EP3592981B1 - Method for operating a variable-speed circulation pump and circulation pump for carrying out the method - Google Patents

Method for operating a variable-speed circulation pump and circulation pump for carrying out the method Download PDF

Info

Publication number
EP3592981B1
EP3592981B1 EP18711026.7A EP18711026A EP3592981B1 EP 3592981 B1 EP3592981 B1 EP 3592981B1 EP 18711026 A EP18711026 A EP 18711026A EP 3592981 B1 EP3592981 B1 EP 3592981B1
Authority
EP
European Patent Office
Prior art keywords
pump
variable
operating
physical
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18711026.7A
Other languages
German (de)
French (fr)
Other versions
EP3592981A1 (en
Inventor
Martin Eckl
Patrick Hauck
Stefan Laue
Joachim Schullerer
Gerd Ebelt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KSB SE and Co KGaA
Original Assignee
KSB SE and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KSB SE and Co KGaA filed Critical KSB SE and Co KGaA
Publication of EP3592981A1 publication Critical patent/EP3592981A1/en
Application granted granted Critical
Publication of EP3592981B1 publication Critical patent/EP3592981B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0088Testing machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0066Control, e.g. regulation, of pumps, pumping installations or systems by changing the speed, e.g. of the driving engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/02Stopping of pumps, or operating valves, on occurrence of unwanted conditions
    • F04D15/0245Stopping of pumps, or operating valves, on occurrence of unwanted conditions responsive to a condition of the pump
    • F04D15/0272Stopping of pumps, or operating valves, on occurrence of unwanted conditions responsive to a condition of the pump the condition being wear or a position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/605Mounting; Assembling; Disassembling specially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/669Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for liquid pumps

