EP3574371B1 - Computer-implemented method for determining centring parameters - Google Patents

Computer-implemented method for determining centring parameters Download PDF

Info

Publication number
EP3574371B1
EP3574371B1 EP18703706.4A EP18703706A EP3574371B1 EP 3574371 B1 EP3574371 B1 EP 3574371B1 EP 18703706 A EP18703706 A EP 18703706A EP 3574371 B1 EP3574371 B1 EP 3574371B1
Authority
EP
European Patent Office
Prior art keywords
computer
spectacle frame
spectacle
implemented method
images
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18703706.4A
Other languages
German (de)
French (fr)
Other versions
EP3574371A1 (en
Inventor
Claudia NIEUWENHUIS
Oliver Schwarz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Zeiss Vision International GmbH
Carl Zeiss AG
Original Assignee
Carl Zeiss Vision International GmbH
Carl Zeiss AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57909541&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3574371(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Carl Zeiss Vision International GmbH, Carl Zeiss AG filed Critical Carl Zeiss Vision International GmbH
Publication of EP3574371A1 publication Critical patent/EP3574371A1/en
Application granted granted Critical
Publication of EP3574371B1 publication Critical patent/EP3574371B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C13/00Assembling; Repairing; Cleaning
    • G02C13/003Measuring during assembly or fitting of spectacles
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C13/00Assembling; Repairing; Cleaning
    • G02C13/003Measuring during assembly or fitting of spectacles
    • G02C13/005Measuring geometric parameters required to locate ophtalmic lenses in spectacles frames
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/024Methods of designing ophthalmic lenses
    • G02C7/027Methods of designing ophthalmic lenses considering wearer's parameters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/97Determining parameters from multiple pictures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/90Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30196Human being; Person
    • G06T2207/30201Face

Definitions

  • the invention relates to a computer-implemented method for determining centering parameters, in particular for adapting spectacle lenses to a given spectacle frame and to the head of a test person and / or for centering spectacle lenses according to the preamble of claim 1 or according to the preamble of claim 6.
  • Centering parameters are used to correctly arrange or center spectacle lenses in a spectacle frame, so that the spectacle lenses are arranged in the correct position relative to the eyes of the person wearing the spectacles.
  • These are partly anatomical parameters of the person concerned, such as the interpupillary distance, partly purely frame-specific parameters such as the frame width or the frame height, and partly combinations of anatomical and frame-specific parameters such as the corneal vertex distance and the visual height.
  • DIN EN ISO 13666 from October 2013 gives an overview of the common centering parameters.
  • the invention is based on the idea of providing a simplified model for the spectacle lenses to be accommodated in the spectacle frame by determining parameters describing the geometry of the spectacle frame and in particular parameters describing the nasal and / or temporal frame edges and that the model for the spectacle lenses is adapted to these parameters becomes.
  • the frame edges can be approximated by straight lines.
  • Calibrated images are provided. Their calibration includes the extrinsic properties of the cameras recording the images or the cameras recording the images one after the other, such as the relative alignment of their optical axes and the relative arrangement to one another in space, as well as their intrinsic properties, i.e. the properties of the cameras themselves, which define how a Point in space, which is located in the internal coordinate system of the respective camera, is mapped onto the coordinates of the pixels of the recorded image.
  • a detailed description of the calibration of cameras can be found in the textbook “Multiple View Geometry in Computer Vision” by Richard Hartley and Andrew Zisserman, 2nd edition, Cambridge University Press 2004, and there in particular on page 8.
  • geometrical position determination not only geometrical parameters that describe the position of the eyes, but also geometrical parameters that describe the geometry of the glasses frame are determined from the images.
  • a three-dimensional model is created for the glasses to be recorded in the glasses frame Spectacle lenses adapted to the geometric parameters describing the geometry of the spectacle frame.
  • the geometric parameters describing the position of the eyes, the geometric parameters describing the geometry of the spectacle frame and the three-dimensional model are used alternatively to one another or in combination to calculate the centering parameters.
  • a further development of the method provides that planes or linear combinations of surfaces of the nth order, in particular of at least one plane and / or at least one paraboloid, as an approximation for the surfaces in the spectacle frame, are applied to the parameters describing the nasal and / or temporal frame edges to be fitted to the spectacle lenses.
  • the parameters describing the nasal and temporal frame edges are expediently determined by means of epipolar geometry and / or by means of triangulation. It is preferred that at least three calibrated images of the head recorded simultaneously from different recording directions are provided, a front image depicting the head from the front and one side image depicting the head from the left and right.
  • the directions in which the side images are taken each expediently enclose an angle of at least 60 degrees, e.g. 90 ° ⁇ 10 °, with the direction in which the front image is taken.
  • the geometric parameters describing the position of the eyes include the position of the corneal vertex in space.
  • the position of the corneal apex determined in a first approximation becomes a Corrected calculation.
  • the type of correction calculation then depends on the way in which the position of the corneal vertex in space is determined in the first approximation.
  • a reflex-based evaluation by generating a flash of light when the images are recorded, preferably by means of an LED, the position of the corneal vertex in space being determined in a first approximation as the position of the reflex point of the flash of light on the cornea.
  • the plus sign in the x-direction is to be used when the vertex of the cornea of the left eye from the perspective of the test person is detected, the minus sign is to be used for the right eye from the perspective of the test person.
  • the plus sign is to be used if the light source emitting the flash of light is positioned at a lower height than the front camera, the minus sign is to be used if it is mounted at a greater height.
  • the pupil or the reflex point is advantageously detected by means of feature extraction and / or feature matching (feature comparison) and / or by means of machine learning by comparison with a large number of previously known data.
  • This method step can be preceded by face detection and / or detection of facial features such as the eyes as preprocessing in which it is detected which image data belong to the subject's face, so that only this data is included in the detection.
  • At least one calibrated third image recorded laterally with respect to the head at the same time as the first and second image is provided.
  • the computer-implemented method according to the invention is preferably carried out with a device as described in principle in claim 19 and in claim 24 and in detail in the following description of the figures.
  • the centering parameters determined according to the invention can advantageously be used for centering a spectacle lens in a spectacle frame and / or for grinding a spectacle lens into a spectacle frame.
  • the at least one spectacle lens is centered in the spectacle frame with the specific centering parameters or the at least one spectacle lens is ground in based on the specific centering parameters for an arrangement in the spectacle frame. In this way spectacle lenses and glasses can be manufactured.
  • the device 10 shown in the drawing is used to determine centering parameters for fitting glasses. It has a column 12 which, adjustable in height, carries a camera carrier 14 which in turn carries a number of cameras 16a, 16b.
  • the camera support 14 is bent approximately circular in plan view and extends between two free ends 18 which are arranged at a distance from one another.
  • an inner surface 20 of the camera carrier 14 encloses an interior 22 in which the head of a test person is located when images are recorded by the cameras 16a, 16b.
  • the inner surface 20 is concavely curved in a direction that runs between the free ends 18 and has, for example, the shape of a section of a cylinder jacket surface, wherein the cylinder can have a circular or oval base surface.
  • a lifting device is arranged in the column 12, with which the camera support 14 can be moved up and down in a motorized manner.
  • All cameras 16a, 16b are arranged in a camera arrangement 26 extending between the free ends 18.
  • the camera arrangement 26 is designed as a series of cameras 26, the cameras 16a, 16b of which are all located at the same height, with their optical axes being directed towards the interior 22.
  • the camera row 26 comprises a front camera 16a arranged in the middle of the camera carrier 14, the optical axis of which is directed frontally onto the face of the test subject, as well as eight side cameras 16b arranged in pairs symmetrically with respect to a vertical plane of symmetry running through the optical axis of the front camera 16a each of which four from the left and four from the right are directed towards the subject's face.
  • the cameras 16a, 16b are also calibrated so that they can simultaneously record calibrated images of the test subject.
  • the calibration includes the extrinsic properties such as the relative alignment of their optical axes and the relative arrangement to each other in space, as well as their intrinsic properties, that is, the properties of the cameras themselves, which define how a point in space, which is located in the internal coordinate system of the respective camera, is mapped onto the coordinates of the pixels of the recorded image.
  • the camera support 14 encloses the interior 22 only towards the front, towards the column 12, and to the sides, that is to say to the left and right of the head of the test subject. It is open upwards, downwards and towards a rear side 30, the free ends 18 being at a distance of at least 25 cm from one another, so that the test subject can comfortably approach from the rear side. In the embodiment shown, the distance is 70 to 80 cm.
  • a lighting device is provided with an upper light strip 32 running above the row of cameras 26 and a lower light strip 34 running below the row of cameras 26, each of which has a plurality of LEDs as lighting means.
  • the upper light strip 32 and the lower light strip 34 each extend continuously or with interruptions over a length which is at least as great as the length of the length of the camera row 26 measured in the circumferential direction between the free ends 18. This corresponds to a circumferential angle of at least 160 degrees .
  • the upper light strip 32 and the lower light strip 34 are each connected to one another by means of a further vertical light strip 36.
  • the row of cameras 26 is thus completely framed by at least one row of LEDs.
  • the device 10 also has a control or regulating device, not shown in detail in the drawing, with which the light intensity emitted by the LEDs can be controlled or regulated as a function of the light intensity detected by the cameras 16a, 16b.
  • the LEDs of the light strips 32, 34, 36 are combined to form sectors, the emitted light intensities of which can be controlled or regulated separately from one another.
  • the light intensities emitted by the individual LEDs can also be controlled or regulated separately from one another by means of the control or regulating device.
  • the two side cameras 16b closest to the front camera 16a are set up to measure the distance of the test person's head from the center 38 of the camera support 14.
  • a display unit shows the test person whether he is standing correctly or not.
  • the display unit has several differently colored light sources which are arranged in a row.
  • the middle light source glows green when the subject is standing correctly. Starting from the middle light source, there is a yellow, an orange and a red light source in this order in each direction, which, depending on the color, indicates when the test subject is a little, clearly or much too far away from the middle 38 of the camera support 14 or a little, clearly or much too close to the middle of 38.
  • a fixation device 42 is provided which is arranged on the camera support 14 and generates a fixation pattern for the test person in the form of a speckle pattern.
  • the fixation pattern is arranged somewhat higher than the front camera 16a, so that the test person looks over it. This allows his face to be captured as much as possible.
  • the device 10 is also particularly suitable for producing an avatar of the subject's head, which avatar can be used to determine the centering parameters.
  • calibrated images of the head of the test person without glasses or glasses frame are recorded by the cameras 16a, 16b.
  • a suitable process for determining the geometric position such as triangulation, a depth profile of the head is created from the images, which approximates it very well.
  • the head is represented by a large number of points that can be connected to one another by means of a network pattern or that can be saved as a point cloud.
  • the avatar determined in this way can be used to determine centering parameters based on the geometric properties the glasses or glasses frame that the test subject wears cannot be determined or can only be determined approximately.
  • a wide mounting bracket can cover the eye in a side view to such an extent that the corneal vertex distance cannot be determined or can only be determined very imprecisely.
  • colored or highly reflective lenses can make the eyes difficult or impossible to see.
  • the depth profile of the avatar is projected onto the images of the test person wearing the glasses or glasses frame recorded by the cameras 16a, 16b and the centering parameters, which can only be determined inadequately due to the restricted view through the glasses or glasses frame, are projected determined by means of the image data of the avatar.
  • the avatar can be adapted to the images of the test person wearing the glasses or glasses frame in order to minimize deviations.
  • the device 10 described above can be used as follows for a pupil-based detection of a corneal vertex as well as for a reflex-based detection of a corneal vertex in both eyes of the test subject.
  • the position of the corneal vertex in space is determined in a first approximation as the intersection point q of a first viewing ray 52 tangent to cornea 50 of one of the side cameras 16b taking a side image of the test person with a second viewing ray 56 of the front camera 16a taking a front image of the test person, directed at pupil 54 .
  • is an empirical value for the distance between the pupil center and the vertex of the cornea, which regularly assumes values between 2.5 mm and 4 mm.
  • the z-direction is determined by the recording direction of the front camera 16a
  • the x-direction is a direction that runs horizontally and orthogonally to the z-direction and, viewed in its direction, points to the right
  • the y-direction runs orthogonally to the x- Direction and to the z-direction and points upwards in space.
  • a light source in the present case an LED 58, emits a flash of light, the reflection of which on the cornea is detected by the front camera 16a and at least one of the side cameras 16b and forms the first approximation for the position of the corneal vertex in space.
  • the reflex point is in Figure 3a , 3b labeled "approx".
  • r is an empirical value for the corneal radius, which is typically approx. 8 mm.
  • a is the distance between the optical center of the front camera 16a and the reflex point approx and v is the distance between the LED 58 and the optical center of the front camera 16a in the z-direction.
  • x and z are the coordinates in the x and z directions.
  • ⁇ y + / -r * sin 1 ⁇ 2 * (arctan l / (dv)).
  • r is again the empirical value for the corneal radius
  • d is the distance from the optical center of the front camera 16a to the reflex point approx in the z-direction
  • v is the distance from the LED 58 to the optical center of the front camera 16a in the z-direction
  • l is Distance of the LED 58 from the optical center of the front camera 16a in the y-direction.
  • the plus sign is used when the LED 58 is arranged below the front camera 16a, that is to say its y-coordinate is smaller than the y-coordinate of the front camera 16a or its optical center. If the LED is arranged above the front camera 16a, the minus sign is used.
  • the pupil or the reflex point approx can be detected, for example, by means of feature extraction, by means of feature matching and / or by means of machine learning by comparison with a large number of previously known data.
  • This detection step can be preceded by a step in which a face detector detects which image points belong to the subject's face or to the area around his eyes, so that a limited search can already be made for the pupil or the reflex point approx.
  • the position of the corneal vertex in space is used to determine the centering parameters when fitting glasses.
  • geometrical position determination in particular triangulation or epipolar geometry, determines geometrical parameters that describe the geometry of the spectacle frame.
  • These include the nasal and temporal frame edges 60, 62, as in FIG Figure 4a, 4b indicated by way of example.
  • Planes 64 are adapted to the parameters describing the nasal and temporal frame edges 60, 62 as an approximation for the surfaces of the spectacle lenses to be received in the spectacle frame.
  • Figure 5 shows schematically the planes 64 in front of the respective, approximately shown cornea 66 with schematically shown sight rays 68 of the cameras 16a, 16b.
  • the centering parameters are calculated from the data obtained.

