EP3583640A1 - Method for manufacturing electric vehicle battery cells with polymer frame support - Google Patents

Method for manufacturing electric vehicle battery cells with polymer frame support

Info

Publication number
EP3583640A1
EP3583640A1 EP18713338.4A EP18713338A EP3583640A1 EP 3583640 A1 EP3583640 A1 EP 3583640A1 EP 18713338 A EP18713338 A EP 18713338A EP 3583640 A1 EP3583640 A1 EP 3583640A1
Authority
EP
European Patent Office
Prior art keywords
recited
battery
polymer
separator
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP18713338.4A
Other languages
German (de)
French (fr)
Other versions
EP3583640B1 (en
Inventor
Mirko HERMANN
Angela SPEIDEL
Rouven Scheffler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Audi AG
Volkswagen AG
Original Assignee
Audi AG
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Audi AG, Volkswagen AG filed Critical Audi AG
Publication of EP3583640A1 publication Critical patent/EP3583640A1/en
Application granted granted Critical
Publication of EP3583640B1 publication Critical patent/EP3583640B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0486Frames for plates or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/029Bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates generally to electric vehicles and more particularly to method for manufacturing batteries for electric vehicles.
  • PCT Publication WO 2015/083825 discloses a method for manufacturing a non-aqueous electrolyte battery.
  • the non-aqueous process for producing an electrolyte battery prepares a band-shaped first separator including a heat resistant layer and the non-heat-resistant layer, and a strip-like second separator comprising a heat-resistant layer and the non -heat-resistant layer.
  • a separator preparation step a positive electrode is arranged on the heat-resistant layer of the first separator, and there is a separator laminating step of disposing a second separator, the separator contacting the said first separator and said second separator along outer shape of the positive electrode of the separator.
  • a separator welding step of forming a bag-like separator parts are thermally welded by the contact portion between the first separator and the second separator, for example by impulse welding under pressure by the heating element.
  • U.S. Patent Application No. 2016/0141623 discloses a bipolar electrode having a solid electrolyte, an anode slurry and a cathode slurry, each of which may be provided on a first surface and a second surface of the solid electrolyte, respectively, spacers provided in the anode slurry and the cathode slurry, and a metal substrate provided on the anode slurry and the cathode slurry.
  • the electrode can be dried and pressed, and stacked to form an all-solid state battery.
  • the present invention provides a method for manufacturing a battery component comprising:
  • the present invention advantageously creates an easy manufacturing method for a battery component that then is well protected, easily handled and easy to assemble.
  • the polymer foil can be a dense foil, perforated foil, porous foil, adhesive tape or adhesive foil, and maybe for example be made of polyethylene, polypropylene or a mixture of the two.
  • the polymer frame preferably is connected to either a separator or a bipolar current collector of the battery cell component, via for example an attachment with gluing, welding, heat bonding, lamination or with an additional adhesive tape to the separator, or via a friction fit.
  • an attachment with gluing, welding, heat bonding, lamination or with an additional adhesive tape to the separator, or via a friction fit.
  • a second polymer frame may be provided on another side of the separator, resulting in a polymer frame - separator - second polymer frame unit.
  • a nickel-coated side of an aluminum bipolar current collector can be attached directly to the frame.
  • the polymer frame window can have the shape of a rectangle, a rectangle with rounded edges, a circle, an oval or a triangle, and is preferably stamped out of the polymer foil.
  • One advantage of the present invention is the ability to use solid-state electrolytes as the separator.
  • the method thus preferably includes that at least one solid state electrolyte is used as the separator.
  • the polymer frame for example may have at least one feed hole, most preferably four, that for example can fit over rods to aid in processing the stack.
  • the present invention advantageously can increase the battery mechanical stability, especially at the battery cell edges, and also can enable a separation of anode and cathode compartments.
  • the present invention also provides a method for manufacturing a battery stack comprising:
  • the battery cell component including a separator or a bipolar current collector
  • the present invention also allows easy handling of the battery cell components, such as brittle electrolyte material used as the separator, and thus also provides a method for handling battery components comprising moving the battery component of the present invention as an individual component via the polymer frame.
  • the battery cell components such as brittle electrolyte material used as the separator
  • FIG. 1 shows a side view of a plurality of stacked battery components in a first embodiment of the present invention
  • FIG. 2 shows a side view of the embodiment of Fig. 1 with a housing connected to the polymer frames of the battery components to form a battery module cell;
  • Figs. 3 a, 3b, 3 c show a top view of creation of the embodiment of the battery component of the present invention, and Fig. 3d shows an alternate embodiment of the battery component;
  • Figs. 4a, 4b, 4c, 4d, 4e and 4f show various frame geometries of the polymer frame according to the present invention, and
  • Fig. 4g shows a frame with a plurality of windows.
  • FIG. 5 shows a polymer frame according to the present invention with feed holes for easing assembly
  • FIG. 6 shows a side view of a different embodiment of the battery component with two frames
  • FIG. 7 shows schematically a electric or hybrid vehicle with an electric battery made of the battery module cells
  • Fig. 8 shows one embodiment of the method of the present invention, using the rods and individual stacked components to manufacture battery cell modules as in Fig. 1;
  • FIG. 9 shows an alternate embodiment of the method of the present invention.
  • Fig. 1 shows a battery cell module 10 with five stackable battery components 11, 12, 13, 14, 15 having electrode components according to an embodiment of the present invention.
  • Each battery component 11, 12, 13, 14, 15 includes an anode 24, a separator 28, a cathode 26 and a bipolar current collector 22.
  • Each component also includes a polymer frame 20, which on a planar side 124 has the bipolar current collector 22 and on an opposite planar side 128 has the separator 28.
  • Polymer frame 20 in this embodiment is a polymer foil, and the attachment of separator 28 to frame 20 will be described in more detail with respect to Figs. 3 a, 3b and 3c.
  • Separator 28 can be a dielectric material, for example a porous polyethylene or polyethylene-polypropylene foil (typically 8 to 25 ⁇ thickness).
  • Polymer frame 20 can be made for example of polypropylene (PP), polyethylene (PE), acrylnitrile butadiene- styrene (ABS), polyamide (PA), polylactic acid (PLA), poly (methyl methacrylate) (PMMA), polycarbonate (PC), polyethylene terephthalate (PET), polystyrene (PS), polyvinyl chloride (PVC), polyphenylene sulfide (PPS), polyphenylene oxide (PPO), Polyetherimide (PEI), polyether ether ketone (PEEK), polyether sulfone (PES),
  • PP polypropylene
  • PE polyethylene
  • ABS acrylnitrile butadiene- styrene
  • PA polyamide
  • PLA polylactic acid
  • PMMA poly (methyl methacrylate)
  • PC
  • polybenzimidazole PBI