Definitions

  • the invention relates to a method for operating a variable-speed circulating pump, in particular a heating circulating pump.
  • the DE 10 2009 005154 A1 describes a device for connecting an electromotive drive unit to a pump unit and a lantern, which encompasses mechanical connecting means for driving the pump unit by the drive unit and to which the drive unit is connected at least indirectly on one end face and the pump unit on the axially opposite end face, wherein at or Monitoring electronics for detecting the operating state of the pump unit and/or the drive unit are arranged in the lantern.
  • the EP 2 927 501 A1 describes a method for determining and evaluating the installation orientation of a device, in which the current installation orientation of the device is detected by at least one position detector assigned to the device and a control and/or evaluation unit is used to check whether the device may be operated in the detected position orientation.
  • the EP 2 918 836 A1 describes a method for providing at least one piece of information about a pump unit on a controllable display of an electronic system of the pump unit, the information being represented as at least one graphic code and/or encoded as a character string, the graphic code being a matrix code or a flickering bar code .
  • the cause of an excessively high noise level during pump operation can be the pump itself or the chosen installation variant of the pump within the heating circuit.
  • Typical circulating pumps allow several different installation variants in order to have better flexibility with regard to the conditions and space conditions at the installation site. For the fitter, however, it is hardly recognizable in advance which installation variant is the best in terms of operating volume. In the worst case, the operating vibration of the pump falls on the natural frequency of the pump and pipe system, which leads to a significant increase in noise emissions. In this case, changing the installation variant can help.
  • the object of the present invention is therefore to indicate a method for detecting an unfavorable installation variant.
  • variable-speed circulating pump in particular a heating circulating pump
  • a heating circulating pump to expand the pump control with a corresponding routine for detecting an unfavorable installation variant, after which at least one physical pump operating variable is detected by sensors and immediately or is compared indirectly against at least one stored reference value.
  • the result of the comparison can be used to evaluate the installation variant, in particular to determine whether the installation variant is disadvantageous in terms of noise emissions during pump operation.
  • the circulation pump is typically a centrifugal pump.
  • An indirect comparison includes exemplary embodiments according to which the measured variable is first processed further and at least one variable derived therefrom is compared with a suitable reference variable.
  • any physical variable that allows a characterization of the pump behavior i.e. the noise emission
  • Negative effects were already shown in the introduction, which can lead to an unforeseeable increase in noise emissions, in particular the coincidence of the natural frequency of the pump and pipeline system with the operating vibration of the pump. Accordingly, physical quantities that allow a statement to be made with regard to the operating vibration of the pump are particularly suitable.
  • the determination of an acceleration value is proposed, in particular the acceleration of the conveyed medium and/or the acceleration of the driven pump impeller and/or the acceleration of the pump housing.
  • the acceleration value should be recorded as close as possible to the impeller.
  • the acceleration values can be measured using an integrated acceleration sensor in the circulation pump, which is preferably located on the pump housing in the immediate vicinity of the impeller.
  • the metrological detection of the physical pump performance variable used can either take place continuously during pump operation or, however, be limited to a definable measurement interval, possibly with measurement repetitions at random or periodic intervals.
  • the pump controller can issue a visual and/or acoustic signal to inform the end user or fitter of the problems with the installation variant, ideally in combination with a suggestion for a alternative better installation variant.
  • the recorded value of the pump operating variable is initially processed further.
  • the oscillation behavior of the physical operating variable is determined on the basis of the measured physical pump operating variable. To do this, it is necessary for the pump operating variable to be recorded over a certain period of time in order to ultimately be able to draw conclusions about the oscillation behavior of the variable.
  • the vibration behavior is obtained, for example, by means of Fast Fourier Transformation (FFT) from the time profile of the measured acceleration value.
  • FFT Fast Fourier Transformation
  • At least one variable characterizing the determined vibration behavior is compared with a suitable reference value of the characteristic variable stored in the pump controller in order to evaluate the installation variant.
  • the amplitude and/or the frequency of the vibration determined is/are proposed as the characterizing variable. It is particularly preferred in this connection if the vibration amplitude is compared to a reference amplitude and the end user is informed of the non-optimal installation variant if the detected amplitude is higher by a specific amount than the reference amplitude.
  • the reference value or values depend on the current operating point of the pump.
  • the current operating point of a circulating pump is defined by the point of intersection between the system characteristic and the control characteristic of the pump. Since the noise development of the pump depends to a large extent on the selected operating point, proposed according to the invention to define assigned individual reference values for a large number of operating points and to keep them ready in the pump control.
  • the pump control selects the appropriate reference value depending on the currently adjusted operating point and directly or indirectly compares the current measured values with the selected reference value.
  • One or more suitable reference values are generated in advance, ideally during pump development.
  • a reference pump is used within a test field in different installation variants.
  • the reference variable for different operating points is measured and saved for each installation variant. Subsequently, the reference values of those installation variants are selected as final reference values that show the lowest noise emissions in the test bench.
  • the present object is also achieved by a circulating pump, in particular a heating circulating pump, with a variable-speed pump drive and a pump controller, which is suitable for carrying out the method according to the present invention. Consequently, the same advantages and properties result for the circulating pump as have already been explained in detail in advance using the method according to the invention. For this reason, a repeated description is dispensed with.
  • the circulation pump is typically a centrifugal pump.
  • the pump can preferably include at least one acceleration sensor; another sensor that allows the acceleration value to be recorded indirectly is also conceivable.
  • the present invention describes a method for detecting an unfavorable installation variant of a heating circulating pump 10. This method is implemented in the pump control and requires that the pump 10 has an acceleration sensor 11 that detects the acceleration of the pump housing as close as possible to the pump impeller.
  • the pump structure is shown schematically in figure 1 implied.
  • FIG 1 schematically shows the connection of the circulation pump 10 to a building wall 1.
  • the installation site is shown here as a spring-damper system 12.
  • the type of installation has an influence on the stiffness and damper parameters and thus changes the natural frequency and the associated amplitude.
  • the actual implementation of the procedure is based on two preparatory steps.
  • an optimal installation variant is defined.
  • different installation variants are implemented in the test field during the development phase and the vibration behavior and acoustics are recorded at several operating points.
  • one of the variants is evaluated as optimal based on the measurement data.
  • the characteristic values detected by acceleration sensor 11 for describing the vibration state (for example amplitude, frequency) are stored in a matrix at a number of operating points.
  • the state of vibration i.e. the amplitude-frequency diagram of the vibration behavior, is obtained from the time profile of the measured acceleration value using Fast Fourier Transformation.
  • This data is ultimately implemented in the local memory of the pump controller.
  • the method according to the invention is then carried out during pump operation.
  • the pump 10 With its acceleration sensor 11, the pump 10 detects the acceleration of the pump housing over time.
  • the characteristic vibration values are determined by means of Fast Fourier Transformation and with the previously considered optimal compared detected reference values. If the oscillation amplitude in the process is significantly higher than the amplitude previously detected as optimal, the pump 10 will recognize this and inform the user. The user can then use this information to optimize the installation variant of the pump 10 if necessary.
  • FIG. 2 shows the frequency-amplitude diagram determined by means of FFT from the signal curve of acceleration sensor 11 for two different installation variants.
  • Installation variant 2 shows a significantly lower vibration amplitude at certain frequencies than installation variant 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Betrieb einer drehzahlvariablen Umwälzpumpe, insbesondere einer Heizungsumwälzpumpe.The invention relates to a method for operating a variable-speed circulating pump, in particular a heating circulating pump.

Die akustischen Eigenschaften einer Heizungsumwälzpumpe spielen beim Kauf eine wichtige Rolle. Eine zu hohe Geräuschentwicklung kann sich im ungünstigsten Fall durch das Rohrleitungssystem bis in die Wohnräume übertragen, was dann vom Endverbraucher als störend empfunden wird. Zudem bedeutet eine zu hohe Geräuschemission der Umwälzpumpe einen signifikanten Wettbewerbsnachteil.The acoustic properties of a heating circulating pump play an important role when purchasing one. In the worst case, too much noise can be transmitted through the pipe system into the living areas, which is then perceived as annoying by the end user. In addition, excessive noise emissions from the circulating pump represent a significant competitive disadvantage.

