EP3587615A1 - Method and device for forming layers or bodies in space - Google Patents

Method and device for forming layers or bodies in space Download PDF

Info

Publication number
EP3587615A1
EP3587615A1 EP18000567.0A EP18000567A EP3587615A1 EP 3587615 A1 EP3587615 A1 EP 3587615A1 EP 18000567 A EP18000567 A EP 18000567A EP 3587615 A1 EP3587615 A1 EP 3587615A1
Authority
EP
European Patent Office
Prior art keywords
powder
aerosol
substrate
carrier gas
reservoir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP18000567.0A
Other languages
German (de)
French (fr)
Inventor
Marc Häming
Ralf Moos
Jaroslaw Kita
Philipp Nieke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Airbus Defence and Space SAS
Original Assignee
Airbus Defence and Space GmbH
Airbus Defence and Space SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Defence and Space GmbH, Airbus Defence and Space SAS filed Critical Airbus Defence and Space GmbH
Priority to EP18000567.0A priority Critical patent/EP3587615A1/en
Publication of EP3587615A1 publication Critical patent/EP3587615A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/137Spraying in vacuum or in an inert atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/082Coating starting from inorganic powder by application of heat or pressure and heat without intermediate formation of a liquid in the layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/01Selective coating, e.g. pattern coating, without pre-treatment of the material to be coated

Definitions

  • the invention relates to a method and a device for producing layers or bodies in space, in particular on the earth's moon, another non-earthly celestial body (planets, meteorites) or an artificial satellite (e.g. a space station in an orbit in space).
  • a non-earthly celestial body planes, meteorites
  • an artificial satellite e.g. a space station in an orbit in space
  • a sintering temperature above 1000 ° C. is usually necessary for the production of ceramic layers or bodies.
  • An integration or combination of ceramics with low-melting plastics, glasses or metals is hardly or not possible [1].
  • Another difficulty is represented by ceramics with a high covalent bond fraction. In this case, the ceramic may decompose prior to compression, which means that it is not possible or only with considerable effort to produce dense components or layers [2].
  • aerosol and vacuum-based layer deposition is only known for terrestrial applications [3].
  • the process has recently been referred to in German as “aerosol-based cold deposition” or “aerosol deposition method”, or “ADM” for short.
  • ADM aerosol deposition method
  • layers that are dense at room temperature can be deposited directly from the starting powders onto a wide variety of substrate materials. These are characterized both by firm adherence to the substrate, high tightness and material properties that are similar to those of the starting powders used.
  • a device for aerosol-based cold deposition of powders according to the prior art are, as in Fig. 1 a vacuum chamber 1, an evacuation device 2, an aerosol generating device 3 and a nozzle apparatus 4.
  • Publications regarding the system structure can be found, for example, in the US 7,553,376 B2 ,
  • the principle of a system for aerosol-based cold separation of powders is based on the fact that a vacuum is created within the vacuum chamber 1 via an evacuation device 2 [5].
  • the aerosol-generating device 3 mixes a gas, for example oxygen or nitrogen, with particles 5 and thus produces a powder aerosol [4].
  • the particles are transported from the aerosol generating device 3 into the vacuum chamber 1 via a connecting line 4.1.
  • the connecting line 4.1 opens into a nozzle 4.2, in which the particles 5 are further accelerated by changing the cross section.
  • the particles 5 meet a moving substrate 6 and form a dense scratch-resistant film [1] there, even though no temperature treatment is necessary.
  • the invention is based on the object of a method for producing layers or bodies in space (ie under different atmospheric and / or gravity and / or temperature conditions compared to the conditions on earth, in particular on the earth's moon, another non-earthly celestial body , e.g. planets, meteorites, or an artificial satellite (e.g. a space station in an orbit in space), which can be operated economically there.
  • a method for producing layers or bodies in space ie under different atmospheric and / or gravity and / or temperature conditions compared to the conditions on earth, in particular on the earth's moon, another non-earthly celestial body , e.g. planets, meteorites, or an artificial satellite (e.g. a space station in an orbit in space), which can be operated economically there.
  • the carrier gas reservoir A1 is preferably a closed container and stores any gas or gas mixture in the pressure range from 0.5 to 300 bar. Hydrogen, helium, nitrogen or oxygen is preferably used as such a carrier gas for the aerosol to be generated.
  • the carrier gas reservoir A1 advantageously contains at least one pressure sensor and at least one controllable outlet valve (actuator).
  • the high pressure gas line A1.1 connects the gas outlet valve to the gas pressure and gas flow regulator A2.
  • the latter A2 has at least one gas inlet and one gas outlet.
  • the gas pressure and gas flow regulator A2 have a plurality of gas outlets which are connected to different subunits of the coating device according to the invention. A specific exemplary embodiment of this is shown in FIG Fig. 6 and 7 explained.
  • Gas pressure and gas flow controller A2 advantageously includes a pressure sensor or a flow sensor and a finely adjustable outlet valve (actuator) for each gas outlet, which has a specific gas pressure or gas flow in the range 0.001 to 100 bar or 0.01 to 1000 NI / min (standard liters per minute ) generated.
  • the gas pressure and gas flow regulator A2 is connected to the aerosol generating unit A3 via at least one gas low pressure line A2.1.
  • the aerosol generating device A3 mixes the carrier gas with powder from the powder reservoir A7 and thus generates a powder aerosol.
  • the powder reservoir A7 advantageously comprises a gas-tight lock A7.3 for loading with powder from outside the device and a powder level sensor.
  • the powder feed line A7.1 leads powder from the powder reservoir A7 to the aerosol generating unit A3.
  • the low-pressure aerosol line A3.1 directs the generated aerosol from the aerosol-generating unit A3 into the nozzle A4.
  • the aerosol is accelerated by changing the cross section and directed onto the substrate A5. There it forms a scratch-resistant functional layer.
  • the device according to the invention optionally comprises a plurality of individual nozzles (see Fig. 11 ) with controllable change in cross-section.
  • the nozzle shape can be made convergent, divergent or convergent-divergent.
  • the substrate A5 is directly connected to the surroundings of the device according to the invention, in which there is a reduced pressure, typically vacuum (vacuum here is to be understood as a pressure p ⁇ 0.1 bar).
  • the position of the substrate A5 can be regulated in three dimensions using an XYZ traversing mechanism.
  • the substrate shield A6 separates the sample area from the other elements of the device according to the invention.
  • the nozzle is directly connected to the substrate shield A6.
  • the substrate shield A6 can also comprise a feedthrough or opening through which the nozzle A4 is inserted.
  • the thermal control unit A8 comprises an electronic regulating and control unit and an electronic data memory.
  • the thermal control unit A8 is connected to a temperature sensor and heating element network A8.1, which in each case comprises at least one temperature sensor and one heating element including electrical supply lines per subunit A1 - A5.
  • the electronic data memory stores temperature values and control parameters, which are saved and read out via a direct data connection to the command and data processing system A9.
  • the command and data processing system A9 contains an electronic regulation and control unit as well as an electronic data memory, in which control and regulation parameters are stored and read out via an external data interface A9.2.
  • the signals of all sensors of subunits A1, A2, A3, A4, A5, A7, A8, A10 are transmitted to A9 via data network A9.1 and all control parameters from A9 to actuators of subunits A1, A2, A3, A4, A5, A7, A8, A10 transmitted.
  • the electrical energy store A10 supplies the assemblies A1, A2, A3, A4, A5, A6, A7, A8, A9, A10 with an electrical direct voltage via the electrical supply network A10.1.
  • the electrical energy storage device A10 is charged through the external interface A10.2.
  • the frame structure A11 forms a torsionally rigid installation space in which all assemblies A1 - A10 as well as thermal shielding and insulation material are integrated and fastened.
  • the substrate can, as in Fig. 2 shown, placed freely in the area.
  • the structure shown also enables integration as a payload in an aircraft or spacecraft.
  • the lock A7.3 in the powder container A7 enables loading in a non-terrestrial environment. This enables the direct processing of found resources during a space mission, for example for the production of protective or functional layers, and an improved layer formation. In addition, this enables the processing of extremely dry powders such as moon dust and / or meteroite dust and / or dust on other planets that absorb moisture during terrestrial processing. This results in a better layer formation during the extraterrestrial processing of these powders.
  • the Fig. 3 shows a further embodiment of the coating device according to the invention.
  • the substrate shield A6 which completely surrounds the substrate.
  • the substrate shield A6 is semi-permeable in sections (dash-dotted line).
  • semi-permeable means that the substrate shielding is permeable to the carrier gas, but impermeable to the powder. This could be achieved, for example, by microperforation.
  • the substrate shield delimits the inside of the device from the inside of the substrate shield (solid line), the substrate shield is impermeable to prevent gas from entering the device.
  • the substrate shield A6 can be designed as a flexible and / or stretchable and / or foldable and / or rigid membrane or film which is connected to and connected to the nozzle apparatus.
  • the substrate shield A6 which completely surrounds the substrate, is impermeable. Both carrier gas and powder particles cannot penetrate through the substrate shield and are held within the substrate shield.
  • the substrate shield A6 is designed as a rigid partition and can be coupled to a pump A14 in order to transport the carrier gas back to the carrier gas reservoir A1 via lines A6.2 and A14.1 for gas recovery.
  • a semipermeable filter device A6.1 can advantageously be present (impenetrable for powder), so that no powder can penetrate into the pump A14.
  • the impermeable substrate shield does not allow an exchange with the environment, the same pressure level prevails inside and outside the substrate shield, namely the local ambient pressure (typically vacuum).
  • the impermeable So substrate shielding does not have to be designed as a pressure-resistant container.
  • the substrate shield is designed as a flexible bellows, which interacts with a lifting mechanism for contraction of the substrate shield. This enables the carrier gas to be returned to the carrier gas reservoir via an adjustable line A6.2.
  • a separate filter device can also be used here (see A6.1 in Fig. 4 ) be integrated to retain the powder within the substrate shield during gas recovery.
  • An opening mechanism can optionally be integrated in the substrate shield in order to be able to remove the excess powder after gas recovery.
  • the aerosol generating unit A3 comprises an aerosol generating nozzle A3.3, which has a gas inlet with a reduced cross-section to the interior of the nozzle, a powder inlet with a reduced cross-section to the interior of the nozzle and an aerosol outlet with an enlarged cross-section to the nozzle outlet.
  • the powder reservoir A7 is connected to the powder inlet of the aerosol generating nozzle A3.3.
  • the gas low pressure line A2.1 is connected to the gas inlet of the aerosol generating nozzle A3.3.
  • the aerosol generating unit A3 has a second gas supply A3.2 which is connected to the aerosol outlet of the aerosol generating nozzle A3.3.
  • the pressure difference between the gas inlet and the aerosol outlet of the aerosol generating nozzle A3.3 and between the inlet and outlet of the nozzle A4 can thus be regulated.
  • the powder reservoir A7 has a separate gas supply A7.2, which is used to regulate the powder entry into the aerosol generating nozzle A3.3.
  • Fig. 7 shows a further embodiment of a device according to the invention, in which the substrate is arranged directly behind the outlet cross section of the aerosol-generating device. Compared to the device after Fig. 6 the aerosol line A3.1 and the nozzle 4 and the second gas supply A3.2 are omitted here.
  • the aerosol generating unit can be used directly to accelerate the aerosol and thus for spraying, without the need for an additional nozzle. Due to the smaller number of components, a more compact design with lower mass can be achieved with this version.
  • Fig. 8 a further embodiment of an aerosol generating unit is shown.
  • the interior of the aerosol-producing unit A3 is provided with a semi-permeable partition A3.4 for improved gas swirling. This is located in the carrier gas stream, preferably transversely to its direction of flow.
  • the Partition A3.4 is impermeable to particles and can be porous. A frit can advantageously be used.
  • Fig. 9 shows a further embodiment of a device according to the invention, with a rotating element A3.5, for example a brush, which promotes the transport of the powder from the powder reservoir A7 into the aerosol-generating unit A3.
  • the rotating element A3.5 is advantageously arranged in the area of the outlet of the powder reservoir A7 in the transition to the aerosol-generating unit.
  • the powder can advantageously be present in compact form in the powder reservoir A7 and can be moved towards the rotating element by means of a feed device.
  • Fig. 10 shows a further embodiment of a device according to the invention with a plurality of powder reservoirs A7 connected in parallel, each feeding the same aerosol-generating unit A3 (via the collecting line A7.1). Valves A7.4 on the individual powder reservoirs A7 can each be switched on or off individually.
  • FIG. 11 shows a further embodiment of a device according to the invention with a plurality of nozzles A4 and a plurality of aerosol-generating units A3. Any number of nozzles A4 can be positioned in front of the substrate A5. Each nozzle apparatus A4 is fed by a separate aerosol generating unit A3. Each of these aerosol-generating units is advantageously connected to a separate powder reservoir. In a further embodiment (not shown), a plurality of nozzles can also be fed by only one aerosol-generating unit. In a further advantageous embodiment, the nozzles are positioned so close to one another that their outlet cross sections practically form a common outlet cross section.
  • Fig. 12 shows a further embodiment of a device according to the invention with a coating mask A12 positioned in front of the substrate A5.
  • the mask A12 can also be designed to be movable.
  • Fig. 13 shows a further embodiment of a device according to the invention with a substrate changer A5.1.
  • Several substrates A5 are arranged on the substrate changer.
  • the substrate changer 5.1 is, for example, rotatable (turret version). In the example shown, it has a cross section in the form of a regular pentagon, so that five substrates can be applied, which can be coated alternately over time.
  • the substrate changer is designed in such a way that it or the individual substrates can be decoupled and transferred to a transport device, e.g. for subsequent on-site analytical investigations or return to Earth.
  • substrates can be positioned on a table that can be moved in XYZ.
  • a substrate ring can also be used.
  • a substrate belt, on which a plurality of substrates are arranged, is used, which is guided over a roller device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Nozzles (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung von Schichten oder Korpern an einem Ort, der gegenüber den Verhältnissen auf der Erde einen geringeren natürlichen Umgebungsdruck aufweist, wobei aus einem Trägergas und einem Pulver ein Pulver-Aerosol erzeugt wird, welches unter dem Einfluss einer Druckdifferenz auf ein Substrat (A5) gelenkt wird und dort schichtweise abgelagert wird, wobei am Ort der Ablagerung der Umgebungsdruck des Ortes herrscht. Eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens ist ebenfalls Gegenstand der Patentanmeldung.The invention relates to a method for the production of layers or bodies at a location which has a lower natural ambient pressure compared to the conditions on earth, a powder aerosol being generated from a carrier gas and a powder, which under the influence of a pressure difference on a Substrate (A5) is directed and is deposited there in layers, the ambient pressure of the location prevailing at the location of the deposition. A device for carrying out the method according to the invention is also the subject of the patent application.