  • nylon und composite foil or multilayer foil made of aluminum foil coated with a polymer for example polypropylene.
  • the polymer frame is a PE/PP mixture.
  • Bipolar current collector 22 can be made of copper or aluminum or nickel-coated aluminum or nickel for example.
  • Anode 24 and cathode 26 can be deposited for example by vapor deposition or other film technology on separator 28.
  • Bipolar current collector 22 can be connected to cathode 26 as described below.
  • Fig. 2 shows a side view of the embodiment of Fig. 1 with a housing 40 connected to the polymer frames 20 of the battery components 11 to 15 to form a battery module cell.
  • the housing can have for example four walls to cover each side of polymer frames 20, which preferably have a rectangular outer shape.
  • Housing 40 may be made of the same material as polymer frames 20 for example, or of a different polymer material.
  • a rod 99 as shown in Fig. 1 can interact with feed holes in the polymer frames 20 as will be described, and can be removed after the stack is created and the housing is added.
  • Figs. 3 a, 3b and 3 c show a top view of creation of the embodiment of the battery component of the present invention
  • Fig. 3d shows an alternate battery component with the bipolar current collector 22 first connected to the polymer frame.
  • Fig. 3a shows a side 128 of a polymer frame 20 with a rectangular window 60.
  • frame 20 can be placed over separator 28, which can have an anode 24 on one side and cathode 26 on the other side as shown in Fig. 1.
  • Cathode 26 protrudes through window 60, as shown in Fig. 3c .
  • Frame 20 likewise is attached to separator 28 around window 60.
  • Bipolar current collector 22, anode 24 and cathode 26 can be connected to this stackable component as discussed above or also can added separately or later during assembly.
  • the anode and the cathode advantageously can be made of polymer, glass, glassceramic or ceramic solid-state materials, and the mechanical properties are improved and much of the mechanical stress during the cell assembly process can be retained by the polymer frame, which lowers the requirements on the assembly process. In addition, small imperfections at the solid-state material edges can be tolerated and the amount of defective goods can be decreased.
  • the separator can be a solid state electrolyte, so that liquid or gels need not be added later as in polymer separators.
  • Fig. 3d shows an alternate embodiment which starts out with the same frame 20 as in Fig. 3 a.
  • Bipolar current collector 22 which can be a thin foil of aluminum coated with nickel, is placed nickel side down on the frame to overlap side 128. Gluing or other bonding can be used to attach the nickel coating to a PP/PE frame, which advantageously provides a stable connection compares to a PP/PE aluminum or copper connection.
  • the thin foil of the current collector 22 is also stabilized well, and then the cathode 26, separator 28 and anode 24 can be added separately to the combined frame 20/current collector 22 component.
  • Figs. 4a, 4b, 4c, 4d, 4e and 4f show various frame geometries of the polymer frames according to the present invention, with Fig. 4a being similar to Fig. 3a, and frames 201, 202, 203, 204, 205 having a window 301 with rounded edges, a circular window 302, a window 303 similar to window 301 but smaller for a same outer sized frame, a perfectly square window
  • Fig. 4g shows a polymer frame 206 with for example four windows 306, 307, 308, 309.
  • FIG. 5 shows a polymer frame 203 according to the present invention with feed holes 305 for easing assembly.
  • Assembly of the Fig.1 embodiment can occur as follows: endplate anode current collector 92 is provided, and then battery component 11 is added so that frame 20 is slid over rod 99 via a feed hole 305. Polymer frame 20 can be slid over further rods via feed holes 305.
  • Components 12, 13, 14 and 15 then can be stacked over the rod 99 as shown in Fig. 1, and finally cathode top plate 90 added to create the battery module 10.
  • the anode 24 of a battery component 12, 13, 14, 15 thus can rest on the bipolar current collector 22 of the battery component 11, 12, 13, 14, respectively, below.
  • the rod 99 can be removed and housing 40 sides can be added and attached to the polymer frames. If a liquid electrolyte/polymer separator is being used, liquid electrolyte can be added to the areas formed by the housing and two polymer frames if desirable to increase efficiency.
  • FIG. 6 shows a side view of a different embodiment of the battery component with an additional polymer frame 120 attached to the separator 28 opposite the polymer frame 20. This embodiment provide additional stability and protection.
  • the battery cell module or stack 110 can be created for example with a much larger number of battery cells for providing power as an electric battery to an electric motor 200 for powering an electric vehicle 300.
  • Fig. 8 shows one embodiment of a manufacturing method according to the present invention.
  • a polymer foil roll 510 is unwound so that a polymer foil 500 exits the roll stand 400.
  • a stamping station 420 a die 520 stamps windows 60 into the foil 500.
  • feed holes 305 if desired can also be stamped.
  • the windows and/or feed holes could be laser cut or otherwise impart on foil 500.
  • the foil 500 is cut into individual polymer frames 20 via for example a knife roller 530 and anvil 532, the frames 20 with windows 60 exiting onto a conveyor 440.
  • Separators 28 from a stack 528 which separators can be made of solid-state electrolyte material, can be placed on the frames 20 to form stackable components 98 which can be assembled in a housing 40 with the other battery cell components, such as the bipolar current collectors 22, as described above. Alternately polymer separators could be used as described for example in Fig. 9 below. Rods 99 can be used and welding or other attachment processes described above can be used to complete the battery module.
  • FIG. 9 shows a different embodiment where separator material is added at a separator placement station 460 before cutting endless tape 198 so that an endless tape 198 of frame supported separators 28 is created.
  • Solid-state separators can be used as in the Fig. 8 embodiment, or polymer separators cut off a roll 628 by a cutting device 630 could be used.
  • the separators 28 can be attached for example by a welding device 640 to the tape 198.
  • the bipolar current collectors 22 could replace the separator material in the Fig. 9 embodiment and be attached directly via for example welding to the foil 500. In this case the separators and anodes and cathodes could be added later.
  • the endless tape 198 also could be used for zig-zag folding or a combination of zig-zag and stacking.
  • the endless tape 198 also could be cut into smaller units down to single units of a stackable component 98 via a cutting device (knife or laser cutter) 470.
  • the separator-polymer frame unit By attaching the separator-polymer frame unit to the housing the separator can no longer move or slide inside the cell. Therefore, this unit is more resilient and can better tolerate vibrations or shocks as they occur when having batteries in cars or any transportable device, because the position of the whole cell stack is fixed inside the cell. [00058] Likewise if the bipolar current collector-polymer frame unit embodiment is used, the bipolar current collector is well protected.
  • the housing 40 also could be dispensed with and the frames 60 simply welded together.
  • the method of the present invention and resulting stable batteries are especially useful for electric vehicle or hybrid vehicle batteries, which are subjected of significant vibrations.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