Description

Die Erfindung betrifft ein computerimplementiertes Verfahren zur Bestimmung von Zentrierparametern, insbesondere zur Anpassung von Brillengläsern an eine vorgegebene Brillenfassung und an den Kopf eines Probanden und/oder zur Zentrierung von Brillengläsern gemäß Oberbegriff des Anspruchs 1 bzw. gemäß Oberbegriff des Anspruchs 6.The invention relates to a computer-implemented method for determining centering parameters, in particular for adapting spectacle lenses to a given spectacle frame and to the head of a test person and / or for centering spectacle lenses according to the preamble of claim 1 or according to the preamble of claim 6.

Zentrierparameter werden benutzt, um Brillengläser korrekt in einer Brillenfassung anzuordnen bzw. zu zentrieren, so dass die Brillengläser in korrekter Position relativ zu den Augen der die Brille tragenden Person angeordnet sind. Dabei handelt es sich zum Teil um anatomische Parameter der betreffenden Person, wie beispielsweise den Pupillenabstand, zum Teil um rein fassungsspezifische Parameter wie die Fassungsscheibenbreite oder die Fassungsscheibenhöhe und zum Teil um Kombinationen aus anatomischen und fassungsspezifischen Parametern, wie beispielsweise den Hornhautscheitelabstand und die Durchblickshöhe. Einen Überblick über die gängigen Zentrierparameter gibt die DIN EN ISO 13666 vom Oktober 2013.Centering parameters are used to correctly arrange or center spectacle lenses in a spectacle frame, so that the spectacle lenses are arranged in the correct position relative to the eyes of the person wearing the spectacles. These are partly anatomical parameters of the person concerned, such as the interpupillary distance, partly purely frame-specific parameters such as the frame width or the frame height, and partly combinations of anatomical and frame-specific parameters such as the corneal vertex distance and the visual height. DIN EN ISO 13666 from October 2013 gives an overview of the common centering parameters.

Bei bekannten Verfahren zur Bestimmung von Zentrierparametern werden unkalibrierte Bilder aufgenommen, wobei an der Brille bzw. Brillenfassung ein Messbügel befestigt werden muss. Dies ist umständlich und störend. Desweiteren ist aus der US 2003/0123026 A1 eine Vorrichtung der eingangs genannten Art bekannt, die aus Bildern automatisch Zentrierparameter berechnet. Bei dem vorbekannten Verfahren werden Brillen virtuell anprobiert. Dies setzt voraus, dass die die Geometrie der Brillenfassung beschreibenden Parameter vorab bekannt sind. Ein Verfahren der eingangs genannten Art, bei dem mit Hilfe eines Tracerdatensatzes die Repräsentation eines Brillenfassungsrands bzw. von Glasrändern mittels eines an der Fassung angebrachten Messbügels bestimmt wird, ist aus der DE 10 2011 115 239 A1 bekannt.In known methods for determining centering parameters, uncalibrated images are recorded, with a measuring bracket having to be attached to the glasses or glasses frame. This is cumbersome and annoying. Furthermore, from the US 2003/0123026 A1 a device of the type mentioned is known which automatically calculates centering parameters from images. In the previously known method, glasses are tried on virtually. This assumes that the parameters describing the geometry of the spectacle frame are known in advance. A method of the type mentioned at the outset, in which the representation of a spectacle frame rim or lens rims is determined with the aid of a tracer data record by means of a measuring bracket attached to the frame, is based on FIG DE 10 2011 115 239 A1 known.

Es ist Aufgabe der Erfindung, ein computerimplementiertes Verfahren der eingangs genannten Art derart weiterzubilden, dass es einfacher durchzuführen ist.It is the object of the invention to develop a computer-implemented method of the type mentioned at the beginning in such a way that it can be carried out more easily.

Diese Aufgabe wird erfindungsgemäß durch ein computerimplementiertes Verfahren mit den Merkmalen des Anspruches 1 und durch ein computerimplementiertes Verfahren mit den Merkmalen des Anspruchs 6 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der abhängigen Ansprüche.According to the invention, this object is achieved by a computer-implemented method with the features of claim 1 and by a computer-implemented method with the features of claim 6. Advantageous developments of the invention are the subject of the dependent claims.

Der Erfindung liegt der Gedanke zugrunde, ein vereinfachtes Modell für die in der Brillenfassung aufzunehmenden Brillengläser bereitzustellen, indem die Geometrie der Brillenfassung beschreibende Parameter und insbesondere die nasalen und/oder temporalen Fassungsränder beschreibende Parameter ermittelt werden und dass an diese Parameter das Modell für die Brillengläser angepasst wird. Die Fassungsränder können durch Geraden angenähert werden.The invention is based on the idea of providing a simplified model for the spectacle lenses to be accommodated in the spectacle frame by determining parameters describing the geometry of the spectacle frame and in particular parameters describing the nasal and / or temporal frame edges and that the model for the spectacle lenses is adapted to these parameters becomes. The frame edges can be approximated by straight lines.

Dabei werden kalibrierte Bilder bereitgestellt. Deren Kalibrierung umfasst die extrinsischen Eigenschaften der die Bilder aufnehmenden Kameras oder der die Bilder nacheinander aufnehmenden Kamera wie die relative Ausrichtung ihrer optischen Achsen sowie die relative Anordnung zueinander im Raum, sowie ihre intrinsischen Eigenschaften, also die Eigenschaften der Kameras selbst, die definieren, wie ein Punkt im Raum, der sich im internen Koordinatensystem der jeweiligen Kamera befindet, auf die Koordinaten der Pixel des aufgenommenen Bildes abgebildet wird. Eine ausführliche Beschreibung der Kalibrierung von Kameras findet sich im Lehrbuch "Multiple View Geometry in Computer Vision" von Richard Hartley und Andrew Zisserman, 2. Auflage, Cambridge University Press 2004, und dort insbesondere auf Seite 8. Aus den Bildern werden mittels geometrischer Positionsbestimmung nicht nur geometrische Parameter ermittelt, die die Position der Augen beschreiben, sondern auch geometrische Parameter, die die Geometrie der Brillenfassung beschreiben. Zudem wird ein dreidimensionales Modell für die in der Brillenfassung aufzunehmenden Brillengläser an die die Geometrie der Brillenfassung beschreibenden geometrischen Parameter angepasst. Die die Position der Augen beschreibenden geometrischen Parameter, die die Geometrie der Brillenfassung beschreibenden geometrischen Parameter und das dreidimensionale Modell werden alternativ zueinander oder in Kombination zur Berechnung der Zentrierparameter herangezogen.Calibrated images are provided. Their calibration includes the extrinsic properties of the cameras recording the images or the cameras recording the images one after the other, such as the relative alignment of their optical axes and the relative arrangement to one another in space, as well as their intrinsic properties, i.e. the properties of the cameras themselves, which define how a Point in space, which is located in the internal coordinate system of the respective camera, is mapped onto the coordinates of the pixels of the recorded image. A detailed description of the calibration of cameras can be found in the textbook "Multiple View Geometry in Computer Vision" by Richard Hartley and Andrew Zisserman, 2nd edition, Cambridge University Press 2004, and there in particular on page 8. By means of geometrical position determination, not only geometrical parameters that describe the position of the eyes, but also geometrical parameters that describe the geometry of the glasses frame are determined from the images. In addition, a three-dimensional model is created for the glasses to be recorded in the glasses frame Spectacle lenses adapted to the geometric parameters describing the geometry of the spectacle frame. The geometric parameters describing the position of the eyes, the geometric parameters describing the geometry of the spectacle frame and the three-dimensional model are used alternatively to one another or in combination to calculate the centering parameters.