Description

Technisches GebietTechnical field

Die Erfindung betrifft ein Verfahren sowie eine Vorrichtung zur Herstellung von Schichten oder Körpern im Weltraum, insbesondere auf dem Erdmond, einem anderen nicht-irdischen Himmelskörper (Planeten, Meteoriten) oder einem künstlichen Satelliten (z.B. einer Raumstation in einem Orbit im Weltraum).The invention relates to a method and a device for producing layers or bodies in space, in particular on the earth's moon, another non-earthly celestial body (planets, meteorites) or an artificial satellite (e.g. a space station in an orbit in space).

Technischer HintergrundTechnical background

Gewöhnlich ist für die Herstellung von keramischen Schichten oder Körpern eine Sintertemperatur oberhalb von 1000 °C notwendig. In Folge dessen ist eine Integration bzw. Kombination von Keramiken mit niedrigschmelzenden Kunststoffen, Gläsern oder Metallen kaum oder gar nicht möglich [1]. Eine weitere Schwierigkeit stellen zudem Keramiken mit einem hohen kovalenten Bindungsanteil dar. Hierbei kann eine Zersetzung der Keramik vor einer Verdichtung auftreten, wodurch eine Herstellung dichter Bauteile bzw. Schichten nicht oder nur unter erheblichem Aufwand möglich ist [2].A sintering temperature above 1000 ° C. is usually necessary for the production of ceramic layers or bodies. As a result, an integration or combination of ceramics with low-melting plastics, glasses or metals is hardly or not possible [1]. Another difficulty is represented by ceramics with a high covalent bond fraction. In this case, the ceramic may decompose prior to compression, which means that it is not possible or only with considerable effort to produce dense components or layers [2].

Unter Bedingungen im Weltraum (insbesondere auf dem Erdmond, einem anderen nicht-irdischen Himmelskörper, z.B. Planeten, Meteoriten oder einem künstlichen Satelliten, z.B. einer Raumstation in einem Orbit im Weltraum) ergeben sich nicht nur zusätzliche umgebungsbedingte Probleme sondern man wird auch naturgemäß auf solche Ausgangsmaterialien angewiesen sein, die man vor Ort vorfindet. Es werden also Verfahren benötigt, die möglichst mit derartigen Materialien kompatibel sind, so dass aufwändige Prozesse zur Vorbehandlung oder Umwandlung der vorgefundenen Materialien entbehrlich sind.Under conditions in space (especially on the earth's moon, another non-terrestrial celestial body, e.g. planets, meteorites or an artificial satellite, e.g. a space station in an orbit in space), not only do additional environmental problems arise, but naturally such materials are also used that you will find on site. Methods are therefore required that are as compatible as possible with such materials, so that complex processes for pretreating or converting the materials found are unnecessary.

Darüber hinaus sind solche Verfahren anzustreben, die hinsichtlich Masse der zur Durchführung benötigten Apparaturen sowie hinsichtlich des Energieverbrauchs optimiert sind.In addition, methods are to be aimed at that are optimized with regard to the mass of the equipment required for carrying them out and with regard to energy consumption.

Ausschließlich für terrestrische Anwendungen bekannt ist das Verfahren einer aerosol- und vakuumbasierten Schichtdeposition [3]. Das Verfahren wird in jüngster Zeit im Deutschen auch als "aerosolbasierte Kaltabscheidung" oder "Aerosol-Depositions-Methode", kurz "ADM" bezeichnet. Hierbei können bei Raumtemperatur dichte Schichten direkt aus den Ausgangspulvern auf verschiedenste Substratmaterialien abgeschieden werden. Diese zeichnen sich sowohl durch eine feste Anhaftung auf dem Substrat, hohe Dichtheit als auch durch im Vergleich zu den eingesetzten Ausgangspulvern ähnlichen Materialeigenschaften aus.The method of aerosol and vacuum-based layer deposition is only known for terrestrial applications [3]. The process has recently been referred to in German as "aerosol-based cold deposition" or "aerosol deposition method", or "ADM" for short. Here, layers that are dense at room temperature can be deposited directly from the starting powders onto a wide variety of substrate materials. These are characterized both by firm adherence to the substrate, high tightness and material properties that are similar to those of the starting powders used.

Die Grundlage des Verfahrens besteht darin, dass in einer entsprechenden Vorrichtung (siehe Fig. 1) Partikel 5 beschleunigt und auf ein zu beschichtendes Substrat 6 gelenkt werden. Die hohe kinetische Energie der Partikel 5 führt beim Aufprall auf das Substrat 6 mutmaßlich [1] sowohl zu einem lokalen Druck- und Temperaturanstieg als auch zu einer plastischen Deformation und zum Aufbrechen der Partikel. Dies sorgt wiederum für eine entsprechende Haftung sowohl zwischen den Partikeln als auch zwischen Partikeln und Substrat. Der Vorgang der Schichtabscheidung beginnt nach derzeitigem Wissensstand [1] mit einer Ausbildung einer Verankerungsschicht auf dem Substrat 6 und setzt sich mit einem kontinuierlichen Aufbau und der Verdichtung der Schicht fort. In der englischsprachigen Literatur wird der Vorgang dieser Schichtbildung auch häufig mit dem Begriff "Room Temperature Impact Consolidation" (RTIC) bezeichnet [1].The basis of the method is that in a corresponding device (see Fig. 1 ) Particles 5 are accelerated and directed onto a substrate 6 to be coated. The high kinetic energy of the particles 5 presumably leads [1] to a local pressure and temperature increase as well as to a plastic deformation and to the breaking of the particles upon impact with the substrate 6. This in turn ensures appropriate adhesion between the particles as well as between the particles and the substrate. According to the current state of knowledge [1], the process of layer deposition begins with the formation of an anchoring layer on the substrate 6 and continues with the continuous build-up and densification of the layer. In English-language literature, the process of this layer formation is often referred to as "Room Temperature Impact Consolidation" (RTIC) [1].