A method for manufacturing a battery component includes unrolling a polymer foil from a roll; forming windows into the unrolled polymer foil; and placing a battery cell component over each window. The battery cell component advantageously can be a solid-state electrolyte functioning as a separator, which is thereby well protected for handling and in later use.

Description

METHOD FOR MANUFACTURING ELECTRIC VEHICLE BATTERY CELLS WITH
POLYMER FRAME SUPPORT
FIELD OF THE INVENTION
[0001] The present invention relates generally to electric vehicles and more particularly to method for manufacturing batteries for electric vehicles.
BACKGROUND
[0002] PCT Publication WO 2015/083825 discloses a method for manufacturing a non-aqueous electrolyte battery. The non-aqueous process for producing an electrolyte battery prepares a band-shaped first separator including a heat resistant layer and the non-heat-resistant layer, and a strip-like second separator comprising a heat-resistant layer and the non -heat-resistant layer. In a separator preparation step, a positive electrode is arranged on the heat-resistant layer of the first separator, and there is a separator laminating step of disposing a second separator, the separator contacting the said first separator and said second separator along outer shape of the positive electrode of the separator. In a separator welding step of forming a bag-like separator, parts are thermally welded by the contact portion between the first separator and the second separator, for example by impulse welding under pressure by the heating element.
[0003] U.S. Patent Application No. 2016/0156065 and WO 2009/029746 disclose other manufacturing methods for batteries with solid state electrolytes.
[0004] U.S. Patent Application No. 2016/0141623 discloses a bipolar electrode having a solid electrolyte, an anode slurry and a cathode slurry, each of which may be provided on a first surface and a second surface of the solid electrolyte, respectively, spacers provided in the anode slurry and the cathode slurry, and a metal substrate provided on the anode slurry and the cathode slurry. The electrode can be dried and pressed, and stacked to form an all-solid state battery.
SUMMARY OF THE INVENTION
[0005] The present invention provides a method for manufacturing a battery component comprising:
[0006] unrolling a polymer foil from a roll; [0007] forming a window into the unrolled polymer foil to create a polymer frame; and
[0008] placing a battery cell component over the window.
[0009] The present invention advantageously creates an easy manufacturing method for a battery component that then is well protected, easily handled and easy to assemble.
[00010] The polymer foil can be a dense foil, perforated foil, porous foil, adhesive tape or adhesive foil, and maybe for example be made of polyethylene, polypropylene or a mixture of the two.
[00011] The polymer frame preferably is connected to either a separator or a bipolar current collector of the battery cell component, via for example an attachment with gluing, welding, heat bonding, lamination or with an additional adhesive tape to the separator, or via a friction fit. However merely placement is also possible as the connection, without an attachment.
[00012] A second polymer frame may be provided on another side of the separator, resulting in a polymer frame - separator - second polymer frame unit.
[00013] If attached to the bipolar current collector, a nickel-coated side of an aluminum bipolar current collector can be attached directly to the frame.
[00014] The polymer frame window can have the shape of a rectangle, a rectangle with rounded edges, a circle, an oval or a triangle, and is preferably stamped out of the polymer foil.
[00015] One advantage of the present invention is the ability to use solid-state electrolytes as the separator. The method thus preferably includes that at least one solid state electrolyte is used as the separator.
[00016] The polymer frame for example may have at least one feed hole, most preferably four, that for example can fit over rods to aid in processing the stack. [00017] The present invention advantageously can increase the battery mechanical stability, especially at the battery cell edges, and also can enable a separation of anode and cathode compartments.
[00018] The present invention also provides a method for manufacturing a battery stack comprising:
unrolling a polymer foil from a roll;
forming windows into the unrolled polymer foil;
placing a battery cell component over each window, the battery cell component including a separator or a bipolar current collector; and
folding the polymer foil between two battery components or cutting the polymer foil between two battery components, so that the two battery components form a stack with the polymer foil in between.
[00019] The present invention also allows easy handling of the battery cell components, such as brittle electrolyte material used as the separator, and thus also provides a method for handling battery components comprising moving the battery component of the present invention as an individual component via the polymer frame.
BRIEF DESCRIPTION OF THE DRAWINGS
[00020] The following describe several nonlimiting embodiments of the present invention, in which:
[00021] Fig. 1 shows a side view of a plurality of stacked battery components in a first embodiment of the present invention;
[00022] Fig. 2 shows a side view of the embodiment of Fig. 1 with a housing connected to the polymer frames of the battery components to form a battery module cell;
[00023] Figs. 3 a, 3b, 3 c show a top view of creation of the embodiment of the battery component of the present invention, and Fig. 3d shows an alternate embodiment of the battery component; [00024] Figs. 4a, 4b, 4c, 4d, 4e and 4f show various frame geometries of the polymer frame according to the present invention, and Fig. 4g shows a frame with a plurality of windows.
[00025] Fig. 5 shows a polymer frame according to the present invention with feed holes for easing assembly;
[00026] Fig. 6 shows a side view of a different embodiment of the battery component with two frames;
[00027] Fig. 7 shows schematically a electric or hybrid vehicle with an electric battery made of the battery module cells;
[00028] Fig. 8 shows one embodiment of the method of the present invention, using the rods and individual stacked components to manufacture battery cell modules as in Fig. 1; and
[00029] Fig. 9 shows an alternate embodiment of the method of the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBOD EVENTS
[00030] Fig. 1 shows a battery cell module 10 with five stackable battery components 11, 12, 13, 14, 15 having electrode components according to an embodiment of the present invention.
[00031] Each battery component 11, 12, 13, 14, 15 includes an anode 24, a separator 28, a cathode 26 and a bipolar current collector 22. Each component also includes a polymer frame 20, which on a planar side 124 has the bipolar current collector 22 and on an opposite planar side 128 has the separator 28. Polymer frame 20 in this embodiment is a polymer foil, and the attachment of separator 28 to frame 20 will be described in more detail with respect to Figs. 3 a, 3b and 3c.
[00032] Separator 28 can be a dielectric material, for example a porous polyethylene or polyethylene-polypropylene foil (typically 8 to 25 μπι thickness). [00033] Polymer frame 20 can be made for example of polypropylene (PP), polyethylene (PE), acrylnitrile butadiene- styrene (ABS), polyamide (PA), polylactic acid (PLA), poly (methyl methacrylate) (PMMA), polycarbonate (PC), polyethylene terephthalate (PET), polystyrene (PS), polyvinyl chloride (PVC), polyphenylene sulfide (PPS), polyphenylene oxide (PPO), Polyetherimide (PEI), polyether ether ketone (PEEK), polyether sulfone (PES),
polybenzimidazole (PBI), nylon und composite foil or multilayer foil made of aluminum foil coated with a polymer for example polypropylene. Most preferably, the polymer frame is a PE/PP mixture.