Die DE 10 2009 005154 A1 beschreibt eine Vorrichtung zur Verbindung einer elektromotorischen Antriebseinheit mit einer Pumpeneinheit und einer Laterne, welche mechanische Verbindungsmittel zum Antreiben der Pumpeneinheit durch die Antriebseinheit umgreift und an die sich an einer Stirnseite die Antriebseinheit und an der axial gegenüberliegenden Stirnseite die Pumpeneinheit zumindest mittelbar anschließt, wobei an oder in der Laterne eine Überwachungselektronik zur Erfassung des Betriebszustandes der Pumpeneinheit und/oder der Antriebseinheit angeordnet ist.the DE 10 2009 005154 A1 describes a device for connecting an electromotive drive unit to a pump unit and a lantern, which encompasses mechanical connecting means for driving the pump unit by the drive unit and to which the drive unit is connected at least indirectly on one end face and the pump unit on the axially opposite end face, wherein at or Monitoring electronics for detecting the operating state of the pump unit and/or the drive unit are arranged in the lantern.

Die EP 2 927 501 A1 beschreibt ein Verfahren zur Ermittlung und Bewertung der Einbauorientierung einer Einrichtung, bei dem die aktuelle Einbauorientierung der Einrichtung durch wenigstens einen der Einrichtung zugeordneten Lagedetektor erfasst und mittels einer Steuer- und/oder Auswerteeinheit überprüft wird, ob die Einrichtung in der erfassten Lageorientierung betrieben werden darf.the EP 2 927 501 A1 describes a method for determining and evaluating the installation orientation of a device, in which the current installation orientation of the device is detected by at least one position detector assigned to the device and a control and/or evaluation unit is used to check whether the device may be operated in the detected position orientation.

Die EP 2 918 836 A1 beschreibt ein Verfahren zur Bereitstellung zumindest einer Information eines Pumpenaggregats auf einer ansteuerbaren Anzeige einer Elektronik des Pumpenaggregats, wobei die Information als wenigstens ein grafischer Code und/oder als Zeichenkette codiert dargestellt wird, wobei der grafische Code ein Matrixcode oder ein flackernder Strich- oder Balkencode ist.the EP 2 918 836 A1 describes a method for providing at least one piece of information about a pump unit on a controllable display of an electronic system of the pump unit, the information being represented as at least one graphic code and/or encoded as a character string, the graphic code being a matrix code or a flickering bar code .

Die Ursache für einen zu hohen Lärmpegel während des Pumpenbetriebs kann an der Pumpe selbst oder aber an der gewählten Einbauvariante der Pumpe innerhalb des Heizkreislaufs liegen. Typische Umwälzpumpen gestatten mehrere unterschiedliche Einbauvarianten, um eine bessere Flexibilität im Hinblick auf die Gegebenheiten und Platzverhältnisse am Montageort zu haben. Für den Monteur ist es jedoch vorab kaum erkennbar, welche Einbauvariante hinsichtlich der Betriebslautstärke die Beste ist. Im ungünstigsten Fall fällt die Betriebsschwingung der Pumpe auf die Eigenfrequenz des Systems aus Pumpe und Rohrleitungen, was zu einer deutlichen Zunahme der Geräuschemission führt. Abhilfe kann in diesem Fall die Änderung der Einbauvariante schaffen.The cause of an excessively high noise level during pump operation can be the pump itself or the chosen installation variant of the pump within the heating circuit. Typical circulating pumps allow several different installation variants in order to have better flexibility with regard to the conditions and space conditions at the installation site. For the fitter, however, it is hardly recognizable in advance which installation variant is the best in terms of operating volume. In the worst case, the operating vibration of the pump falls on the natural frequency of the pump and pipe system, which leads to a significant increase in noise emissions. In this case, changing the installation variant can help.

Wünschenswert ist in diesem Zusammenhang eine automatische Erkennung einer nicht optimalen Einbauvariante. Die Aufgabe der vorliegenden Erfindung besteht folglich darin, ein Verfahren zum Erkennen einer ungünstigen Einbauvariante aufzuzeigen.In this context, it is desirable to have automatic detection of a non-optimal installation variant. The object of the present invention is therefore to indicate a method for detecting an unfavorable installation variant.

Gelöst wird diese Aufgabe durch ein Verfahren gemäß den Merkmalen des Anspruchs 1. Vorteilhafte Ausgestaltungen des Verfahrens sind Gegenstand der abhängigen Ansprüche.This object is achieved by a method according to the features of claim 1. Advantageous refinements of the method are the subject matter of the dependent claims.

Erfindungsgemäß wird für eine drehzahlvariable Umwälzpumpe, insbesondere eine Heizungsumwälzpumpe, vorgeschlagen, die Pumpensteuerung um eine entsprechende Routine zur Erkennung einer ungünstigen Einbauvariante zu erweitern, wonach wenigstens eine physikalische Pumpenbetriebsgröße sensorisch erfasst wird und unmittelbar oder mittelbar gegen wenigstens einen hinterlegten Referenzwert verglichen wird. Das Vergleichsergebnis kann für eine Bewertung der Einbauvariante herangezogen werden, insbesondere dahingehend, ob die Einbauvariante nachteilig im Hinblick auf die Geräuschemission im Pumpenbetrieb ist. Bei der Umwälzpumpe handelt es sich typischerweise um eine Kreiselpumpe.According to the invention, it is proposed for a variable-speed circulating pump, in particular a heating circulating pump, to expand the pump control with a corresponding routine for detecting an unfavorable installation variant, after which at least one physical pump operating variable is detected by sensors and immediately or is compared indirectly against at least one stored reference value. The result of the comparison can be used to evaluate the installation variant, in particular to determine whether the installation variant is disadvantageous in terms of noise emissions during pump operation. The circulation pump is typically a centrifugal pump.