Stand der Technik bezüglich des Aufbaus einer Vorrichtung zur aerosolbasierten Kaitabscheidung von Pulvern unter Normalbedingungen (terrestrische Anwendungen)State of the art with regard to the construction of a device for aerosol-based powder separation under normal conditions (terrestrial applications)

Die Hauptkomponenten einer Vorrichtung zur aerosolbasierten Kaltabscheidung von Pulvern nach dem Stand der Technik sind, wie in Fig. 1 dargestellt, eine Vakuumkammer 1, eine Evakuierungsvorrichtung 2, eine aerosolerzeugende Vorrichtung 3 und eine Düsenapparatur 4. Veröffentlichungen bezüglich des Anlagenaufbaus finden sich z.B. in der US 7,553,376 B2 . Das Prinzip einer Anlage zur aerosolbasierten Kaltabscheidung von Pulvern basiert darauf, dass über eine Evakuierungsvorrichtung 2 innerhalb der Vakuumkammer 1 ein Vakuum erzeugt wird [5]. Die aerosolerzeugende Vorrichtung 3 vermischt ein Gas, z.B. Sauerstoff oder Stickstoff, mit Partikeln 5 und erzeugt so ein Pulver-Aerosol [4]. Als Folge des auftretenden Druckabfalls zwischen aerosolerzeugender Vorrichtung 3 und Vakuumkammer 1 werden die Partikeln von der aerosolerzeugenden Vorrichtung 3 über eine Verbindungsleitung 4.1 in die Vakuumkammer 1 transportiert. Die Verbindungsleitung 4.1 mündet in einer Düse 4.2, in der durch Querschnittsänderung die Partikel 5 weiter beschleunigt werden. In der Vakuumkammer 1 treffen die Partikel 5 auf ein bewegtes Substrat 6 und bilden dort einen dichten kratzfesten Film [1], und das obwohl keine Temperaturbehandlung notwendig ist.The main components of a device for aerosol-based cold deposition of powders according to the prior art are, as in Fig. 1 a vacuum chamber 1, an evacuation device 2, an aerosol generating device 3 and a nozzle apparatus 4. Publications regarding the system structure can be found, for example, in the US 7,553,376 B2 , The principle of a system for aerosol-based cold separation of powders is based on the fact that a vacuum is created within the vacuum chamber 1 via an evacuation device 2 [5]. The aerosol-generating device 3 mixes a gas, for example oxygen or nitrogen, with particles 5 and thus produces a powder aerosol [4]. As a result of the pressure drop occurring between the aerosol generating device 3 and the vacuum chamber 1, the particles are transported from the aerosol generating device 3 into the vacuum chamber 1 via a connecting line 4.1. The connecting line 4.1 opens into a nozzle 4.2, in which the particles 5 are further accelerated by changing the cross section. In the vacuum chamber 1, the particles 5 meet a moving substrate 6 and form a dense scratch-resistant film [1] there, even though no temperature treatment is necessary.

Nachteile des Standes der TechnikDisadvantages of the prior art

  • Hohe Masse der Vakuumkammer 1 und der Evakuierungsvorrichtung 2High mass of the vacuum chamber 1 and the evacuation device 2
  • Hoher Energiebedarf durch die Evakuierungsvorrichtung 2.High energy requirement through the evacuation device 2.
Zugrundeliegende AufgabeUnderlying task

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung von Schichten oder Körpern im Weltraum (d.h. unter gegenüber den Verhältnissen auf der Erde veränderten Atmosphären- und/oder Schwerkraft- und/oder Temperaturbedingungen, insbesondere auf dem Erdmond, einem anderen nicht-irdischen Himmelskörper, z.B. Planeten, Meteoriten, oder einem künstlichen Satelliten, z.B. einer Raumstation in einem Orbit im Weltraum) zu schaffen, das dort wirtschaftlich betrieben werden kann.The invention is based on the object of a method for producing layers or bodies in space (ie under different atmospheric and / or gravity and / or temperature conditions compared to the conditions on earth, in particular on the earth's moon, another non-earthly celestial body , e.g. planets, meteorites, or an artificial satellite (e.g. a space station in an orbit in space), which can be operated economically there.

Diese Aufgabe wird mit dem Verfahren nach Anspruch 1 gelöst. Vorteilhafte Ausführungen sowie eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens sind Gegenstände von weiteren Ansprüchen.This object is achieved with the method according to claim 1. Advantageous embodiments and a device for carrying out the method according to the invention are the subject of further claims.

Vorteile der ErfindungAdvantages of the invention

  • Nutzbarmachung der ADM für nichtterrestrische Anwendungen unter veränderten Atmosphären-, Schwerkraft- und Temperaturbedingungen.Utilization of the ADM for non-terrestrial applications under changed atmospheric, gravity and temperature conditions.
  • Geringere Masse, da Vakuumkammer 1 und Evakuierungsvorrichtung 2 entfälltLower mass, since vacuum chamber 1 and evacuation device 2 are omitted
  • Geringerer Energiebedarf, da Evakuierungsvorrichtung 2 entfälltLower energy consumption, since the evacuation device 2 is omitted
  • Ermöglicht die Integration als Nutzlast in ein Flug- oder RaumfahrzeugAllows integration as a payload in an aircraft or spacecraft
  • Ermöglicht die direkte Verarbeitung von vorgefundenen Ressourcen während einer Raumfahrtmission (auch als "In-Situ Ressource Utilization" bekannt) z.B. zur Herstellung von Schutz- oder Funktionsschichten in großer DickenvariationEnables the direct processing of found resources during a space mission (also known as "in-situ resource utilization") e.g. for the production of protective or functional layers in large thickness variations
  • Ausnutzung bereits in einem Raumfahrzeug oder einer Nutzlast vorhandener Infrastrukturen, wie zum Beispiel Aufnahmeeinrichtungen für Pulver, Gasspeicher, Gasleitungen oder Düsen.Utilization of existing infrastructures already in a spacecraft or a payload, such as receiving devices for powder, gas storage, gas pipes or nozzles.
  • Erfindung ermöglicht erst die Nutzbarmachung von Mondstaub (wie z.B. Regolith) in nachgeschalteten Prozessen.The invention enables moon dust (such as regolith) to be used in downstream processes.
  • Erfindung wandelt Mondstaub und/oder Meteroitenstaub und/oder Asteroidenstaub und/oder Staub auf anderen Planeten in definierte Beschichtungen und 3-dimensionale Strukturen um.Invention converts moon dust and / or meteroite dust and / or asteroid dust and / or dust on other planets into defined coatings and 3-dimensional structures.
  • Vibrationsarmer/-vibrationsfreier Betrieb.Low-vibration / vibration-free operation.
  • Gasrückgewinnung zur Erhöhung der Wirtschaftlichkeit oder zur Verminderung der Kontamination der Atmosphäre durch Fremdgase.Gas recovery to increase efficiency or to reduce contamination of the atmosphere by foreign gases.
  • Die auf dem Mond oder im Weltall typischerweise vorhandene Trockenheit führt zu optimierter Erzeugung des Pulver-Aerosols. Auf der Erde ist oftmals ein Pulver-Handling mittels Glove-Box mit sehr niedriger Feuchte nötig; jegliches Arbeiten unter normaler Feuchte lässt das Pulver Wasser adsorbieren, was das Abscheideergebnis verschlechtert.The dryness typically present on the moon or in space leads to optimized generation of the powder aerosol. On earth, powder handling using a glove box with very low humidity is often necessary; Any work under normal humidity causes the powder to adsorb water, which worsens the separation result.
  • Erzeugung des Pulver-Aerosols unter Bedingungen geringer Gravität gestaltet sich einfacher und effizienter als bei Normalbedingungen auf der Erde.Generation of the powder aerosol under conditions of low gravity is easier and more efficient than under normal conditions on earth.
  • Die am besten geeigneten Gase besitzen eine hohe Schallgeschwindigkeit. Auf dem Mond oder im Weltall (allgemein im Vakuum) bietet sich Wasserstoff als Trägergas an. Bezüglich der Verwendung von Wasserstoff bestehen aufgrund des nicht vorhandenen Sauerstoffs keine Sicherheitsbedenken. Dadurch wird ohne zusätzlichen Aufwand der Einsatz von Wasserstoff als Trägergas mit größter Schallgeschwindigkeit möglich.The most suitable gases have a high speed of sound. On the moon or in space (generally in a vacuum), hydrogen is a suitable carrier gas. There are no safety concerns regarding the use of hydrogen due to the lack of oxygen. This enables the use of hydrogen as carrier gas with the highest speed of sound without additional effort.
  • Das erfindungsgemäße Verfahren kann insbesondere für die Herstellung von keramischen oder metallischen Schichten oder Körpern eingesetzt werden.The method according to the invention can be used in particular for the production of ceramic or metallic layers or bodies.

Die Erfindung wird anhand von konkreten Ausführungsbeispielen unter Bezugnahme auf Figuren näher erläutert. Es zeigen:

  • Fig. 1 eine Prinzipskizze zur terrestrischen Durchführung eines Verfahrens zur aerosolbasierten Kaltabscheidung gemäß Stand der Technik, wie in der Beschreibungseinleitung erläutert;
  • Fig. 2 eine erste Ausführung einer erfindungsgemäßen Vorrichtung zur Herstellung von Schichten oder Körpern im Weltall;
  • Fig. 3 eine weitere Ausführung einer erfindungsgemäßen Vorrichtung, mit einer semipermeablen Substratabschirmung, die das Substrat vollständig umschließt;
  • Fig. 4 eine weitere Ausführung einer erfindungsgemäßen Vorrichtung, mit einer impermeablen Substratabschirmung und Trägergasrückführung;
  • Fig. 5 eine weitere Ausführung einer erfindungsgemäßen Vorrichtung, mit einer impermeablen Substratabschirmung, ausgebildet als Faltenbalg;
  • Fig. 6 eine weitere Ausführung einer erfindungsgemäßen Vorrichtung mit vorteilhafter Aerosolerzeugung;
  • Fig. 7 eine weitere Ausführung einer erfindungsgemäßen Vorrichtung, bei der das Substrat unmittelbar hinter dem Auslassquerschnitt der Aerosol-erzeugenden Vorrichtung angeordnet ist;
  • Fig. 8 eine weitere Ausführung einer erfindungsgemäßen Vorrichtung, bei der die Aerosol-erzeugende Vorrichtung mit einer semipermeablen Trennwand zur verbesserten Gasverwirbelung versehen ist;
  • Fig. 9 eine weitere Ausführung einer erfindungsgemäßen Vorrichtung, mit einem rotierenden Element, das den Transport des Pulvers aus dem Pulverreservoir in die Aerosol-erzeugende Einheit fördert;
  • Fig. 10 eine weitere Ausführung einer erfindungsgemäßen Vorrichtung mit mehreren Pulverreservoiren;
  • Fig. 11 eine weitere Ausführung einer erfindungsgemäßen Vorrichtung mit mehreren Düsen und mehreren Aerosol-erzeugenden Einheiten;
  • Fig. 12 eine weitere Ausführung einer erfindungsgemäßen Vorrichtung mit einer vor dem Substrat angeordneten Beschichtungsmaske;
  • Fig. 13 eine weitere Ausführung einer erfindungsgemäßen Vorrichtung mit einem Substratwechsler.
The invention is explained in more detail on the basis of concrete exemplary embodiments with reference to figures. Show it:
  • Fig. 1 a schematic diagram for the terrestrial implementation of a method for aerosol-based cold deposition according to the prior art, as explained in the introduction;
  • Fig. 2 a first embodiment of an apparatus according to the invention for the production of layers or bodies in space;
  • Fig. 3 a further embodiment of a device according to the invention, with a semi-permeable substrate shield which completely surrounds the substrate;
  • Fig. 4 a further embodiment of a device according to the invention, with an impermeable substrate shielding and carrier gas return;
  • Fig. 5 a further embodiment of a device according to the invention, with an impermeable substrate shield, designed as a bellows;
  • Fig. 6 a further embodiment of a device according to the invention with advantageous aerosol generation;
  • Fig. 7 a further embodiment of a device according to the invention, in which the substrate is arranged directly behind the outlet cross section of the aerosol-generating device;
  • Fig. 8 a further embodiment of a device according to the invention, in which the aerosol-producing device is provided with a semi-permeable partition for improved gas swirling;
  • Fig. 9 a further embodiment of a device according to the invention, with a rotating element which promotes the transport of the powder from the powder reservoir into the aerosol-generating unit;
  • Fig. 10 a further embodiment of a device according to the invention with several powder reservoirs;
  • Fig. 11 a further embodiment of a device according to the invention with a plurality of nozzles and a plurality of aerosol-generating units;
  • Fig. 12 a further embodiment of a device according to the invention with a coating mask arranged in front of the substrate;
  • Fig. 13 a further embodiment of a device according to the invention with a substrate changer.

