EP3571593A1 - Redundant processor architecture - Google Patents
Redundant processor architectureInfo
- Publication number
- EP3571593A1 EP3571593A1 EP17825518.8A EP17825518A EP3571593A1 EP 3571593 A1 EP3571593 A1 EP 3571593A1 EP 17825518 A EP17825518 A EP 17825518A EP 3571593 A1 EP3571593 A1 EP 3571593A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- core
- processor
- procedure
- result
- execution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/16—Error detection or correction of the data by redundancy in hardware
- G06F11/1629—Error detection by comparing the output of redundant processing systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/16—Error detection or correction of the data by redundancy in hardware
- G06F11/18—Error detection or correction of the data by redundancy in hardware using passive fault-masking of the redundant circuits
- G06F11/181—Eliminating the failing redundant component
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/0703—Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
- G06F11/0706—Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation the processing taking place on a specific hardware platform or in a specific software environment
- G06F11/0721—Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation the processing taking place on a specific hardware platform or in a specific software environment within a central processing unit [CPU]
- G06F11/0724—Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation the processing taking place on a specific hardware platform or in a specific software environment within a central processing unit [CPU] in a multiprocessor or a multi-core unit
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/0703—Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
- G06F11/0751—Error or fault detection not based on redundancy
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/0703—Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
- G06F11/0793—Remedial or corrective actions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/16—Error detection or correction of the data by redundancy in hardware
- G06F11/1629—Error detection by comparing the output of redundant processing systems
- G06F11/1641—Error detection by comparing the output of redundant processing systems where the comparison is not performed by the redundant processing components
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/16—Error detection or correction of the data by redundancy in hardware
- G06F11/1629—Error detection by comparing the output of redundant processing systems
- G06F11/165—Error detection by comparing the output of redundant processing systems with continued operation after detection of the error
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/16—Error detection or correction of the data by redundancy in hardware
- G06F11/18—Error detection or correction of the data by redundancy in hardware using passive fault-masking of the redundant circuits
- G06F11/183—Error detection or correction of the data by redundancy in hardware using passive fault-masking of the redundant circuits by voting, the voting not being performed by the redundant components
- G06F11/184—Error detection or correction of the data by redundancy in hardware using passive fault-masking of the redundant circuits by voting, the voting not being performed by the redundant components where the redundant components implement processing functionality
Definitions
- the invention relates to an arrangement according to the preamble of claim 1 and a method according to claim 10.
- Prior art multi-processor architectures are limited in their ability to meet future requirements imposed by autonomous vehicles. In particular, it is difficult to meet the requirements of the ISO 26262-1 standard if ASIL-D specifications are to be implemented.
- the invention has for its object to provide a fault-tolerant system, bypassing the known from the prior art solutions inherent disadvantages. In particular, the availability of the system should be increased.
- the arrangement comprises a first processor and a second processor.
- a processor is an electronic circuit that is configured to read and execute one or more instructions - a procedure.
- a processor may include portions that are capable of executing one or more instructions. These parts are called cores.
- the first processor has a first core, a second core, and a second core
- the second processor has a first core.
- the first core and the second core of the first processor and the first core of the second processor are configured to execute a first procedure. This means that the first procedure can be performed in triplicate on the first core and the second core of the first processor as well as on the first core of the second processor.
- a control entity may be formed as a separate core or implemented in one of said cores. It is defined as a means of performing steps to compare results.
- control entity of the first processor is designed to carry out the following steps:
- the deviation of the results of the execution of the first procedure on the first core and the second core of the first processor is determined by comparing the result of the first procedure. Result of the execution of the first procedure on the first core of the first processor with the result of the execution of the first procedure on the second core of the first processor detected.
- the step of comparing the result of executing the first procedure on the first core of the first processor and the result of executing the first procedure on the second core of the first processor each implies the result of executing the first procedure on the first core of the second processor in that the first procedure is performed on the first core of the second processor.
- the result of executing a procedure is generally any value that correlates with the execution of the procedure.
- it may be the output value of a function if the procedure is a function.