[00034] While typical electrolytes such as liquids or gels may be used, the present invention also can incorporate solid-state electrolytes like lithium oxide or sulfide glasses or glass ceramics or ceramics as electrolytes. Bipolar current collector 22 can be made of copper or aluminum or nickel-coated aluminum or nickel for example. Anode 24 and cathode 26 can be deposited for example by vapor deposition or other film technology on separator 28. Bipolar current collector 22 can be connected to cathode 26 as described below.
[00035] Fig. 2 shows a side view of the embodiment of Fig. 1 with a housing 40 connected to the polymer frames 20 of the battery components 11 to 15 to form a battery module cell. The housing can have for example four walls to cover each side of polymer frames 20, which preferably have a rectangular outer shape.
[00036] Housing 40 may be made of the same material as polymer frames 20 for example, or of a different polymer material.
[00037] A rod 99 as shown in Fig. 1 can interact with feed holes in the polymer frames 20 as will be described, and can be removed after the stack is created and the housing is added.
[00038] Figs. 3 a, 3b and 3 c show a top view of creation of the embodiment of the battery component of the present invention, and Fig. 3d shows an alternate battery component with the bipolar current collector 22 first connected to the polymer frame.
[00039] Fig. 3a shows a side 128 of a polymer frame 20 with a rectangular window 60. [00040] As shown in Fig. 3b, frame 20 can be placed over separator 28, which can have an anode 24 on one side and cathode 26 on the other side as shown in Fig. 1. Cathode 26 protrudes through window 60, as shown in Fig. 3c . Bipolar current collector 22, which can be a thin metal foil, then can be added over cathode 26 and attached to the frame 20 at its edges. Frame 20 likewise is attached to separator 28 around window 60.
[00041] Frame 20 and separator 28, fixedly connected, thus create an easily stackable battery component 98. Bipolar current collector 22, anode 24 and cathode 26 can be connected to this stackable component as discussed above or also can added separately or later during assembly.
[00042] The anode and the cathode advantageously can be made of polymer, glass, glassceramic or ceramic solid-state materials, and the mechanical properties are improved and much of the mechanical stress during the cell assembly process can be retained by the polymer frame, which lowers the requirements on the assembly process. In addition, small imperfections at the solid-state material edges can be tolerated and the amount of defective goods can be decreased.
[00043] In addition, the separator can be a solid state electrolyte, so that liquid or gels need not be added later as in polymer separators.
[00044] Fig. 3d shows an alternate embodiment which starts out with the same frame 20 as in Fig. 3 a. Bipolar current collector 22, which can be a thin foil of aluminum coated with nickel, is placed nickel side down on the frame to overlap side 128. Gluing or other bonding can be used to attach the nickel coating to a PP/PE frame, which advantageously provides a stable connection compares to a PP/PE aluminum or copper connection. The thin foil of the current collector 22 is also stabilized well, and then the cathode 26, separator 28 and anode 24 can be added separately to the combined frame 20/current collector 22 component.
[00045] Figs. 4a, 4b, 4c, 4d, 4e and 4f show various frame geometries of the polymer frames according to the present invention, with Fig. 4a being similar to Fig. 3a, and frames 201, 202, 203, 204, 205 having a window 301 with rounded edges, a circular window 302, a window 303 similar to window 301 but smaller for a same outer sized frame, a perfectly square window
304 and an oval window 305, respectively.
[00046] Fig. 4g shows a polymer frame 206 with for example four windows 306, 307, 308, 309.
[00047] Fig. 5 shows a polymer frame 203 according to the present invention with feed holes 305 for easing assembly.
[00048] Assembly of the Fig.1 embodiment can occur as follows: endplate anode current collector 92 is provided, and then battery component 11 is added so that frame 20 is slid over rod 99 via a feed hole 305. Polymer frame 20 can be slid over further rods via feed holes 305.
Components 12, 13, 14 and 15 then can be stacked over the rod 99 as shown in Fig. 1, and finally cathode top plate 90 added to create the battery module 10. The anode 24 of a battery component 12, 13, 14, 15 thus can rest on the bipolar current collector 22 of the battery component 11, 12, 13, 14, respectively, below.
[00049] To create the Fig. 2 embodiment the rod 99 can be removed and housing 40 sides can be added and attached to the polymer frames. If a liquid electrolyte/polymer separator is being used, liquid electrolyte can be added to the areas formed by the housing and two polymer frames if desirable to increase efficiency.
[00050] Fig. 6 shows a side view of a different embodiment of the battery component with an additional polymer frame 120 attached to the separator 28 opposite the polymer frame 20. This embodiment provide additional stability and protection.
[00051] As shown in Fig. 7, in one application, the battery cell module or stack 110 can be created for example with a much larger number of battery cells for providing power as an electric battery to an electric motor 200 for powering an electric vehicle 300.
[00052] Fig. 8 shows one embodiment of a manufacturing method according to the present invention. In a roll stand 400, a polymer foil roll 510 is unwound so that a polymer foil 500 exits the roll stand 400. In a stamping station 420, a die 520 stamps windows 60 into the foil 500. At this point feed holes 305 if desired can also be stamped. As an alternate to a stamping station, the windows and/or feed holes could be laser cut or otherwise impart on foil 500. At a cut station 430, the foil 500 is cut into individual polymer frames 20 via for example a knife roller 530 and anvil 532, the frames 20 with windows 60 exiting onto a conveyor 440. Separators 28 from a stack 528, which separators can be made of solid-state electrolyte material, can be placed on the frames 20 to form stackable components 98 which can be assembled in a housing 40 with the other battery cell components, such as the bipolar current collectors 22, as described above. Alternately polymer separators could be used as described for example in Fig. 9 below. Rods 99 can be used and welding or other attachment processes described above can be used to complete the battery module.
[00053] Fig. 9 shows a different embodiment where separator material is added at a separator placement station 460 before cutting endless tape 198 so that an endless tape 198 of frame supported separators 28 is created. Solid-state separators can be used as in the Fig. 8 embodiment, or polymer separators cut off a roll 628 by a cutting device 630 could be used. The separators 28 can be attached for example by a welding device 640 to the tape 198.
[00054] Rather than the separators 28, the bipolar current collectors 22 also could replace the separator material in the Fig. 9 embodiment and be attached directly via for example welding to the foil 500. In this case the separators and anodes and cathodes could be added later.
[00055] The endless tape 198 also could be used for zig-zag folding or a combination of zig-zag and stacking.
[00056] The endless tape 198 also could be cut into smaller units down to single units of a stackable component 98 via a cutting device (knife or laser cutter) 470.
[00057] By attaching the separator-polymer frame unit to the housing the separator can no longer move or slide inside the cell. Therefore, this unit is more resilient and can better tolerate vibrations or shocks as they occur when having batteries in cars or any transportable device, because the position of the whole cell stack is fixed inside the cell. [00058] Likewise if the bipolar current collector-polymer frame unit embodiment is used, the bipolar current collector is well protected.
[00059] The housing 40 also could be dispensed with and the frames 60 simply welded together.
[00060] The method of the present invention and resulting stable batteries are especially useful for electric vehicle or hybrid vehicle batteries, which are subjected of significant vibrations.