Fig. 2 zeigt eine erste Ausführung der erfindungsgemäßen Vorrichtung. Sie umfasst insbesondere die folgenden Bestandteile:

  • Trägergasreservoir A1 für die Aufnahme des Trägergases für die Aerosolerzeugung;
  • Gasdruck- und Gasflussregler A2 zur Steuerung des Gasdrucks und Gasflusses;
  • Aerosol-erzeugende Einheit A3 zur Erzeugung des Aerosols aus dem Trägergas und einem Pulver;
  • Düsenapparatur A4 zur Beschleunigung des erzeugen Aerosols;
  • fest installierter oder verfahrbarer Substrathalter mit Substrat A5;
  • Substratabschirmung A6, zur Abschirmung des Substrats von den übrigen Elementen der Vorrichtung im Sinne eines mechanischen Schutzes. Diese umschließt in dieser Ausführung das Substrat nicht vollständig, sondern nur teilweise, nämlich in Richtung auf die übrigen Elemente der erfindungsgemäßen Vorrichtung. Das Substrat A5 befindet sich somit frei in der die Vorrichtung umgebenden Atmosphäre;
  • Pulverreservoir A7, in der das Pulver für die Aerosolerzeugung gespeichert wird;
  • Thermische Steuereinheit A8;
  • Kommando- und Datenverarbeitungssystem A9;
  • Elektrischer Energiespeicher A10 zur Strom- und Spannungsversorgung der Vorrichtung;
  • Rahmenstruktur mit thermischem Abschirm- und Isolationsmaterial A11.
Fig. 2 shows a first embodiment of the device according to the invention. In particular, it comprises the following components:
  • Carrier gas reservoir A1 for receiving the carrier gas for aerosol generation;
  • Gas pressure and gas flow regulator A2 for controlling the gas pressure and gas flow;
  • Aerosol generating unit A3 for generating the aerosol from the carrier gas and a powder;
  • Nozzle apparatus A4 to accelerate the aerosol generated;
  • permanently installed or movable substrate holder with substrate A5;
  • Substrate shield A6, for shielding the substrate from the other elements of the device in the sense of mechanical protection. In this embodiment, this does not completely surround the substrate, but only partially, namely in the direction of the other elements of the device according to the invention. The substrate A5 is thus freely in the atmosphere surrounding the device;
  • Powder reservoir A7, in which the powder for aerosol production is stored;
  • Thermal control unit A8;
  • Command and data processing system A9;
  • Electrical energy storage device A10 for supplying current and voltage to the device;
  • Frame structure with thermal shielding and insulation material A11.

Das Trägergasreservoir A1 ist bevorzugt ein geschlossenes Behältnis und speichert ein beliebiges Gas oder Gasgemisch im Druckbereich von 0,5 bis 300 bar. Als ein solches Trägergas für das zu erzeugende Aerosol wird bevorzugt Wasserstoff, Helium, Stickstoff oder Sauerstoff eingesetzt. Das Trägergasreservoir A1 beinhaltet vorteilhaft mindestens einen Drucksensor und mindestens ein steuerbares Auslassventil (Aktuator). Die Hochdruck-Gasleitung A1.1 verbindet das Gasauslassventil mit dem Gasdruck- und Gasflussregler A2. Letzterer A2 weist mindestens einen Gaseinlass und einen Gasauslass auf. Optional kann der Gasdruck- und Gasflussregler A2 mehrere Gasauslässe, die mit verschiedenen Untereinheiten der erfindungsgemäßen Beschichtungsvorrichtung verbunden sind, aufweisen. Ein konkretes Ausführungsbeispiel hierzu wird anhand der Fig. 6 und 7 erläutert.The carrier gas reservoir A1 is preferably a closed container and stores any gas or gas mixture in the pressure range from 0.5 to 300 bar. Hydrogen, helium, nitrogen or oxygen is preferably used as such a carrier gas for the aerosol to be generated. The carrier gas reservoir A1 advantageously contains at least one pressure sensor and at least one controllable outlet valve (actuator). The high pressure gas line A1.1 connects the gas outlet valve to the gas pressure and gas flow regulator A2. The latter A2 has at least one gas inlet and one gas outlet. Optionally, the gas pressure and gas flow regulator A2 have a plurality of gas outlets which are connected to different subunits of the coating device according to the invention. A specific exemplary embodiment of this is shown in FIG Fig. 6 and 7 explained.

Gasdruck- und Gasflussregler A2 umfasst vorteilhaft für jeden Gasauslass einen Drucksensor oder einen Flusssensor und ein feinjustierbares Auslassventil (Aktuator), das einen spezifischen Gasdruck bzw. Gasfluss im Bereich 0,001 bis 100 bar bzw. 0,01 bis 1000 NI / min (Normliter pro Minute) erzeugt. Der Gasdruck- und Gasflussregler A2 ist über mindestens eine Gasniederdruckleitung A2.1 mit der Aerosolerzeugenden Einheit A3 verbunden. Die Aerosol-erzeugende Vorrichtung A3 vermischt das Trägergas mit Pulver aus dem Pulverreservoir A7 und erzeugt so ein Pulveraerosol.Gas pressure and gas flow controller A2 advantageously includes a pressure sensor or a flow sensor and a finely adjustable outlet valve (actuator) for each gas outlet, which has a specific gas pressure or gas flow in the range 0.001 to 100 bar or 0.01 to 1000 NI / min (standard liters per minute ) generated. The gas pressure and gas flow regulator A2 is connected to the aerosol generating unit A3 via at least one gas low pressure line A2.1. The aerosol generating device A3 mixes the carrier gas with powder from the powder reservoir A7 and thus generates a powder aerosol.

Das Pulverreservoir A7 umfasst vorteilhaft eine gasdichte Schleuse A7.3 zur Beladung mit Pulver von außerhalb der Vorrichtung sowie einen Pulverfüllstandssensor. Die Pulverzuleitung A7.1 leitet Pulver vom Pulverreservoir A7 zu der Aerosolerzeugenden Einheit A3. Die Niederdruckaerosolleitung A3.1 leitet das erzeugte Aerosol von der Aerosol-erzeugenden Einheit A3 in die Düse A4. In der Düse A4 wird das Aerosol durch Querschnittsänderung beschleunigt und auf das Substrat A5 geleitet. Es bildet dort eine kratzfeste funktionale Schicht. Optional umfasst die erfindungsgemäße Vorrichtung mehrere Einzeldüsen (siehe Fig. 11) mit steuerbarer Querschnittsänderung. Optional kann die Düsenform konvergent, divergent oder konvergent-divergent ausgeführt sein.The powder reservoir A7 advantageously comprises a gas-tight lock A7.3 for loading with powder from outside the device and a powder level sensor. The powder feed line A7.1 leads powder from the powder reservoir A7 to the aerosol generating unit A3. The low-pressure aerosol line A3.1 directs the generated aerosol from the aerosol-generating unit A3 into the nozzle A4. In the nozzle A4, the aerosol is accelerated by changing the cross section and directed onto the substrate A5. There it forms a scratch-resistant functional layer. The device according to the invention optionally comprises a plurality of individual nozzles (see Fig. 11 ) with controllable change in cross-section. Optionally, the nozzle shape can be made convergent, divergent or convergent-divergent.

Das Substrat A5 steht in direkter Verbindung zur Umgebung der erfindungsgemäßen Vorrichtung, in der ein reduzierter Druck herrscht, typischerweise Vakuum (unter Vakuum soll hier ein Druck p < 0,1 bar verstanden werden). Die Lage des Substrats A5 kann mittels eines XYZ-Verfahrmechanismus in drei Dimensionen geregelt werden. Die Substratabschirmung A6 trennt die probennahe Umgebung von den übrigen Elementen der erfindungsgemäßen Vorrichtung. Die Düse ist unmittelbar an die Substratabschirmung A6 angeschlossen. Alternativ kann die Substratabschirmung A6 auch eine Durchführung oder Öffnung umfassen, durch die die Düse A4 durchgesteckt wird.The substrate A5 is directly connected to the surroundings of the device according to the invention, in which there is a reduced pressure, typically vacuum (vacuum here is to be understood as a pressure p <0.1 bar). The position of the substrate A5 can be regulated in three dimensions using an XYZ traversing mechanism. The substrate shield A6 separates the sample area from the other elements of the device according to the invention. The nozzle is directly connected to the substrate shield A6. Alternatively, the substrate shield A6 can also comprise a feedthrough or opening through which the nozzle A4 is inserted.