- the invention provides triple redundancy in the execution of the first procedure. If one of the three named cores executing the first procedure fails or is faulty, two further cores remain available for redundant execution. A shutdown of the entire system is not required.
- the first core of the first processor is deactivated when the results of the execution of the first procedure on the first core and the second core of the first processor differ and the result of executing the first procedure on the second core of the first processor and match the result of the execution of the first procedure on the first core of the second processor.
- the second core of the first processor is further deactivated when the results of the execution of the first procedure on the first core and the second core of the first processor differ and the result of the execution of the first procedure on the first core of the first processor and the result of Execution of the first procedure on the first core of the second processor match.
- the deviation of the results of the execution of the first procedure on the first core and the second core of the first processor indicates that in the first core or the second core of the first processor has an error.
- the defective core of the first processor can be identified and deactivated accordingly.
- a second sensor is part of the arrangement in a preferred development. At least one signal from the first sensor is routed to both the first core of the first processor and the first core of the second processor. Accordingly, at least one signal of the second sensor is directed to the second core of the first processor and to the first core of the second processor.
- the signals preferably serve as input data of the first procedure executed on the respective processor. If the first core of the first processor or the second core of the first processor is deactivated due to an error, the corresponding sensor signal is the further development of the first core of the second processor available. This allows the first core of the second processor to take over the tasks of the disabled processor core.
- first sensor and the second sensor are redundant. This means that the first sensor and the second sensor are designed to measure the same physical quantity.
- the arrangement is preferably developed symmetrically.
- the first processor and the second processor have the same structure.
- the first processor and the second processor each have a first core, a second core, a third core, and a control entity.
- the second core and the third core of the second processor and the third core of the first processor are configured to execute a second procedure.
- the control entity of the first processor is designed, analogously to the control entity of the second processor, to carry out the following steps:
- the second core of the second processor is deactivated if the results of the execution of the second procedure on the second core and the third core of the second processor differ from each other and Result of execution of the second procedure on the third core of the second processor and the result of execution of the second procedure on the third core of the first processor match. If the results of the execution of the second procedure on the second core and the third core of the second processor differ and the result of the execution of the second procedure on the second core of the second processor and the result of the execution of the second procedure on the third core of the first one Processor match.
- the second processor receives input signals from a third sensor and a fourth sensor. At least one signal from the third sensor is passed to the second core of the second processor and to the third core of the first processor. Accordingly, at least one signal of the fourth sensor is routed to the third core of the second processor and to the third core of the first processor.
- the third sensor and the fourth sensor are designed to be redundant in a preferred embodiment.
- the third sensor and the fourth sensor thus measure the same physical size according to further development.
- the arrangement is preferably developed as part of a vehicle, for example a motor vehicle.
- the first processor may be developed as part of a transmission control unit and the second processor for controlling power electronics.
- a vehicle with the arrangement according to the invention enables a reliable implementation of functions for driver assistance systems or for autonomous driving.
- a method according to the invention provides for the following steps to be carried out using the arrangement according to the invention or a preferred development:
- This method is preferably developed further with method steps which, as described above, can be carried out by preferred developments of the arrangement according to the invention.
- FIG. 1 is a processor architecture.
- a multiprocessor system 101 according to FIG. 1 has a first processor 103 and a second processor 105. Both processors 103, 105 have multiple cores. Thus, the first processor 103 has a first core 107, a second core 109, a third core 1 1 1 and a control entity 1 13. Correspondingly, the second processor 105 has a first core 1 15, a second core 1 17, a third core 1 19 and a control entity 121.
- a first sensor signal 123 is applied to the first core 107 of the first processor 103 and to the first core 1 15 of the second processor 105.
- a second sensor signal 125 is applied to the second core 109 of the first processor 103 and to the first core 1 15 of the second processor 105.
- the first sensor signal 123 and the second sensor signal 125 are based on a redundant measurement of a single physical quantity by means of two different sensors.
- a third sensor signal 127 is applied analogously thereto to the second core 1 17 of the second processor and to the third core 1 1 1 of the first processor 103.