Claims

WHAT IS CLAIMED IS:
1. A method for manufacturing a battery component comprising:
unrolling a polymer foil from a roll;
forming windows into the unrolled polymer foil; and
placing a battery cell component over each window.
2. The method as recited in claim 1 wherein the polymer foil is made of polyethylene or polypropylene.
3. The method as recited in claim 1 wherein the battery cell component includes a separator.
4. The method as recited in claim 3 wherein the separator includes a solid-state electrolyte.
5. The method as recited in claim 3 wherein the separator includes a polymer and further comprising adding liquid or gel electrolyte to the separator.
6. The method as recited in claim 1 wherein the battery cell component includes a nickel foil bipolar current collector or a nickel-coated side of an aluminum bipolar current collector attached directly to the frame.
7. The method as recited in claim 1 further comprising cutting the polymer foil between two windows.
8. The method as recited in claim 7 wherein the battery cell component is placed over each window after the cutting.
9. The method as recited in claim 7 wherein the battery cell component is placed over each window before the cutting.
10. The method as recited in claim 1 wherein the battery cell component is attached to the foil.
11. The method as recited in claim 1 wherein the battery component is used in an electric vehicle.
12. A method for manufacturing a battery stack comprising:
unrolling a polymer foil from a roll;
forming windows into the unrolled polymer foil;
placing a battery cell component over each window, the battery cell component including a separator or a bipolar current collector; and
folding the polymer foil between two battery components or cutting the polymer foil between two battery components, so that the two battery components form a stack with the polymer foil in between.
13. The method as recited in claim 12 further comprising adding an end electrode to the battery stack.
14. The method as recited in claim 12 further comprising welding the polymer foil in the stack.
15. The method as recited in claim 12 as recited in claim 13 wherein the polymer foil Is welded to a housing.
16. The method as recited in claim 12 further comprising adding the other of the separator and the bipolar current collector, and adding an anode and a cathode.
EP18713338.4A 2017-02-14 2018-02-12 Method for manufacturing electric vehicle battery cells with polymer frame support Active EP3583640B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/432,317 US11362371B2 (en) 2017-02-14 2017-02-14 Method for manufacturing electric vehicle battery cells with polymer frame support
PCT/IB2018/000252 WO2018150274A1 (en) 2017-02-14 2018-02-12 Method for manufacturing electric vehicle battery cells with polymer frame support

Publications (2)

Publication Number Publication Date
EP3583640A1 true EP3583640A1 (en) 2019-12-25
EP3583640B1 EP3583640B1 (en) 2021-03-17

Family

ID=61768345

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18713338.4A Active EP3583640B1 (en) 2017-02-14 2018-02-12 Method for manufacturing electric vehicle battery cells with polymer frame support

Country Status (4)

Country Link
US (1) US11362371B2 (en)
EP (1) EP3583640B1 (en)
CN (1) CN110521020B (en)
WO (1) WO2018150274A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10797284B2 (en) 2017-02-14 2020-10-06 Volkswagen Ag Electric vehicle battery cell with polymer frame for battery cell components
US11870028B2 (en) 2017-02-14 2024-01-09 Volkswagen Ag Electric vehicle battery cell with internal series connection stacking
US11362338B2 (en) 2017-02-14 2022-06-14 Volkswagen Ag Electric vehicle battery cell with solid state electrolyte
JP7014689B2 (en) * 2018-08-22 2022-02-01 株式会社豊田自動織機 Power storage module and manufacturing method of power storage module
DE112020001638T5 (en) * 2019-03-29 2021-12-09 Kabushiki Kaisha Toyota Jidoshokki Power storage module
JP7343419B2 (en) * 2020-02-14 2023-09-12 本田技研工業株式会社 Solid state battery cells and solid state battery modules
EP4113556B1 (en) * 2021-06-30 2023-09-20 Mindcaps Smart Supercapacitors SL Lithium/sodium electrochemical device for storing electrical energy in rectangular geometric cells