Die thermische Steuereinheit A8 umfasst eine elektronische Regel- und Steuereinheit und einen elektronischen Datenspeicher. Die thermische Steuereinheit A8 ist mit einem Temperatursensoren- und Heizelementenetz A8.1 verbunden, das pro Untereinheit A1 - A5 jeweils mindestens einen Temperatursensor und ein Heizelement inklusive elektrischer Zuleitungen umfasst. Der elektronische Datenspeicher speichert Temperaturwerte und Regelparameter, die über eine direkte Datenverbindung zum Kommando- und Datenverarbeitungssystem A9 gespeichert und ausgelesen werden. Die Kommando- und Datenverarbeitungssystem A9 beinhaltet eine elektronische Regel- und Steuereinheit sowie einen elektronischen Datenspeicher, in den über eine externe Datenschnittstelle A9.2 Kontroll- und Regelparameter eingespeichert und ausgelesen werden. Über das Datennetz A9.1 werden die Signale aller Sensoren der Untereinheiten A1, A2, A3, A4, A5, A7, A8, A10 an A9 übertragen und alle Stellparameter von A9 an Aktuatoren der Untereinheiten A1, A2, A3, A4, A5, A7, A8, A10 übertragen. Der elektrische Energiespeicher A10 versorgt die Baugruppen A1, A2, A3, A4, A5, A6, A7, A8, A9, A10 über das elektrische Versorgungsnetz A10.1 mit einer elektrischen Gleichspannung. Der elektrische Energiespeicher A10 wir durch die externe Schnittstelle A10.2 geladen. Die Rahmenstruktur A11 bildet einen verwindungssteifen Bauraum, in dem alle Baugruppen A1 - A10 sowie thermisches Abschirm- und Isolationsmaterial integriert und befestigt sind.The thermal control unit A8 comprises an electronic regulating and control unit and an electronic data memory. The thermal control unit A8 is connected to a temperature sensor and heating element network A8.1, which in each case comprises at least one temperature sensor and one heating element including electrical supply lines per subunit A1 - A5. The electronic data memory stores temperature values and control parameters, which are saved and read out via a direct data connection to the command and data processing system A9. The command and data processing system A9 contains an electronic regulation and control unit as well as an electronic data memory, in which control and regulation parameters are stored and read out via an external data interface A9.2. The signals of all sensors of subunits A1, A2, A3, A4, A5, A7, A8, A10 are transmitted to A9 via data network A9.1 and all control parameters from A9 to actuators of subunits A1, A2, A3, A4, A5, A7, A8, A10 transmitted. The electrical energy store A10 supplies the assemblies A1, A2, A3, A4, A5, A6, A7, A8, A9, A10 with an electrical direct voltage via the electrical supply network A10.1. The electrical energy storage device A10 is charged through the external interface A10.2. The frame structure A11 forms a torsionally rigid installation space in which all assemblies A1 - A10 as well as thermal shielding and insulation material are integrated and fastened.

Vorteile:Benefits:

Da die Beschichtung unter Umgebungsbedingungen (also reduziertem Druck, insbesondere Vakuumbedingungen) stattfindet, fällt kein Aufwand für die Evakuierung des Substrats an. Das Substrat kann, wie in Fig. 2 gezeigt, frei in der Umgebung platziert werden.
Der gezeigte Aufbau ermöglicht außerdem die Integration als Nutzlast in ein Flug- oder Raumfahrzeug. Die Schleuse A7.3 im Pulverbehältnis A7 ermöglicht eine Beladung in nicht-terrestrischer Umgebung. Dies ermöglicht eine direkte Verarbeitung von vorgefundenen Ressourcen während einer Raumfahrtmission z.B. zur Herstellung von Schutz- oder Funktionsschichten und eine verbesserte Schichtbildung. Zusätzlich ermöglicht dies die Verarbeitung von extrem trockenem Pulvern wie z.B. Mondstaub und/oder Meteroitenstaub und/oder Staub auf anderen Planeten, die bei terrestrischer Verarbeitung Feuchtigkeit aufnehmen. Dadurch wird bei der extraterrestrischen Verarbeitung dieser Pulver eine bessere Schichtbildung erzielt.
Since the coating takes place under ambient conditions (i.e. reduced pressure, in particular vacuum conditions), there is no effort for the evacuation of the substrate. The substrate can, as in Fig. 2 shown, placed freely in the area.
The structure shown also enables integration as a payload in an aircraft or spacecraft. The lock A7.3 in the powder container A7 enables loading in a non-terrestrial environment. This enables the direct processing of found resources during a space mission, for example for the production of protective or functional layers, and an improved layer formation. In addition, this enables the processing of extremely dry powders such as moon dust and / or meteroite dust and / or dust on other planets that absorb moisture during terrestrial processing. This results in a better layer formation during the extraterrestrial processing of these powders.

Die Fig. 3 zeigt eine weitere Ausführung der erfindungsgemäßen Beschichtungsvorrichtung. Gegenüber der in der Fig. 2 gezeigten Ausführung umfasst sie eine Substratabschirmung A6, die das Substrat vollständig umgibt. Die Substratabschirmung A6 ist abschnittsweise semipermeabel ausgebildet (strichpunktierte Linie). Semipermeabel bedeutet in diesem Zusammenhang, dass die Substratabschirmung für das Trägergas durchlässig, jedoch undurchlässig für das Pulver ist. Dies könnte z.B. durch eine Mikroperforation realisiert sein. Dort, wo die Substratabschirmung das Innere der Vorrichtung gegen das Innere der Substratabschirmung abgrenzt (durchgezogene Linie) ist die Substratabschirmung impermeabel ausgebildet, um das Eindringen von Gas in die Vorrichtung zu verhindern. Die Substratabschirmung A6 kann als flexible und/oder dehnbare und/oder faltbare und/oder starre Membran oder Folie ausgebildet sein, die mit der Düsenapparatur verbunden und an diese angeschlossen ist.The Fig. 3 shows a further embodiment of the coating device according to the invention. Opposite the one in the Fig. 2 shown embodiment, it comprises a substrate shield A6 which completely surrounds the substrate. The substrate shield A6 is semi-permeable in sections (dash-dotted line). In this context, semi-permeable means that the substrate shielding is permeable to the carrier gas, but impermeable to the powder. This could be achieved, for example, by microperforation. Where the substrate shield delimits the inside of the device from the inside of the substrate shield (solid line), the substrate shield is impermeable to prevent gas from entering the device. The substrate shield A6 can be designed as a flexible and / or stretchable and / or foldable and / or rigid membrane or film which is connected to and connected to the nozzle apparatus.

Vorteile:Benefits:

Keine Freisetzung von Pulverpartikel in die Umgebung der erfindungsgemäßen Beschichtungsvorrichtung. Auffangen und Wiederverwendung von überschüssigen Pulver wird ermöglicht.No release of powder particles into the surroundings of the coating device according to the invention. Collection and reuse of excess powder is made possible.

Bei der in Fig. 4 gezeigten Ausführung ist die Substratabschirmung A6, welche das Substrat vollständig umschließt, impermeabel ausgebildet. Sowohl Trägergas wie auch Pulverpartikel können nicht durch die Substratabschirmung hindurch dringen und werden innerhalb der Substratabschirmung gehalten. Die Substratabschirmung A6 ist als starre Trennwand ausgebildet und kann mit einer Pumpe A14 gekoppelt werden, um das Trägergas zur Gasrückgewinnung über Leitungen A6.2 und A14.1 zurück in das Trägergasreservoir A1 zu transportieren. Vorteilhafterweise kann eine semipermeable Filtervorrichtung A6.1 vorhanden sein (undurchdringlich für Pulver), so dass kein Pulver in die Pumpe A14 dringen kann.At the in Fig. 4 shown embodiment, the substrate shield A6, which completely surrounds the substrate, is impermeable. Both carrier gas and powder particles cannot penetrate through the substrate shield and are held within the substrate shield. The substrate shield A6 is designed as a rigid partition and can be coupled to a pump A14 in order to transport the carrier gas back to the carrier gas reservoir A1 via lines A6.2 and A14.1 for gas recovery. A semipermeable filter device A6.1 can advantageously be present (impenetrable for powder), so that no powder can penetrate into the pump A14.

Obwohl die impermeable Substratabschirmung keinen Austausch mit der Umgebung erlaubt, herrscht innerhalb wie außerhalb der Substratabschirmung dasselbe Druckniveau, nämlich der örtliche Umgebungsdruck (typischerweise Vakuum). Die impermeable Substratabschirmung muss also nicht als druckfestes Behältnis ausgebildet sein.Although the impermeable substrate shield does not allow an exchange with the environment, the same pressure level prevails inside and outside the substrate shield, namely the local ambient pressure (typically vacuum). The impermeable So substrate shielding does not have to be designed as a pressure-resistant container.

Eine weitere Variation der Substratabschirmung ist in der Fig. 5 dargestellt. Hier ist die Substratabschirmung als flexibler Faltenbalg ausgebildet ist, der mit einem Hubmechanismus zur Kontraktion der Substratabschirmung zusammenwirkt. Damit wird der Rücktransport des Trägergases über eine regulierbare Leitung A6.2 in das Trägergasreservoir ermöglicht. Auch hier kann wieder eine separate Filtervorrichtung (siehe A6.1 in Fig. 4) integriert sein, um das Pulver bei der Gasrückgewinnung innerhalb der Substratabschirmung zurückzuhalten.Another variation of the substrate shield is in the Fig. 5 shown. Here, the substrate shield is designed as a flexible bellows, which interacts with a lifting mechanism for contraction of the substrate shield. This enables the carrier gas to be returned to the carrier gas reservoir via an adjustable line A6.2. A separate filter device can also be used here (see A6.1 in Fig. 4 ) be integrated to retain the powder within the substrate shield during gas recovery.

Optional kann in der Substratabschirmung ein Öffnungsmechanismus integriert sein, um nach der Gasrückgewinnung das überschüssige Pulver entfernen zu können.An opening mechanism can optionally be integrated in the substrate shield in order to be able to remove the excess powder after gas recovery.

Vorteile:Benefits:

Keine Freisetzung von Trägergas und Pulverpartikel in die Umgebung der Beschichtungsvorrichtung, beispielsweise zur Verhinderung der Kontamination der Atmosphäre mit Fremdgas. Wiederverwendung des Trägergases für die Aerosolerzeugung wird ermöglicht.No release of carrier gas and powder particles in the vicinity of the coating device, for example to prevent contamination of the atmosphere with foreign gas. Reuse of the carrier gas for aerosol generation is made possible.

Fig. 6 zeigt eine weitere Ausführung einer erfindungsgemäßen Vorrichtung mit vorteilhafter Aerosolerzeugung. In dieser Ausführung umfasst die Aerosolerzeugende Einheit A3 eine Aerosolerzeugungsdüse A3.3, die einen Gaseinlass mit Querschnittsreduzierung zum Düseninneren, einen Pulvereinlass mit Querschnittsreduzierung zum Düseninneren und einem Aerosolauslass mit Querschnittserweiterung zum Düsenausgang aufweist.
Dabei ist das Pulverreservoir A7 ist mit dem Pulvereinlass der Aerosolerzeugungsdüse A3.3 verbunden. Die Gasniederdruckleitung A2.1 ist mit dem Gaseinlass der Aerosolerzeugungsdüse A3.3 verbunden.
Fig. 6 shows a further embodiment of a device according to the invention with advantageous aerosol generation. In this embodiment, the aerosol generating unit A3 comprises an aerosol generating nozzle A3.3, which has a gas inlet with a reduced cross-section to the interior of the nozzle, a powder inlet with a reduced cross-section to the interior of the nozzle and an aerosol outlet with an enlarged cross-section to the nozzle outlet.
The powder reservoir A7 is connected to the powder inlet of the aerosol generating nozzle A3.3. The gas low pressure line A2.1 is connected to the gas inlet of the aerosol generating nozzle A3.3.

