperatur von ≥ 50 °C, so dass der Gegenstand erhalten wird.
In a preferred embodiment, the object is a three-dimensional object, the object is obtained from a precursor and the method comprises the steps:
  1. I) depositing radically crosslinked building material on a carrier, so that a layer of a building material connected to the carrier is obtained which corresponds to a first selected cross section of the precursor;
  2. II) depositing radically cross-linked building material on a previously applied layer of the building material, so that a further layer of the building material is obtained which corresponds to a further selected cross section of the precursor and which is connected to the previously applied layer;
  3. III) repeating step II) until the precursor is formed;
    wherein the deposition of radically crosslinked building material at least in step II) by exposure and / or irradiation of a selected area of a radically crosslinkable building material, corresponding to the selected cross-section of the precursor, and wherein the radically crosslinkable building material has a viscosity (23 ° C, DIN EN ISO 2884-1) of ≥ 5 mPas to ≤ 1,000,000 mPas,
    wherein the free-radically crosslinkable build-up material comprises a curable component in which NCO groups and olefinic C DoppelC double bonds are present and after step III), step IV) is also carried out:
  4. IV) heating the precursor obtained in step III) to a temperature of 50 50 ° C., so that the object is obtained.

In dieser Variante wird somit der Gegenstand mittels eines additiven Herstellungsverfahrens und in zwei Herstellungsabschnitten erhalten. Der erste Herstellungsabschnitt kann als Aufbauabschnitt angesehen werden. Dieser Aufbauabschnitt lässt sich mittels strahlenoptischer additiver Fertigungsverfahren wie dem Inkjet-Verfahren, der Stereolithographie oder dem DLP (digital light processing)-Verfahren realisieren und ist Gegenstand der Schritte I), II) und III). Der zweite Herstellungsabschnitt kann als Härtungsabschnitt angesehen werden und ist Gegenstand des Schritts IV). Hier wird der nach dem Aufbauabschnitt erhaltene Vorläufer oder intermediäre Gegenstand ohne seine Form weiter zu verändern in einen mechanisch dauerhafteren Gegenstand überführt.In this variant, the object is thus obtained by means of an additive manufacturing process and in two manufacturing stages. The first manufacturing stage can be viewed as a build-up stage. This construction section can be implemented by means of optical additive manufacturing processes such as the inkjet process, stereolithography or the DLP (digital light processing) process and is the subject of steps I), II) and III). The second production stage can be regarded as a hardening stage and is the subject of step IV). Here, the precursor or intermediate object obtained after the construction section is converted into a mechanically more durable object without further changing its shape.

In Schritt I) dieser Variante des Verfahrens erfolgt das Abscheiden eines radikalisch vernetzten Aufbaumaterials auf einem Träger. Dieses ist gewöhnlich der erste Schritt in Inkjet-, Stereolithographie- und DLP-Verfahren. Auf diese Weise wird eine Lage eines mit dem Träger verbundenen Aufbaumaterials erhalten, welche einem ersten ausgewählten Querschnitt des Vorläufers entspricht.In step I) of this variant of the process, a radically crosslinked one is deposited Building material on a carrier. This is usually the first step in inkjet, stereolithography, and DLP processes. In this way, a layer of a building material connected to the carrier is obtained which corresponds to a first selected cross section of the precursor.

Gemäß der Anweisung von Schritt III) wird Schritt II) so lange wiederholt, bis der gewünschte Vorläufer gebildet ist. In Schritt II) erfolgt das Abscheiden eines radikalisch vernetzten Aufbaumaterials auf eine zuvor aufgetragene Lage des Aufbaumaterials, so dass eine weitere Lage des Aufbaumaterials erhalten wird, welche einem weiteren ausgewählten Querschnitt des Vorläufers entspricht und welche mit der zuvor aufgetragenen Lage verbunden ist. Bei der zuvor aufgetragenen Lage des Aufbaumaterials kann es sich um die erste Lage aus Schritt I) oder um eine Lage aus einer vorigen Durchlauf des Schritts II) handeln.According to the instruction of step III), step II) is repeated until the desired precursor is formed. In step II), a radically crosslinked building material is deposited onto a previously applied layer of the building material, so that a further layer of the building material is obtained which corresponds to a further selected cross section of the precursor and which is connected to the previously applied layer. The previously applied layer of the building material can be the first layer from step I) or a layer from a previous run of step II).

Es ist in dieser Verfahrensvariante vorgesehen, dass das Abscheiden eines radikalisch vernetzten Aufbaumaterials wenigstens in Schritt II) (vorzugsweise auch in Schritt I) durch Belichten und/oder Bestrahlen eines ausgewählten Bereichs eines radikalisch vernetzbaren Harzes, entsprechend dem jeweils ausgewählten Querschnitt des Gegenstandes, erfolgt. Dieses kann sowohl durch selektives Belichten (Stereolithographie, DLP) des vernetzbaren Aufbaumaterials als auch durch selektives Auftragen des vernetzbaren Aufbaumaterials, gefolgt von einem Belichtungsschritt, der aufgrund des vorigen selektiven Auftragens des vernetzbaren Aufbaumaterials nicht mehr selektiv sein muss (Inkjet-Verfahren).It is provided in this variant of the method that the deposition of a radically crosslinked building material takes place at least in step II) (preferably also in step I) by exposure and / or irradiation of a selected area of a radically crosslinkable resin, corresponding to the selected cross section of the object. This can be done both by selective exposure (stereolithography, DLP) of the cross-linkable build-up material and also by selective application of the cross-linkable build-up material, followed by an exposure step that no longer needs to be selective due to the previous selective application of the cross-linkable build-up material (inkjet process).

Im Kontext dieser Erfindung werden die Begriffe "radikalisch vernetzbares Aufbaumaterial" und "radikalisch vernetztes Aufbaumaterial" benutzt. Hierbei wird das radikalisch vernetzbare Aufbaumaterial durch das Belichten und/oder Bestrahlen, welches radikalische Vernetzungsreaktionen auslöst, in das radikalisch vernetzte Aufbaumaterial überführt. Unter "Belichten" wird hierbei die Einwirkung von Licht im Bereich zwischen nahem IR- und nahem UV-Licht (1400 nm bis 315 nm Wellenlänge) verstanden. Die übrigen kürzeren Wellenlängenbereiche werden durch den Begriff "Bestrahlen" abgedeckt, zum Beispiel fernes UV-Licht, Röntgenstrahlung, Gammastrahlung und auch Elektronenstrahlung.In the context of this invention, the terms "radically crosslinkable building material" and "radically crosslinked building material" are used. In this case, the radically crosslinkable building material is converted into the radically crosslinked building material by exposure and / or irradiation, which triggers free radical crosslinking reactions. "Exposure" is understood here to mean the action of light in the range between near IR and near UV light (1400 nm to 315 nm wavelength). The other shorter wavelength ranges are covered by the term "irradiation", for example far UV light, X-rays, gamma rays and also electron rays.

Das Auswählen des jeweiligen Querschnitts erfolgt zweckmäßigerweise durch ein CAD-Programm, mit dem ein Modell des herzustellenden Gegenstandes erzeugt wurde. Diese Operation wird auch "Slicing" genannt, und dient als Grundlage für die Steuerung der Belichtung und/oder Bestrahlung des radikalisch vernetzbaren Harzes.The respective cross-section is expediently selected using a CAD program with which a model of the object to be manufactured was generated. This operation is also called "slicing" and serves as the basis for controlling the exposure and / or irradiation of the radically crosslinkable resin.

Das radikalisch vernetzbare Aufbaumaterial weist in dieser Verfahrensvariante eine Viskosität (23 °C, DIN EN ISO 2884-1) von ≥ 5 mPas bis ≤ 1000000 mPas auf. Somit ist es zumindest für die Zwecke der additiven Fertigung als flüssiges Harz anzusehen. Vorzugsweise beträgt die Viskosität ≥ 50 mPas bis ≤ 100000 mPas, mehr bevorzugt ≥ 500 mPas bis ≤ 50000 mPas.In this process variant, the free-radically crosslinkable build-up material has a viscosity (23 ° C., DIN EN ISO 2884-1) of 5 5 mPas to 100 1,000,000 mPas. It is therefore to be regarded as a liquid resin, at least for the purposes of additive manufacturing. The viscosity is preferably 50 mPas to 100,000 mPas, more preferably 500 mPas to 50,000 mPas.

Weiterhin umfasst in dem Verfahren das radikalisch vernetzbare Harz eine härtbare Komponente, in der NCO-Gruppen und olefinische C=C-Doppelbindungen vorliegen. In dieser härtbaren Komponente kann das molare Verhältnis von NCO-Gruppen und olefinischen C=C-Doppelbindungen in einem Bereich von ≥ 1:5 bis ≤ 5:1 (bevorzugt ≥ 1:4 bis ≤ 4:1, mehr bevorzugt ≥ 1:3 bis ≤ 3:1) liegen. Das molekulare Verhältnis dieser funktionellen Gruppen lässt sich durch die Integration der Signale einer Probe im 13C-NMR-Spektrum ermitteln.Furthermore, in the process, the resin which can be crosslinked by free radicals comprises a curable component in which NCO groups and olefinic C CC double bonds are present. In this curable component, the molar ratio of NCO groups and olefinic C =C double bonds can be in a range from 1: 5 to 5: 1 (preferably 1: 4 to 4: 1, more preferably 1: 3 up to ≤ 3: 1). The molecular ratio of these functional groups can be determined by integrating the signals of a sample in the 13 C-NMR spectrum.

Neben der härtbaren Komponente kann das radikalisch vernetzbare Aufbaumaterial auch eine nicht härtbare Komponente umfassen, in der beispielsweise Stabilisatoren, Füllstoffe und dergleichen zusammengefasst sind. In der härtbaren Komponente können die NCO-Gruppen und die olefinischen C=C-Doppelbindungen in getrennten Molekülen und/oder in einem gemeinsamen Molekül vorliegen. Wenn NCO-Gruppen und olefinische C=C-Doppelbindungen in getrennten Molekülen vorliegen, kann der nach Schritt IV) dieser Verfahrensvariante erhaltene Körper ein interpenetrierendes Polymer-Netzwerk aufweisenIn addition to the curable component, the free-radically crosslinkable building material can also comprise a non-curable component in which, for example, stabilizers, fillers and the like are combined. In the curable component, the NCO groups and the olefinic C =C double bonds can be present in separate molecules and / or in a common molecule. If NCO groups and olefinic C =C double bonds are present in separate molecules, the body obtained after step IV) of this process variant can have an interpenetrating polymer network

In dieser Variante des Verfahrens wird weiterhin nach Schritt III) weiterhin Schritt IV) durchgeführt. In diesem Schritt erfolgt das Erwärmen des nach Schritt III) erhaltenen Vorläufers auf eine Temperatur von ≥ 50 °C, vorzugsweise ≥ 65 °C, mehr bevorzugt ≥ 80 °C, besonders bevorzugt ≥ 80 °C bis ≤ 200 °C, so dass der Gegenstand erhalten wird. Das Erwärmen kann für eine Zeitspanne von ≥ 1 Minute, bevorzugt ≥ 5 Minuten, mehr bevorzugt ≥ 10 Minuten bis ≤ 24 Stunden bevorzugt ≤ 8 Stunden, besonders bevorzugt < 4 Stunden, erfolgen.In this variant of the method, step IV) is still carried out after step III). In this step, the precursor obtained in step III) is heated to a temperature of 50 ° C., preferably ° 65 ° C., more preferably 80 ° C., particularly preferably 80 ° C. to 200 ° C., so that the Object is obtained. The heating can take place for a period of ≥ 1 minute, preferably 5 minutes, more preferably 10 minutes to 24 hours, preferably 8 hours, particularly preferably 4 hours.

Vorzugsweise wird die Reaktion durchgeführt, bis ≤ 30%, bevorzugt ≤ 20% und mehr bevorzugt ≤ 15% der ursprünglich vorhandenen NCO-Gruppen noch vorhanden sind. Dieses lässt sich mittels quantitativer IR-Spektroskopie bestimmen.The reaction is preferably carried out until 30%, preferably 20% and more preferably 15% of the NCO groups originally present are still present. This can be determined using quantitative IR spectroscopy.