Dabei besteht die Möglichkeit eines unmittelbaren Vergleichs, bei dem die gemessene physikalische Pumpenbetriebsgröße unmittelbar gegen eine entsprechende Referenzgröße verglichen wird. Ein mittelbarer Vergleich umfasst Ausführungsbeispiele, gemäß denen die Messgröße zunächst weiter verarbeitet und wenigstens eine daraus abgeleitete Größe gegen eine passende Referenzgröße verglichen wird.There is the possibility of a direct comparison, in which the measured physical pump operating variable is directly compared to a corresponding reference variable. An indirect comparison includes exemplary embodiments according to which the measured variable is first processed further and at least one variable derived therefrom is compared with a suitable reference variable.

Als geeignete Pumpenbetriebsgröße eignet sich jede physikalische Größe, die eine Charakterisierung des Pumpenverhaltens, d.h. der Geräuschemission zulässt. In der Einleitung wurden bereits negative Effekte aufgezeigt, die zu einer unvorhersehbaren Zunahme der Geräuschemission führen können, insbesondere das Aufeinanderfallen der Eigenfrequenz des Systems aus Pumpe und Rohrleitung mit der Betriebsschwingung der Pumpe. Besonders geeignet sind demzufolge physikalische Größen, die eine Aussage hinsichtlich der Betriebsschwingung der Pumpe zulassen. Als konkretes Beispiel wird die Bestimmung eines Beschleunigungswertes vorgeschlagen, insbesondere die Beschleunigung des geförderten Fördermediums und/oder die Beschleunigung des angetriebenen Pumpenlaufrades und/oder die Beschleunigung des Pumpengehäuses. Der Beschleunigungswert sollte in möglichst unmittelbarer Nähe zum Laufrad erfasst werden. Messbar sind die Beschleunigungswerte mittels eines integrierten Beschleunigungssensors der Umwälzpumpe, der vorzugsweise am Pumpengehäuse in unmittelbarer Nähe zum Laufrad sitzt.Any physical variable that allows a characterization of the pump behavior, i.e. the noise emission, is suitable as a suitable pump operating variable. Negative effects were already shown in the introduction, which can lead to an unforeseeable increase in noise emissions, in particular the coincidence of the natural frequency of the pump and pipeline system with the operating vibration of the pump. Accordingly, physical quantities that allow a statement to be made with regard to the operating vibration of the pump are particularly suitable. As a concrete example, the determination of an acceleration value is proposed, in particular the acceleration of the conveyed medium and/or the acceleration of the driven pump impeller and/or the acceleration of the pump housing. The acceleration value should be recorded as close as possible to the impeller. The acceleration values can be measured using an integrated acceleration sensor in the circulation pump, which is preferably located on the pump housing in the immediate vicinity of the impeller.

Die messtechnische Erfassung der verwendeten physikalischen Pumpenbetriebsgröße kann entweder kontinuierlich während des Pumpenbetriebs erfolgen oder aber jedoch auf ein definierbares Messintervall beschränkt sein, gegebenenfalls mit Messwiederholungen in zufälligen oder periodischen Abständen.The metrological detection of the physical pump performance variable used can either take place continuously during pump operation or, however, be limited to a definable measurement interval, possibly with measurement repetitions at random or periodic intervals.

Bei einer Abweichung der gemessenen Pumpenbetriebsgröße von einem entsprechenden zugeordneten Referenzwert, insbesondere um einen definierbaren Betrag, kann die Pumpensteuerung eine visuelle und/oder akustische Signalisierung vornehmen, um den Endverbraucher oder Monteur auf die Problematik der Einbauvariante hinzuweisen, idealerweise in Kombination mit einem Vorschlag für eine alternative bessere Einbauvariante.If the measured pump operating variable deviates from a correspondingly assigned reference value, in particular by a definable amount, the pump controller can issue a visual and/or acoustic signal to inform the end user or fitter of the problems with the installation variant, ideally in combination with a suggestion for a alternative better installation variant.

Denkbar ist es auch, dass der erfasste Wert der Pumpenbetriebsgröße zunächst weiter verarbeitet wird. Insbesondere ist es vorstellbar, dass anhand der gemessenen physikalischen Pumpenbetriebsgröße das Schwingungsverhalten der physikalischen Betriebsgröße ermittelt wird. Dazu ist es notwendig, dass die Pumpenbetriebsgröße über einen bestimmten Zeitraum erfasst wurde, um letztendlich auf das Schwingungsverhalten der Größe schließen zu können. Das Schwingungsverhalten wird bspw. mittels Fast Fourier Transformation (FFT) aus dem Zeitverlauf des gemessenen Beschleunigungswertes gewonnen.It is also conceivable that the recorded value of the pump operating variable is initially processed further. In particular, it is conceivable that the oscillation behavior of the physical operating variable is determined on the basis of the measured physical pump operating variable. To do this, it is necessary for the pump operating variable to be recorded over a certain period of time in order to ultimately be able to draw conclusions about the oscillation behavior of the variable. The vibration behavior is obtained, for example, by means of Fast Fourier Transformation (FFT) from the time profile of the measured acceleration value.