Die Aerosol-erzeugende Einheit A3 weist eine zweite Gaszufuhr A3.2 auf, die mit dem Aerosolauslass der Aerosolerzeugungsdüse A3.3 verbunden ist. Damit kann die Druckdifferenz zwischen dem Gaseinlass und dem Aerosolauslass der Aerosolerzeugungsdüse A3.3 sowie zwischen dem Ein- und Auslass der Düse A4 reguliert werden.The aerosol generating unit A3 has a second gas supply A3.2 which is connected to the aerosol outlet of the aerosol generating nozzle A3.3. The pressure difference between the gas inlet and the aerosol outlet of the aerosol generating nozzle A3.3 and between the inlet and outlet of the nozzle A4 can thus be regulated.

Des Weiteren weist das Pulverreservoir A7 eine separate Gaszufuhr A7.2 auf, die zur Regulierung des Pulvereintrags in die Aerosolerzeugungsdüse A3.3 dient.Furthermore, the powder reservoir A7 has a separate gas supply A7.2, which is used to regulate the powder entry into the aerosol generating nozzle A3.3.

Vorteile:Benefits:

Verbesserte Aerosolerzeugung dadurch, dass

  • durch die Querschnittsreduzierung im Inneren der Aerosolerzeugungsdüse A3.3 eine erhöhte Gasgeschwindigkeit und Aerosolverwirbelung erzeugt wird;
  • die Druckdifferenz und Gasgeschwindigkeit zwischen Gaseinlass und Aerosolauslass der Aerosolerzeugungsdüse A3.3 durch die Gaszuleitung A3.2 geregelt und optimiert wird;
  • die Druckdifferenz zwischen Ein- und Auslass der Düse A4 durch die Gaszuleitung A3.2 geregelt und optimiert wird;
  • eine optimale Dosierung des Pulvereintrags vom Pulverreservoir A7 in den Gasstrom innerhalb der Aerosolerzeugungsdüse A3.3 durch die separate Gaszuführung A7.2 eingestellt wird.
Improved aerosol generation by the fact that
  • by reducing the cross section inside the aerosol generating nozzle A3.3, an increased gas velocity and aerosol swirl is generated;
  • the pressure difference and gas velocity between the gas inlet and aerosol outlet of the aerosol generating nozzle A3.3 is regulated and optimized by the gas supply line A3.2;
  • the pressure difference between the inlet and outlet of the nozzle A4 is regulated and optimized by the gas supply line A3.2;
  • an optimal metering of the powder entry from the powder reservoir A7 into the gas flow within the aerosol generating nozzle A3.3 is set by the separate gas supply A7.2.

Fig. 7 zeigt eine weitere Ausführung einer erfindungsgemäßen Vorrichtung, bei der das Substrat unmittelbar hinter dem Auslassquerschnitt der Aerosol-erzeugenden Vorrichtung angeordnet ist. Im Vergleich zu der Vorrichtung nach Fig. 6 entfallen hier die die Aerosolleitung A3.1 und die Düse 4 sowie die zweite Gaszufuhr A3.2. Fig. 7 shows a further embodiment of a device according to the invention, in which the substrate is arranged directly behind the outlet cross section of the aerosol-generating device. Compared to the device after Fig. 6 the aerosol line A3.1 and the nozzle 4 and the second gas supply A3.2 are omitted here.

Vorteil:Advantage:

Die Aerosol-erzeugende Einheit kann direkt zur Beschleunigung des Aerosols und somit zum Sprühen verwendet werden, ohne dass eine zusätzliche Düse nachgeschaltet werden müsste. Durch die geringere Anzahl an Komponenten kann bei dieser Ausführung eine kompaktere Bauweise bei geringerer Masse erreicht werden.The aerosol generating unit can be used directly to accelerate the aerosol and thus for spraying, without the need for an additional nozzle. Due to the smaller number of components, a more compact design with lower mass can be achieved with this version.

Als Alternative zu dem in der Fig. 7 gezeigten Aufbau der Aerosol-erzeugenden Einheit ist in Fig. 8 eine weitere Ausführung einer Aerosol-erzeugenden Einheit dargestellt. Dabei ist die Aerosol-erzeugende Einheit A3 in ihrem Innern mit einer semipermeablen Trennwand A3.4 zur verbesserten Gasverwirbelung versehen. Diese befindet sich im Trägergasstrom, bevorzugt quer zu dessen Strömungsrichtung. Die Trennwand A3.4 ist partikelundurchlässig und kann porös ausgebildet sein. Vorteilhaft kann eine Fritte eingesetzt werden.As an alternative to that in the Fig. 7 Structure of the aerosol generating unit shown is in Fig. 8 a further embodiment of an aerosol generating unit is shown. The interior of the aerosol-producing unit A3 is provided with a semi-permeable partition A3.4 for improved gas swirling. This is located in the carrier gas stream, preferably transversely to its direction of flow. The Partition A3.4 is impermeable to particles and can be porous. A frit can advantageously be used.

Vorteil:Advantage:

Verbesserte Aerosolerzeugung dadurch, dass durch die semipermeable Trennwand A3.4 im Inneren der Aerosol-erzeugenden Einheit A3 eine erhöhte Gas- und somit Aerosolverwirbelung erzeugt wirdImproved aerosol generation in that the semi-permeable partition A3.4 inside the aerosol-generating unit A3 generates an increased gas and thus aerosol swirl

Fig. 9 zeigt eine weitere Ausführung einer erfindungsgemäßen Vorrichtung, mit einem rotierenden Element A3.5, z.B. einer Bürste, das den Transport des Pulvers aus dem Pulverreservoir A7 in die Aerosol-erzeugende Einheit A3 fördert. Das rotierende Element A3.5 ist vorteilhaft im Bereich des Ausgangs des Pulverreservoirs A7 im Übergang zur Aerosol-erzeugenden Einheit angeordnet. Vorteilhaft kann das Pulver in kompaktierter Form im Pulverreservoir A7 vorliegen und mittels einer Vorschubeinrichtung auf das rotierende Element zu bewegt werden. Fig. 9 shows a further embodiment of a device according to the invention, with a rotating element A3.5, for example a brush, which promotes the transport of the powder from the powder reservoir A7 into the aerosol-generating unit A3. The rotating element A3.5 is advantageously arranged in the area of the outlet of the powder reservoir A7 in the transition to the aerosol-generating unit. The powder can advantageously be present in compact form in the powder reservoir A7 and can be moved towards the rotating element by means of a feed device.

Vorteil:Advantage:

Verbesserte Aerosolerzeugung dadurch, dass durch die Bewegung des rotierenden Elements sowie der Scherströmung über dieses eine erhöhte Gas- und Aerosolverwirbelung erzeugt wird.Improved aerosol generation in that the movement of the rotating element and the shear flow over it generate an increased gas and aerosol swirl.

Fig. 10 zeigt eine weitere Ausführung einer erfindungsgemäßen Vorrichtung mit mehreren parallel geschalteten Pulverreservoiren A7, die jeweils dieselbe Aerosolerzeugende Einheit A3 speisen (über die Sammelleitung A7.1). Mittels Ventilen A7.4 an den einzelnen Pulverreservoiren A7 sind diese jeweils individuell zuschaltbar oder abtrennbar. Fig. 10 shows a further embodiment of a device according to the invention with a plurality of powder reservoirs A7 connected in parallel, each feeding the same aerosol-generating unit A3 (via the collecting line A7.1). Valves A7.4 on the individual powder reservoirs A7 can each be switched on or off individually.

Vorteile:Benefits:

Erzeugung von beliebigen Schichtabfolgen auf dem Substrat durch Füllung der Pulverreservoire A7 mit unterschiedlichen Pulvermaterialien und Abscheidung einer einzelnen Schicht der Schichtabfolge aus jeweils einem Pulvermaterial.
Erzeugung von Mischschichten durch Mischung von verschiedenen Pulvermaterialien in der aerosolerzeugenden Vorrichtung A3.
Fig. 11 zeigt eine weitere Ausführung einer erfindungsgemäßen Vorrichtung mit mehreren Düsen A4 und mehreren Aerosol-erzeugenden Einheiten A3.
Es kann eine beliebige Anzahl von Düsen A4 vor dem Substrat A5 positioniert werden.
Jede Düsenapparatur A4 wird dabei durch eine separate Aerosol-erzeugende Einheit A3 gespeist. Vorteilhaft wird jede dieser Aerosol-erzeugenden Einheiten mit einem separaten Pulverreservoir verbunden.
In einer weiteren Ausführung (nicht gezeigt) können auch mehrere Düsen von nur einer Aerosol-erzeugenden Einheit gespeist werden. In einer weiteren vorteilhaften Ausführung werden die Düsen so dicht nebeneinander positioniert, dass ihre Auslassquerschnitte praktisch einen gemeinsamen Auslassquerschnitt bilden.
Generation of any layer sequences on the substrate by filling the powder reservoirs A7 with different powder materials and depositing a single layer of the layer sequence from one powder material each.
Generation of mixed layers by mixing different powder materials in the aerosol generating device A3.
Fig. 11 shows a further embodiment of a device according to the invention with a plurality of nozzles A4 and a plurality of aerosol-generating units A3.
Any number of nozzles A4 can be positioned in front of the substrate A5.
Each nozzle apparatus A4 is fed by a separate aerosol generating unit A3. Each of these aerosol-generating units is advantageously connected to a separate powder reservoir.
In a further embodiment (not shown), a plurality of nozzles can also be fed by only one aerosol-generating unit. In a further advantageous embodiment, the nozzles are positioned so close to one another that their outlet cross sections practically form a common outlet cross section.

Vorteile:Benefits:

Erzeugung von beliebigen Schichtabfolgen auf dem Substrat aus unterschiedlichen Pulvermaterialien durch abwechselnden Betrieb einer einzelnen Düse ohne Cross-Kontamination zwischen verschiedenen Pulvern während der Aerosolerzeugung. Erzeugung beliebig breiter Schichten aus einem oder verschiedenen Aerosolen durch Zusammenschalten beliebig vieler Düseneinheiten wird ermöglicht.Generation of any layer sequences on the substrate from different powder materials by alternating operation of a single nozzle without cross-contamination between different powders during the aerosol generation. Generating layers of any width from one or different aerosols by interconnecting any number of nozzle units is made possible.