Es ist bevorzugt, dass Schritt IV) erst dann durchgeführt wird, wenn das gesamte Aufbaumaterial des Vorläufers seinen Gelpunkt erreicht hat. Der Gelpunkt wird als erreicht angesehen, wenn in einer dynamisch-mechanischen Analyse (DMA) mit einem Platte/Platte-Oszillationsviskosimeter gemäß ISO 6721-10 bei 20 °C sich die Graphen des Speichermoduls G' und des Verlustmoduls G" kreuzen. Gegebenenfalls wird der Vorläufer weiterer Belichtung und/oder Bestrahlung zur Vervollständigung der radikalischen Vernetzung ausgesetzt. Das radikalisch vernetzte Aufbaumaterial kann ein Speichermodul G' (DMA, Platte/Platte-Oszillationsviskosimeter gemäß ISO 6721-10 bei 20 °C und einer Scherrate von 1/s) von ≥ 106 Pa aufweisen.It is preferred that step IV) is only carried out when all of the build-up material of the precursor has reached its gel point. The gel point is considered to have been reached when, in a dynamic mechanical analysis (DMA) with a plate / plate oscillation viscometer according to ISO 6721-10 at 20 ° C., the graphs of the storage modulus G 'and the loss modulus G "cross Precursors exposed to further exposure and / or irradiation to complete the radical crosslinking. The radical crosslinked building material can have a storage modulus G '(DMA, plate / plate oscillation viscometer according to ISO 6721-10 at 20 ° C and a shear rate of 1 / s) of ≥ 10 6 Pa.

In einer weiteren bevorzugten Ausführungsform weist das Verfahren die Merkmale auf:

  • der Träger ist innerhalb eines Behälters angeordnet und ist vertikal in Schwerkraftrichtung absenkbar,
  • der Behälter enthält das radikalisch vernetzbare Aufbaumaterial in einer Menge, welche ausreicht, um wenigstens den Träger und eine in vertikaler Richtung gesehenen obersten Oberfläche von auf dem Träger abgeschiedenem vernetztem Aufbaumaterial zu bedecken,
  • vor jedem Schritt II) wird der Träger um eine vorbestimmte Strecke abgesenkt, so dass über der in vertikaler Richtung gesehen obersten Lage des vernetzten Aufbaumaterials sich eine Schicht des radikalisch vernetzbaren Aufbaumaterials bildet und
  • in Schritt II) belichtet und/oder bestrahlt ein Energiestrahl den ausgewählten Bereich der Schicht des radikalisch vernetzbaren Aufbaumaterials, entsprechend dem jeweils ausgewählten Querschnitt des Vorläufers.
In a further preferred embodiment, the method has the features:
  • the carrier is arranged inside a container and can be lowered vertically in the direction of gravity,
  • the container contains the free-radically crosslinkable building material in an amount which sufficient to cover at least the carrier and an uppermost surface, viewed in the vertical direction, of crosslinked building material deposited on the carrier,
  • before each step II), the carrier is lowered by a predetermined distance, so that a layer of the radically crosslinkable construction material is formed over the topmost layer of the crosslinked building material, as seen in the vertical direction
  • in step II), an energy beam exposes and / or irradiates the selected area of the layer of the radically crosslinkable building material, corresponding to the respectively selected cross section of the precursor.

Somit wird gemäß dieser Ausfuhrungsform das additive Fertigungsverfahren der Stereolithographie (SLA) abgedeckt. Der Träger kann beispielsweise jeweils um eine vorbestimmte Strecke von ≥ 1 µm bis ≤ 2000 µm abgesenkt werden.Thus, according to this embodiment, the additive manufacturing process of stereolithography (SLA) is covered. The carrier can, for example, be lowered by a predetermined distance of 1 1 μm to 2000 μm.

In einer weiteren bevorzugten Ausführungsform weist das Verfahren die Merkmale auf:

  • der Träger ist innerhalb eines Behälters angeordnet ist und vertikal entgegen der Schwerkraftrichtung anhebbar,
  • der Behälter stellt das radikalisch vernetzbare Aufbaumaterial bereit,
  • vor jedem Schritt II) wird der Träger um eine vorbestimmte Strecke angehoben, so dass unter der in vertikaler Richtung gesehen untersten Lage des vernetzten Aufbaumaterials sich eine Schicht des radikalisch vernetzbaren Aufbaumaterials bildet und
  • in Schritt II) belichtet und/oder bestrahlt eine Mehrzahl von Energiestrahlen den ausgewählten Bereich der Schicht des radikalisch vernetzbaren Aufbaumaterials, entsprechend dem jeweils ausgewählten Querschnitt des Vorläufers, gleichzeitig.
In a further preferred embodiment, the method has the features:
  • the carrier is arranged inside a container and can be lifted vertically against the direction of gravity,
  • the container provides the radically crosslinkable building material,
  • before each step II), the carrier is raised by a predetermined distance so that a layer of the radically crosslinkable construction material is formed under the lowest layer of the crosslinked building material seen in the vertical direction and
  • in step II), a plurality of energy beams simultaneously exposes and / or irradiates the selected area of the layer of the radically crosslinkable building material, corresponding to the respectively selected cross section of the precursor.

Somit wird gemäß dieser Ausführungsform das additive Fertigungsverfahren der DLP-Technologie abgedeckt, wenn die Mehrzahl von Energiestrahlen über ein Array von einzeln ansteuerbaren Mikrospiegeln das per Belichtung und/oder Bestrahlung bereitzustellende Bild erzeugen. Der Träger kann beispielsweise jeweils um eine vorbestimmte Strecke von ≥ 1 µm bis ≤ 2000 µm angehoben werden.Thus, according to this embodiment, the additive manufacturing method of DLP technology is covered when the plurality of energy beams generate the image to be provided by exposure and / or irradiation via an array of individually controllable micromirrors. The carrier can be raised, for example, by a predetermined distance of ≥ 1 µm to ≤ 2000 µm.

In einer weiteren bevorzugten Ausführungsform weist das Verfahren die Merkmale auf:

  • in Schritt II) wird das radikalisch vernetzbare Aufbaumaterial aus einem oder mehreren Druckköpfen, entsprechend dem jeweils ausgewählten Querschnitt des Vorläufers, aufgetragen und wird anschließend belichtet und/oder bestrahlt.
In a further preferred embodiment, the method has the features:
  • in step II) the free-radically crosslinkable building material is applied from one or more print heads, corresponding to the respectively selected cross section of the precursor, and is then exposed and / or irradiated.

Somit wird gemäß dieser Ausführungsform das additive Fertigungsverfahren der Inkjet-Methode abgedeckt: es wird das vernetzbare Aufbaumaterial gegebenenfalls separat von den erfindungsgemäßen Katalysatoren selektiv durch einen oder mehrere Druckköpfe aufgetragen und die anschließende Härtung durch Bestrahlen und/oder Belichtung kann unselektiv sein, beispielsweise durch eine UV-Lampe. Bei dem oder den Druckköpfen zum Auftragen des vernetzbaren Aufbaumaterials kann es sich um einen (modifizierten) Druckkopf für Tintenstrahldruckverfahren handeln. Der Träger kann vom Druckkopf weg bewegbar ausgestaltet sein oder der Druckkopf kann vom Träger weg bewegbar ausgestaltet sein. Die Inkremente der Abstandsbewegungen zwischen Träger und Druckkopf können beispielsweise in einem Bereich von ≥ 1µm bis ≤ 2000 µm liegen.Thus, according to this embodiment, the additive manufacturing process of the inkjet method is covered: the crosslinkable build-up material is optionally applied selectively by one or more print heads separately from the catalysts according to the invention the subsequent curing by irradiation and / or exposure can be unselective, for example by a UV lamp. The printhead or printheads for applying the crosslinkable building material can be a (modified) printhead for inkjet printing processes. The carrier can be designed to be movable away from the print head or the print head can be designed to be movable away from the carrier. The increments of the spacing movements between the carrier and the print head can, for example, be in a range from 1 μm to 2000 μm.

In einer weiteren bevorzugten Ausführungsform ist der Gegenstand eine Beschichtung und das Verfahren umfasst die Schritte:

  • Auftragen des Aufbaumaterials auf ein Substrat
  • Einwirken von Wärme und/oder UV-Strahlung auf das aufgetragene Aufbaumaterial, so dass im aufgetragenen Aufbaumaterial eine zumindest teilweise Vernetzung der radikalisch vernetzbaren Gruppen erfolgt
  • Erwärmen des aufgetragenen Aufbaumaterials auf eine Temperatur von ≥ 50 °C, so dass im aufgetragenen Aufbaumaterial zumindest teilweise eine Reaktion zwischen NCO-Gruppen und Gruppen mit Zerewitinoff-aktiven H-Atomen erfolgt.
In a further preferred embodiment, the object is a coating and the method comprises the steps:
  • Applying the building material to a substrate
  • The action of heat and / or UV radiation on the applied building material, so that in the applied building material an at least partial crosslinking of the radical crosslinkable groups takes place
  • Heating the applied build-up material to a temperature of ≥ 50 ° C., so that in the applied build-up material there is at least a partial reaction between NCO groups and groups with Zerewitinoff-active H atoms.

Das Einwirken von Wärme kann zum Beispiel zum thermischen Zerfall von Peroxid-basierten Radikalstartern führen. Das Einwirken von UV-Strahlung erfolgt mittels UV-Licht (1400 nm bis 315 nm Wellenlänge) und aktiviert photochemische Radikalstarter. In einem weiterem Schritt wird der latente Sn-Urethanisierungskatalysator aktiviert, um den zweiten Härtungsmechanismus ablaufen zu lassen.The action of heat can, for example, lead to the thermal decomposition of peroxide-based radical starters. The action of UV radiation takes place by means of UV light (1400 nm to 315 nm wavelength) and activates photochemical radical initiators. In a further step, the latent Sn urethanization catalyst is activated in order to allow the second hardening mechanism to take place.

In einer weiteren bevorzugten Ausführungsform ist der Gegenstand eine Klebeverbindung und das Verfahren umfasst die Schritte:

  • Auftragen des Aufbaumaterials auf ein erstes Substrat
  • Kontaktieren des aufgetragenen Aufbaumaterials mit einem zweiten Substrat
  • Einwirken von Wärme und/oder UV-Strahlung auf das aufgetragene Aufbaumaterial, so dass im aufgetragenen Aufbaumaterial eine zumindest teilweise Vernetzung der radikalisch vernetzbaren Gruppen erfolgt
  • Erwärmen des aufgetragenen Aufbaumaterials auf eine Temperatur von ≥ 50 °C, so dass im aufgetragenen Aufbaumaterial zumindest teilweise eine Reaktion zwischen NCO-Gruppen und Gruppen mit Zerewitinoff-aktiven H-Atomen erfolgt.
In a further preferred embodiment, the object is an adhesive connection and the method comprises the steps:
  • Applying the building material to a first substrate
  • Contacting the applied building material with a second substrate
  • The action of heat and / or UV radiation on the applied building material, so that in the applied building material an at least partial crosslinking of the radical crosslinkable groups takes place
  • Heating the applied build-up material to a temperature of ≥ 50 ° C., so that in the applied build-up material there is at least a partial reaction between NCO groups and groups with Zerewitinoff-active H atoms.

Das Einwirken von Wärme kann zum Beispiel zum thermischen Zerfall von Peroxid-basierten Radikalstartern führen. Das Einwirken von UV-Strahlung erfolgt mittels UV-Licht (1400 nm bis 315 nm Wellenlänge) und aktiviert photochemische Radikalstarter. In einem weiterem Schritt wird der latente Sn-Urethanisierungskatalysator aktiviert, um den zweiten Härtungsmechanismus ablaufen zu lassen.The action of heat can, for example, lead to the thermal decomposition of peroxide-based radical starters. The action of UV radiation takes place by means of UV light (1400 nm to 315 nm wavelength) and activates photochemical radical initiators. In a further step, the latent Sn urethanization catalyst is activated in order to allow the second hardening mechanism to take place.

In einer weiteren bevorzugten Ausführungsform umfasst das Aufbaumaterial weiterhin einen Radikalstarter und/oder einen Isocyanat-Trimerisierungskatalysator. Um eine unerwünschte Erhöhung der Viskosität des radikalisch vernetzbaren Aufbaumaterials zu verhindern, können Radikalstarter und/oder Isocyanat-Trimerisierungskatalysator erst unmittelbar vor Beginn des erfindungsgemäßen Verfahrens dem Aufbaumaterial hinzugefügt werden.In a further preferred embodiment, the build-up material furthermore comprises a free radical initiator and / or an isocyanate trimerization catalyst. In order to prevent an undesired increase in the viscosity of the free-radically crosslinkable builder material, free radical initiators and / or isocyanate trimerization catalysts can only be added to the builder material immediately before the start of the process according to the invention.

Als Radikalstarter kommen thermische und/oder photochemische Radikalstarter (Photoinitiatoren) in Betracht. Es ist auch möglich, dass gleichzeitig thermische und photochemische Radikalstarter eingesetzt werden. Geeignete thermische Radikalstarter sind beispielsweise (AIBN), Dibenzoylperoxid (DBPO), Di-tert-butylperoxid, Dicumylperoxid und/oder anorganische Peroxide wie Peroxodisulfate.Thermal and / or photochemical free-radical initiators (photoinitiators) can be used as free-radical initiators. It is also possible that thermal and photochemical radical initiators are used at the same time. Suitable thermal radical initiators are, for example, (AIBN), dibenzoyl peroxide (DBPO), di-tert-butyl peroxide, dicumyl peroxide and / or inorganic peroxides such as peroxodisulfates.