- a fourth sensor signal 129 executed redundantly thereto is applied to the third core 1 19 of the second processor 105 and to the third core 1 1 1 of the first processor 103. Two redundant sensors measuring the same physical quantity provide the third sensor signal 127 and the fourth sensor signal 129.
- the first core 107 and the second core 109 of the first processor and the first core 15 of the second processor 105 serve to execute a first procedure with triple redundancy.
- the first processor controller 13 monitors the execution of the first procedure by the first core 107 and the second core 109 of the first processor 103 and compares their results.
- control entity 1 13 of the first processor 103 adds the first core 1 15 of the second processor 105 to determine whether the first core 107 or the second core 109 of the first processor 103 malfunctions. The faulty core 107, 109 is deactivated. After that there is still a double redundancy to execute the first procedure.
- the execution of the second procedure by the second core 1 17 and the third core 1 19 of the second processor 105 and by the third core 1 1 1 of the first processor 103 is analogous to the embodiment of the first procedure described above.
- a first watchdog 131 is provided for monitoring the first processor 103. Accordingly, the second processor 105 is monitored by a second watchdog 133.
- the watchdogs 131, 133 it is possible to intercept the total failure of a single processor 103, 105.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Hardware Redundancy (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102017201032.0A DE102017201032A1 (en) | 2017-01-23 | 2017-01-23 | Redundant processor architecture |
PCT/EP2017/083986 WO2018134023A1 (en) | 2017-01-23 | 2017-12-21 | Redundant processor architecture |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3571593A1 true EP3571593A1 (en) | 2019-11-27 |
Family
ID=60935841
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17825518.8A Withdrawn EP3571593A1 (en) | 2017-01-23 | 2017-12-21 | Redundant processor architecture |
Country Status (6)
Country | Link |
---|---|
US (1) | US11281547B2 (en) |
EP (1) | EP3571593A1 (en) |
JP (1) | JP2020506472A (en) |
CN (1) | CN110192185B (en) |
DE (1) | DE102017201032A1 (en) |
WO (1) | WO2018134023A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102017201032A1 (en) | 2017-01-23 | 2018-05-03 | Zf Friedrichshafen Ag | Redundant processor architecture |
US11106205B2 (en) * | 2018-09-18 | 2021-08-31 | Raytheon Technologies Corporation | Vehicle control with functional redundancy |
EP4074014A4 (en) | 2019-12-09 | 2023-12-27 | Thales Canada Inc. | Method and system for high integrity can bus traffic supervision in safety critical application |
US11814083B2 (en) | 2020-03-31 | 2023-11-14 | Uatc, Llc | Asynchronous processing for autonomous vehicle computing systems |
CN114043997B (en) * | 2022-01-13 | 2022-04-12 | 禾美(浙江)汽车股份有限公司 | Automatic driving intelligent decision-making method based on high-sensitivity sensor |
US20240320050A1 (en) * | 2023-03-24 | 2024-09-26 | Advanced Micro Devices, Inc. | N-way fault tolerant processing system |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19631309A1 (en) | 1996-08-02 | 1998-02-05 | Teves Gmbh Alfred | Microprocessor arrangement for a vehicle control system |
US6687791B2 (en) | 2002-01-07 | 2004-02-03 | Sun Microsystems, Inc. | Shared cache for data integrity operations |
CN100483359C (en) * | 2004-10-25 | 2009-04-29 | 罗伯特·博世有限公司 | Method and device for changing mode and comparing signal in a computer system having at least two processing units |
US7953536B2 (en) * | 2005-07-29 | 2011-05-31 | GM Global Technology Operations LLC | Inertial sensor software architecture security method |
US7272681B2 (en) * | 2005-08-05 | 2007-09-18 | Raytheon Company | System having parallel data processors which generate redundant effector date to detect errors |
US7941698B1 (en) * | 2008-04-30 | 2011-05-10 | Hewlett-Packard Development Company, L.P. | Selective availability in processor systems |