Fig. 12 zeigt eine weitere Ausführung einer erfindungsgemäßen Vorrichtung mit einer vor dem Substrat A5 positionierten Beschichtungsmaske A12. Die Maske A12 kann auch beweglich ausgeführt sein. Fig. 12 shows a further embodiment of a device according to the invention with a coating mask A12 positioned in front of the substrate A5. The mask A12 can also be designed to be movable.

Vorteil:Advantage:

Abscheidung von 3-dimensionalen Strukturen auf dem Substrat.Deposition of 3-dimensional structures on the substrate.

Fig. 13 zeigt eine weitere Ausführung einer erfindungsgemäßen Vorrichtung mit einem Substratwechsler A5.1. Auf dem Substratwechsler sind mehrere Substrate A5 angeordnet. Der Substratwechsler 5.1 ist z.B. drehbar ausgeführt (Revolverausführung). Im gezeigten Beispiel weist er einen Querschnitt von der Form eines regelmäßigen Fünfecks auf, so dass fünf Substrate aufgebracht werden können, welche zeitlich im Wechsel beschichtet werden können. Fig. 13 shows a further embodiment of a device according to the invention with a substrate changer A5.1. Several substrates A5 are arranged on the substrate changer. The substrate changer 5.1 is, for example, rotatable (turret version). In the example shown, it has a cross section in the form of a regular pentagon, so that five substrates can be applied, which can be coated alternately over time.

Der Substratwechsler ist in einer besonders vorteilhaften Ausführung dergestalt ausgeführt, dass dieser oder die einzelnen Substrate entkoppelt und einer Transporteinrichtung übergeben werden können z.B. für die anschließende analytische Untersuchungen vor Ort oder die Rücksendung auf die Erde.In a particularly advantageous embodiment, the substrate changer is designed in such a way that it or the individual substrates can be decoupled and transferred to a transport device, e.g. for subsequent on-site analytical investigations or return to Earth.

Alternativ können auch mehrere Substrate auf einem in XYZ-verfahrbaren Tisch positioniert werden. In einer weiteren alternativen Ausführung kann auch ein Substratring verwendet werden.
In einer weiteren Ausführung wird ein Substratband, auf dem mehrere Substrate angeordnet sind, eingesetzt, das über eine Rollenvorrichtung geführt wird.
Alternatively, several substrates can be positioned on a table that can be moved in XYZ. In a further alternative embodiment, a substrate ring can also be used.
In a further embodiment, a substrate belt, on which a plurality of substrates are arranged, is used, which is guided over a roller device.

Vorteil:Advantage:

Es können in unmittelbarer zeitlicher Folge (ohne zusätzliche Umbauten) mehrere Substrate beschichtet werden und/oder es werden der Abtransport und/oder nachfolgende Untersuchungen ermöglicht, ohne dass die Beschichtung der übrigen Substrate verzögert würde.Several substrates can be coated in immediate succession (without additional conversions) and / or removal and / or subsequent examinations are made possible without the coating of the other substrates being delayed.

Literaturliterature

  1. [1] J. Akedo: Room temperature impact consolidation (RTIC) of fine ceramic powder by aerosol deposition method and applications to microdevices, J. Therm. Spray Tech., 17, 181-198 (2008), doi: 10.1007/s11666-008-9163-7 [1] J. Akedo: Room temperature impact consolidation (RTIC) of fine ceramic powder by aerosol deposition method and applications to microdevices, J. Therm. Spray Tech., 17, 181-198 (2008), doi: 10.1007 / s11666-008-9163-7
  2. [2] H. Salmang, H. Scholze: Keramik, 7th ed, Springer-Verlag, Berlin Heidelberg (2007), p. 857-859, 906, ISBN 3-540-63273-5 [2] H. Salmang, H. Scholze: Ceramics, 7th ed, Springer-Verlag, Berlin Heidelberg (2007), p. 857-859, 906, ISBN 3-540-63273-5
  3. [3] J. Akedo, M. Lebedev: Microstructure and Electrical Properties of Lead Zirconate Titanate (Pb(Zr52/Ti48)O3) Thick Films Deposited by Aerosol Deposition Method, Jpn. J. Appl. Phys., 38, 5397-5401 (1999), doi: 10.1143/JJAP.38.5397 [3] J. Akedo, M. Lebedev: Microstructure and Electrical Properties of Lead Zirconate Titanate (Pb (Zr52 / Ti48) O3) Thick Films Deposited by Aerosol Deposition Method, Jpn. J. Appl. Phys., 38, 5397-5401 (1999), doi: 10.1143 / JJAP.38.5397
  4. [4] K. Sahner, M. Kaspar, R. Moos: Assessment of the novel aerosol deposition method for room temperature preparation of metal oxide gas sensor films, Sens. Actuators. B: Chemical, 139, 394-399 (2009), doi: 10.1016/j.snb.2009.03.011 [4] K. Sahner, M. Kaspar, R. Moos: Assessment of the novel aerosol deposition method for room temperature preparation of metal oxide gas sensor films, Sens. Actuators. B: Chemical, 139, 394-399 (2009), doi: 10.1016 / j.snb.2009.03.011
  5. [5] M. Schubert, J. Exner, R. Moos: Influence of carrier gas composition on the stress of Al2O3 coatings prepared by the aerosol deposition method, Materials, 7, 5633-5642 (2014), doi: 10.3390/ma7085633 [5] M. Schubert, J. Exner, R. Moos: Influence of carrier gas composition on the stress of Al2O3 coatings prepared by the aerosol deposition method, Materials, 7, 5633-5642 (2014), doi: 10.3390 / ma7085633

Claims (22)

Verfahren zur Herstellung von Schichten oder Körpern an einem Ort, der gegenüber den Verhältnissen auf der Erde einen geringeren natürlichen Umgebungsdruck aufweist, dadurch gekennzeichnet, dass aus einem Trägergas und einem Pulver ein Pulver-Aerosol erzeugt wird, welches unter dem Einfluss einer Druckdifferenz auf ein Substrat (A5) gelenkt wird und dort schichtweise abgelagert wird, wobei am Ort der Ablagerung der Umgebungsdruck des Ortes herrscht.Process for the production of layers or bodies at a location which has a lower natural ambient pressure than the conditions on earth, characterized in that a powder aerosol is produced from a carrier gas and a powder, which under the influence of a pressure difference on a substrate (A5) is directed and deposited there in layers, the ambient pressure of the location prevailing at the location of the deposition. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das Pulver-Aerosol vor der Ablagerung mittels einer Düse (A4) zusätzlich beschleunigt wird.A method according to claim 2, characterized in that the powder aerosol is additionally accelerated by means of a nozzle (A4) before being deposited. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Verfahren auf dem Erdmond, einem anderen nicht-irdischen Himmelskörper oder einem künstlichen Satelliten durchgeführt wird.Method according to one of the preceding claims, characterized in that the method is carried out on the earth's moon, another non-earthly celestial body or an artificial satellite. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass das Pulver ein auf dem Erdmond oder einem anderen nicht-irdischen Himmelskörper vorgefundenes Pulver ist, oder aus einem dort vorgefundenen Material erzeugt wird.A method according to claim 3, characterized in that the powder is a powder found on the earth's moon or another non-earthly celestial body, or is generated from a material found there. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass als Trägergas Wasserstoff, Helium, Stickstoff oder Sauerstoff eingesetzt wird.Method according to one of the preceding claims, characterized in that hydrogen, helium, nitrogen or oxygen is used as the carrier gas. Vorrichtung zur Durchführung des Verfahrens nach einem der vorangehenden Ansprüche, gekennzeichnet durch: - ein Trägergasreservoir (A1), - ein Pulverreservoir (A7), - eine Aerosol-erzeugende Einheit (A3), die aus dem Trägergas des Trägergasreservoirs (A1) und Pulver aus dem Pulverreservoir (A7) ein Pulver-Aerosol erzeugt, - mindestens ein Substrat (A5), auf dem das in der Aerosol-erzeugenden Einheit (A3) erzeugte Pulver-Aerosol abgelagert wird. Device for carrying out the method according to one of the preceding claims, characterized by : - a carrier gas reservoir (A1), - a powder reservoir (A7), an aerosol generating unit (A3) which generates a powder aerosol from the carrier gas of the carrier gas reservoir (A1) and powder from the powder reservoir (A7), - At least one substrate (A5) on which the powder aerosol generated in the aerosol generating unit (A3) is deposited. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass eine Düse (A4) zur zusätzlichen Beschleunigung des Aerosols vorhanden ist.Device according to claim 6, characterized in that a nozzle (A4) is provided for the additional acceleration of the aerosol. Vorrichtung nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass eine Substratabschirmung (A6) vorhanden ist, die das Substrat (A5) von den übrigen Elementen der Vorrichtung abschirmt.Apparatus according to claim 6 or 7, characterized in that a substrate shield (A6) is present which shields the substrate (A5) from the other elements of the device. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass die Substratabschirmung (A6) an die Düse (A4) angeschlossen ist.Apparatus according to claim 8, characterized in that the substrate shield (A6) is connected to the nozzle (A4). Vorrichtung nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die Substratabschirmung (A6) das Substrat (A5) nur teilweise umschließt.Apparatus according to claim 8 or 9, characterized in that the substrate shield (A6) only partially surrounds the substrate (A5). Vorrichtung nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, dass die Substratabschirmung (A6) das Substrat (A5) voll umschließt.Device according to one of claims 8 or 9, characterized in that the substrate shield (A6) completely surrounds the substrate (A5). Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass die Substratabschirmung (A6) semipermeable Eigenschaften aufweist, in dem sie durchlässig für das Trägergas, aber undurchlässig für das Pulver ist.Apparatus according to claim 11, characterized in that the substrate shield (A6) has semi-permeable properties in that it is permeable to the carrier gas, but impermeable to the powder. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass die Substratabschirmung (A6) impermeable Eigenschaften aufweist, in dem sie undurchlässig für das Trägergas und undurchlässig für das Pulver ist.Device according to claim 11, characterized in that the substrate shield (A6) has impermeable properties in that it is impermeable to the carrier gas and impermeable to the powder. Vorrichtung nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, dass die Substratabschirmung (A6) flexibel oder dehnbar oder faltbar oder starr ausgebildet ist.Device according to one of claims 11 to 13, characterized in that the substrate shield (A6) is flexible or stretchable or foldable or rigid. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, dass die Substratabschirmung (A6) flexibel oder dehnbar oder faltbar ausgebildet ist und mit einem Mechanismus (A13) zur Kontraktion der Substratabschirmung (A6) ausgestattet ist, um den Rücktransport des Trägergases in das Trägergasreservoir (A1) zu ermöglichen.Device according to claim 13, characterized in that the substrate shield (A6) is flexible or stretchable or foldable and is equipped with a mechanism (A13) for contraction of the substrate shield (A6) in order to transport the carrier gas back into the carrier gas reservoir (A1) enable. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, dass die Substratabschirmung (A6) starr ausgebildet ist, und mit einer Pumpe (A12) ausgestattet ist, um den Rücktransport des Trägergases in das Trägergasreservoir (A1) zu ermöglichen.Apparatus according to claim 13, characterized in that the substrate shield (A6) is rigid and is equipped with a pump (A12) in order to enable the carrier gas to be transported back into the carrier gas reservoir (A1). Vorrichtung nach Anspruch 16, dadurch gekennzeichnet, dass im Innenraum der Substratabschirmung (A6) eine semipermeable Filtervorrichtung (A6.1) vorhanden ist, die durchlässig für das Trägergas und undurchlässig für das Pulver ist, um beim Rücktransport des Trägergases in das Trägerreservoir (A6) ein Eindringen des Pulvers in die Pumpe (A12) zu verhindern.Apparatus according to claim 16, characterized in that in the interior of the substrate shield (A6) there is a semipermeable filter device (A6.1) which is permeable to the carrier gas and impermeable to the powder in order to prevent the carrier gas from being transported back into the carrier reservoir (A6). prevent powder from entering the pump (A12). Vorrichtung nach einem der vorangehenden Ansprüche 6 bis 17, dadurch gekennzeichnet, dass die Aerosol-erzeugende Vorrichtung (A3) eine Aerosolerzeugungsdüse (A3.3) enthält, die einen Gaseinlass mit Querschnittsreduzierung in Strömungsrichtung des Trägergases, einen Pulvereinlass mit Querschnittsreduzierung in Strömungsrichtung des Pulvers und einen Aerosolauslass mit Querschnittserweiterung in Strömungsrichtung des Aerosols umfasst.Device according to one of the preceding claims 6 to 17, characterized in that the aerosol-generating device (A3) contains an aerosol generating nozzle (A3.3) which has a gas inlet with a cross-section reduction in the flow direction of the carrier gas, a powder inlet with a cross-section reduction in the flow direction of the powder and comprises an aerosol outlet with cross-sectional widening in the flow direction of the aerosol. Vorrichtung nach Anspruch 18, dadurch gekennzeichnet, dass zur Regulierung des Pulvereintrags in die Aerosolerzeugungsdüse (A3.3) am Pulverreservoir (A7) eine separate Gaszufuhr (A7.2) vorgesehen ist.Apparatus according to claim 18, characterized in that a separate gas supply (A7.2) is provided on the powder reservoir (A7) to regulate the powder entry into the aerosol generating nozzle (A3.3). Vorrichtung nach einem der vorangehenden Ansprüche 6 bis 19, dadurch ge= kennzeichnet, dass in der Aerosol-erzeugenden Einheit (A3) im Strömungsweg des Trägergases eine semipermeable Trennwand (A3.4) vorhanden ist, die durchlässig für das Trägergas ist und undurchlässig für das Pulver ist und eine erhöhte Gasverwirbelung erzeugt.Device according to one of the preceding claims 6 to 19, characterized in that in the aerosol generating unit (A3) in the flow path of the carrier gas there is a semipermeable partition wall (A3.4) which is permeable to the carrier gas and impermeable to the Is powder and produces increased gas turbulence. Vorrichtung nach einem der vorangehenden Ansprüche 6 bis 20, dadurch gekennzeichnet, dass ein rotierendes Element (A3.5) vorhanden ist, das den Transport des Pulvers aus dem Pulverreservoir (A7) in die Aerosol-erzeugende Einheit (A3) fördert, wobei das Pulver im Pulverreservoir (A7) in kompaktierter Form vorliegt und mittels einer Vorschubeinrichtung in den Wirkbereich des rotierenden Elements (A3.5) transportiert wird.Device according to one of the preceding claims 6 to 20, characterized in that a rotating element (A3.5) is present which promotes the transport of the powder from the powder reservoir (A7) into the aerosol-generating unit (A3), the powder is present in compact form in the powder reservoir (A7) and is transported into the effective area of the rotating element (A3.5) by means of a feed device. Vorrichtung nach einem der vorangehenden Ansprüche 6 bis 21, dadurch gekennzeichnet, dass mehrere Substrate (A5) auf einer Substratwechseleinrichtung (A5.1) positioniert sind.Device according to one of the preceding claims 6 to 21, characterized in that a plurality of substrates (A5) are positioned on a substrate changing device (A5.1).
EP18000567.0A 2018-06-29 2018-06-29 Method and device for forming layers or bodies in space Pending EP3587615A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18000567.0A EP3587615A1 (en) 2018-06-29 2018-06-29 Method and device for forming layers or bodies in space