Bei den Photoinitiatoren wird prinzipiell zwischen zwei Typen unterschieden, dem unimolekularen Typ (I) und dem bimolekularen Typ (II). Geeignete Typ (I)-Systeme sind aromatische Ketonverbindungen, wie z. B. Benzophenone in Kombination mit tertiären Aminen, Alkylbenzophenone, 4,4'-Bis(dimethylamino)benzophenon (Michlers Keton), Anthron und halogenierte Benzophenone oder Mischungen der genannten Typen. Weiter geeignet sind Typ (II)-Initiatoren wie Benzoin und seine Derivate, Benzilketale, Acylphosphinoxide, 2,4,6-Trimethylbenzoyldiphenylphosphinoxid, Bisacylphosphinoxide, Phenylglyoxylsäureester, Campherchinon, α-Aminoalkylphenone, α,α-Dialkoxyacetophenone und α-Hydroxyalkylphenone. Spezielle Beispiele sind Irgacur®500 (eine Mischung von Benzophenon und (1-Hydroxycyclohexyl)phenylketon, Fa. Ciba, Lampertheim, DE), Irgacure®819 DW (Phenylbis-(2, 4, 6-trimethylbenzoyl)phosphinoxid, Fa. Ciba, Lampertheim, DE) oder Esacure® KIP EM (Oligo-[2-hydroxy-2-methyl-1-[4-(1-methylvinyl)-phenyl]-propanone], Fa. Lamberti, Aldizzate, Italien) und Bis-(4-methoxybenzoyl)diethylgerman. Es können auch Gemische dieser Verbindungen eingesetzt werden.A basic distinction is made between two types of photoinitiators, the unimolecular type (I) and the bimolecular type (II). Suitable type (I) systems are aromatic ketone compounds, such as. B. Benzophenones in combination with tertiary amines, alkylbenzophenones, 4,4'-bis (dimethylamino) benzophenone (Michler's ketone), anthrone and halogenated benzophenones or mixtures of the types mentioned. Type (II) initiators such as benzoin and its derivatives, benzil ketals, acylphosphine oxides, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bisacylphosphine oxides, phenylglyoxylic acid esters, camphorquinone, α-aminoalkylphenones, α, α-dialkoxyacetophenones and α-hydroxyalkylphenones are also suitable. Specific examples are Irgacur®500 (a mixture of benzophenone and (1-hydroxycyclohexyl) phenyl ketone, from Ciba, Lampertheim, DE), Irgacure®819 DW (phenylbis- (2,4,6-trimethylbenzoyl) phosphine oxide, from Ciba, Lampertheim, DE) or Esacure® KIP EM (Oligo- [2-hydroxy-2-methyl-1- [4- (1-methylvinyl) -phenyl] -propanone], from Lamberti, Aldizzate, Italy) and Bis- ( 4-methoxybenzoyl) diethylgerman. Mixtures of these compounds can also be used.

Bei den Photoinitiatoren sollte darauf geachtet werden, dass sie eine ausreichende Reaktivität gegenüber der verwendeten Strahlenquelle haben. Es ist eine Vielzahl von Photoinitiatoren auf dem Markt bekannt. Durch kommerziell verfügbare Photoinitiatoren wird der Wellenlängenbereich im gesamten UV-VIS Spektrum abgedeckt. Photoinitiatoren finden Einsatz bei der Herstellung von Lacken, Druckfarben und Klebstoffen sowie im Dentalbereich.In the case of photoinitiators, care should be taken to ensure that they have sufficient reactivity to the radiation source used. A wide variety of photoinitiators are known on the market. Commercially available photoinitiators cover the wavelength range in the entire UV-VIS spectrum. Photoinitiators are used in the production of paints, printing inks and adhesives as well as in the dental sector.

In dieser Verfahrensvariante kommt der Photoinitiator im Allgemeinen in einer auf die Menge der eingesetzten härtbaren olefinisch ungesättigte Doppelbindungen tragenden Komponente bezogenen Konzentration von 0,01 bis 6,0 Gew.-%, bevorzugt von 0,05 bis 4,0 Gew.-% und besonders bevorzugt von 0,1 bis 3,0 Gew.-% zum Einsatz.In this variant of the process, the photoinitiator is generally used in a concentration of 0.01 to 6.0% by weight, preferably 0.05 to 4.0% by weight, based on the amount of the curable component carrying olefinically unsaturated double bonds used especially preferably from 0.1 to 3.0% by weight are used.

In einer weiteren bevorzugten Ausführungsform wird das Aufbaumaterial aus der Vermischung einer NCO-Gruppen enthaltenden Komponente sowie einer Gruppen mit Zerewitinoff-aktiven H-Atomen enthaltenden Komponente erhalten und die Vermischung erfolgt ≤ 5 Minuten vor Beginn des Verfahrens. In Verfahren wie DLP-Verfahren ist es ferner bevorzugt, dass die Mischung des Aufbaumaterials kontinuierlich erzeugt wird und dem Aufbauprozess zugeführt wird. Um unerwünschte Nebenreaktionen zu vermeiden können die übrigen Bestandteile des Aufbaumaterials in der Zerewitinoff-aktive H-Atomen enthaltenden Komponente vorliegen.In a further preferred embodiment, the build-up material is obtained from the mixing of a component containing NCO groups and a component containing groups with Zerewitinoff-active H atoms, and the mixing takes place 5 5 minutes before the start of the process. In methods such as DLP methods, it is further preferred that the mixture of the building material is generated continuously and fed to the building process. In order to avoid undesired side reactions, the other constituents of the build-up material can be present in the component containing Zerewitinoff-active H atoms.

In einer weiteren bevorzugten Ausführungsform ist in der Definition gemäß den vorstehenden Ausführungen D -N(R1)- und R1 ist Wasserstoff oder ein Alkyl-, Aralkyl-, Alkaryl- oder Arylrest mit bis zu 20 C-Atomen ist oder der Rest

Figure imgb0010
In a further preferred embodiment, in the definition according to the above statements, D is —N (R1) - and R1 is hydrogen or an alkyl, aralkyl, alkaryl or aryl radical with up to 20 carbon atoms or the radical
Figure imgb0010

In einer weiteren bevorzugten Ausführungsform ist in der Definition gemäß den vorstehenden Ausführungen R1 Wasserstoff oder ein Methyl-, Ethyl-, Propyl-, Butyl-, Hexyl-, Octyl-, Ph-, oder CH3Ph-Rest oder der Rest

Figure imgb0011
und Propyl-, Butyl-, Hexyl-, und Octyl stehen für alle isomeren Propyl-, Butyl-, Hexyl- sowie Octylreste.In a further preferred embodiment, in the definition according to the above statements, R1 is hydrogen or a methyl, ethyl, propyl, butyl, hexyl, octyl, Ph or CH 3 Ph radical or the radical
Figure imgb0011
and propyl, butyl, hexyl and octyl stand for all isomeric propyl, butyl, hexyl and octyl radicals.

In einer weiteren bevorzugten Ausführungsform ist in der Definition gemäß den vorstehenden Ausführungen D* -O-.In a further preferred embodiment, in the definition according to the preceding statements, D * is -O-.

Weitere bevorzugte Merkmale für die Zinnverbindungen gemäß den vorstehenden Ausführungen werden nachfolgend aufgeführt:
Bevorzugt handelt es sich bei X, Y und Z um die Alkylenreste -C(R2)(R3), -C(R2)(R3)-C(R4)(R5)- oder den ortho-Arylenrest

Figure imgb0012
Further preferred features for the tin compounds according to the above are listed below:
X, Y and Z are preferably the alkylene radicals -C (R2) (R3), -C (R2) (R3) -C (R4) (R5) - or the ortho-arylene radical
Figure imgb0012

Bevorzugt handelt es sich bei R2 bis R7 um Wasserstoff oder Alkyl-, Aralkyl-, Alkaryl- oder Arylreste mit bis zu 20 C-Atomen, besonders bevorzugt um Wasserstoff oder Alkyl-, Aralkyl-, Alkaryl- oder Arylreste mit bis zu 8 C-Atomen, ganz besonders bevorzugt um Wasserstoff oder Alkylreste mit bis zu 8 C-Atomen, noch weiter bevorzugt um Wasserstoff oder Methyl.Preferably, R2 to R7 are hydrogen or alkyl, aralkyl, alkaryl or aryl radicals with up to 20 carbon atoms, particularly preferably hydrogen or alkyl, aralkyl, alkaryl or aryl radicals with up to 8 carbon atoms. Atoms, very particularly preferably around hydrogen or alkyl radicals with up to 8 carbon atoms, even more preferably around hydrogen or methyl.

Bevorzugt handelt es sich bei R8 bis R11 um Wasserstoff oder Alkylreste mit bis zu 8 C-Atomen, besonders bevorzugt um Wasserstoff oder Methyl.R8 to R11 are preferably hydrogen or alkyl radicals with up to 8 carbon atoms, particularly preferably hydrogen or methyl.

Bevorzugt handelt es sich bei L1, L2 und L5 um -NR12-, -S-, -SC(=S)-, -SC(=O)-, -OC(=S)-, -O-, oder -OC(=O)-, besonders bevorzugt um -O-, oder -OC(=O)-.L1, L2 and L5 are preferably -NR12-, -S-, -SC (= S) -, -SC (= O) -, -OC (= S) -, -O-, or -OC (= O) -, particularly preferably around -O-, or -OC (= O) -.

Bevorzugt handelt es sich bei R12 um Wasserstoff oder einen Alkyl-, Aralkyl-, Alkaryl- oder Arylrest mit bis zu 20 C-Atomen, besonders bevorzugt um Wasserstoff oder einen Alkyl-, Aralkyl-, Alkaryl- oder Arylrest mit bis zu 12 C-Atomen, ganz besonders bevorzugt um Wasserstoff oder einen Methyl-, Ethyl-, Propyl-, Butyl-, Hexyl-oder Octyl-Rest, wobei Propyl-, Butyl-, Hexyl-, und Octyl für alle isomeren Propyl-, Butyl-, Hexyl- sowie Octylreste stehen.R12 is preferably hydrogen or an alkyl, aralkyl, alkaryl or aryl radical with up to 20 carbon atoms, particularly preferably hydrogen or an alkyl, aralkyl, alkaryl or aryl radical with up to 12 carbon atoms Atoms, very particularly preferably hydrogen or a methyl, ethyl, propyl, butyl, hexyl or octyl radical, with propyl, butyl, hexyl and octyl for all isomeric propyl, butyl, hexyl - as well as octyl residues.

Bevorzugt handelt es sich bei L3 und L4 um -Hal, -OH, -SH, -OR13, -OC(=O)R14, wobei die Reste R13 und R14 bis zu 20 Kohlenstoffatome, bevorzugt bis zu 12 Kohlenstoffatome aufweisen.L3 and L4 are preferably -Hal, -OH, -SH, -OR13, -OC (= O) R14, the radicals R13 and R14 having up to 20 carbon atoms, preferably up to 12 carbon atoms.

Besonders bevorzugt handelt es sich bei L3 und L4 um Cl-, MeO-, EtO-, PrO-, BuO-, HexO-, OctO-, PhO-, Formiat, Acetat, Propanoat, Butanoat, Pentanoat, Hexanoat, Octanoat, Laurat, Lactat oder Benzoat, wobei Pr, Bu, Hex und Oct für alle isomeren Propyl-, Butyl-, Hexyl- sowie Octylreste stehen, noch weiter bevorzugt um Cl-, MeO-, EtO-, PrO-, BuO-, HexO-, OctO-, PhO-, Hexanoat, Laurat, oder Benzoat, wobei Pr, Bu, Hex und Oct für alle isomeren Propyl-, Butyl-, Hexyl- sowie Octylreste stehen.L3 and L4 are particularly preferably Cl-, MeO-, EtO-, PrO-, BuO-, HexO-, OctO-, PhO-, formate, acetate, propanoate, butanoate, pentanoate, hexanoate, octanoate, laurate, Lactate or benzoate, where Pr, Bu, Hex and Oct stand for all isomeric propyl, butyl, hexyl and octyl radicals, even more preferably Cl, MeO, EtO, PrO, BuO, HexO, OctO -, PhO, hexanoate, laurate, or benzoate, where Pr, Bu, Hex and Oct stand for all isomeric propyl, butyl, hexyl and octyl radicals.