Eine Weiterbildung des Verfahrens sieht vor, dass an die die nasalen und/oder temporalen Fassungsränder beschreibenden Parameter Ebenen oder Linearkombinationen von Flächen n-ter Ordnung, insbesondere von mindestens einer Ebene und/oder mindestens einem Paraboloid, als Näherung für die Flächen der in der Brillenfassung aufzunehmenden Brillengläser angepasst werden. Dies stellt eine Vereinfachung des Modells dar, die einfacher zu berechnen ist. Zweckmäßig werden die die nasalen und temporalen Fassungsränder beschreibenden Parameter mittels Epipolargeometrie und/oder mittels Triangulation ermittelt. Dabei wird bevorzugt, dass mindestens drei gleichzeitig aus unterschiedlichen Aufnahmerichtungen aufgenommene kalibrierte Bilder des Kopfes bereitgestellt werden, wobei ein Frontbild den Kopf von vorne abbildet und jeweils ein Seitenbild den Kopf von links und von rechts abbildet. Die Aufnahmerichtungen der Seitenbilder schließen mit der Aufnahmerichtung des Frontbilds zweckmäßig jeweils einen Winkel von mindestens 60 Grad, z.B. 90°±10° ein. Beim erfindungsgemäßen Verfahren ist es nicht notwendig, dass sich die Front- und Seitenbilder überlappen. Eventuell einander überlappende Bereiche der Bilder werden zweckmäßig zur Bestimmung der Zentrierparameter nicht herangezogen.A further development of the method provides that planes or linear combinations of surfaces of the nth order, in particular of at least one plane and / or at least one paraboloid, as an approximation for the surfaces in the spectacle frame, are applied to the parameters describing the nasal and / or temporal frame edges to be fitted to the spectacle lenses. This represents a simplification of the model that is easier to calculate. The parameters describing the nasal and temporal frame edges are expediently determined by means of epipolar geometry and / or by means of triangulation. It is preferred that at least three calibrated images of the head recorded simultaneously from different recording directions are provided, a front image depicting the head from the front and one side image depicting the head from the left and right. The directions in which the side images are taken each expediently enclose an angle of at least 60 degrees, e.g. 90 ° ± 10 °, with the direction in which the front image is taken. In the method according to the invention, it is not necessary for the front and side images to overlap. Any areas of the images that may overlap are expediently not used to determine the centering parameters.

Gemäß einer vorteilhaften Weiterbildung ist vorgesehen, dass die die Position der Augen beschreibenden geometrischen Parameter die Position des Hornhautscheitels im Raum umfassen.According to an advantageous development, it is provided that the geometric parameters describing the position of the eyes include the position of the corneal vertex in space.

Gemäß einer vorteilhaften Weiterbildung der Erfindung wird die in einer ersten Näherung bestimmte Position des Hornhautscheitels im Raum einer Korrekturrechnung unterzogen. Die Art der Korrekturrechnung ist dann abhängig von der Art, wie die Position des Hornhautscheitels im Raum in der ersten Näherung bestimmt wird.According to an advantageous further development of the invention, the position of the corneal apex determined in a first approximation becomes a Corrected calculation. The type of correction calculation then depends on the way in which the position of the corneal vertex in space is determined in the first approximation.

Es ist möglich, bei einer sogenannten pupillenbasierten Auswertung die Position des Hornhautscheitels im Raum in erster Näherung als Schnittpunkt eines die Hornhaut tangierenden Sichtstrahls einer das Seitenbild aufnehmenden Seitenkamera mit einem auf die Pupille gerichteten Sichtstrahl einer das Frontbild aufnehmenden Frontkamera zu bestimmen. Ist dies der Fall, wird vorteilhaft mittels der Korrekturrechnung die Position des Hornhautscheitels gemäß a = q + µ * v + µ * w berechnet, wobei a der Positionsvektor des Hornhautscheitels im Raum nach Durchführung der Korrekturrechnung, q die Position des Hornhautscheitels in erster Näherung, µ ein Erfahrungswert für den Abstand zwischen dem Pupillenzentrum und dem Hornhautscheitel, v ein Einheitsvektor der Raumrichtung vom Pupillenzentrum zur Frontkamera und w ein Einheitsvektor der durch das Zentrum der Hornhautkugel verlaufenden Aufnahmerichtung ist.With a so-called pupil-based evaluation, it is possible to determine the position of the corneal vertex in space as a first approximation as the intersection of a viewing ray tangential to the cornea of a side camera taking the side image with a viewing ray directed at the pupil of a front camera taking the front image. If this is the case, the position of the corneal vertex is advantageously calculated by means of the correction calculation according to a = q + µ * v + µ * w, where a is the position vector of the corneal vertex in space after the correction calculation has been carried out, q the position of the corneal vertex as a first approximation, µ is an empirical value for the distance between the pupil center and the vertex of the cornea, v is a unit vector of the spatial direction from the pupil center to the front camera and w is a unit vector of the recording direction running through the center of the corneal sphere.

Alternativ hierzu ist es auch möglich, eine reflexbasierte Auswertung vorzunehmen, indem bei der Aufnahme der Bilder ein Lichtblitz vorzugsweise mittels einer LED erzeugt wird, wobei die Position des Hornhautscheitels im Raum in erster Näherung als die Position des Reflexpunkts des Lichtblitzes auf der Hornhaut bestimmt wird. Ausgehend von dieser ersten Näherung kann, wenn der Lichtblitz mittels einer mittig vor dem Gesicht des Probanden angeordneten Lichtquelle erzeugt wird, vorteilhaft mittels der Korrekturrechnung die Position des Hornhautscheitels in horizontaler Richtung ausgehend vom Reflexpunkt mittels Addition von Δx =+/ -r * sin (½ * (arccos z/a + arctan x/(z-v))) zur x-Koordinate berechnet werden, wobei r ein Erfahrungswert für den Hornhautradius, a der Abstand des optischen Zentrums einer das Frontbild aufnehmenden Frontkamera zum Reflexpunkt, x und z die x- und z-Koordinaten des Reflexpunkts in einem Koordinatensystem mit dem Nullpunkt im optischen Zentrum der Frontkamera, wobei die Aufnahmerichtung der Frontkamera der z-Richtung entspricht und die x-Richtung horizontal orthogonal zur z-Richtung steht und in z-Richtung betrachtet nach rechts weist, und v der Abstand der den Lichtblitz erzeugenden Lichtquelle vom optischen Zentrum der Frontkamera in z-Richtung ist. Ergänzend oder alternativ hierzu kann mittels der Korrekturrechnung vorteilhaft die Position des Hornhautscheitels in y-Richtung ausgehend vom Reflexpunkt mittels Addition von Δy =+/ -r * sin ½ * (arctan l/(d-v)) berechnet wird, wobei r ein Erfahrungswert für den Hornhautradius, d der Abstand des optischen Zentrums der Frontkamera zum Reflexpunkt, v der Abstand der den Lichtblitz erzeugenden Lichtquelle vom optischen Zentrum der Frontkamera in z-Richtung und l der Abstand der Lichtquelle vom optischen Zentrum der Frontkamera in y-Richtung ist, wobei die y-Richtung orthogonal zur x-Richtung und zur z-Richtung ist und im Raum nach oben weist.Alternatively, it is also possible to carry out a reflex-based evaluation by generating a flash of light when the images are recorded, preferably by means of an LED, the position of the corneal vertex in space being determined in a first approximation as the position of the reflex point of the flash of light on the cornea. On the basis of this first approximation, if the light flash is generated by means of a light source arranged centrally in front of the test person's face, the position of the corneal vertex in the horizontal direction based on the reflex point can advantageously be determined by means of the correction calculation by adding Δx = + / -r * sin (½ * (arccos z / a + arctan x / (zv))) can be calculated for the x coordinate, where r is an empirical value for the corneal radius, a is the distance from the optical center of a front camera taking the front image to the reflex point, x and z are the x- and z-coordinates of the reflex point in a coordinate system with the zero point in the optical center of the front camera, the recording direction of the front camera corresponding to the z-direction and the x-direction being horizontally orthogonal to the z-direction and viewed in the z-direction points to the right, and v is the distance of the light source generating the light flash from the optical center of the front camera in the z-direction. In addition or as an alternative to this, the correction calculation can advantageously be used to calculate the position of the corneal vertex in the y direction starting from the reflex point by adding Δy = + / -r * sin ½ * (arctan l / (dv)), where r is an empirical value for the Corneal radius, d is the distance from the optical center of the front camera to the reflex point, v is the distance of the light source generating the light flash from the optical center of the front camera in the z-direction and l is the distance of the light source from the optical center of the front camera in the y-direction, where y -Direction is orthogonal to the x-direction and the z-direction and points upwards in space.

Dabei ist das Pluszeichen in x-Richtung anzuwenden, wenn der Hornhautscheitel des aus der Sicht des Probanden linken Auges detektiert wird, das Minuszeichen ist für das aus der Sicht des Probanden rechte Auge anzuwenden. In y-Richtung ist das Pluszeichen anzuwenden, wenn die den Lichtblitz aussendende Lichtquelle auf einer niedrigeren Höhe positioniert ist als die Frontkamera, das Minuszeichen ist anzuwenden, wenn sie in einer größeren Höhe montiert ist.The plus sign in the x-direction is to be used when the vertex of the cornea of the left eye from the perspective of the test person is detected, the minus sign is to be used for the right eye from the perspective of the test person. In the y-direction, the plus sign is to be used if the light source emitting the flash of light is positioned at a lower height than the front camera, the minus sign is to be used if it is mounted at a greater height.