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18000567.0A EP3587615A1 (en) 2018-06-29 2018-06-29 Method and device for forming layers or bodies in space

Publications (1)

Publication Number Publication Date
EP3587615A1 true EP3587615A1 (en) 2020-01-01

Family

ID=62904219

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18000567.0A Pending EP3587615A1 (en) 2018-06-29 2018-06-29 Method and device for forming layers or bodies in space

Country Status (1)

Country Link
EP (1) EP3587615A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112775444A (en) * 2020-12-02 2021-05-11 上海航天设备制造总厂有限公司 Space powder bed additive manufacturing and processing system and method
DE102020005726A1 (en) 2020-09-18 2022-03-24 Jörg Exner Aerosol deposition method (ADM) apparatus for use in liquid environments

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7553376B2 (en) 1999-10-12 2009-06-30 Toto Ltd. Apparatus for forming composite structures
DE102015012425A1 (en) * 2015-09-25 2017-03-30 Michaela Bruckner Apparatus for aerosol-based cold deposition (aerosol deposition method, ADM)
DE102016202607A1 (en) * 2016-02-19 2017-11-16 Siemens Aktiengesellschaft Method for producing a layer with perovskite material and device with such a layer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7553376B2 (en) 1999-10-12 2009-06-30 Toto Ltd. Apparatus for forming composite structures
DE102015012425A1 (en) * 2015-09-25 2017-03-30 Michaela Bruckner Apparatus for aerosol-based cold deposition (aerosol deposition method, ADM)
DE102016202607A1 (en) * 2016-02-19 2017-11-16 Siemens Aktiengesellschaft Method for producing a layer with perovskite material and device with such a layer

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ERIC IRISSOU ET AL: "Review on Cold Spray Process and Technology: Part I?Intellectual Property", JOURNAL OF THERMAL SPRAY TECHNOLOGY, ASM INTERNATIONAL, MATERIALS PARK, US, vol. 17, no. 4, 1 December 2008 (2008-12-01), pages 495 - 516, XP002625101, ISSN: 1059-9630, DOI: 10.1007/S11666-008-9203-3 *
H. SALMANG; H. SCHOLZE: "Keramik", 2007, SPRINGER-VERLAG, pages: 857 - 859,906
J. AKEDO: "Room temperature impact consolidation (RTIC) of fine ceramic powder by aerosol deposition method and applications to microdevices", J. THERM. SPRAY TECH., vol. 17, 2008, pages 181 - 198, XP055060029, DOI: doi:10.1007/s11666-008-9163-7
J. AKEDO; M. LEBEDEV: "Microstructure and Electrical Properties of Lead Zirconate Titanate (Pb(Zr /Ti )0 ) Thick Films Deposited by Aerosol Deposition Method", JPN. J. APPL. PHYS., vol. 38, 1999, pages 5397 - 5401, XP001092887, DOI: doi:10.1143/JJAP.38.5397
K. SAHNER; M. KASPA; R. MOOS: "Assessment of the novel aerosol deposition method for room temperature preparation of metal oxide gas sensor films", SENS. ACTUATORS. B: CHEMICAL, vol. 139, 2009, pages 394 - 399, XP026138586, DOI: doi:10.1016/j.snb.2009.03.011
M. SCHUBERT; J. EXNER; R. MOOS: "Influence of carrier gas composition on the stress of AI O coatings prepared by the aerosol deposition method", MATERIALS, vol. 7, 2014, pages 5633 - 5642

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020005726A1 (en) 2020-09-18 2022-03-24 Jörg Exner Aerosol deposition method (ADM) apparatus for use in liquid environments
CN112775444A (en) * 2020-12-02 2021-05-11 上海航天设备制造总厂有限公司 Space powder bed additive manufacturing and processing system and method

Similar Documents

Publication Publication Date Title
Caprio et al. Determining the feasible conditions for processing lunar regolith simulant via laser powder bed fusion
EP3587615A1 (en) Method and device for forming layers or bodies in space
DE102009048397A1 (en) Atmospheric pressure plasma process for producing surface modified particles and coatings
DE102010031741B4 (en) Method and device for producing superconducting layers on substrates
EP1975944B1 (en) Method of applying a burnable poison onto the exterior of nuclear fuel rod cladding
EP2631025A1 (en) Plasma spray method
WO2005093125A1 (en) Method and device for forming thin silicon nitride layers on the surface of substrates
WO2013014214A2 (en) Coating method using special powdered coating materials and use of such coating materials
EP3049544B1 (en) Self-peening feedstock materials for cold spray deposition
DE102010005375A1 (en) Apparatus and method for powder spraying with increased gas flow rate
EP1252365A1 (en) Method for producing functional layers with a plasma jet source
DE60200562T2 (en) Process for producing layers of a ceramic composite material and correspondingly produced composite material
WO2002019455A2 (en) Method for producing a solid ceramic fuel cell
EP1095169A1 (en) Method and device for producing a powder aerosol and use thereof
DE102015012425A1 (en) Apparatus for aerosol-based cold deposition (aerosol deposition method, ADM)
WO2021063998A1 (en) Low-pressure coating system and method for coating separated powders or fibres by means of physical or chemical vapour phase deposition
Fuierer et al. Dense, nano-grained, multi-phase ceramic coatings by dry aerosol deposition of lunar regolith simulant
EP0127041A1 (en) Method of producing optical wave guides
WO2022191926A2 (en) Cold sprayed radiation shielding
DE102011087159B3 (en) Priming preparation for cold gas spraying and cold gas spraying device
Lee et al. Generation of positively charged nanoparticles by fracto-emission and their deposition into films during aerosol deposition
DE102015014966A1 (en) Device for producing an aerosol for aerosol-based cold deposition (Aerosol Deposition Method, ADM)
DE102019008940A1 (en) Process for the dry production of layers consisting of halogen permoskites for use in optoelectronic components
DE102008038699A1 (en) lightweight armor
DE102020005726A1 (en) Aerosol deposition method (ADM) apparatus for use in liquid environments

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200520

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220207