Bevorzugt handelt es sich bei R15 bis R20 um Wasserstoff oder Alkyl-, Aralkyl-, Alkaryl- oder Arylreste mit bis zu 20 C-Atomen, besonders bevorzugt um Wasserstoff oder Alkyl-, Aralkyl-, Alkaryl- oder Arylreste mit bis zu 12 C-Atomen, ganz besonders bevorzugt um Wasserstoff, Methyl-, Ethyl-, Propyl-, Butyl-, Hexyl-, oder Octyl-Reste, wobei Propyl-, Butyl-, Hexyl-, und Octyl für alle isomeren Propyl-, Butyl-, Hexyl- sowie Octylreste stehen.R15 to R20 are preferably hydrogen or alkyl, aralkyl, alkaryl or aryl radicals with up to 20 carbon atoms, particularly preferably hydrogen or alkyl, aralkyl, alkaryl or aryl radicals with up to 12 carbon atoms Atoms, very particularly preferably around hydrogen, methyl, ethyl, propyl, butyl, hexyl, or octyl radicals, with propyl, butyl, hexyl and octyl for all isomeric propyl, butyl, hexyl - as well as octyl residues.

Die Einheiten Ll-X, L2-Y und L5-Z stehen bevorzugt für -CH2CH2O-, -CH2CH(Me)O-, -CH(Me)CH2O-, -CH2C(Me)2O-, -C(Me)2 CH2O- oder -CH2C(=O)O-.The units Ll-X, L2-Y and L5-Z preferably stand for -CH 2 CH 2 O-, -CH 2 CH (Me) O-, -CH (Me) CH 2 O-, -CH 2 C (Me ) 2 O-, -C (Me) 2 CH 2 O- or -CH 2 C (= O) O-.

Die Einheit L1-X-D-Y-L2 steht bevorzugt für: HN[CH2CH2O-]2, HN[CH2CH(Me)O-]2, HN[CH2CH(Me)O-][CH(Me)CH2O-], HN[CH2C(Me)2O-]2, HN[CH2C(Me)2O-][C(Me)2CH2O-], HN[CH2C(=O)O-]2, MeN[CH2CH2O-]2, MeN[CH2CH(Me)O-]2, MeN[CH2CH(Me)O-] [CH(Me)CH2O-], MeN[CH2C(Me)2O-]2, MeN[CH2C(Me)2O-][C(Me)2CH2O-], MeN[CH2C(=O)O-]2, EtN[CH2CH2O-]2, EtN[CH2CH(Me)O-]2, EtN[CH2CH(Me)O-][CH(Me)CH2O-], EtN[CH2C(Me)2O-]2, EtN[CH2C(Me)2O-][C(Me)2CH2O-], EtN[CH2C(=O)O-]2, PrN[CH2CH2O-]2, PrN[CH2CH(Me)O-]2, PrN[CH2CH(Me)O-][CH(Me)CH2O-], PrN[CH2C(Me)2O-]2, PrN[CH2C(Me)2O-][C(Me)2CH2O-], PrN[CH2C(=O)O-]2, BuN[CH2CH2O-]2, BuN[CH2CH(Me)O-]2, BuN[CH2CH(Me)O-] [CH(Me)CH2O-], BuN[CH2C(Me)2O-]2, BuN[CH2C(Me)2O-][C(Me)2CH2O-], BuN[CH2C(=O)O-]2, HexN[CH2CH2O-]2, HexN[CH2CH(Me)O-]2, HexN[CH2CH(Me)O-] [CH(Me)CH2O-], HexN[CH2C(Me)2O-]2, HexN[CH2C(Me)2O-][C(Me)2CH2O-], HexN[CH2C(=O)O-]2, OctN[CH2CH2O-]2, OctN[CH2CH(Me)O-]2, OctN[CH2CH(Me)O-][CH(Me)CH2O-], OctN[CH2C(Me)2O-]2, OctN[CH2C(Me)2O-][C(Me)2CH2O-], OctN[CH2C(=O)O-]2, wobei Pr, Bu, Hex und Oct für alle isomeren Propyl-, Butyl- sowie Octylreste stehen können, PhN[CH2CH2O-]2, PhN[CH2CH(Me)O-]2, PhN[CH2CH(Me)O-][CH(Me)CH2O-],PhN[CH2C(Me)2O-]2,PhN[CH2C(Me)2O-][C(Me)2CH2O-], PhN[CH2C(=O)O-]2,

Figure imgb0013
oder
Figure imgb0014
The unit L1-XDY-L2 preferably stands for: HN [CH 2 CH 2 O-] 2 , HN [CH 2 CH (Me) O-] 2 , HN [CH 2 CH (Me) O -] [CH (Me ) CH 2 O-], HN [CH 2 C (Me) 2 O-] 2 , HN [CH 2 C (Me) 2 O-] [C (Me) 2 CH 2 O-], HN [CH 2 C (= O) O-] 2, MeN [CH 2 CH 2 O-] 2, MeN [CH 2 CH (Me) O-] 2, MeN [CH 2 CH (Me) O] [CH (Me) CH 2 O-], MeN [CH 2 C (Me) 2 O-] 2 , MeN [CH 2 C (Me) 2 O-] [C (Me) 2 CH 2 O-], MeN [CH 2 C (= O) O-] 2 , EtN [CH 2 CH 2 O-] 2 , EtN [CH 2 CH (Me) O-] 2 , EtN [CH 2 CH (Me) O-] [CH (Me) CH 2 O -], EtN [CH 2 C (Me) 2 O-] 2 , EtN [CH 2 C (Me) 2 O -] [C (Me) 2 CH 2 O-], EtN [CH 2 C (= O) O-] 2 , PrN [CH 2 CH 2 O-] 2 , PrN [CH 2 CH (Me) O-] 2 , PrN [CH 2 CH (Me) O -] [CH (Me) CH 2 O-] , PrN [CH 2 C (Me) 2 O-] 2 , PrN [CH 2 C (Me) 2 O -] [C (Me) 2 CH 2 O-], PrN [CH 2 C (= O) O- ] 2 , BuN [CH 2 CH 2 O-] 2 , BuN [CH 2 CH (Me) O-] 2 , BuN [CH 2 CH (Me) O-] [CH (Me) CH 2 O-], BuN [CH 2 C (Me) 2 O-] 2, buN [CH 2 C (Me) 2 O -] [C (Me) 2 CH 2 O-], buN [CH 2 C (= O) O-] 2 , HexN [CH 2 CH 2 O-] 2 , HexN [CH 2 CH (Me) O-] 2 , HexN [CH 2 CH (Me) O-] [CH (Me) CH 2 O-], HexN [CH 2 C (Me) 2 O-] 2 , HexN [CH 2 C (Me) 2 O-] [C (Me) 2 CH 2 O-], HexN [CH 2 C (= O) O-] 2 , OctN [CH 2 CH 2 O-] 2 , OctN [CH 2 CH (Me) O-] 2 , OCTN [CH 2 CH (Me) O -] [CH (Me) CH 2 O-], OCTN [CH 2 C (Me) 2 O-] 2, OCTN [CH 2 C (Me) 2 O -] [C (Me) 2 CH 2 O-], OctN [CH 2 C (= O) O-] 2 , where Pr, Bu, Hex and Oct can stand for all isomeric propyl, butyl and octyl radicals, PhN [CH 2 CH 2 O-] 2 , PhN [CH 2 CH (Me) O-] 2 , PhN [CH 2 CH (Me) O-] [CH (Me) CH 2 O-], PhN [CH 2 C (Me) 2 O-] 2 , PhN [CH 2 C (Me) 2 O -] [C (Me) 2 CH 2 O-], PhN [CH 2 C (= O) O-] 2 ,
Figure imgb0013
or
Figure imgb0014

Die Zinnverbindungen - wie dem Fachmann bekannt ist - neigen zur Oligomerisierung, so dass häufig mehrkernige Zinnverbindungen oder Gemische aus ein- und mehrkernigen Zinnverbindungen vorliegen. In den mehrkernigen Zinnverbindungen sind die Zinnatome bevorzugt über Sauerstoffatome (,Sauerstoffbrücken', vide intra) miteinander verbunden. Typische oligomere Komplexe (mehrkernige Zinnverbindungen) entstehen z.B. durch Kondensation der Zinnatome über Sauerstoff oder Schwefel, z.B.

Figure imgb0015
mit n > 1(vgl. Formel F-II). Bei niedrigen Oligomerisierungsgraden findet man häufig cyclische, bei höheren Oligomerisierungsgraden lineare Oligomere mit OH- bzw. SH-Endgruppen (vgl. Formel F-III).The tin compounds - as is known to the person skilled in the art - tend to oligomerize, so that polynuclear tin compounds or mixtures of mononuclear and polynuclear tin compounds are often present. In the polynuclear tin compounds, the tin atoms are preferably connected to one another via oxygen atoms ("oxygen bridges", vide intra). Typical oligomeric complexes (polynuclear tin compounds) are formed, for example, by condensation of the tin atoms over oxygen or sulfur, e.g.
Figure imgb0015
with n> 1 (see formula F-II). With low degrees of oligomerization, cyclic oligomers are often found, with higher degrees of oligomerization, linear oligomers with OH or SH end groups (cf. formula F-III).

In einer weiteren bevorzugten Ausführungsform ist die zyklische Zinnverbindung ausgewählt aus der Gruppe mono- oder polyzyklischer Zinnverbindungen vom Typ:

  • 1,1-Di-"R"-5-"organyl"-5-aza-2,8-dioxa-1-stanna-cyclooctane,
  • 1,1-Di-"R"-5-(N-"organyl")aza-3,7-di-"organyl"-2,8-dioxa-1-stanna-cyclooctane,
  • 1,1-Di-"R"-5-(N-"organyl")aza-3,3,7,7-tetra-"organyl"-2,8-dioxa-1-stanna-cyclooctane,
  • 4,12-Di-"organyl"-1,7,9,15-tetraoxa-4,12-diaza-8-stannaspiro[7.7]pentadecan,
  • 4,12-Di-"organyl"-2,6,10,14-tetra-"organyl"-1,7,9,15-tetraoxa-4,12-diaza-8-stannaspiro [7.7]pentadecan,
  • 4,12-Di-"organyl"-2,2,6,6,10,10,14,14-octa-"organyl"-1,7,9,15-tetraoxa-4,12-diaza-8-stannaspiro [7.7]pentadecan,
  • wobei "R" für D*, L3 oder L4, wie oben definiert, steht und "organyl" für R1, wie oben definiert, steht.
In a further preferred embodiment, the cyclic tin compound is selected from the group of mono- or polycyclic tin compounds of the type:
  • 1,1-di- "R" -5- "organyl" -5-aza-2,8-dioxa-1-stanna-cyclooctane,
  • 1,1-di- "R" -5- (N- "organyl") aza-3,7-di- "organyl" -2,8-dioxa-1-stanna-cyclooctane,
  • 1,1-Di- "R" -5- (N- "organyl") aza-3,3,7,7-tetra- "organyl" -2,8-dioxa-1-stanna-cyclooctane,
  • 4,12-di- "organyl" -1,7,9,15-tetraoxa-4,12-diaza-8-stannaspiro [7.7] pentadecane,
  • 4,12-di- "organyl" -2,6,10,14-tetra- "organyl" -1,7,9,15-tetraoxa-4,12-diaza-8-stannaspiro [7.7] pentadecane,
  • 4,12-di- "organyl" -2,2,6,6,10,10,14,14-octa- "organyl" -1,7,9,15-tetraoxa-4,12-diaza-8- stannaspiro [7.7] pentadecane,
  • where "R" stands for D *, L3 or L4, as defined above, and "organyl" stands for R1, as defined above.