Family Cites Families (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3819412A (en) 1972-02-07 1974-06-25 Tyco Laboratories Inc Plates for lead acid batteries
US4164068A (en) 1977-08-18 1979-08-14 Exxon Research & Engineering Co. Method of making bipolar carbon-plastic electrode structure-containing multicell electrochemical device
US4539268A (en) 1981-07-02 1985-09-03 California Institute Of Technology Sealed bipolar multi-cell battery
DE3340264A1 (en) 1983-11-08 1985-05-15 Brown, Boveri & Cie Ag, 6800 Mannheim ELECTROCHEMICAL STORAGE CELL
GB8509957D0 (en) * 1985-04-18 1985-05-30 Ici Plc Electrode
US5162172A (en) 1990-12-14 1992-11-10 Arch Development Corporation Bipolar battery
US5618641A (en) 1993-12-03 1997-04-08 Bipolar Power Corporation Bipolar battery construction
US5518839A (en) 1995-04-12 1996-05-21 Olsen; Ib I. Current collector for solid electrochemical cell
US5688615A (en) 1995-11-03 1997-11-18 Globe-Union, Inc. Bipolar battery and method of making same
GB9607398D0 (en) 1996-04-10 1996-06-12 Nat Power Plc Process for the fabrication of electrochemical cell components
JP4038699B2 (en) 1996-12-26 2008-01-30 株式会社ジーエス・ユアサコーポレーション Lithium ion battery
US5910378A (en) 1997-10-10 1999-06-08 Minnesota Mining And Manufacturing Company Membrane electrode assemblies
CN1180506C (en) 1999-03-26 2004-12-15 松下电器产业株式会社 Laminate sheath type battery
US6576365B1 (en) 1999-12-06 2003-06-10 E.C.R. - Electro Chemical Research Ltd. Ultra-thin electrochemical energy storage devices
KR100515571B1 (en) 2000-02-08 2005-09-20 주식회사 엘지화학 Stacked electrochemical cell
SG103298A1 (en) 2000-06-16 2004-04-29 Nisshin Spinning Polymer battery and method of manufacture
US6752842B2 (en) 2001-06-18 2004-06-22 Power Paper Ltd. Manufacture of flexible thin layer electrochemical cell
SE520007C8 (en) 2001-09-19 2006-05-16 Nilar Europ Ab A bipolar battery, a method of manufacturing a bipolar battery and car plate composition
US6908711B2 (en) * 2002-04-10 2005-06-21 Pacific Lithium New Zealand Limited Rechargeable high power electrochemical device
JP4144312B2 (en) 2002-10-08 2008-09-03 日産自動車株式会社 Bipolar battery
JP4135473B2 (en) 2002-11-07 2008-08-20 日産自動車株式会社 Bipolar battery
US7195690B2 (en) 2003-05-28 2007-03-27 3M Innovative Properties Company Roll-good fuel cell fabrication processes, equipment, and articles produced from same
JP4238645B2 (en) 2003-06-12 2009-03-18 日産自動車株式会社 Bipolar battery
JP3972884B2 (en) 2003-10-10 2007-09-05 日産自動車株式会社 Assembled battery
JP2005259379A (en) 2004-03-09 2005-09-22 Nissan Motor Co Ltd Bipolar battery
JP5098150B2 (en) 2004-12-07 2012-12-12 日産自動車株式会社 Bipolar battery and manufacturing method thereof
WO2006062204A1 (en) 2004-12-10 2006-06-15 Nissan Motor Co., Ltd. Bipolar battery
FR2879824A1 (en) 2004-12-16 2006-06-23 Snecma Moteurs Sa BIPOLAR PLATE FOR FUEL CELL
EP1917689B1 (en) 2005-08-09 2017-11-08 Polyplus Battery Company Compliant seal structures for protected active metal anodes
CN1912522A (en) 2005-08-10 2007-02-14 李建新 Radiator suitable for aluminium alloy cavity nickel coated anti-corrosion
US7553582B2 (en) 2005-09-06 2009-06-30 Oak Ridge Micro-Energy, Inc. Getters for thin film battery hermetic package
JP5286650B2 (en) 2006-07-19 2013-09-11 トヨタ自動車株式会社 Secondary battery
US20090092903A1 (en) 2007-08-29 2009-04-09 Johnson Lonnie G Low Cost Solid State Rechargeable Battery and Method of Manufacturing Same
JP5205920B2 (en) 2007-11-01 2013-06-05 日産自動車株式会社 Bipolar battery manufacturing method and manufacturing apparatus
EP2251922A1 (en) 2008-07-25 2010-11-17 Panasonic Corporation Bipolar cell
KR20120002519A (en) 2008-10-29 2012-01-05 세람테크 게엠베하 Separation layer for separating anode and cathode in lithium ion accumulators or batteries
JP5381078B2 (en) * 2008-12-19 2014-01-08 日産自動車株式会社 Electrode and manufacturing method thereof
EP2422398A1 (en) 2009-04-24 2012-02-29 G4 Synergetics, Inc. Energy storage devices having mono-polar and bi-polar cells electrically coupled in series and in parallel
JP2010277811A (en) 2009-05-28 2010-12-09 Abe Tomomi Cell unit of redox flow battery and its cell stack structure
GB2477552B (en) 2010-02-08 2016-01-27 Qinetiq Ltd Thin electrochemical cell
DE102010013031A1 (en) 2010-03-26 2011-09-29 Daimler Ag Battery e.g. lithium-ion high-voltage battery, used in e.g. hybrid car, has electrical isolating frame formed between metal sheets, and electrical isolating spacer element arranged at frame among deformed regions of sheets
DE102010018731A1 (en) 2010-04-29 2011-11-03 Li-Tec Battery Gmbh Lithium-sulfur battery