Vorteilhaft wird die Pupille bzw. der Reflexpunkt mittels Merkmalsextraktion und/oder Merkmalsmatchings (Merkmalsvergleich) und/oder mittels maschinellen Lernens durch Vergleich mit einer Vielzahl vorbekannter Daten detektiert. Diesem Verfahrensschritt kann eine Gesichtsdetektion und/oder eine Detektion von Gesichtsmerkmalen wie den Augen als Vorverarbeitung vorausgehen, bei der detektiert wird, welche Bilddaten zum Gesicht des Probanden gehören, so dass nur diese Daten in die Detektion einfließen.The pupil or the reflex point is advantageously detected by means of feature extraction and / or feature matching (feature comparison) and / or by means of machine learning by comparison with a large number of previously known data. This method step can be preceded by face detection and / or detection of facial features such as the eyes as preprocessing in which it is detected which image data belong to the subject's face, so that only this data is included in the detection.

Um die Bestimmung des Hornhautscheitels im Raum für beide Augen vornehmen zu können, wird bevorzugt, dass mindestens ein gleichzeitig mit dem ersten und zweiten Bild seitlich bezüglich des Kopfes aufgenommenes, kalibriertes drittes Bild bereitgestellt wird.In order to be able to determine the vertex of the cornea in space for both eyes, it is preferred that at least one calibrated third image recorded laterally with respect to the head at the same time as the first and second image is provided.

Vorzugsweise wird das erfindungsgemäße computerimplementierte Verfahren mit einer Vorrichtung durchgeführt, wie sie grundsätzlich in Anspruch 19 und im Anspruch 24 sowie im Detail in der folgenden Figurenbeschreibung beschrieben wird.The computer-implemented method according to the invention is preferably carried out with a device as described in principle in claim 19 and in claim 24 and in detail in the following description of the figures.

Die erfindungsgemäß bestimmten Zentrierparameter können vorteilhaft zum Zentrieren eines Brillenglases in einer Brillenfassung und/oder zum Einschleifen eines Brillenglases in eine Brillenfassung herangezogen werden. Dabei wird in einem Verfahrensschritt das mindestens eine Brillenglas mit den bestimmten Zentrierparametern in der Brillenfassung zentriert oder es wird das mindestens eine Brillenglas basierend auf den bestimmten Zentrierparametern für eine Anordnung in der Brillenfassung eingeschliffen. Auf diese Weise können Brillengläser und Brillen hergestellt werden.The centering parameters determined according to the invention can advantageously be used for centering a spectacle lens in a spectacle frame and / or for grinding a spectacle lens into a spectacle frame. In one process step, the at least one spectacle lens is centered in the spectacle frame with the specific centering parameters or the at least one spectacle lens is ground in based on the specific centering parameters for an arrangement in the spectacle frame. In this way spectacle lenses and glasses can be manufactured.

Im Folgenden wird die Erfindung anhand eines in der Zeichnung schematisch dargestellten Ausführungsbeispiels näher erläutert. Es zeigen:

Figur 1a, b
eine Vorrichtung zur Bestimmung von Zentrierparametern in perspektivischer Ansicht und in einer Ansicht von vorne;
Figur 2
eine Veranschaulichung der Korrekturrechnung bei pupillenbasierter Bestimmung der Position des Hornhautscheitels;
Figur 3a, b
eine Veranschaulichung der Korrekturrechnung bei reflexbasierter Bestimmung der Position des Hornhautscheitels;
Figur 4a, b
Ansichten eines eine Brille tragendes Kopfes mit darauf projizierten genäherten Fassungskanten von vorne und von der Seite und
Figur 5
eine schematische Darstellung von näherungsweise bestimmten Glasebenen.
The invention is explained in more detail below using an exemplary embodiment shown schematically in the drawing. Show it:
Figure 1a, b
a device for determining centering parameters in a perspective view and in a view from the front;
Figure 2
an illustration of the correction calculation in the case of pupil-based determination of the position of the apex of the cornea;
Figure 3a, b
an illustration of the correction calculation with reflex-based determination of the position of the corneal vertex;
Figure 4a, b
Views of a head wearing glasses with approximated frame edges projected onto it from the front and from the side and
Figure 5
a schematic representation of approximately determined glass levels.

Die in der Zeichnung dargestellte Vorrichtung 10 dient der Bestimmung von Zentrierparametern für die Brillenanpassung. Sie weist eine Säule 12 auf, die höhenverstellbar einen Kameraträger 14 trägt, welcher wiederum eine Anzahl Kameras 16a, 16b trägt. Der Kameraträger 14 ist in Draufsicht näherungsweise kreisförmig gebogen und erstreckt sich zwischen zwei freien Enden 18, welche im Abstand zueinander angeordnet sind. Nach vorne, also zur Säule 12 hin, und zu den Seiten umschließt eine Innenfläche 20 des Kameraträgers 14 einen Innenraum 22, in dem sich bei der Aufnahme von Bildern durch die Kameras 16a, 16b der Kopf eines Probanden befindet. Die Innenfläche 20 ist in einer Richtung, die zwischen den freien Enden 18 verläuft, konkav gebogen und weist beispielsweise die Form eines Abschnitts einer Zylindermantelfläche auf, wobei der Zylinder eine kreisrunde oder ovale Grundfläche haben kann. Um den Kameraträger 14 bezüglich des Kopfs des Probanden auf der richtigen Höhe positionieren zu können, ist in der Säule 12 eine nicht näher dargestellte Hubeinrichtung angeordnet, mit der der Kameraträger 14 motorisch angetrieben auf und ab bewegt werden kann.The device 10 shown in the drawing is used to determine centering parameters for fitting glasses. It has a column 12 which, adjustable in height, carries a camera carrier 14 which in turn carries a number of cameras 16a, 16b. The camera support 14 is bent approximately circular in plan view and extends between two free ends 18 which are arranged at a distance from one another. To the front, that is to say towards the column 12, and to the sides, an inner surface 20 of the camera carrier 14 encloses an interior 22 in which the head of a test person is located when images are recorded by the cameras 16a, 16b. The inner surface 20 is concavely curved in a direction that runs between the free ends 18 and has, for example, the shape of a section of a cylinder jacket surface, wherein the cylinder can have a circular or oval base surface. In order to be able to position the camera support 14 at the correct height with respect to the head of the test person, a lifting device, not shown in detail, is arranged in the column 12, with which the camera support 14 can be moved up and down in a motorized manner.

Alle Kameras 16a, 16b sind in einer sich zwischen den freien Enden 18 erstreckenden Kameraanordnung 26 angeordnet. Im vorliegenden Ausführungsbeispiel ist die Kameraanordnung 26 als Kamerareihe 26 ausgebildet, deren Kameras 16a, 16b sich alle in derselben Höhe befinden, wobei ihre optischen Achsen auf den Innenraum 22 gerichtet sind. Im vorliegenden Ausführungsbeispiel umfasst die Kamerareihe 26 eine in der Mitte des Kameraträgers 14 angeordnete Frontkamera 16a, deren optische Achse frontal auf das Gesicht des Probanden gerichtet ist, sowie acht paarweise symmetrisch bezüglich einer durch die optische Achse der Frontkamera 16a verlaufenden senkrechten Symmetrieebene angeordnete Seitenkameras 16b von denen jeweils vier von links und von rechts auf das Gesicht des Probanden gerichtet sind. Die Kameras 16a, 16b sind zudem kalibriert, so dass sie gleichzeitig kalibrierte Bilder des Probanden aufnehmen können. Die Kalibrierung umfasst die extrinsischen Eigenschaften wie die relative Ausrichtung ihrer optischen Achsen sowie die relative Anordnung zueinander im Raum, sowie ihre intrinsischen Eigenschaften, also die Eigenschaften der Kameras selbst, die definieren, wie ein Punkt im Raum, der sich im internen Koordinatensystem der jeweiligen Kamera befindet, auf die Koordinaten der Pixel des aufgenommenen Bildes abgebildet wird.All cameras 16a, 16b are arranged in a camera arrangement 26 extending between the free ends 18. In the present exemplary embodiment, the camera arrangement 26 is designed as a series of cameras 26, the cameras 16a, 16b of which are all located at the same height, with their optical axes being directed towards the interior 22. In the present exemplary embodiment, the camera row 26 comprises a front camera 16a arranged in the middle of the camera carrier 14, the optical axis of which is directed frontally onto the face of the test subject, as well as eight side cameras 16b arranged in pairs symmetrically with respect to a vertical plane of symmetry running through the optical axis of the front camera 16a each of which four from the left and four from the right are directed towards the subject's face. The cameras 16a, 16b are also calibrated so that they can simultaneously record calibrated images of the test subject. The calibration includes the extrinsic properties such as the relative alignment of their optical axes and the relative arrangement to each other in space, as well as their intrinsic properties, that is, the properties of the cameras themselves, which define how a point in space, which is located in the internal coordinate system of the respective camera, is mapped onto the coordinates of the pixels of the recorded image.

Der Kameraträger 14 umschließt den Innenraum 22 nur nach vorne, zur Säule 12 hin, und zu den Seiten, also links und rechts des Kopfes des Probanden. Nach oben, unten sowie zu einer Rückseite 30 hin ist er offen, wobei die freien Enden 18 zueinander einen Abstand von mindestens 25cm aufweisen, so dass sich der Proband bequem von der Rückseite aus nähern kann. Im gezeigten Ausführungsbeispiel beträgt der Abstand 70 bis 80cm.The camera support 14 encloses the interior 22 only towards the front, towards the column 12, and to the sides, that is to say to the left and right of the head of the test subject. It is open upwards, downwards and towards a rear side 30, the free ends 18 being at a distance of at least 25 cm from one another, so that the test subject can comfortably approach from the rear side. In the embodiment shown, the distance is 70 to 80 cm.