In einer weiteren bevorzugten Ausführungsform werden als zyklische Zinnverbindung eine oder mehrere der nachfolgenden Verbindungen eingesetzt:

  • 4,12-Di-n-butyl-1,7,9,15-tetraoxa-4,12-diaza-8-stannaspiro[7.7]pentadecan,
  • 4,12-Di-n-butyl-2,6,10,14-tetramethyl-1,7,9,15-tetraoxa-4,12-diaza-8-stannaspiro [7.7]pentadecan,
  • 2,4,6,10,12,14-Hexamethyl-1,7,9,15-tetraoxa-4,12-diaza-8-stannaspiro[7.7]pentadecan,
  • 4,12-Di-n-octyl-2,6,10,14-tetramethyl-1,7,9,15 -tetraoxa-4,12-diaza-8-stannaspiro[7.7]pentadecan,
  • 4,12-Di-n-octyl-1,7,9,15-tetraoxa-4,12-diaza-8-stannaspiro[7.7]pentadecan,
  • 4,12-Dimethyl-1,7,9,15-tetraoxa-4,12-diaza-8-stannaspiro[7.7]pentadecan,
  • 1,1-Dichloro-5-methyl-5-aza-2,8-dioxa-1-stannacyclooctan,
  • 1,1-Diisopropyl-5-methyl-5-aza-2,8-dioxa-1-stannacyclooctan,
  • 1,1-Dibenzoyl-3,3,7,7-tetramethyl 5-n-o ctyl-5-aza-2,8-dioxa-1-stannacyclooctan,
  • 1,1-Dibenzoyl- 5-n-octyl-5-aza-2,8-dioxa-1-stannacyclooctan,
  • 1,1-Bis(p-dodecylphenylsulfonyl)- 5-n-octyl-5-aza-2,8-dioxa-1-stannacyclooctan,
  • 2-Benzoyloxy-6-octyl-4,8-dioxo-1,3 ,6,2-dioxazastannocan-2-ylbenzoat
oder Mischungen davon.In a further preferred embodiment, one or more of the following compounds are used as the cyclic tin compound:
  • 4,12-di-n-butyl-1,7,9,15-tetraoxa-4,12-diaza-8-stannaspiro [7.7] pentadecane,
  • 4,12-di-n-butyl-2,6,10,14-tetramethyl-1,7,9,15-tetraoxa-4,12-diaza-8-stannaspiro [7.7] pentadecane,
  • 2,4,6,10,12,14-hexamethyl-1,7,9,15-tetraoxa-4,12-diaza-8-stannaspiro [7.7] pentadecane,
  • 4,12-di-n-octyl-2,6,10,14-tetramethyl-1,7,9,15-tetraoxa-4,12-diaza-8-stannaspiro [7.7] pentadecane,
  • 4,12-di-n-octyl-1,7,9,15-tetraoxa-4,12-diaza-8-stannaspiro [7.7] pentadecane,
  • 4,12-dimethyl-1,7,9,15-tetraoxa-4,12-diaza-8-stannaspiro [7.7] pentadecane,
  • 1,1-dichloro-5-methyl-5-aza-2,8-dioxa-1-stannacyclooctane,
  • 1,1-diisopropyl-5-methyl-5-aza-2,8-dioxa-1-stannacyclooctane,
  • 1,1-dibenzoyl-3,3,7,7-tetramethyl 5-noctyl-5-aza-2,8-dioxa-1-stannacyclooctane,
  • 1,1-dibenzoyl-5-n-octyl-5-aza-2,8-dioxa-1-stannacyclooctane,
  • 1,1-bis (p-dodecylphenylsulfonyl) - 5-n-octyl-5-aza-2,8-dioxa-1-stannacyclooctane,
  • 2-benzoyloxy-6-octyl-4,8-dioxo-1,3,6,2-dioxazastannocan-2-ylbenzoate
or mixtures thereof.

Weiterhin bevorzugt werden als zyklische Zinnverbindungen mindestens eine oder eine Mischung aus mindestens zwei der nachfolgenden Verbindungen eingesetzt:

  • 4,12-Bis(cyclopentyl)-1,7,9,15-tetraoxa-4,12-diaza-8-stannaspirol[7.7]pentadecan,
  • 4,12-Bis(cyclohexyl)-1,7,9,15 -tetraoxa-4,12-diaza-8-stannaspirol[7.7]pentadecan,
  • 4,12-Bis(cyclopentyl)-2,6,10,14-tetramethyl-1,7,9,15-tetraoxa-4,12-diaza-8-stannaspirol[7.7]pentadecan,
  • 4,12-Bis(cyclohexyl)-2,6,10,14-tetramethyl-1,7,9,15 -tetraoxa-4,12-diaza-8-stannaspirol[7.7]pentadecan,
  • 4,12-dibutyl-2,6,10,14-tetramethyl-1,7,9,15 -tetraoxa-4,12-diaza-8-stannaspirol [7.7]pentadecan.
Furthermore, preference is given to using at least one or a mixture of at least two of the following compounds as cyclic tin compounds:
  • 4,12-bis (cyclopentyl) -1,7,9,15-tetraoxa-4,12-diaza-8-stannaspirol [7.7] pentadecane,
  • 4,12-bis (cyclohexyl) -1,7,9,15-tetraoxa-4,12-diaza-8-stannaspirol [7.7] pentadecane,
  • 4,12-bis (cyclopentyl) -2,6,10,14-tetramethyl-1,7,9,15-tetraoxa-4,12-diaza-8-stannaspirol [7.7] pentadecane,
  • 4,12-bis (cyclohexyl) -2,6,10,14-tetramethyl-1,7,9,15-tetraoxa-4,12-diaza-8-stannaspirol [7.7] pentadecane,
  • 4,12-dibutyl-2,6,10,14-tetramethyl-1,7,9,15-tetraoxa-4,12-diaza-8-stannaspirole [7.7] pentadecane.

Das Aufbaumaterial im erfindungsgemäßen Verfahren kann beispielsweise die folgende Zusammensetzung haben, wobei alle Zahlenangaben in Gewichts-% sind und sich die Angaben in Gewichts-% zu ≤ 100 Gewichts-% addieren: NCO-funktionelles Urethanacrylat 20 - 30 Acrylat 35 - 45 Polyol 30 - 40 Photoinitiator 1 0,1 - 0,3 Photoinitiator 2 0,1 - 0,3 UV-Inhibitor 0,01-0,3 Sn-Kat 0,01 - 0,2 The construction material in the method according to the invention can, for example, have the following composition, where all figures are in% by weight and the figures in% by weight add up to 100% by weight: NCO-functional urethane acrylate 20-30 Acrylate 35-45 Polyol 30-40 Photoinitiator 1 0.1-0.3 Photoinitiator 2 0.1-0.3 UV inhibitor 0.01-0.3 Sn cat 0.01-0.2

Im Speziellen: NCO-funktionelles Urethanacrylat 25,4 Acrylat 39,5 Polyol 34,3 Photoinitiator 1 0,22 Photoinitiator 2 0,22 UV-Inhibitor 0,2 Sn-Kat 0,034 - 0,102 Particularly: NCO-functional urethane acrylate 25.4 Acrylate 39.5 Polyol 34.3 Photoinitiator 1 0.22 Photoinitiator 2 0.22 UV inhibitor 0.2 Sn cat 0.034-0.102

NCO-funktionelles Urethanacrylat: beispielsweise ein Urethanacrylat, welches aus der Umsetzung von trimerem HDI-Isocyanurat mit Hydroxypropylacrylat bei einer NCO-Kennzahl von 200 durch Rühren bei 60 °C, bis alle OH Gruppen umgesetzt sind, erhalten werden kann.

  • Acrylat: beispielsweise Isobornylacrylat
  • Polyol: beispielsweise ein Polyetherpolyol wie Polytetramethylenetherglycol mit einer Molekülmasse von 1000 g/mol (PolyTHF 1000)
  • Photoinitiator 1: Acylphosphinoxid, beispielsweise Ethyl(2,4,6-trimethylbenzoyl)phenylphosphinat (TPOL)
  • Photoinitiator 2: Germanium-basierter Photoinitiator wie beispielsweise Bis-4-(methoxybenzoyl)diethy lgerman
  • UV-Inhibitor: beispielsweise Mayzo OB+ (2,2'-(2,5-thiophendiyl)bis(5-tertbutylbenzoxazol))
  • Sn-Kat: zyklische Zinnverbindung der Formel F-I, F-II oder F-III
NCO-functional urethane acrylate: for example a urethane acrylate which can be obtained from the reaction of trimeric HDI isocyanurate with hydroxypropyl acrylate with an NCO index of 200 by stirring at 60 ° C. until all OH groups have reacted.
  • Acrylate: for example isobornyl acrylate
  • Polyol: for example a polyether polyol such as polytetramethylene ether glycol with a molecular weight of 1000 g / mol (PolyTHF 1000)
  • Photoinitiator 1: acylphosphine oxide, e.g. ethyl (2,4,6-trimethylbenzoyl) phenylphosphinate (TPOL)
  • Photoinitiator 2: Germanium-based photoinitiator such as bis-4- (methoxybenzoyl) diethy lgerman
  • UV inhibitor: for example Mayzo OB + (2,2 '- (2,5-thiophenediyl) bis (5-tert-butylbenzoxazole))
  • Sn-Kat: cyclic tin compound of the formula FI, F-II or F-III

Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Gegenstand, erhalten durch ein erfindungsgemäßes Verfahren, wobei der Gegenstand in Aufbaurichtung seines Herstellungsverfahrens wenigstens abschnittsweise eine Höhe von ≥ 1mm, vorzugsweise ≥ 5 mm, aufweist.Another object of the present invention is an object obtained by a method according to the invention, the object having a height of 1 1 mm, preferably 5 mm, at least in sections in the construction direction of its manufacturing process.

Die Erfindung betrifft ebenfalls die Verwendung von zyklischen Zinnverbindungen der Formel F-I, F-II und/oder F-III, wie in den vorstehenden Ausführungen definiert, als thermisch latente Urethanisierungskatalysatoren in Aufbaumaterialien für additive Fertigungsverfahren.The invention also relates to the use of cyclic tin compounds of the formula F-I, F-II and / or F-III, as defined in the preceding statements, as thermally latent urethanization catalysts in building materials for additive manufacturing processes.

Experimenteller TeilExperimental part

Die Erfindung wird anhand der nachfolgenden Beispiele näher erläutert, ohne jedoch darauf beschränkt zu sein.The invention is explained in more detail with the aid of the following examples, but without being restricted thereto.

Es wurden die in der Tabelle 1 angegebenen Formulierungen von Aufbaumaterialien enthaltend radikalisch vernetzbare Gruppen, NCO-Gruppen sowie Gruppen mit Zerewitinoff-aktiven H-Atomen hergestellt. Die Angaben in der Tabelle 1beziehen sich auf Gewichtsteile.The formulations of building materials given in Table 1 containing radical crosslinkable groups, NCO groups and groups with Zerewitinoff-active H atoms were prepared. The data in Table 1 relate to parts by weight.

Erfindungsgemäßes Beispiel 1:Example 1 according to the invention:

Aufbaumaterial enthaltend Desmodur® N3390 BA, Hydroxyethylacrylat und 4,12-Bis(cyclopentyl)-1,7,9,15-tetraoxa-4,12-diaza-8-stannaspirol[7.7]pentadecan (Polyisocyanat mit thermolatentem Katalysator) Build- up material containing Desmodur ® N3390 BA, hydroxyethyl acrylate and 4,12-bis (cyclopentyl) -1,7,9,15-tetraoxa-4,12-diaza-8-stannaspirol [7.7] pentadecane (polyisocyanate with thermolatent catalyst)

Erfindungsgemäßes Beispiel 2:Example 2 according to the invention:

Aufbaumaterial enthaltend Desmodur® N3390 BA, Hydroxyethylacrylat und 4,12-Bis(cyclohexyl)-1,7,9,15-tetraoxa-4,12-diaza-8-stannaspirol[7.7]pentadecan (Polyisocyanat mit thermolatentem Katalysator) Build- up material containing Desmodur ® N3390 BA, hydroxyethyl acrylate and 4,12-bis (cyclohexyl) -1,7,9,15-tetraoxa-4,12-diaza-8-stannaspirol [7.7] pentadecane (polyisocyanate with thermolatent catalyst)

Erfindungsgemäßes Beispiel 3:Example 3 according to the invention:

Aufbaumaterial enthaltend Desmodur® N3390 BA, Hydroxyethylacrylat und 4,12-Bis(cyclopentyl)-2,6,10,14-tetramethyl-1,7,9,15-tetraoxa-4,12-diaza-8-stannaspirol[7.7]pentadecan (Polyisocyanat mit thermolatentem Katalysator) Build- up material containing Desmodur ® N3390 BA, hydroxyethyl acrylate and 4,12-bis (cyclopentyl) -2,6,10,14-tetramethyl-1,7,9,15-tetraoxa-4,12-diaza-8-stannaspirol [7.7] pentadecane (polyisocyanate with thermolatent catalyst)

Erfindungsgemäßes Beispiel 4:Example 4 according to the invention:

Aufbaumaterial enthaltend Desmodur® N3390 BA, Hydroxyethylacrylat und 4,12-Bis(cyclohexyl)-2,6,10,14-tetramethyl-1,7,9,15-tetraoxa-4,12-diaza-8-stannaspirol[7.7]pentadecan (Polyisocyanat mit thermolatentem Katalysator) Build- up material containing Desmodur ® N3390 BA, hydroxyethyl acrylate and 4,12-bis (cyclohexyl) -2,6,10,14-tetramethyl-1,7,9,15-tetraoxa-4,12-diaza-8-stannaspirol [7.7] pentadecane (polyisocyanate with thermolatent catalyst)

Erfindungsgemäßes Beispiel 5:Example 5 according to the invention:

Aufbaumaterial enthaltend Desmodur® N3390 BA, Hydroxyethylacrylat und 4,12-dibutyl-2,6,10,14-tetramethyl-1,7,9,15-tetraoxa-4,12-diaza-8-stannaspirol[7.7]pentadecan (Polyisocyanat mit thermolatentem Katalysator) Build- up material containing Desmodur® N3390 BA, hydroxyethyl acrylate and 4,12-dibutyl-2,6,10,14-tetramethyl-1,7,9,15-tetraoxa-4,12-diaza-8-stannaspirol [7.7] pentadecane (polyisocyanate with thermolatent catalyst)

Vergleichsbeispiel VB 6:Comparative example CE 6:

Aufbaumaterial enthaltend Desmodur® N 3390 BA, Hydroxyethylacrylat und Dibutylzinndilaurat (DBTL) 400 ppm Build- up material containing Desmodur ® N 3390 BA, hydroxyethyl acrylate and dibutyltin dilaurate (DBTL) 400 ppm

Vergleichsbeispiel VB 7:Comparative example CE 7:

Aufbaumaterial enthaltend Desmodur® N 3390 BA, Hydroxyethylacrylat und Dibutylzinndilaurat (DBTL) 40 ppm Build- up material containing Desmodur ® N 3390 BA, hydroxyethyl acrylate and dibutyltin dilaurate (DBTL) 40 ppm

Vergleichsbeispiel VB 8:Comparative example CE 8:

Aufbaumaterial enthaltend Desmodur® N 3390 BA, Hydroxyethylacrylat ohne Katalysator Build- up material containing Desmodur ® N 3390 BA, hydroxyethyl acrylate without a catalyst

Desmodur® N 3390 BA ist ein Handelsprodukte der Covestro AG. Die Kenndaten des Desmodur® N 3390 BA entsprechen der Angaben auf dem gleichnamigen Datenblatt gemäß der Ausgabe 2017-06-01. Es handelt sich dabei um ein aliphatisches Polyisocyanat (HDI-Trimerisat) ca. 90 Gew.- %ig in n-Butylacetat, das unter anderem als Härterkomponente für lichtechte Polyurethan-Lacksysteme verwendet wird. Der NCO-Gehalt beträgt ca. 19,6 Gew.-% (bestimmt gemäß DIN EN ISO 11 909), die Viskosität bei 23 °C 500 +/- 150 mPa·s (bestimmt gemäß DIN EN ISO 3219/A.3). Tabelle 1: Zusammensetzung der Aufbaumaterialien Beispiel 1 2 3 4 5 VB 6 VB 7 VB 8 Einsatzstoff Gewichtsteile [%] Desmodur® N 3390 62,93 62,92 62,91 62,90 62,92 63,06 63,096 63,10 4,12- Bis(cyclopentyl)-1,7,9,15-tetraoxa-4,12-diaza-8-stannaspirol[7.7]pentadecan 0,17 - - - - - - - 4, 12-Bis(cyclohexyl)-1,7,9,15-tetraoxa-4,12-diaza-8-stannaspirol[7.7]pentadecan - 0,18 - - - - - - 4,12-Bis(cyclopentyl)-2,6,10,14-tetramethyl-1,7,9,15-tetraoxa-4,12-diaza-8-stannaspirol[7.7]pentadecan - - 0,19 - - - - - 4, 12-Bis(cyclohexyl)-2,6, 10, 14-tetramethyl-1,7,9,15-tetraoxa-4,12-diaza-8-stannaspirol[7.7]pentadecan - - - 0,20 - - - - 4, 12-dibutyl-2,6,10, 14-tetramethyl-1,7,9,15-tetraoxa-4,12-diaza-8-stannaspirol[7.7]pentadecan - - - - 0,18 - - - Dibutylzinndilaurat (DBTL) - - - - - 0,04 0,004 - Hydroxyethylacrylat 34,00 34,00 34,00 34,00 34,00 34,00 34,00 34,00 2-Hydroxy-2-methyl-1 - phenyl-propan-1-one 2,90 2,90 2,90 2,90 2,90 2,90 2,90 2,90 Desmodur ® N 3390 BA is a commercial product from Covestro AG. The characteristics of Desmodur ® N 3390 BA correspond to the information on the data sheet of the same name in the 2017-06-01 edition. It is an aliphatic polyisocyanate (HDI trimer) approx. 90% strength by weight in n-butyl acetate, which is used, among other things, as a hardener component for lightfast polyurethane paint systems. The NCO content is approx. 19.6% by weight (determined in accordance with DIN EN ISO 11 909), the viscosity at 23 ° C is 500 +/- 150 mPas (determined in accordance with DIN EN ISO 3219 / A.3) . Table 1: Composition of the building materials example 1 2 3 4th 5 VB 6 VB 7 VB 8 Feedstock Parts by weight [%] Desmodur® N 3390 62.93 62.92 62.91 62.90 62.92 63.06 63.096 63.10 4.12-bis (cyclopentyl) -1,7,9,15-tetraoxa-4,12-diaza-8-stannaspirole [7.7] pentadecane 0.17 - - - - - - - 4, 12-bis (cyclohexyl) -1,7,9,15-tetraoxa-4,12-diaza-8-stannaspirole [7.7] pentadecane - 0.18 - - - - - - 4,12-bis (cyclopentyl) -2,6,10,14-tetramethyl-1,7,9,15-tetraoxa-4,12-diaza-8-stannaspirole [7.7] pentadecane - - 0.19 - - - - - 4, 12-bis (cyclohexyl) -2,6, 10, 14-tetramethyl-1,7,9,15-tetraoxa-4,12-diaza-8-stannaspirole [7.7] pentadecane - - - 0.20 - - - - 4, 12-dibutyl-2,6,10,14-tetramethyl-1,7,9,15-tetraoxa-4,12-diaza-8-stannaspirole [7.7] pentadecane - - - - 0.18 - - - Dibutyltin dilaurate (DBTL) - - - - - 0.04 0.004 - Hydroxyethyl acrylate 34.00 34.00 34.00 34.00 34.00 34.00 34.00 34.00 2-Hydroxy-2-methyl-1-phenyl-propan-1-one 2.90 2.90 2.90 2.90 2.90 2.90 2.90 2.90

Formulierung der Aufbaumaterialien:Formulation of the building materials:

In einem Kunststoffbecher mit Deckel wurden die Komponenten in der Reihenfolge Isocyanat (Desmodur® N 3390 BA), Katalysator (falls verwendet), Hydroxyacrylat und der Photoinitiator (2-Hydroxy-2-methyl-1-phenyl-propan-1-one Omnirad® 1173 von IGM Resins) eingewogen. Diese Einsatzstoffe wurden in einem Planetenkreiselmischer Thinky ARE250 bei Raumtemperatur für ca. 2 Minuten bei einer Umdrehungszahl von 2000 Umdrehungen pro Minute vermischt. In allen Formulierungen lag ein stöchiometrisches Verhältnis NCO- zu OH-Gruppen von ca. 1:1 vor.The components were placed in a plastic beaker with a lid in the order isocyanate (Desmodur® N 3390 BA), catalyst (if used), hydroxyacrylate and the photoinitiator (2-hydroxy-2-methyl-1-phenyl-propan-1-one Omnirad® 1173 from IGM Resins) . These starting materials were mixed in a Thinky ARE250 planetary rotary mixer at room temperature for about 2 minutes at a speed of 2000 revolutions per minute. In all formulations there was a stoichiometric ratio of NCO to OH groups of approx. 1: 1.

Viskositätsmessung über die Reaktionszeit:Viscosity measurement over the reaction time:

Unmittelbar, also innerhalb von 2 Minuten nach dem 2 minütigen Mischen, erfolgte die erste Viskositätsmessung. Nachfolgend wurden in zeitlichen Abständen weitere Viskositätsmessungen durchgeführt, wie in Tabelle 2 dargestellt. Alle Viskositätsmessungen, die in Tabelle 2 angegeben werden wurden mit einem Viskosimeter der Fa. Anton Paar MCR 51 mit Kegel-Platte Messsystem CP25-2 bei 23 °C durchgeführt. Tabelle 2: Viskosität bei 23°C nach unterschiedlichen Reaktionszeiten Beispiel 1 2 3 4 5 VB 6 VB 7 VB 8 Zeit Viskosität [Minuten] [mPas] 0 70 70 77 85 78 63.500 55 67 15 n.b.* n.b. n.b. n.b. 93 70.600 66 150 30 62 88 80 107 102 polymerisiert 330 66 60 106 106 113 146 139 - 1.700 66 120 148 146 159 221 222 - 5.700 67 240 323 304 327 563 559 - 15.000 67 1.440 30100 29100 43400 63000 70.000 - polymerisiert 116 *) n.b.: nicht bestimmt The first viscosity measurement was carried out immediately, i.e. within 2 minutes after mixing for 2 minutes. Further viscosity measurements were then carried out at time intervals, as shown in Table 2. All viscosity measurements which are given in Table 2 were carried out with a viscometer from Anton Paar MCR 51 with a cone-plate measuring system CP25-2 at 23 ° C. Table 2: Viscosity at 23 ° C after different reaction times example 1 2 3 4th 5 VB 6 VB 7 VB 8 time viscosity [Minutes] [mPas] 0 70 70 77 85 78 63,500 55 67 15th nb * nb nb nb 93 70,600 66 150 30th 62 88 80 107 102 polymerized 330 66 60 106 106 113 146 139 - 1,700 66 120 148 146 159 221 222 - 5,700 67 240 323 304 327 563 559 - 15,000 67 1,440 30100 29100 43400 63000 70,000 - polymerized 116 *) nb: not determined

Die erfindungsgemäßen Beispiel 1 bis 5 zeigten eine Verdoppelung der Anfangsviskosität, ermittelt bei Zeit 0 Minuten erst nach einem Zeitraum von > 60 Minuten (Topfzeit).Examples 1 to 5 according to the invention showed a doubling of the initial viscosity, determined at time 0 minutes only after a period of> 60 minutes (pot life).

Das Vergleichsbeispiel VB 6, enthaltend 400 ppm DBTL, zeigte unmittelbar nach der Mischung eine Viskosität von 63.000 mPas und war nach 30 Minuten polymerisiert, weshalb eine Viskositätsbestimmung nicht mehr möglich war.Comparative example CE 6, containing 400 ppm DBTL, showed a viscosity of 63,000 mPas immediately after mixing and was polymerized after 30 minutes, which is why it was no longer possible to determine the viscosity.

Das Vergleichsbeispiel VB 7, enthaltend 40 ppm DBTL, zeigte eine Verdopplung der Anfangsviskosität ermittelt bei Zeit 0 Minuten schon nach weniger als 30 Minuten (Topfzeit).Comparative example CE 7, containing 40 ppm DBTL, showed a doubling of the initial viscosity, determined at time 0 minutes, after less than 30 minutes (pot life).

Das Vergleichsbeispiel VB 8, ohne Katalysator, zeigte über 240 Minuten nahezu keine Veränderung der Viskosität.Comparative example CE 8, without catalyst, showed almost no change in viscosity over 240 minutes.

Filmherstellung und Infrarotmessung der NCO-Bande:Film production and infrared measurement of the NCO band:

Die radikalisch härtbaren Aufbaumaterialien gemäß den erfindungsgemäßen Beispielen 1 bis 5 und den Vergleichsbeispielen VB 6 bis VB 8 wurden mit einem Rakel mit einem Spalt von 400 µm auf eine Glasplatte aufgezogen.The free-radically curable building materials according to Examples 1 to 5 according to the invention and Comparative Examples CE 6 to CE 8 were drawn onto a glass plate with a doctor blade with a gap of 400 μm.

Die beschichteten Glassubstrate wurden anschließend in einer UV-Härtungsanlage der Firma Superfici mit Quecksilber- und Gallium-Strahlungsquellen mit einer Bandgeschwindigkeit von 5 m/min gehärtet. Aus Lampenleistung und Bandgeschwindigkeit resultiert eine Strahlungsintensität von 1.300 mJ/cm2, die auf die beschichteten Substrate einwirkte.The coated glass substrates were then cured in a UV curing system from Superfici with mercury and gallium radiation sources at a belt speed of 5 m / min. The lamp power and belt speed result in a radiation intensity of 1,300 mJ / cm 2 , which acted on the coated substrates.

Anschließend wurden die UV-gehärteten Filme auf den Glassubstraten in einen Trockenofen bei 150 °C unter Luftatmosphäre ausgelagert und zu den in Tabelle 3 aufgeführten Zeitpunkten für die jeweilige IR-Messung aus dem Ofen entnommen. Nach der Messung wurden die Proben wieder in den Ofen gelegt.The UV-cured films were then stored on the glass substrates in a drying oven at 150 ° C. under an air atmosphere and removed from the oven at the times listed in Table 3 for the respective IR measurement. After the measurement, the samples were placed back in the oven.