JP4709268B2 (en) * | 2008-11-28 | 2011-06-22 | 日立オートモティブシステムズ株式会社 | Multi-core system for vehicle control or control device for internal combustion engine |
US7877627B1 (en) * | 2008-12-18 | 2011-01-25 | Supercon, L.L.C. | Multiple redundant computer system combining fault diagnostics and majority voting with dissimilar redundancy technology |
DE102011086530A1 (en) * | 2010-11-19 | 2012-05-24 | Continental Teves Ag & Co. Ohg | Microprocessor system with fault-tolerant architecture |
WO2014207893A1 (en) * | 2013-06-28 | 2014-12-31 | 株式会社日立製作所 | Computation circuit and computer |
DE102017201032A1 (en) | 2017-01-23 | 2018-05-03 | Zf Friedrichshafen Ag | Redundant processor architecture |
-
2017
- 2017-01-23 DE DE102017201032.0A patent/DE102017201032A1/en active Pending
- 2017-12-21 JP JP2019539786A patent/JP2020506472A/en active Pending
- 2017-12-21 US US16/479,528 patent/US11281547B2/en active Active
- 2017-12-21 EP EP17825518.8A patent/EP3571593A1/en not_active Withdrawn
- 2017-12-21 CN CN201780083812.9A patent/CN110192185B/en active Active
- 2017-12-21 WO PCT/EP2017/083986 patent/WO2018134023A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2018134023A1 (en) | 2018-07-26 |
US20190361764A1 (en) | 2019-11-28 |
JP2020506472A (en) | 2020-02-27 |
US11281547B2 (en) | 2022-03-22 |
CN110192185B (en) | 2023-06-23 |
DE102017201032A1 (en) | 2018-05-03 |
CN110192185A (en) | 2019-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018134023A1 (en) | Redundant processor architecture | |
DE102010013349B4 (en) | Computer system and method for comparing output signals | |
EP3642716A1 (en) | Device and method for controlling a vehicle module depending on a status signal | |
EP1092177B1 (en) | Controller or engine controller, engine and method for adjusting a control or drive system or an engine | |
WO2011117155A1 (en) | Redundant two-processor controller and control method | |
DE102015110958A1 (en) | Outage management in a vehicle | |
DE102016107015A1 (en) | Architecture for scalable interference tolerance in systems with integrated immobilization in case of failure and malfunction in case of failure | |
EP1615087A2 (en) | Control and regulation unit | |
EP3557356A1 (en) | Method and automation system for the safe automatic operation of a machine or of a vehicle | |
EP2902905B1 (en) | Method for checking the processing of software | |
DE102011007467A1 (en) | Polynuclear integrated microprocessor circuitry for, e.g. vehicle domain computer, has tester to perform time-integral checking of specific components of auxiliary processor structure to and gradually expand checking of other components | |
DE102013021231A1 (en) | Method for operating an assistance system of a vehicle and vehicle control unit | |
DE112019007286T5 (en) | IN-VEHICLE CONTROL DEVICE AND IN-VEHICLE CONTROL SYSTEM | |
EP2182331A1 (en) | Shifting of a component having effect on the safety function from the safety relevant zone | |
DE102019218074B4 (en) | Control of a driver assistance system of a motor vehicle | |
DE102019219870A1 (en) | Integrity monitoring of a computing unit | |
WO2011113405A1 (en) | Controller arrangement | |
DE102017110154B4 (en) | Method for ISO 26262 compliant monitoring of the supply voltage VCC of an integrated sensor circuit of a pedestrian impact absorption device | |
DE10220811B4 (en) | Method and device for monitoring the functioning of a system | |
DE112017000868B4 (en) | Electronic control device | |
DE102022207018A1 (en) | Error management method, computer program product and vehicle | |
DE102017110152B4 (en) | Method for the ISO 26262 compliant monitoring of the supply voltage VCC of an integrated sensor circuit within a sensor system with a microcomputer | |
DE102015111430B4 (en) | Handling of simultaneous error messages with redundant servo drives | |
DE102019000715A1 (en) | Method for operating a system comprising at least one electrical device and / or at least one sensor, and device | |
DE102022206080A1 (en) | Method for operating a computing arrangement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190711 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20210701 |