Zur Ausleuchtung des Innenraums 22 ist eine Beleuchtungseinrichtung mit einer oberhalb der Kamerareihe 26 verlaufenden oberen Lichtleiste 32 sowie einer unterhalb der Kamerareihe 26 verlaufenden unteren Lichtleiste 34 vorgesehen, welche jeweils eine Vielzahl von LEDs als Leuchtmittel aufweisen. Die obere Lichtleiste 32 und die untere Lichtleiste 34 erstrecken sich jeweils durchgehend oder mit Unterbrechungen über eine Länge, die mindestens so groß ist wie die Länge der in Umfangsrichtung zwischen den freien Enden 18 gemessenen Länge der Kamerareihe 26. Diese entspricht einem Umfangswinkel von mindestens 160 Grad. Nahe den freien Enden 18 sind die obere Lichtleiste 32 und die untere Lichtleiste 34 jeweils mittels einer vertikal verlaufenden weiteren Lichtleiste 36 miteinander verbunden. Die Kamerareihe 26 wird somit vollständig durch mindestens eine Reihe LEDs umrahmt. Die Vorrichtung 10 weist zudem eine in der Zeichnung nicht näher dargestellte Steuer- oder Regeleinrichtung auf, mit der die von den LEDs abgestrahlte Lichtintensität abhängig von der durch die Kameras 16a, 16b detektierten Lichtintensität gesteuert oder geregelt werden kann. Die LEDs der Lichtleisten 32, 34, 36 sind dabei zu Sektoren zusammengefasst, deren abgestrahlte Lichtintensitäten getrennt voneinander gesteuert bzw. geregelt werden können. Zudem ist vorgesehen, dass auch die von den einzelnen LEDs abgestrahlten Lichtintensitäten mittels der Steuer- oder Regeleinrichtung getrennt voneinander gesteuert oder geregelt werden können.To illuminate the interior 22, a lighting device is provided with an upper light strip 32 running above the row of cameras 26 and a lower light strip 34 running below the row of cameras 26, each of which has a plurality of LEDs as lighting means. The upper light strip 32 and the lower light strip 34 each extend continuously or with interruptions over a length which is at least as great as the length of the length of the camera row 26 measured in the circumferential direction between the free ends 18. This corresponds to a circumferential angle of at least 160 degrees . Near the free ends 18, the upper light strip 32 and the lower light strip 34 are each connected to one another by means of a further vertical light strip 36. The row of cameras 26 is thus completely framed by at least one row of LEDs. The device 10 also has a control or regulating device, not shown in detail in the drawing, with which the light intensity emitted by the LEDs can be controlled or regulated as a function of the light intensity detected by the cameras 16a, 16b. The LEDs of the light strips 32, 34, 36 are combined to form sectors, the emitted light intensities of which can be controlled or regulated separately from one another. In addition, it is provided that the light intensities emitted by the individual LEDs can also be controlled or regulated separately from one another by means of the control or regulating device.

Um den Probanden richtig im Innenraum 22 positionieren zu können, sind die beiden der Frontkamera 16a nächstgelegenen Seitenkameras 16b dazu eingerichtet, den Abstand des Kopfs des Probanden von der Mitte 38 des Kameraträgers 14 zu messen. Mittels einer nicht näher dargestellten Anzeigeeinheit wird dem Probanden angezeigt, ob er richtig steht oder nicht. Die Anzeigeeinheit weist mehrere unterschiedlich eingefärbte Lichtquellen auf, die in einer Reihe angeordnet sind. Die mittlere Lichtquelle leuchtet grün, wenn der Proband richtig steht. Ausgehend von der mittleren Lichtquelle gibt es in jeder Richtung in dieser Reihenfolge eine gelbe, eine orangene und eine rote Lichtquelle, die entsprechend der Farbe anzeigt, wenn der Proband ein wenig, deutlich oder viel zu weit von der Mitte 38 des Kameraträgers 14 entfernt bzw. ein wenig, deutlich oder viel zu nah zur Mitte 38 steht. Um bei der Bestimmung der Zentrierparameter sicherzustellen, dass die Aufnahmerichtung des Probanden ins Unendliche gerichtet ist, ist eine am Kameraträger 14 angeordnete Fixationseinrichtung 42 vorgesehen, die ein Fixationsmuster für den Probanden in Form eines Specklemusters erzeugt. Das Fixationsmuster ist etwas höher angeordnet als die Frontkamera 16a, so dass der Proband über diese hinwegblickt. Damit kann sein Gesicht im größtmöglichen Umfang aufgenommen werden.In order to be able to position the test person correctly in the interior space 22, the two side cameras 16b closest to the front camera 16a are set up to measure the distance of the test person's head from the center 38 of the camera support 14. A display unit, not shown in detail, shows the test person whether he is standing correctly or not. The display unit has several differently colored light sources which are arranged in a row. The middle light source glows green when the subject is standing correctly. Starting from the middle light source, there is a yellow, an orange and a red light source in this order in each direction, which, depending on the color, indicates when the test subject is a little, clearly or much too far away from the middle 38 of the camera support 14 or a little, clearly or much too close to the middle of 38. In order to ensure when determining the centering parameters that the exposure direction of the test person is directed to infinity, a fixation device 42 is provided which is arranged on the camera support 14 and generates a fixation pattern for the test person in the form of a speckle pattern. The fixation pattern is arranged somewhat higher than the front camera 16a, so that the test person looks over it. This allows his face to be captured as much as possible.

Die Vorrichtung 10 eignet sich insbesondere auch zur Herstellung eines Avatars des Kopfs des Probanden, welcher zur Bestimmung der Zentrierparameter herangezogen werden kann. Zum diesem Zweck werden durch die Kameras 16a, 16b kalibrierte Bilder des Kopfs des Probanden ohne Brille bzw. Brillenfassung aufgenommen. Mittels eines geeigneten Prozesses zur geometrischen Positionsbestimmung wie beispielsweise Triangulation wird aus den Bildern ein Tiefenprofil des Kopfes erstellt, das diesen näherungsweise sehr gut abbildet. Der Kopf wird durch eine Vielzahl von Punkten abgebildet, die mittels eines Netzmusters miteinander verbunden werden können oder aber als Punktwolke gespeichert werden können. Bei der anschließenden Bestimmung der Zentrierparameter kann der so ermittelte Avatar herangezogen werden, um Zentrierparameter zu bestimmen, die aufgrund der geometrischen Eigenschaften der Brille bzw. Brillenfassung, die der Proband trägt, nicht oder nur näherungsweise bestimmt werden können. Beispielsweise kann ein breiter Fassungsbügel das Auge in einer Seitenaufnahme soweit verdecken, dass der Hornhautscheitelabstand nicht oder nur sehr ungenau bestimmt werden kann. Zudem können gefärbte oder stark spiegelnde Gläser die Augen nicht oder nur sehr schlecht erkennen lassen. Um dem zu begegnen, wird auf die von den Kameras 16a, 16b aufgenommenen Bilder des die Brille oder Brillenfassung tragenden Probanden das Tiefenprofil des Avatars projiziert und die Zentrierparameter, die aufgrund der durch die Brille bzw. Brillenfassung eingeschränkten Sicht nur ungenügend bestimmt werden können, werden mittels der Bilddaten des Avatars bestimmt. Dabei kann eine Anpassung des Avatars auf die Bilder des die Brille bzw. Brillenfassung tragenden Probanden zur Minimierung von Abweichungen erfolgen.The device 10 is also particularly suitable for producing an avatar of the subject's head, which avatar can be used to determine the centering parameters. For this purpose, calibrated images of the head of the test person without glasses or glasses frame are recorded by the cameras 16a, 16b. By means of a suitable process for determining the geometric position, such as triangulation, a depth profile of the head is created from the images, which approximates it very well. The head is represented by a large number of points that can be connected to one another by means of a network pattern or that can be saved as a point cloud. In the subsequent determination of the centering parameters, the avatar determined in this way can be used to determine centering parameters based on the geometric properties the glasses or glasses frame that the test subject wears cannot be determined or can only be determined approximately. For example, a wide mounting bracket can cover the eye in a side view to such an extent that the corneal vertex distance cannot be determined or can only be determined very imprecisely. In addition, colored or highly reflective lenses can make the eyes difficult or impossible to see. To counter this, the depth profile of the avatar is projected onto the images of the test person wearing the glasses or glasses frame recorded by the cameras 16a, 16b and the centering parameters, which can only be determined inadequately due to the restricted view through the glasses or glasses frame, are projected determined by means of the image data of the avatar. The avatar can be adapted to the images of the test person wearing the glasses or glasses frame in order to minimize deviations.

Die oben beschriebene Vorrichtung 10 kann wie folgt für eine pupillenbasierte Detektion eines Hornhautscheitels ebenso wie für eine reflexbasierte Detektion eines Hornhautscheitels bei beiden Augen des Probanden eingesetzt werden.The device 10 described above can be used as follows for a pupil-based detection of a corneal vertex as well as for a reflex-based detection of a corneal vertex in both eyes of the test subject.

Bei der pupillenbasierten Methode gemäß Figur 2 wird zunächst die Position des Hornhautscheitels im Raum in erster Näherung als Schnittpunkt q eines die Hornhaut 50 tangierenden ersten Sichtstrahls 52 einer der ein Seitenbild des Probanden aufnehmenden Seitenkameras 16b mit einem auf die Pupille 54 gerichteten zweiten Sichtstrahl 56 der ein Frontbild des Probanden aufnehmenden Frontkamera 16a bestimmt. Mittels einer Korrekturrechnung wird eine korrigierte Position des Hornhautscheitels im Raum mittels der Gleichung a = q + µ * v + µ * w berechnet. Dabei ist µ ein Erfahrungswert für den Abstand zwischen dem Pupillenzentrum und dem Hornhautscheitel, der regelmäßig Werte zwischen 2,5mm und 4mm annimmt. v ist ein Einheitsvektor der Raumrichtung vom Pupillenzentrum p zur Frontkamera 16a, deren Koordinaten mit der Variable c1 angegeben werden, und errechnet sich als v = (p-c1) /| p - c1 |. w ist ein Einheitsvektor der durch das Zentrum m der Hornhautkugel verlaufenden Aufnahmerichtung, die auf das Fixationsmuster der Fixationseinrichtung 42 am Raumpunkt t gerichtet ist, und errechnet sich zu w = (t - m) /| t - m |. Alle Werte a, q, p, c1, t und m sind dreidimensionale Vektoren.With the pupil-based method according to Figure 2 First, the position of the corneal vertex in space is determined in a first approximation as the intersection point q of a first viewing ray 52 tangent to cornea 50 of one of the side cameras 16b taking a side image of the test person with a second viewing ray 56 of the front camera 16a taking a front image of the test person, directed at pupil 54 . By means of a correction calculation, a corrected position of the corneal vertex in space is calculated using the equation a = q + µ * v + µ * w. Here, µ is an empirical value for the distance between the pupil center and the vertex of the cornea, which regularly assumes values between 2.5 mm and 4 mm. v is a unit vector of the spatial direction from the pupil center p to the front camera 16a, the coordinates of which are specified with the variable c1, and is calculated as v = (p-c1) / | p - c1 |. w is a unit vector of the recording direction running through the center m of the corneal sphere, which is directed to the fixation pattern of the fixation device 42 on Point t in space and is calculated as w = (t - m) / | t - m |. All values a, q, p, c1, t and m are three-dimensional vectors.