Für die Messung der freien NCO-Gruppen wurde ein FT-IR-Spektrometer (Tensor II) der Fa. Bruker eingesetzt. Der Probenfilm wurde auf die Platinum-ATR-Einheit kontaktiert. Die kontaktierte Fläche der Probe betrug 2 x 2 mm. Bei der Messung drang die IR-Strahlung je nach Wellenzahl 3 bis 4 µm in die Probe ein. Von der Probe wurde dann ein Absorptionsspektrum erstellt. Um eine ungleichmäßige Kontaktierung der unterschiedlich harten Proben zu kompensieren, wurde an allen Spektren eine Grundlinienkorrektur und eine Normierung im Wellenzahlbereich von 2600 bis 3200 (CH2, CH3) durchgeführt. Die Integration des Signals der NCO-Gruppen (in Tabelle 3 "Integral NCO" genannt) wurde im Wellenzahlbereich von 2170 bis 2380 durchgeführt. Für das Aufbaumaterial ohne Katalysator gemäß Vergleichsbeispiel VB 8 ergab sich nach Belichtung ein Zahlenwert von 510, während ein vollständig ausreagierter Film einen Zahlenwert von 0 aufwies. Als Ergebnis wurde ein Umsatz von > 70% der Isocyanatgruppen innerhalb von 1 h Nachhärtung angestrebt. Der NCO Umsatz wurde für die Betrachtung als lineare Funktion der Höhe des Flächenpeaks angenommen. Der Anfangswert des Vergleichsbeispiels VB 8 wurde als 0 % Umsatz definiert. Tabelle 3: "Integral NCO" nach UV-Härtung und Lagerung bei 150 °C Beispiel 1 2 3 4 5 6 7 8 Zeit [Minuten] Integral NCO (Umsatz [%]) 0 491,9 (4) 504,2 (1) 498,1 (2) 492,8 (3) 503,0 (1) 50,0 (90) 471,0 (8) 510,0 (0) 30 143,4 (72) 127,6 (75) 128,5 (75) 58,3 (89) 129,0 (75) 29,0 (94) 347,0 (32) 488,0 (4) 60 105,6 (79) 101,2 (80) 87,2 (83) 65,8 (87) 102,0 (80) 41,0 (92) 290,0 (43) 358,0 (30) 240 53,1 (90) 49,0 (90) 45,8 (91) 32,3 (94) 76,0 (85) 13,0 (97) 182,0 (64) 261,0 (49) 1.440 26,9 (95) 34,1 (93) 25,5 (95) 22,1 (96) 14,0 (97) 11,0 (98) 29,0 (94) 76,0 (85) An FT-IR spectrometer ( Tensor II ) from Bruker was used to measure the free NCO groups. The sample film was contacted on the Platinum ATR unit. The contacted area of the sample was 2 × 2 mm. During the measurement, the IR radiation penetrated the sample by 3 to 4 µm, depending on the wave number. An absorption spectrum was then generated from the sample. In order to compensate for an uneven contact of the samples with different hardnesses, a baseline correction and a normalization in the wave number range from 2600 to 3200 (CH2, CH3) were carried out on all spectra. The integration of the signal of the NCO groups (called “Integral NCO” in Table 3) was carried out in the wavenumber range from 2170 to 2380. For the build-up material without catalyst according to Comparative Example CE 8, a numerical value of 510 was obtained after exposure, while a completely reacted film had a numerical value of 0. As a result, the aim was to achieve a conversion of> 70% of the isocyanate groups within 1 hour of post-curing. The NCO conversion was assumed for the consideration as a linear function of the height of the area peak. The initial value of comparative example CE 8 was defined as 0% conversion. Table 3: “Integral NCO” after UV curing and storage at 150 ° C example 1 2 3 4th 5 6th 7th 8th Time [minutes] Integral NCO (sales [%]) 0 491.9 (4) 504.2 (1) 498.1 (2) 492.8 (3) 503.0 (1) 50.0 (90) 471.0 (8) 510.0 (0) 30th 143.4 (72) 127.6 (75) 128.5 (75) 58.3 (89) 129.0 (75) 29.0 (94) 347.0 (32) 488.0 (4) 60 105.6 (79) 101.2 (80) 87.2 (83) 65.8 (87) 102.0 (80) 41.0 (92) 290.0 (43) 358.0 (30) 240 53.1 (90) 49.0 (90) 45.8 (91) 32.3 (94) 76.0 (85) 13.0 (97) 182.0 (64) 261.0 (49) 1,440 26.9 (95) 34.1 (93) 25.5 (95) 22.1 (96) 14.0 (97) 11.0 (98) 29.0 (94) 76.0 (85)

Die erfindungsgemäßen Beispiel 1 bis 5 zeigten einen signifikant schnelleren Abbau des NCO-Integrals als die Vergleichsbeispiele VB 6 und VB 7, enthaltend 400 bzw. 40 ppm DBTL. Während für alle erfindungsgemäßen Beispiele bereits nach 30 Minuten Lagerung bei 150 °C ein Umsatz der NCO-Gruppen ≥ 72 % erfolgte, haben im Vergleichsbeispiel VB 7, enthaltend 40 ppm DBTL, erst 32 % der NCO Gruppen reagiert. Nach 60 Minuten liegt der NCO-Umsatz für die erfindungsgemäßen Beispiele bei ≥ 79 %, während für Vergleichsbeispiel VB 7 der NCO-Umsatz erst 43 % beträgt.Examples 1 to 5 according to the invention showed a significantly more rapid degradation of the NCO integral than comparative examples CE 6 and CE 7, containing 400 and 40 ppm DBTL, respectively. Whereas for all examples according to the invention a conversion of the NCO groups of 72 72% already took place after storage for 30 minutes at 150 ° C., in comparative example CE 7, containing 40 ppm DBTL, only 32% of the NCO groups reacted. After 60 minutes, the NCO conversion for the examples according to the invention is 79%, while for comparative example CE 7 the NCO conversion is only 43%.

Vergleichsbeispiel VB 6, enthaltend 400 ppm DBTL, zeigte schon unmittelbar nach der UV-Härtung ein sehr niedriges NCO-Integral von 50,0, was einem Umsatz von 90 % der NCO-Gruppen entsprach. Dies ist auf eine Reaktion vieler Isocyanatgruppen schon während der UV-Belichtung und der Probenvorbereitung für die Infrarotmessung, bedingt durch die hohe DBTL-Menge, zurückzuführen. Dies belegen auch die oben gezeigten Viskositätsmessungen nach unterschiedlichen Reaktionszeiten bei 23 °C.Comparative example CE 6, containing 400 ppm DBTL, showed immediately after UV curing a very low NCO integral of 50.0, which corresponded to a conversion of 90% of the NCO groups. This is due to a reaction of many isocyanate groups already during the UV exposure and the sample preparation for the infrared measurement, due to the high amount of DBTL. This is also confirmed by the viscosity measurements shown above after different reaction times at 23 ° C.

Vergleichsbeispiel VB 8, ohne Katalysator, zeigte zwar auch eine Abnahme des NCO-Integrals über die Zeit, jedoch deutlich langsamer als bei den katalysierten Systemen. Erst nach 240 Minuten hatte ca. die Hälfte der NCO-Gruppen während der Lagerung bei 150 °C reagiert.Comparative Example CE 8, without a catalyst, also showed a decrease in the NCO integral over time, but significantly more slowly than in the case of the catalyzed systems. Only after 240 minutes had about half of the NCO groups reacted during storage at 150 ° C.

Zusammenfassend zeigten die Aufbaumaterialien gemäß den erfindungsgemäßen Beispielen 1 bis 5 enthaltend einen latent-reaktiven Katalysator eine wesentlich längere Topfzeit als die mit DBTL katalysierten Aufbaumaterialien gemäß den Vergleichsbeispielen VB 6 und VB 7. Gleichzeitig reagierten die erfindungsgemäßen Aufbaumaterialien deutlich schneller (NCO-OH-Reaktion) während der Lagerung bei 150 °C als ein Aufbaumaterial ohne Katalysator, wie DBTL, mit langer Topfzeit gemäß Vergleichsbeispiel VB 8. Diese Eigenschaftskombination belegt somit die angestrebte wärmelatente Wirkung der Katalysatoren gegenüber der herkömmlichen Katalyse der NCO-OH-Reaktion mittels DBTL und zeigt aufgrund der ausreichend langen Topfzeiten mit schneller Reaktion beim Erwärmen eine sehr gute Eignung zum Einsatz in Formulierungen, wie sie zum Beispiel im 3D-Druck oder in Lack- und Klebstoffapplikationen gewünscht ist.In summary, the building materials according to Examples 1 to 5 according to the invention, containing a latently reactive catalyst, showed a significantly longer pot life than the building materials catalyzed with DBTL according to Comparative Examples CE 6 and CE 7. At the same time, the building materials according to the invention reacted significantly faster (NCO-OH reaction). during storage at 150 ° C as a build-up material without a catalyst, such as DBTL, with a long pot life according to Comparative Example CE 8. This combination of properties thus demonstrates the desired heat-latent effect of the catalysts compared to the conventional catalysis of the NCO-OH reaction by means of DBTL and shows due to the sufficiently long pot life with fast reaction when heated, a very good suitability for use in formulations, such as is desired in 3D printing or in paint and adhesive applications.

Claims (15)