Vorstellbar ist es in diesem Zusammenhang ebenfalls, dass wenigstens eine, das ermittelte Schwingungsverhalten charakterisierende Größe gegen einen passenden, in der Pumpensteuerung hinterlegten Referenzwert der charakteristischen Größe verglichen wird, um die Bewertung der Einbauvariante vorzunehmen. Als charakterisierende Größe wird sinnvollerweise die Amplitude und/oder die Frequenz der ermittelten Schwingung vorgeschlagen. Besonders bevorzugt ist es in diesem Zusammenhang, wenn die Schwingungsamplitude gegen eine Referenzamplitude verglichen wird und eine Signalisierung hinsichtlich der nicht optimalen Einbauvariante an den Endverbraucher dann erfolgt, falls die erfasste Amplitude um einen bestimmten Betrag höher ist als die Referenzamplitude.In this context, it is also conceivable that at least one variable characterizing the determined vibration behavior is compared with a suitable reference value of the characteristic variable stored in the pump controller in order to evaluate the installation variant. The amplitude and/or the frequency of the vibration determined is/are proposed as the characterizing variable. It is particularly preferred in this connection if the vibration amplitude is compared to a reference amplitude and the end user is informed of the non-optimal installation variant if the detected amplitude is higher by a specific amount than the reference amplitude.

Erfindungsgemäß sind der oder die Referenzwerte abhängig vom aktuellen Betriebspunkt der Pumpe. Der aktuelle Betriebspunkt einer Umwälzpumpe ist durch den Schnittpunkt zwischen Anlagenkennlinie und Regelkennlinie der Pumpe definiert. Da die Geräuschentwicklung der Pumpe maßgeblich vom gewählten Betriebspunkt abhängt, wird erfindungsgemäß vorgeschlagen, für eine Vielzahl an Betriebspunkten zugeordnete individuelle Referenzwerte zu definieren und in der Pumpensteuerung bereitzuhalten. Die Pumpensteuerung wählt dann in Abhängigkeit des aktuellen eingeregelten Betriebspunktes den passenden Referenzwert aus und vergleicht aktuelle Messwerte mittelbar oder unmittelbar mit dem ausgewählten Referenzwert.According to the invention, the reference value or values depend on the current operating point of the pump. The current operating point of a circulating pump is defined by the point of intersection between the system characteristic and the control characteristic of the pump. Since the noise development of the pump depends to a large extent on the selected operating point, proposed according to the invention to define assigned individual reference values for a large number of operating points and to keep them ready in the pump control. The pump control then selects the appropriate reference value depending on the currently adjusted operating point and directly or indirectly compares the current measured values with the selected reference value.

Ein oder mehrere geeignete Referenzwerte werden im Vorfeld, idealerweise während der Pumpenentwicklung, erzeugt. Eine Referenzpumpe wird dazu innerhalb eines Testfeldes in unterschiedlichen Einbauvarianten eingesetzt. Für jede Einbauvariante wird die Referenzgröße für unterschiedliche Betriebspunkte gemessen und gespeichert. Im Nachgang werden die Referenzwerte derjenigen Einbauvariante als finale Referenzwerte ausgewählt, die im Prüfstand die geringste Geräuschemission zeigen.One or more suitable reference values are generated in advance, ideally during pump development. A reference pump is used within a test field in different installation variants. The reference variable for different operating points is measured and saved for each installation variant. Subsequently, the reference values of those installation variants are selected as final reference values that show the lowest noise emissions in the test bench.

Neben dem erfindungsgemäßen Verfahren wird die vorliegende Aufgabe auch durch eine Umwälzpumpe, insbesondere eine Heizungsumwälzpumpe, mit einem drehzahlvariablen Pumpenantrieb und einer Pumpensteuerung gelöst, die zur Ausführung des Verfahrens gemäß der vorliegenden Erfindung geeignet ist. Demzufolge ergeben sich für die Umwälzpumpe dieselben Vorteile und Eigenschaften wie sie bereits im Vorfeld anhand des erfindungsgemäßen Verfahrens ausführlich dargelegt werden. Auf eine wiederholende Beschreibung wird aus diesem Grund verzichtet. Bei der Umwälzpumpe handelt es sich typischerweise um eine Kreiselpumpe.In addition to the method according to the invention, the present object is also achieved by a circulating pump, in particular a heating circulating pump, with a variable-speed pump drive and a pump controller, which is suitable for carrying out the method according to the present invention. Consequently, the same advantages and properties result for the circulating pump as have already been explained in detail in advance using the method according to the invention. For this reason, a repeated description is dispensed with. The circulation pump is typically a centrifugal pump.

Gemäß einer vorteilhaften Ausführungsform kann die Pumpe vorzugsweise wenigstens einen Beschleunigungssensor umfassen, denkbar ist auch ein anderweitiger Sensor, der eine mittelbare Erfassung des Beschleunigungswertes gestattet.According to an advantageous embodiment, the pump can preferably include at least one acceleration sensor; another sensor that allows the acceleration value to be recorded indirectly is also conceivable.