Bei der reflexbasierten Bestimmung der Position des Hornhautscheitels gemäß Figur 3a, 3b sind zwei Korrekturrechnungen vorzunehmen, wobei die erste Korrekturrechnung (Figur 3a) eine Korrektur in x-Richtung, die zweite Korrektur (Figur 3b) eine Korrektur in y-Richtung betrifft. Diese Raumrichtungen werden durch ein inneres Koordinatensystem der Frontkamera 16a festgelegt, das seinen Nullpunkt im optischen Zentrum der Frontkamera 16a hat. Die z-Richtung wird dabei durch die Aufnahmerichtung der Frontkamera 16a festgelegt, die x-Richtung ist eine Richtung, die horizontal sowie orthogonal zur z-Richtung verläuft und in deren Richtung betrachtet nach rechts weist, und die y-Richtung verläuft orthogonal zur x-Richtung und zur z-Richtung und weist im Raum nach oben. Bei der reflexbasierten Messung wird mittels einer Lichtquelle, im vorliegenden Fall einer LED 58 ein Lichtblitz ausgesandt, dessen Reflexion auf der Hornhaut von der Frontkamera 16a und mindestens einer der Seitenkameras 16b detektiert wird und die erste Näherung für die Position des Hornhautscheitels im Raum bildet. Der Reflexpunkt wird in Figur 3a, 3b mit "approx" bezeichnet. In x-Richtung wird eine Korrektur durch Addition von Δx =+/ -r * sin (½ * (arccos z/a + arctan x/(z-v))) zur x-Koordinate des Reflexpunkts approx vorgenommen, wobei das Pluszeichen bei der Anwendung auf das linke Auge, das Minuszeichen bei der Anwendung auf das rechte Auge (vgl. Figur 3a) zu verwenden ist. r ist dabei ein Erfahrungswert für den Hornhautradius, der typischerweise ca. 8mm beträgt. a ist der Abstand des optischen Zentrums der Frontkamera 16a zum Reflexpunkt approx und v ist der Abstand der LED 58 zum optischen Zentrum der Frontkamera 16a in z-Richtung. x und z wiederum sind die Koordinaten in x- und z-Richtung.With the reflex-based determination of the position of the corneal apex according to Figure 3a , 3b two correction invoices are to be made, whereby the first correction invoice ( Figure 3a ) one correction in x-direction, the second correction ( Figure 3b ) concerns a correction in the y-direction. These spatial directions are determined by an inner coordinate system of the front camera 16a, which has its zero point in the optical center of the front camera 16a. The z-direction is determined by the recording direction of the front camera 16a, the x-direction is a direction that runs horizontally and orthogonally to the z-direction and, viewed in its direction, points to the right, and the y-direction runs orthogonally to the x- Direction and to the z-direction and points upwards in space. In the reflex-based measurement, a light source, in the present case an LED 58, emits a flash of light, the reflection of which on the cornea is detected by the front camera 16a and at least one of the side cameras 16b and forms the first approximation for the position of the corneal vertex in space. The reflex point is in Figure 3a , 3b labeled "approx". In the x direction, a correction is made by adding Δx = + / -r * sin (½ * (arccos z / a + arctan x / (zv))) to the x coordinate of the reflex point approx, with the plus sign in use on the left eye, the minus sign when applied to the right eye (cf. Figure 3a ) is to be used. r is an empirical value for the corneal radius, which is typically approx. 8 mm. a is the distance between the optical center of the front camera 16a and the reflex point approx and v is the distance between the LED 58 and the optical center of the front camera 16a in the z-direction. x and z, in turn, are the coordinates in the x and z directions.

In y-Richtung wird ausgehend vom Reflexpunkt approx eine Korrektur mittels Addition von Δy =+/ -r * sin ½ * (arctan l/(d-v)) vorgenommen. r ist wiederum der Erfahrungswert für den Hornhautradius, d ist der Abstand des optischen Zentrums der Frontkamera 16a zum Reflexpunkt approx in z-Richtung, v ist der Abstand der LED 58 zum optischen Zentrum der Frontkamera 16a in z-Richtung und l ist der Abstand der LED 58 vom optischen Zentrum der Frontkamera 16a in y-Richtung. Das Pluszeichen kommt zur Anwendung, wenn die LED 58 unter der Frontkamera 16a angeordnet ist, also ihre y-Koordinate kleiner ist als die y-Koordinate der Frontkamera 16a bzw. ihres optischen Zentrums. Ist die LED über der Frontkamera 16a angeordnet, so kommt das Minuszeichen zum Einsatz.In the y-direction, starting from the reflex point approx, a correction is made by adding Δy = + / -r * sin ½ * (arctan l / (dv)). r is again the empirical value for the corneal radius, d is the distance from the optical center of the front camera 16a to the reflex point approx in the z-direction, v is the distance from the LED 58 to the optical center of the front camera 16a in the z-direction and l is Distance of the LED 58 from the optical center of the front camera 16a in the y-direction. The plus sign is used when the LED 58 is arranged below the front camera 16a, that is to say its y-coordinate is smaller than the y-coordinate of the front camera 16a or its optical center. If the LED is arranged above the front camera 16a, the minus sign is used.

Bei den beschriebenen Verfahren kann die Pupille bzw. der Reflexpunkt approx beispielsweise mittels Merkmalsextraktion, mittels Merkmalsmatching und/oder mittels maschinellem Lernen durch Vergleich mit einer Vielzahl vorbekannter Daten detektiert werden. Diesem Detektionsschritt kann ein Schritt vorangehen, bei dem ein Gesichtsdetektor erkennt, welche Bildpunkte zum Gesicht des Probanden bzw. zu seiner Augenpartie gehören, so dass nach der Pupille bzw. dem Reflexpunkt approx bereits eingegrenzt gesucht werden kann.In the described method, the pupil or the reflex point approx can be detected, for example, by means of feature extraction, by means of feature matching and / or by means of machine learning by comparison with a large number of previously known data. This detection step can be preceded by a step in which a face detector detects which image points belong to the subject's face or to the area around his eyes, so that a limited search can already be made for the pupil or the reflex point approx.

Die Position des Hornhautscheitels im Raum wird zur Bestimmung der Zentrierparameter bei der Brillenanpassung verwendet. Mittels der von den Kameras 16a, 16b aufgenommenen kalibrierten Bilder werden durch geometrische Positionsbestimmung, insbesondere durch Triangulation oder Epipolargeometrie, geometrische Parameter ermittelt, die die Geometrie der Brillenfassung beschreiben. Diese umfassen die nasalen und temporalen Fassungsränder 60, 62, wie in Figur 4a, 4b beispielhaft angedeutet. An die die nasalen und temporalen Fassungsränder 60, 62 beschreibenden Parameter werden Ebenen 64 als Näherung für die Flächen der in der Brillenfassung aufzunehmenden Brillengläser angepasst. Figur 5 zeigt schematisch die ebenen 64 vor der jeweiligen, näherungsweise dargestellten Hornhaut 66 mit schematisch dargestellten Sichtstrahlen 68 der Kameras 16a, 16b. Zu guter Letzt werden aus den gewonnenen Daten die Zentrierparameter berechnet.The position of the corneal vertex in space is used to determine the centering parameters when fitting glasses. Using the calibrated images recorded by the cameras 16a, 16b, geometrical position determination, in particular triangulation or epipolar geometry, determines geometrical parameters that describe the geometry of the spectacle frame. These include the nasal and temporal frame edges 60, 62, as in FIG Figure 4a, 4b indicated by way of example. Planes 64 are adapted to the parameters describing the nasal and temporal frame edges 60, 62 as an approximation for the surfaces of the spectacle lenses to be received in the spectacle frame. Figure 5 shows schematically the planes 64 in front of the respective, approximately shown cornea 66 with schematically shown sight rays 68 of the cameras 16a, 16b. Finally, the centering parameters are calculated from the data obtained.

Claims (24)