WO2011158948A1 (en) * 2010-06-18 2011-12-22 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing power storage device
DE102010031543A1 (en) 2010-07-20 2012-01-26 Evonik Litarion Gmbh Battery containing a bimetal
FR2964256B1 (en) 2010-08-24 2012-09-28 Commissariat Energie Atomique BIPOLAR ELECTROCHEMICAL ACCUMULATOR WITH IMPROVED PACKAGING
US9368830B2 (en) 2010-11-04 2016-06-14 Samsung Sdi Co., Ltd. Battery
JP6051514B2 (en) 2010-12-02 2016-12-27 ソニー株式会社 Solid electrolyte battery and positive electrode active material
DE102011003186A1 (en) 2011-01-26 2012-07-26 Evonik Degussa Gmbh Thin, macroporous polymer films
JP5652541B2 (en) 2011-03-17 2015-01-14 トヨタ自動車株式会社 Solid battery and method for producing solid battery
FR2974674B1 (en) 2011-04-26 2013-06-28 Commissariat Energie Atomique BIPOLAR LI-ION ELECTROCHEMICAL ACCUMULATOR WITH INCREASED CAPABILITY
CN103814463A (en) 2011-05-13 2014-05-21 宾东制造公司 LPCS formed composite current collector and methods therefor
US9941546B2 (en) 2011-09-09 2018-04-10 East Penn Manufacturing Co., Inc. Bipolar battery and plate
BR122014030792B1 (en) 2011-10-24 2022-12-27 Advanced Battery Concepts, LLC BIPOLAR BATTERY PACK
US9349542B2 (en) 2011-12-21 2016-05-24 Nanotek Instruments, Inc. Stacks of internally connected surface-mediated cells and methods of operating same
CN104053507A (en) 2012-01-17 2014-09-17 巴拉斯特能源有限公司 Electrode and battery
DE102012203139A1 (en) 2012-02-29 2013-08-29 Robert Bosch Gmbh Solid cell
DE102012004161A1 (en) 2012-03-05 2013-09-05 Treofan Germany Gmbh & Co. Kg Highly porous separator film with partial coating
DE102012213110B4 (en) 2012-07-26 2016-12-01 Leichtbau-Zentrum Sachsen Gmbh Method for producing a film battery, method for preparing a film stack and lithium-ion battery element
KR101483239B1 (en) 2012-08-30 2015-01-16 주식회사 엘지화학 Packaging for a cable-type secondary battery and cable-type secondary battery including the same
CN103840212A (en) 2012-11-23 2014-06-04 海洋王照明科技股份有限公司 Making method of solid-state lithium ion battery
FR3006116B1 (en) 2013-05-21 2015-06-26 Commissariat Energie Atomique BIPOLAR LI-ON BATTERY WITH IMPROVED SEALING AND METHOD OF MAKING THE SAME.
DE102013009629B4 (en) 2013-06-10 2019-09-12 Carl Freudenberg Kg Electrode module and arrangement with electrode modules
CN103334147A (en) 2013-06-24 2013-10-02 沈阳化工大学 Method for preparing nickel-coated aluminum powder composite coating by utilizing pulse plating
EP3033794B1 (en) 2013-08-15 2019-02-20 Robert Bosch GmbH Li/metal battery with composite solid electrolyte
JP2017027652A (en) 2013-12-05 2017-02-02 日立マクセル株式会社 Nonaqueous electrolyte secondary battery and manufacturing method for the same
CN106133992B (en) 2013-12-30 2019-07-26 格雷腾能源有限公司 The bipolar cell component of sealing
CN103730684B (en) 2014-01-15 2016-04-27 广东亿纬赛恩斯新能源系统有限公司 A kind of High-safety all-solid-state lithium ion battery and production method thereof
US20150280177A1 (en) 2014-03-28 2015-10-01 Intel Corporation Method for providing a sealing compound on a battery cell
US9627727B2 (en) 2014-07-22 2017-04-18 Toyota Motor Engineering & Manufacturing North America, Inc. Lithium-air battery with cathode separated from free lithium ion
CN107004823A (en) 2014-10-06 2017-08-01 Eos能源储存有限责任公司 Zinc halide electrochemical cell
DE102015210806A1 (en) 2014-11-14 2016-05-19 Hyundai Motor Company Bipolar electrode, bipolar all-solid-state battery manufactured using same, and manufacturing method thereof
US10147968B2 (en) 2014-12-02 2018-12-04 Polyplus Battery Company Standalone sulfide based lithium ion-conducting glass solid electrolyte and associated structures, cells and methods
WO2017033237A1 (en) 2015-08-21 2017-03-02 住友電気工業株式会社 Frame body, cell frame for redox flow battery, and redox flow battery
US20190044129A1 (en) 2016-02-02 2019-02-07 Research Foundation Of The City University Of New York Rechargeable Alkaline Manganese Dioxide-Zinc Bipolar Batteries
US10147957B2 (en) 2016-04-07 2018-12-04 Lockheed Martin Energy, Llc Electrochemical cells having designed flow fields and methods for producing the same
US10381674B2 (en) * 2016-04-07 2019-08-13 Lockheed Martin Energy, Llc High-throughput manufacturing processes for making electrochemical unit cells and electrochemical unit cells produced using the same
US11870028B2 (en) 2017-02-14 2024-01-09 Volkswagen Ag Electric vehicle battery cell with internal series connection stacking
US11362338B2 (en) 2017-02-14 2022-06-14 Volkswagen Ag Electric vehicle battery cell with solid state electrolyte
US10797284B2 (en) 2017-02-14 2020-10-06 Volkswagen Ag Electric vehicle battery cell with polymer frame for battery cell components