Weitere Vorteile und Eigenschaften der Erfindung sollen im Folgenden anhand eines konkreten Ausführungsbeispiels näher erläutert werden. Es zeigen:

Figur 1:
eine schematische Darstellung der Einbausituation einer Umwälzpumpe und
Figur 2:
ein Signaldiagramm des erfassten Beschleunigungswertes.
Further advantages and properties of the invention are to be explained in more detail below using a specific exemplary embodiment. Show it:
Figure 1:
a schematic representation of the installation situation of a circulation pump and
Figure 2:
a signal diagram of the recorded acceleration value.

Die vorliegende Erfindung beschreibt ein Verfahren zum Erkennen einer ungünstigen Einbauvariante einer Heizungsumwälzpumpe 10. Dieses Verfahren wird in die Pumpensteuerung implementiert und setzt voraus, dass die Pumpe 10 über einen Beschleunigungssensor 11 verfügt, der die Beschleunigung des Pumpengehäuses möglichst nahe am Pumpenlaufrad erfasst. Der Pumpenaufbau ist schematisch in Figur 1 angedeutet.The present invention describes a method for detecting an unfavorable installation variant of a heating circulating pump 10. This method is implemented in the pump control and requires that the pump 10 has an acceleration sensor 11 that detects the acceleration of the pump housing as close as possible to the pump impeller. The pump structure is shown schematically in figure 1 implied.

Ferner zeigt die Figur 1 schematisch die Anbindung der Umwälzpumpe 10 an einer Gebäudewand 1. Die Einbaustelle ist hier als Feder-Dämpfer-System 12 dargestellt. Die Art des Einbaus hat einen Einfluss auf die Steifigkeits- und Dämpferparameter und verändert dadurch die Eigenfrequenz sowie die zugehörige Amplitude.Furthermore, the figure 1 schematically shows the connection of the circulation pump 10 to a building wall 1. The installation site is shown here as a spring-damper system 12. The type of installation has an influence on the stiffness and damper parameters and thus changes the natural frequency and the associated amplitude.

Die eigentliche Umsetzung des Verfahrens basiert auf zwei vorbereitenden Schritten. Im ersten Vorbereitungsschritt wird eine optimale Einbauvariante definiert. Dafür werden während der Entwicklungsphase unterschiedliche Einbauvarianten im Prüffeld umgesetzt und jeweils das Schwingungsverhalten und die Akustik in mehreren Betriebspunkten erfasst.The actual implementation of the procedure is based on two preparatory steps. In the first preparatory step, an optimal installation variant is defined. For this purpose, different installation variants are implemented in the test field during the development phase and the vibration behavior and acoustics are recorded at several operating points.

Im zweiten Vorbereitungsschritt wird anhand der Messdaten eine der Varianten als optimal bewertet. Für diese Variante werden die vom Beschleunigungssensor 11 detektierten charakteristischen Werte zur Beschreibung des Schwingungszustandes (zum Beispiel Amplitude, Frequenz) bei mehreren Betriebspunkten in einer Matrix hinterlegt. Der Schwingungszustand, d.h. das Amplitude-Frequenz-Diagramm des Schwingungsverhaltens, wird mittels Fast Fourier Transformation aus dem Zeitverlauf des gemessenen Beschleunigungswertes gewonnen.In the second preparatory step, one of the variants is evaluated as optimal based on the measurement data. For this variant, the characteristic values detected by acceleration sensor 11 for describing the vibration state (for example amplitude, frequency) are stored in a matrix at a number of operating points. The state of vibration, i.e. the amplitude-frequency diagram of the vibration behavior, is obtained from the time profile of the measured acceleration value using Fast Fourier Transformation.

Diese Daten werden letztendlich im lokalen Speicher der Pumpensteuerung implementiert. Die Ausführung des erfindungsgemäßen Verfahrens erfolgt dann während des Pumpenbetriebs. Die Pumpe 10 erfasst mit ihrem Beschleunigungssensor 11 die Beschleunigung des Pumpengehäuses über die Zeit. Mittels Fast Fourier Transformation werden die charakteristischen Schwingungswerte bestimmt und mit den zuvor als optimal detektierten Referenzwerten verglichen. Falls die Schwingungsamplitude im Prozess deutlich höher ist als die zuvor als optimal detektierte Amplitude, wird die Pumpe 10 dies erkennen und dem Anwender mitteilen. Diese Information kann der Anwender dann nutzen, um die Einbauvariante der Pumpe 10 gegebenenfalls zu optimieren.This data is ultimately implemented in the local memory of the pump controller. The method according to the invention is then carried out during pump operation. With its acceleration sensor 11, the pump 10 detects the acceleration of the pump housing over time. The characteristic vibration values are determined by means of Fast Fourier Transformation and with the previously considered optimal compared detected reference values. If the oscillation amplitude in the process is significantly higher than the amplitude previously detected as optimal, the pump 10 will recognize this and inform the user. The user can then use this information to optimize the installation variant of the pump 10 if necessary.