  1. Computer-implemented method for determining centration parameters, wherein at least two images of the head wearing the spectacle frame, which are calibrated to one another and recorded from different recording directions, are provided, wherein geometric parameters describing the position of the eyes are ascertained from the images by means of geometric position determination, and wherein geometric parameters describing the geometry of the spectacle frame are ascertained from the images by means of geometric position determination, characterized in that a three-dimensional model for the spectacle lenses to be received in the spectacle frame is fitted to the geometric parameters describing the geometry of the spectacle frame, in that planes or linear combinations of surfaces of n-th order are fitted to the parameters describing the geometry of the spectacle frame as an approximation for the surfaces of the spectacle lenses to be received in the spectacle frame and in that centration parameters are calculated from the geometric parameters describing the position of the eyes, from the geometric parameters describing the geometry of the spectacle frame and from the three-dimensional model.
  2. Computer-implemented method according to Claim 1, characterized in that the surfaces of n-th order comprise at least one plane and/or at least one paraboloid.
  3. Computer-implemented method according to either of the preceding claims, characterized in that a plane (64) is respectively fitted to the parameters describing the geometry of the spectacle frame, as an approximation for the surface of each of the spectacle lenses to be received in the spectacle frame or each spectacle frame edge receiving the spectacle lenses.
  4. Computer-implemented method according to any one of the preceding claims, characterized in that at least two images of the head wearing the spectacle frame, which are calibrated to one another and recorded at the same time from different recording directions, are provided.
  5. Computer-implemented method according to any one of the preceding claims, characterized in that the geometric parameters describing the geometry of the spectacle frame comprise parameters describing the nasal and/or temporal frame edges approximated by straight lines and in that the three-dimensional model is fitted to the parameters describing the nasal and/or temporal frame edges.
  6. Computer-implemented method for determining centration parameters, wherein at least two images of the head wearing the spectacle frame, which are calibrated to one another and recorded from different recording directions, are provided, wherein geometric parameters describing the position of the eyes are ascertained from the images by means of geometric position determination, and wherein geometric parameters describing the geometry of the spectacle frame are ascertained from the images by means of geometric position determination, characterized in that a three-dimensional model for the spectacle lenses to be received in the spectacle frame is fitted to the geometric parameters describing the geometry of the spectacle frame, in that the geometric parameters describing the geometry of the spectacle frame comprise parameters describing the nasal and/or temporal frame edges, in that the three-dimensional model is fitted to the parameters describing the nasal and/or temporal frame edges and in that centration parameters are calculated from the geometric parameters describing the position of the eyes, the geometric parameters describing the geometry of the spectacle frame and the three-dimensional model.
  7. Computer-implemented method according to Claim 6, characterized in that planes or linear combinations of surfaces of n-th order are fitted to the parameters describing the nasal and/or temporal frame edges as an approximation for the surfaces of the spectacle lenses to be received in the spectacle frame.
  8. Computer-implemented method according to any one of the preceding claims, characterized in that at least three images of the head, which are calibrated to one another and recorded at the same time from different recording directions, are provided, wherein a frontal image images the head from the front and a lateral image in each case images the head from the left and from the right.
  9. Computer-implemented method according to Claim 8, characterized in that the recording directions of the lateral images each include an angle of more than 60 degrees and no more than 120 degrees with the recording direction of the frontal image.
  10. Computer-implemented method according to any one of the preceding claims, characterized in that the images do not overlap or in that only non-overlapping regions of the images are used for determining the centration parameters.
  11. Computer-implemented method according to any one of the preceding claims, characterized in that the geometric parameters describing the position of the eyes comprise the position of the corneal vertex in space.
  12. Computer-implemented method according to Claim 11, characterized in that the position of the corneal vertex is subjected to a correction calculation.
  13. Computer-implemented method according to Claim 11 or 12, characterized in that the position of the corneal vertex in space is determined to a first approximation as the point of intersection q of a first view ray (52), tangential to the cornea (50), from a lateral camera (16b) recording the lateral image with a second view ray (56), directed onto the pupil (54), from a frontal camera (16a) recording the frontal image.
  14. Computer-implemented method according to Claim 11 and according to Claim 12, characterized in that the position of the corneal vertex is calculated according to a = q + µ * v + µ * w by means of the correction calculation, where a denotes the position vector of the corneal vertex in space after carrying out the correction calculation, q denotes the position of the corneal vertex to a first approximation, µ denotes an empirical value or an actual value for the distance between the pupil centre and the corneal vertex, v denotes a unit vector in the spatial direction from the pupil centre to the frontal camera and w denotes a unit vector in the recording direction extending through the centre of the corneal sphere.
  15. Computer-implemented method according to any one of Claims 1 to 11, characterized in that a flash is produced when recording the images and in that the position of the corneal vertex in space is determined to a first approximation as the position of the reflection point of the flash on the cornea.
  16. Computer-implemented method according to Claim 11 and according to Claim 15, characterized in that the position of the corneal vertex in the horizontal direction proceeding from the reflection point is calculated by means of the correction calculation by adding Δx =+/ -r * sin (½ * (arccos z/a + arctan x/(z-v))) to the x-coordinate, where r denotes an empirical value or an actual value for the corneal radius, a denotes the distance between the optical centre of a frontal camera (16a) recording the frontal image and the reflection point, x and z denote the x- and z-coordinates of the reflection point in a coordinate system with the origin at the optical centre of the frontal camera (16a), wherein the recording direction of the frontal camera corresponds to the z-direction and the x-direction is horizontally orthogonal to the z-direction and, when observed in the z-direction, points to the right, and v denotes the distance between the light source (58) producing the flash and the optical centre of the frontal camera (16a) in the z-direction.
  17. Computer-implemented method according to Claim 11 and according to Claim 15 or 16, characterized in that the position of the corneal vertex in the y-direction proceeding from the reflection point is calculated by means of the correction calculation by adding Δy =+/ -r * sin ½ * (arctan l/(d-v)), where r denotes an empirical value or an actual value for the corneal radius, d denotes the distance between the optical centre of the frontal camera (16a) and the reflection point in the z-direction, v denotes the distance between the light source (58) producing the flash and the optical centre of the frontal camera (16a) in the z-direction and 1 denotes the distance between the light source (58) and the optical centre of the frontal camera (16a) in the y-direction, wherein the y-direction is orthogonal to the x-direction and to the z-direction and points upward in space.
  18. Computer program with program code for carrying out all of the method steps according to any one of Claims 1 to 17, when the computer program is loaded onto a computer and executed on a computer.
  19. Computer-implemented method according to any one of Claims 1 to 17 using an apparatus (10), wherein the apparatus (10) has a camera carrier (14), which partly encloses an interior (22) that is open to the top, to the bottom and to a rear side (30) and which carries at least three cameras (16a, 16b) which are arranged between two free ends (18) of the camera carrier (14) and directed onto the interior (22), wherein the camera carrier (14) has an illumination device (32, 34, 36) for illuminating the interior (22).
  20. Method for centring at least one spectacle lens in a spectacle frame, characterized in that, in a first method step, centration parameters are determined using a method according to any one of Claims 1 to 15, and in that, in a second method step, the at least one spectacle lens is centred in the spectacle frame using the centration parameters determined in the first method step.
  21. Method for grinding at least one spectacle lens into a spectacle frame, characterized in that, in a first method step, centration parameters are determined using a method according to any one of Claims 1 to 17, and in that, in a second method step, the at least one spectacle lens is ground on the basis of the centration parameters determined in the first method step for an arrangement in the spectacle frame.
  22. Method for producing a spectacle lens, characterized by the method step of grinding the spectacle lens into a spectacle frame according to the method according to Claim 21.
  23. Method for producing spectacles, characterized in that use is made of a method according to any one of Claims 20 to 22.
  24. Apparatus for determining centration parameters for fitting spectacle lenses to a given spectacle frame and to the head of a subject, with a first camera for recording a first image from a first viewing direction, with at least one second camera, calibrated to the first camera, for recording a second image from a second viewing direction that differs from the first viewing direction and with a computer comprising a memory in which a computer program is stored, said computer program having program code for carrying out all of the method steps according to any one of Claims 1 to 17, wherein the computer comprises a processor to execute the computer program stored in the memory.
EP18703706.4A 2017-01-27 2018-01-25 Computer-implemented method for determining centring parameters Active EP3574371B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP17153559.4A EP3355102A1 (en) 2017-01-27 2017-01-27 Computer-implemented method for determining centring parameters
PCT/EP2018/051841 WO2018138206A1 (en) 2017-01-27 2018-01-25 Computer-implemented method for determining centration parameters

Publications (2)

Publication Number Publication Date
EP3574371A1 EP3574371A1 (en) 2019-12-04
EP3574371B1 true EP3574371B1 (en) 2021-03-24

Family

ID=57909541

Family Applications (2)

Application Number Title Priority Date Filing Date
EP17153559.4A Pending EP3355102A1 (en) 2017-01-27 2017-01-27 Computer-implemented method for determining centring parameters
EP18703706.4A Active EP3574371B1 (en) 2017-01-27 2018-01-25 Computer-implemented method for determining centring parameters

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP17153559.4A Pending EP3355102A1 (en) 2017-01-27 2017-01-27 Computer-implemented method for determining centring parameters

Country Status (4)

Country Link
US (3) US20190346698A1 (en)
EP (2) EP3355102A1 (en)
CN (1) CN110235052B (en)
WO (1) WO2018138206A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3355102A1 (en) 2017-01-27 2018-08-01 Carl Zeiss Vision International GmbH Computer-implemented method for determining centring parameters
EP3410178A1 (en) 2017-06-01 2018-12-05 Carl Zeiss Vision International GmbH Method, device and computer program for virtual adapting of a spectacle frame
EP3413122B1 (en) 2017-06-08 2020-03-04 Carl Zeiss Vision International GmbH Method, device and computer program for determining a close-up viewpoint
EP3425446B1 (en) 2017-07-06 2019-10-30 Carl Zeiss Vision International GmbH Method, device and computer program for virtual adapting of a spectacle frame
EP3443883B1 (en) 2017-08-14 2020-07-29 Carl Zeiss Vision International GmbH Method and devices for performing eye-related measurements
DE102018105917A1 (en) 2018-03-14 2019-09-19 tooz technologies GmbH A method for user-specific calibration of a superimposed on the head of a user display device for an augmented presentation
WO2021122826A1 (en) * 2019-12-19 2021-06-24 Essilor International Method for determining a value of at least one geometrico-morphological parameter of a subject wearing an eyewear
EP3876026A1 (en) 2020-03-06 2021-09-08 Carl Zeiss Vision International GmbH Method and devices for determining inclination angle
CN112933571B (en) * 2021-02-03 2022-08-30 武汉体育学院 Exercise pre-judgment training glasses

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030081173A1 (en) 2001-10-25 2003-05-01 Dreher Andreas W. Custom eyeglass manufacturing method
US20030123026A1 (en) * 2000-05-18 2003-07-03 Marc Abitbol Spectacles fitting system and fitting methods useful therein
US20090021693A1 (en) 2005-01-26 2009-01-22 Rodenstock Gmbh Device and Method for Determining Optical Parameters
DE102009004383A1 (en) 2008-01-10 2009-07-23 Rodenstock Gmbh Evaluation apparatus for reflex image data of spectacles, has illumination device and cameras arranged such that reflex is produced at spectacles and is represented in image data, and data processing device detecting reflex in image data
DE102008012268A1 (en) * 2008-03-03 2009-09-10 Rodenstock Gmbh Representation image data representing device for positioning test person, has cameras generating image data of partial region of head of user, and data processing device determining parameter data of user by using image data
WO2012113805A1 (en) 2011-02-22 2012-08-30 Fittingbox Method for detecting a predefined set of characteristic points of a face
DE102011115239A1 (en) * 2011-09-28 2013-03-28 Rodenstock Gmbh Method for determining user data to manufacture e.g. drilling spectacle lens, to nylor frame for spectacle wearer, involves determining contour dots of edge of spectacle lens in user image data based on tracer data record
US20140253875A1 (en) 2011-09-29 2014-09-11 Fittingbox Method for determining ocular and optical measurements
US20150015848A1 (en) 2012-03-08 2015-01-15 Essilor International (Compagnie Générale d'Optique) Method for estimating a distance separating a pair of glasses and an eye of the wearer of the pair of glasses
WO2015101737A1 (en) 2014-01-02 2015-07-09 Essilor International (Compagnie Generale D'optique) Method for determining at least one geometric parameter of a customized glasses frame, and related method for determining the customized frame
US20150304530A1 (en) 2012-03-12 2015-10-22 Digiteyezer Automatic scanner and method for 3d digitisation of a human peripheral cephalic portion
WO2016026570A1 (en) 2014-08-21 2016-02-25 Rodenstock Gmbh Determining user data based on image data of a selected eyeglass frame