Also Published As

Publication number Publication date
CN110521020A (en) 2019-11-29
WO2018150274A1 (en) 2018-08-23
US11362371B2 (en) 2022-06-14
US20180233782A1 (en) 2018-08-16
EP3583640B1 (en) 2021-03-17
CN110521020B (en) 2022-08-09

Similar Documents

Publication Publication Date Title
EP3583640B1 (en) Method for manufacturing electric vehicle battery cells with polymer frame support
US10797284B2 (en) Electric vehicle battery cell with polymer frame for battery cell components
KR102241199B1 (en) Electrochemical cell having a folded electrode and separator, battery including the same, and method of forming same
KR101837724B1 (en) manufacturing method for Laminated secondary battery
KR101103499B1 (en) Electrode assembly for battery and manufacturing thereof
EP3583639B1 (en) Electric vehicle battery cell with solid state electrolyte
EP2892101B1 (en) Method for manufacturing electrode assembly
US20150033547A1 (en) Electrode assembly manufacturing method including separator cutting process
US9768440B2 (en) Method of manufacturing electrode assembly
KR101342767B1 (en) Multilayered electrochemical energy storage device and method of manufacture thereof
EP2874225B1 (en) Method for securing electrode assembly using tape
EP3583651B1 (en) Electric vehicle battery cell with internal series connection stacking
GB2477552A (en) Thin Electrochemical Cell
KR101663351B1 (en) Cell for electrochemical device and preparation method thereof
KR101428541B1 (en) Wrapping electrode plate for use in lithium ion secondary battery and manufacturing method of the same
JP2007110061A (en) Separated film sheet used in manufacturing electric double layer capacitor and method for manufacturing electric double layer capacitor using it
JP2023003069A (en) Battery electrode manufacturing device and method for manufacturing battery electrode
KR101806585B1 (en) Notching method, manufacture method of electrode assembly, electrode assembly and secondary battery using the same
JP2023003068A (en) Battery electrode manufacturing device and method for manufacturing battery electrode
CN117673494A (en) Method for manufacturing battery
KR20080021166A (en) Process of preparing electrode assembly at improved operation efficiency
KR20180094675A (en) Unit Electrode Sheet Capable of Cutting and Stacking
KR20160049748A (en) Method for Preparing Unit Cell of Asymmetirc Structure and Unit Cell Prepared thereby

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190913

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HERMANN, MIRKO

Inventor name: SCHEFFLER, ROUVEN

Inventor name: SPEIDEL, ANGELA

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHEFFLER, ROUVEN

Inventor name: HERRMANN, MIRKO

Inventor name: SPEIDEL, ANGELA

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200915

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018014058

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1373066

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210415

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210617

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210617

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210618

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1373066

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210317

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210719

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210717

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018014058

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

26N No opposition filed

Effective date: 20211220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220212

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240229

Year of fee payment: 7

Ref country code: GB

Payment date: 20240208

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180212

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240208

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317