Ein Beispiel für das Schwingungsverhalten unterschiedlicher Einbauvarianten ist in Figur 2 dargestellt, die das mittels FFT aus dem Signalverlauf des Beschleunigungssensors 11 ermittelte Frequenz-Amplituden-Diagramm für zwei unterschiedliche Einbauvarianten zeigt. Einbauvariante 2 zeigt bei bestimmten Frequenzen eine deutlich geringere Schwingungsamplitude als Einbauvariante 1. Hier ist der Einfluss der in Figur 1 dargestellten Steifigkeits- und Dämpferparameter der jeweiligen Einbauvariante (gemäß Figur 1) auf den Frequenzgang des im Betrieb vom Beschleunigungssensor erfassten Messwertes zu erkennen.An example of the vibration behavior of different installation variants is shown in FIG. 2, which shows the frequency-amplitude diagram determined by means of FFT from the signal curve of acceleration sensor 11 for two different installation variants. Installation variant 2 shows a significantly lower vibration amplitude at certain frequencies than installation variant 1. Here the influence of the in figure 1 Stiffness and damping parameters shown for the respective installation variant (according to figure 1 ) on the frequency response of the measured value recorded by the acceleration sensor during operation.

Claims (9)

  1. Method for operating a variable-rotational-speed circulation pump, in particular a heating circulation pump,
    characterized in that
    the pump controller detects at least one physical pump operating variable by sensor means and directly or indirectly compares said at least one physical pump operating variable with at least one stored reference value in order to assess the installation variant of the pump, wherein the reference value(s) is/are dependent on the present operating point of the pump, and, for a multiplicity of operating points, associated individual reference values are kept available in the pump controller, wherein the pump controller uses, in a manner dependent on the present operating point, the appropriate reference value for the comparison with the measurement value.
  2. Method according to Claim 1, characterized in that the physical operating variable is the experienced acceleration of the delivered delivery medium and/or of the driven pump impeller and/or of the pump casing, wherein the acceleration is ideally detected by means of at least one integrated acceleration sensor of the circulation pump during pump operation.
  3. Method according to either of the preceding claims, characterized in that the physical pump operating variable is detected continuously or periodically or within a definable measurement interval.
  4. Method according to one of the preceding claims, characterized in that, in the event of a deviation of the measured pump operating variable from the at least one reference value, visual or acoustic signalling by the pump controller is realized in order to indicate to the user a non-optimum installation position.
  5. Method according to one of the preceding claims, characterized in that the pump controller determines the vibrational behaviour of the physical pump operating variable from the measured physical pump operating variable, in particular by means of a fast Fourier transform.
  6. Method according to Claim 5, characterized in that at least one variable characterizing the vibrational behaviour is compared with a corresponding reference value, stored in the pump controller, of the characteristic variable for the assessment of the installation variant.
  7. Method according to Claim 6, characterized in that the variables/variable characterizing the vibration are/is the amplitude and/or frequency of the vibration.
  8. Method according to Claim 7, characterized in that the vibration amplitude is compared with a reference amplitude, and signalling is realized if the detected amplitude is greater than the reference amplitude by a specific amount.
  9. Circulation pump, in particular heating circulation pump, having a variable-rotational-speed pump drive, having a sensor for detecting at least one physical pump operating variable, and having a pump controller for carrying out the method according to one of the preceding claims, wherein the pump preferably comprises at least one acceleration sensor.
EP18711026.7A 2017-03-10 2018-02-28 Method for operating a variable-speed circulation pump and circulation pump for carrying out the method Active EP3592981B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017203959.0A DE102017203959A1 (en) 2017-03-10 2017-03-10 Method for operating a variable-speed circulating pump and circulating pump for process execution
PCT/EP2018/054887 WO2018162290A1 (en) 2017-03-10 2018-02-28 Method for operating a variable-speed circulation pump and circulation pump for carrying out the method

Publications (2)

Publication Number Publication Date
EP3592981A1 EP3592981A1 (en) 2020-01-15
EP3592981B1 true EP3592981B1 (en) 2022-06-08

Family

ID=61628301

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18711026.7A Active EP3592981B1 (en) 2017-03-10 2018-02-28 Method for operating a variable-speed circulation pump and circulation pump for carrying out the method

Country Status (7)

Country Link
EP (1) EP3592981B1 (en)
JP (1) JP2020510153A (en)
CN (1) CN110382874B (en)
BR (1) BR112019018597B1 (en)
DE (1) DE102017203959A1 (en)
RU (1) RU2760277C2 (en)
WO (1) WO2018162290A1 (en)