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3045139A1 (en) 1980-11-29 1982-07-01 Fa. Carl Zeiss, 7920 Heidenheim DEVICE FOR SUBJECTIVE AND OBJECTIVE REFLECTION DETERMINATION
JPS57158829A (en) * 1981-03-27 1982-09-30 Hoya Corp Production of glasses
US5592248A (en) * 1995-11-16 1997-01-07 Norton; Ross A. Computerized method for fitting eyeglasses
AU779451B2 (en) * 2000-04-28 2005-01-27 Rodenstock Gmbh Method for producing eyeglasses
DE102004063981B4 (en) 2004-09-15 2007-10-04 Carl Zeiss Vision Gmbh Measuring bracket, and device and method for determining the pretilt angle α of a spectacle frame
JP4232166B2 (en) 2006-01-31 2009-03-04 株式会社アイメトリクス・ジャパン Glasses wearing simulation method and apparatus
FR2898194B1 (en) * 2006-03-01 2008-05-02 Essilor Int METHOD FOR DETERMINING A PROGRESSIVE OPHTHALMIC LENS
CA2685355A1 (en) * 2007-04-27 2008-11-06 The Institute For Eye Research Limited Determination of optical adjustments for retarding myopia progression
DE102008003906B4 (en) 2008-01-10 2009-11-26 Rodenstock Gmbh Use of a fixation target and device
CN103501729B (en) * 2011-04-05 2016-07-06 兴和株式会社 Intraocular lens method for designing and intraocular lens
US9618772B2 (en) * 2013-02-28 2017-04-11 Hoya Corporation Spectacle lens design system, supply system, design method and manufacturing method
BR112015026809B1 (en) * 2013-04-29 2023-02-07 Essilor International SYSTEM AND METHOD FOR DELIVERING AN OPHTHALMIC LENS
EP3355102A1 (en) 2017-01-27 2018-08-01 Carl Zeiss Vision International GmbH Computer-implemented method for determining centring parameters

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030123026A1 (en) * 2000-05-18 2003-07-03 Marc Abitbol Spectacles fitting system and fitting methods useful therein
US20030081173A1 (en) 2001-10-25 2003-05-01 Dreher Andreas W. Custom eyeglass manufacturing method
US20090021693A1 (en) 2005-01-26 2009-01-22 Rodenstock Gmbh Device and Method for Determining Optical Parameters
DE102009004383A1 (en) 2008-01-10 2009-07-23 Rodenstock Gmbh Evaluation apparatus for reflex image data of spectacles, has illumination device and cameras arranged such that reflex is produced at spectacles and is represented in image data, and data processing device detecting reflex in image data
DE102008012268A1 (en) * 2008-03-03 2009-09-10 Rodenstock Gmbh Representation image data representing device for positioning test person, has cameras generating image data of partial region of head of user, and data processing device determining parameter data of user by using image data
WO2012113805A1 (en) 2011-02-22 2012-08-30 Fittingbox Method for detecting a predefined set of characteristic points of a face
DE102011115239A1 (en) * 2011-09-28 2013-03-28 Rodenstock Gmbh Method for determining user data to manufacture e.g. drilling spectacle lens, to nylor frame for spectacle wearer, involves determining contour dots of edge of spectacle lens in user image data based on tracer data record
DE102011115239B4 (en) 2011-09-28 2016-02-11 Rodenstock Gmbh Determination of the disc shape taking into account tracer data
US20140253875A1 (en) 2011-09-29 2014-09-11 Fittingbox Method for determining ocular and optical measurements
US20150015848A1 (en) 2012-03-08 2015-01-15 Essilor International (Compagnie Générale d'Optique) Method for estimating a distance separating a pair of glasses and an eye of the wearer of the pair of glasses
US20150304530A1 (en) 2012-03-12 2015-10-22 Digiteyezer Automatic scanner and method for 3d digitisation of a human peripheral cephalic portion
WO2015101737A1 (en) 2014-01-02 2015-07-09 Essilor International (Compagnie Generale D'optique) Method for determining at least one geometric parameter of a customized glasses frame, and related method for determining the customized frame
WO2016026570A1 (en) 2014-08-21 2016-02-25 Rodenstock Gmbh Determining user data based on image data of a selected eyeglass frame

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Augenoptik - Brillenfassungen", DIN EN ISO 8624:2002, 1 June 2002 (2002-06-01), XP055717887
ANONYMOUS: "RODENSTOCK IMPRESSIONIST® 3 Online Benutzerhandbuch", RODENSTOCK GMBH, 14 August 2012 (2012-08-14), pages 1 - 79, XP055909874
DIANA BORZA, ADRIAN DARABANT, RADU DANESCU: "Eyeglasses Lens Contour Extraction from Facial Images Using an Efficient Shape Description", SENSORS, MDPI, CH, vol. 13, no. 10, 10 October 2013 (2013-10-10), CH , pages 13638 - 13658, XP055227455, ISSN: 1424-8220, DOI: 10.3390/s131013638
J. F. COLLINS ET AL.: "Augenheilkunde", 1 January 1997, SPRINGER-VERLAG BERLIN HEIDELBERG, article "Kapitel 41 Masse und optische Daten", pages: 876 - 877, XP055909899
KARL AMON: "lmpressionlST - Das 4-in-1 Integrierte Service-Ierminal von Rodenstock", DOZ OPTOMETRIE & FASHION 1-2006, 1 January 2006 (2006-01-01), pages 56 - 61, XP055909828
M TIEMANN, P C SEITZ, G ESSER: "The Next Generation 3D Vision System for Measuring the Individual Parameters of Spectacle Wearers", DGAO PROCEEDINGS, 1 January 2014 (2014-01-01), XP055717891, Retrieved from the Internet <URL:https://www.dgao-proceedings.de/download/115/115_p13.pdf>
PAUL URTHALER: "Glasses detection and segmentation from face portrait images", MASTER'S THESIS, GRAZ UNIVERSITY OF TECHNOLOGY, 1 December 2008 (2008-12-01), Graz University of Technology , XP055641092, Retrieved from the Internet <URL:https://www.tugraz.at/fileadmin/user_upload/Institute/ICG/Images/team_bischof/mib/paper_pdfs/StudentsMasterTheses/DA_urthaler.pdf> [retrieved on 20191111]
RAINER SEßNER, UTTENWEILER DIETMAR: "3D-Videozentriersystem zur hochgenauen Vermessung der Zentrierdaten und individueller Parameter des Systems Brille Auge", DGAO PROCEEDINGS 2007, 1 January 2007 (2007-01-01), XP055717881, Retrieved from the Internet <URL:https://www.dgao-proceedings.de/download/108/108_b26.pdf> [retrieved on 20200724]
WOLFGANG WESEMANN: "Moderne Videozentriersysteme und Pupillometer im Vergleich, Teil 1", DOZ OPTOMETRIE & FASHION 6-2009, vol. 64, 2 June 2009 (2009-06-02), pages 44 - 50, 94, XP055909887
ZHONG JING, MARIANI R.: "Glasses detection and extraction by deformable contour", PROCEEDINGS / 15TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION : BARCELONA, SPAIN, SEPTEMBER 3 - 7, 2000, IEEE COMPUTER SOCIETY, LOS ALAMITOS, CALIF. [U.A.], vol. 2, 3 September 2000 (2000-09-03) - 7 September 2000 (2000-09-07), Los Alamitos, Calif. [u.a.] , pages 933 - 936, XP010533966, ISBN: 978-0-7695-0750-7, DOI: 10.1109/ICPR.2000.906227

Also Published As

Publication number Publication date
WO2018138206A1 (en) 2018-08-02
EP3574371A1 (en) 2019-12-04
US11789295B2 (en) 2023-10-17
US20210080758A1 (en) 2021-03-18
US20190346698A1 (en) 2019-11-14
EP3355102A1 (en) 2018-08-01
CN110235052B (en) 2021-05-04
US11480816B2 (en) 2022-10-25
US20220404645A1 (en) 2022-12-22
CN110235052A (en) 2019-09-13

Similar Documents

Publication Publication Date Title
EP3574371B1 (en) Computer-implemented method for determining centring parameters
EP3581086B1 (en) Computer-implemented method for detecting the corneal vertex
EP3588175B1 (en) Device for determining centring parameters for spectacle adaptation
EP3256036B1 (en) Device and method for distance determination and/or centering using corneal reflections
EP3355104B2 (en) Method and device and computer program for determining a representation of a spectacle glass rim
EP3210071B1 (en) Apparatus and method for determining optical parameters
EP2582284B1 (en) Method and device for determining eye position
WO2006079540A9 (en) Device and method for determining optical parameters of a user and associated computer program
EP3574370B1 (en) Computer-implemented method for determining a representation of a spectacle socket rim or a representation of the edges of the glasses of a pair of spectacles
EP3425560B1 (en) Device and method for detecting biometric features of a person&#39;s face
EP3497509A1 (en) Method and device for checking the centring of at least one spectacle lens
EP3869150A1 (en) Method and apparatus for corneal measurement of a subject
WO2018138165A1 (en) Computer-implemented method for determining centring parameters
EP3433669A1 (en) Method and apparatus for determining 3d coordinates of at least one predetermined point of an object

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190710

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200129

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502018004439

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: G02C0013000000

Ipc: G02C0007020000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: G02C 13/00 20060101ALI20201022BHEP

Ipc: G02C 7/02 20060101AFI20201022BHEP

INTG Intention to grant announced

Effective date: 20201110

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1375087

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210415

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018004439

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210624

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210624

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210625

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210724

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210726

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502018004439

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: RODENSTOCK GMBH

Effective date: 20211223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220125

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230124

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230119

Year of fee payment: 6

Ref country code: DE

Payment date: 20220620

Year of fee payment: 6

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1375087

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230125