  1. Process for producing an article made of a build material, wherein the build material comprises free-radically crosslinkable groups, NCO groups and groups having Zerewitinoff-active H atoms and the article is a three-dimensional article and/or a layer,
    characterized in that
    during and/or after production of the article the build material is heated to a temperature of ≥ 50°C and in that the build material comprises one or more cyclic tin compounds of formula F-I, F-II and/or F-III:
    Figure imgb0024
    Figure imgb0025
    Figure imgb0026
    wherein:
    D represents -O-, -S- or -N(R1)-
    wherein R1 represents a saturated or unsaturated, linear or branched, aliphatic or cycloaliphatic radical or an optionally substituted aromatic or araliphatic radical which has up to 20 carbon atoms and may optionally contain heteroatoms from the group of oxygen, sulfur, nitrogen, or is hydrogen or the radical
    Figure imgb0027
    or R1 and L3 together represent -Z-L5-;
    D* represents -O- or -S-;
    X, Y and Z represent identical or different radicals selected from alkylene radicals of formulae -C(R2)(R3)-, -C(R2)(R3)-C(R4)(R5)- or -C(R2)(R3)-C(R4)(R5)-C(R6)(R7)- or ortho-arylene radicals of formulae
    Figure imgb0028
    or
    Figure imgb0029
    wherein R2 to R11 independently represent saturated or unsaturated, linear or branched, aliphatic or cycloaliphatic or optionally substituted aromatic or araliphatic radicals which have up to 20 carbon atoms and may optionally contain heteroatoms from the group of oxygen, sulfur, nitrogen, or are hydrogen; L1, L2 and L5 independently represent -O-, -S-, -OC(=O)--OC(=S)-, -SC(=O)-, -SC(=S)-, -OS(=O)2O-, -OS(=O)2- or -N(R12)-,
    wherein R12 represents a saturated or unsaturated, linear or branched, aliphatic or cycloaliphatic radical or an optionally substituted aromatic or araliphatic radical which has up to 20 carbon atoms and may optionally contain heteroatoms from the group of oxygen, sulfur, nitrogen, or is hydrogen;
    L3 and L4 independently represent -OH, -SH, -OR13, -Hal, -OC(=O)R14, -SR15, -OC(=S)R16, -OS(=O)2OR17, -OS(=O)2R18 or -NR19R20, or L3 and L4 together represent -L1-X-D-Y-L2-,
    wherein R13 to R20 independently represent saturated or unsaturated, linear or branched, aliphatic or cycloaliphatic or optionally substituted aromatic or araliphatic radicals which have up to 20 carbon atoms and may optionally contain heteroatoms from the group of oxygen, sulfur, nitrogen, or are hydrogen.
  2. Process according to Claim 1, characterized in that the article is a three-dimensional article and is obtained from a precursor and in that the process comprises the steps of:
    I) depositing free-radically crosslinked build material atop a carrier to obtain a ply of a build material joined to the carrier which corresponds to a first selected cross section of the precursor;
    II) depositing free-radically crosslinked build material atop a previously applied ply of the build material to obtain a further ply of the build material which corresponds to a further selected cross section of the precursor and which is joined to the previously applied ply;
    III) repeating step II) until the precursor is formed;
    wherein the depositing of free-radically crosslinked build material at least in step II) is effected by exposure and/or irradiation of a selected region of a free-radically crosslinkable build material corresponding to the respectively selected cross section of the precursor and
    wherein the free-radically crosslinkable build material has a viscosity (23°C, DIN EN ISO 2884-1) of ≥ 5 mPas to ≤ 1 000 000 mPas,
    wherein the free-radically crosslinkable build material comprises a curable component comprising NCO groups and olefinic C=C double bonds,
    and in that step III) is followed by a further step IV):
    IV) heating the precursor obtained after step III) to a temperature of ≥ 50°C to obtain the article.
  3. Process according to Claim 2, characterized in that:
    - the carrier is arranged inside a container and is vertically lowerable in the direction of the gravitational force,
    - the container contains the free-radically crosslinkable build material in an amount sufficient to cover at least the carrier and an uppermost surface of crosslinked build material deposited on the carrier as viewed in the vertical direction,
    - before each step II) the carrier is lowered by a predetermined distance so that above the uppermost ply of the crosslinked build material viewed in the vertical direction a layer of the free-radically crosslinkable build material is formed and
    - in step II) an energy beam exposes and/or irradiates the selected region of the layer of the free-radically crosslinkable build material corresponding to the respectively selected cross section of the precursor.
  4. Process according to Claim 2, characterized in that:
    - the carrier is arranged inside a container and is vertically raisable counter to the direction of the gravitational force,
    - the container provides the free-radically crosslinkable build material,
    - before each step II) the carrier is raised by a predetermined distance so that below the lowermost ply of the crosslinked build material viewed in the vertical direction a layer of the free-radically crosslinkable build material is formed and
    - in step II) a plurality of energy beams simultaneously exposes and/or irradiates the selected region of the layer of the free-radically crosslinkable build material corresponding to the respectively selected cross section of the precursor.
  5. Process according to Claim 2, characterized in that:
    - in step II) the free-radically crosslinkable build material is applied from one or more printing heads corresponding to the respectively selected cross section of the precursor and is subsequently exposed and/or irradiated.
  6. Process according to Claim 1, characterized in that the article is a coating and the process comprises the steps of:
    - applying the build material atop a substrate
    - heating and/or UV-irradiating the applied build material to effect in the applied build material an at least partial crosslinking of the free-radically crosslinkable groups
    - heating the applied build material to a temperature of ≥ 50 °C to effect in the applied build material at least in part a reaction between NCO groups and groups having Zerewitinoff-active H atoms.
  7. Process according to Claim 1, characterized in that the article is an adhesive bond and the process comprises the steps of:
    - applying the build material atop a first substrate
    - contacting the applied build material with a second substrate
    - heating and/or UV-irradiating the applied build material to effect in the applied build material an at least partial crosslinking of the free-radically crosslinkable groups
    - heating the applied build material to a temperature of ≥ 50 °C to effect in the applied build material at least in part a reaction between NCO groups and groups having Zerewitinoff-active H atoms.
  8. Process according to any of Claims 1 to 7, characterized in that the build material further comprises a free-radical starter and/or an isocyanate trimerization catalyst.
  9. Process according to any of Claims 1 to 8, characterized in that the build material is obtained by mixing an NCO-containing component and a component containing groups having Zerewitinoff-active H atoms and the mixing is effected ≤ 5 minutes before commencement of the process.
  10. Process according to any of Claims 1 to 9, characterized in that in the definition according to Claim 1 D is -N(R1)- and R1 is hydrogen or an alkyl, aralkyl, alkaryl or aryl radical having up to 20 carbon atoms or the radical
    Figure imgb0030
  11. Process according to any of Claims 1 to 10, wherein in the definition according to Claim 1 R1 is hydrogen or a methyl, ethyl, propyl, butyl, hexyl, octyl, Ph, or CH3Ph radical or the radical
    Figure imgb0031
    and wherein propyl, butyl, hexyl and octyl represent all isomeric propyl, butyl, hexyl and octyl radicals.
  12. Process according to any of Claims 1 to 11, characterized in that in the definition according to Claim 1 D* is -O-.
  13. Process according to any of Claims 1 to 12, characterized in that as the cyclic tin compound one or more of the following compounds are employed:
    4,12-di-n-butyl-1,7,9,15-tetraoxa-4,12-diaza-8-stannaspiro[7.7]pentadecane,
    4,12-di-n-butyl-2,6,10,14-tetramethyl-1,7,9,15-tetraoxa-4,12-diaza-8-stannaspiro[7.7]pentadecane,
    2,4,6,10,12,14-hexamethyl-1,7,9,15-tetraoxa-4,12-diaza-8-stannaspiro[7.7]pentadecane,
    4,12-di-n-octyl-2,6,10,14-tetramethyl-1,7,9,15-tetraoxa-4,12-diaza-8-stannaspiro[7.7]pentadecane,
    4,12-di-n-octyl-1,7,9,15-tetraoxa-4,12-diaza-8-stannaspiro[7.7]pentadecane,
    4,12-dimethyl-1,7,9,15-tetraoxa-4,12-diaza-8-stannaspiro[7.7]pentadecane,
    1,1-dichloro-5-methyl-5-aza-2,8-dioxa-1-stannacyclooctane,
    1,1-diisopropyl-5-methyl-5-aza-2,8-dioxa-1-stannacyclooctane,
    1,1-dibenzoyl-3,3,7,7-tetramethyl 5-n-octyl-5-aza-2,8-dioxa-1-stannacyclooctane,
    1,1-dibénzoyl-5-n-octyl-5-aza-2,8-dioxa-1-stannacyclooctane,
    1,1-bis(p-dodecylphenylsulfonyl)-5-n-octyl-5-aza-2,8-dioxa-1-stannacyclooctane,
    2-benzoyloxy-6-octyl-4,8-dioxo-1,3,6,2-dioxazastannocan-2-yl benzoate
    or mixtures thereof.
  14. Article obtained by a process according to any of Claims 1 to 13, characterized in that in the build direction of its production process at least in sections the article has a height of ≥ 1 mm.
  15. Use of cyclic tin compounds of formula F-I, F-II and/or F-III as defined in Claim 1, 10, 11, 12 or 13 as thermally latent urethanization catalysts in build materials in additive manufacturing processes.
EP18711985.4A 2017-03-27 2018-03-26 Dual cure method using thermally latent tin catalysts Active EP3601398B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP17162957.9A EP3381959A1 (en) 2017-03-27 2017-03-27 Dual cure method using thermally latent tin catalysts
PCT/EP2018/057668 WO2018178025A1 (en) 2017-03-27 2018-03-26 Dual cure method using thermally latent tin catalysts

Publications (2)

Publication Number Publication Date
EP3601398A1 EP3601398A1 (en) 2020-02-05
EP3601398B1 true EP3601398B1 (en) 2021-04-28

Family

ID=58578815

Family Applications (2)

Application Number Title Priority Date Filing Date
EP17162957.9A Ceased EP3381959A1 (en) 2017-03-27 2017-03-27 Dual cure method using thermally latent tin catalysts
EP18711985.4A Active EP3601398B1 (en) 2017-03-27 2018-03-26 Dual cure method using thermally latent tin catalysts

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP17162957.9A Ceased EP3381959A1 (en) 2017-03-27 2017-03-27 Dual cure method using thermally latent tin catalysts

Country Status (4)

Country Link
US (1) US11555088B2 (en)
EP (2) EP3381959A1 (en)
CN (1) CN110461898B (en)
WO (1) WO2018178025A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11491710B2 (en) * 2020-02-27 2022-11-08 University Of Southern California Photocurable, self-healable, and shape-memorizable polymers for additive manufacturing
EP4116348A1 (en) 2021-07-09 2023-01-11 Covestro Deutschland AG Photo- and thermally curable resin useful in additive manufacturing processes
EP4166331A1 (en) * 2021-10-12 2023-04-19 Covestro Deutschland AG Photo- and thermally curable resin useful in additive manufacturing processes
EP4234602A1 (en) * 2022-02-28 2023-08-30 Covestro Deutschland AG Use of special catalysts for the preparation of polyurethane coatings

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB899948A (en) * 1900-01-01
US6221958B1 (en) * 1993-01-06 2001-04-24 Societe De Conseils De Recherches Et D'applications Scientifiques, Sas Ionic molecular conjugates of biodegradable polyesters and bioactive polypeptides
US6271325B1 (en) * 1999-05-17 2001-08-07 Univation Technologies, Llc Method of polymerization
BRPI0818584B1 (en) 2007-10-17 2019-05-28 Basf Se Use of a LATENT CATALYTIC COMPOUND, POLYMERIZABLE COMPOSITION, PROCESS FOR POLYMERIZATION OF COMPOUNDS, USE OF POLYMERIZABLE COMPOSITION, COATED SUBSTRATE, POLYMERIZED OR RETICULATED COMPOSITION, AND LATENT CATALYTIC COMPOUND
DE102008021980A1 (en) * 2008-05-02 2009-11-05 Bayer Materialscience Ag New catalysts and their use in the production of polyurethanes
DE102008048336A1 (en) * 2008-09-22 2010-03-25 Merck Patent Gmbh Mononuclear neutral copper (I) complexes and their use for the production of optoelectronic devices
IL200995A0 (en) * 2008-10-01 2010-06-30 Bayer Materialscience Ag Polyether-based polyurethane formulations for the production of holographic media
DE102009051445A1 (en) * 2009-10-30 2011-05-05 Bayer Materialscience Ag Use of special catalysts for the production of polyurethane coatings
EP2794711B1 (en) * 2011-12-20 2020-06-10 Covestro Deutschland AG Hydroxy aminopolymers and method for there manufacture
EP2900716B1 (en) 2012-09-25 2020-04-15 Covestro Deutschland AG Polyisocyanate polyaddition products
EP2900717B8 (en) 2012-09-25 2020-10-21 Covestro Intellectual Property GmbH & Co. KG Polyisocyanate polyaddition products
CN103172801B (en) 2013-02-04 2015-02-04 太原理工大学 Preparation method of polyurethane/styrene elastomer composite material
EP2997095B1 (en) * 2013-05-17 2019-11-20 SPGPrints B.V. Printing ink composition comprising a metal complex with adjusted viscosity
CN104745055A (en) * 2013-12-31 2015-07-01 汕头市大千高新科技研究中心有限公司 High-strength coating formed by virtue of photo-thermal dual-curing and preparation method thereof
JP6720092B2 (en) 2014-06-23 2020-07-08 カーボン,インコーポレイテッド Method for manufacturing polyurethane three-dimensional object from materials having various curing mechanisms
CN107108841A (en) * 2015-01-14 2017-08-29 科思创德国股份有限公司 Composition for polyurethane-base transparent formed article

Also Published As

Publication number Publication date
WO2018178025A1 (en) 2018-10-04
CN110461898A (en) 2019-11-15
US11555088B2 (en) 2023-01-17
CN110461898B (en) 2022-04-01
US20210087324A1 (en) 2021-03-25
EP3381959A1 (en) 2018-10-03
EP3601398A1 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
EP3538584B1 (en) Method of making an object from a precursor and use of a resin which can be radically crosslinked by means of an additive production method
EP3601398B1 (en) Dual cure method using thermally latent tin catalysts
EP1634903B1 (en) Preparation of novel radiation-curable binders
EP3548522B1 (en) Method of making an object from a precursor and use of a resin which can be radically crosslinked by means of an additive production method
EP2218746B1 (en) Method for producing particularly reactive and low viscosity allophanates with actinically hardenable groups and use of same to produce particularly scratch-proof coatings
EP1842867B1 (en) Method for manufacturing polyurethane prepolymers containing allophanate with increased durability and temperable via actinic radiation
EP1742976B1 (en) Low-viscosity allophanates having actinically hardenable groups
EP1634901B1 (en) Low-viscosity allophanates having actinically hardenable groups
EP2031003B1 (en) Method for producing low viscosity allophanates with actinically hardenable groups
EP1634902B1 (en) Low-viscosity allophanates having actinically hardenable groups
EP1634906B1 (en) Preparation of radiation curable binders
WO2005092943A1 (en) Production of novel radiation-hardening binding agents
DE102005011231A1 (en) Special allophanates containing modified polyurethanes
EP3645598A1 (en) Additive production process with a thermoplastic radically cross-linkable construction material
EP3626201A1 (en) 3d-printed orthodontic dental splint made of cross-linked polymers
EP3707188B1 (en) Method of making an object and use of a radically crosslinkable resin by means of an additive production method
EP3638725B1 (en) Additive production method using amines for post-curing
DE102012217549A1 (en) Low-monomer NCO prepolymers and their use
WO2023161345A1 (en) Use of specific catalysts for the preparation of polyurethane coatings
EP4001334A1 (en) Use of special catalysts for the preparation of polyurethane coatings

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191028

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210129

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1386982

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018005009

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210828

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210729

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210830

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018005009

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210828

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220326

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220326

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230221

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230228

Year of fee payment: 6

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20231005 AND 20231011

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502018005009

Country of ref document: DE

Owner name: STRATASYS, INC., EDEN PRAIRIE, US

Free format text: FORMER OWNER: COVESTRO DEUTSCHLAND AG, 51373 LEVERKUSEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240220

Year of fee payment: 7

Ref country code: GB

Payment date: 20240221

Year of fee payment: 7