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5956897A (en) * 1982-08-12 1984-04-02 シ−メンス・アクチエンゲゼルシヤフト Method and device for circulating heat medium of piping sys-tem for room heater
JP2575709Y2 (en) * 1992-01-06 1998-07-02 株式会社ガスター Equipment with circulation pump
RU2068553C1 (en) * 1994-08-29 1996-10-27 Костюков Владимир Николаевич Method of evaluation of technical condition of centrifugal pumping set by vibration of body
JP3929204B2 (en) * 1999-06-09 2007-06-13 株式会社荏原製作所 Circulation pump unit
JP2003271241A (en) * 2002-03-13 2003-09-26 Mitsubishi Heavy Ind Ltd Operation supervisory and controlling system
JP3624289B2 (en) * 2002-04-26 2005-03-02 株式会社日立製作所 Pump vibration monitoring method and apparatus
JP2004288427A (en) * 2003-03-20 2004-10-14 Mitsubishi Electric Corp Supporting state evaluation method of color selection electrode mechanism and manufacturing method of color cathode-ray tube using this
DE10334817A1 (en) * 2003-07-30 2005-03-10 Bosch Rexroth Ag Pump failure detection unit uses Fourier analysis of pressure sensor measurement to determine if characteristic frequency exceeds reference amplitude
DE202005004382U1 (en) 2005-03-16 2005-06-09 Rempen, Thomas Household machine has wear indicator showing remaining life for mechanical and electronic components such as rotating parts
DE102006034478A1 (en) * 2006-07-26 2008-01-31 Oerlikon Leybold Vacuum Gmbh Method for determining a statement about a state of a turbomolecular pump and a turbomolecular pump
US8676387B2 (en) * 2008-10-13 2014-03-18 General Electric Company Methods and systems for determining operating states of pumps
DE102009005154A1 (en) * 2009-01-15 2010-07-22 Wilo Se Device for connecting an electromotive drive unit with a pump unit
CN201908851U (en) * 2010-12-31 2011-07-27 清华大学 Magnetic suspension molecular pump system
DE102011083033A1 (en) * 2011-09-20 2013-03-21 Robert Bosch Gmbh Method for assessing an injection behavior of at least one injection valve of an internal combustion engine and operating method for internal combustion engine
DE102014003247A1 (en) * 2014-03-12 2015-09-17 Wilo Se Method for providing at least one information on a pump unit
DE102014104747A1 (en) 2014-04-03 2015-10-08 Pfeiffer Vacuum Gmbh Method and system for determining and evaluating the installation orientation of a device
CN103907590B (en) * 2014-04-04 2015-09-23 江苏大学 A kind of defining method of spray arm drag-line installation site
CN104978450B (en) * 2015-04-27 2019-03-29 中国直升机设计研究所 A kind of helicopter vibration active control position preferred method
DE202015003927U1 (en) 2015-05-29 2015-07-13 Oerlikon Leybold Vacuum Gmbh Control electronics for a vacuum pump and vacuum pump

Also Published As

Publication number Publication date
CN110382874B (en) 2021-09-17
RU2760277C2 (en) 2021-11-23
BR112019018597A2 (en) 2020-04-07
JP2020510153A (en) 2020-04-02
DE102017203959A1 (en) 2018-09-13
WO2018162290A1 (en) 2018-09-13
CN110382874A (en) 2019-10-25
BR112019018597B1 (en) 2023-04-04
RU2019131529A (en) 2021-04-12
RU2019131529A3 (en) 2021-06-10
EP3592981A1 (en) 2020-01-15

Similar Documents

Publication Publication Date Title
WO2010133425A1 (en) Method and device for determining an operating point of a work machine
EP1564411A1 (en) Method for detecting operation errors of a pump aggregate
DE112016003854T5 (en) Rope deterioration detector, elevator apparatus with such rope deterioration detector, and rope deterioration detection method
WO2016012354A1 (en) Method and system for identifying a leakage in a compressed-air system, in particular in a pneumatic brake system of a vehicle
EP3592981B1 (en) Method for operating a variable-speed circulation pump and circulation pump for carrying out the method
EP3592980B1 (en) Method for operating a circulation pump and circulation pump for carrying out the method
EP3791073B1 (en) Method for determining a fluid delivery parameter
DE102005003591A1 (en) Secondary air diagnosis of an internal combustion engine
EP3740682B1 (en) Method of self-diagnosing the mechanical or hydraulic status of a centrifugal pump
EP1333276B1 (en) Method and apparatus for detection of cavitation
DE102005019063B3 (en) Operating process, for eccentric screw pump, involves prior testing of pump, storing damage frequency picture and comparing with overall frequency picture in operation
DE102015006414A1 (en) Method for determining a loading state of an air filter
EP2988280A1 (en) Device and method for adjusting the loudness of a signal tone for signalling a state of a household appliance and household appliance
EP3310614B1 (en) Method and device for operating a seat ventilation device, seat ventilation device
WO2013087153A1 (en) Method and device for monitoring a fluid-conveying system
EP1792242B1 (en) Method and device for determining an error state in a rotating compressor
DE102007051045A1 (en) Arrangement with vacuum pump and method
WO2017067716A1 (en) Method for operating a domestic appliance, with identification of vibration of a bearing device, and domestic appliance
WO2021223898A1 (en) Method and system for detecting tyre abnormalities
DE102019113206A1 (en) Method and control device for diagnosing a component of a vehicle
EP1843131B1 (en) Method and device for graphic representation of dynamic processes
DE102017111214A1 (en) Sensor device and method for monitoring a structure
DE102020212751A1 (en) Method and device for training and operating a classifier for use in an electric or pneumatic screwdriver
DE102015204392A1 (en) Domestic appliance for treating laundry
DE102019118589A1 (en) Stand monitoring

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190913

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220105

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1497103

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220615

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018009866

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220908

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220909

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221010

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221008

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018009866

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

26N No opposition filed

Effective date: 20230310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240226

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240215

Year of fee payment: 7

Ref country code: GB

Payment date: 20240221

Year of fee payment: 7

Ref country code: CH

Payment date: 20240301

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240227

Year of fee payment: 7

Ref country code: FR

Payment date: 20240227

Year of fee payment: 7