EP3569753B1 - Methods for producing spunbond nonwoven fabrics made from continuous fibres - Google Patents

Methods for producing spunbond nonwoven fabrics made from continuous fibres Download PDF

Info

Publication number
EP3569753B1
EP3569753B1 EP19177272.2A EP19177272A EP3569753B1 EP 3569753 B1 EP3569753 B1 EP 3569753B1 EP 19177272 A EP19177272 A EP 19177272A EP 3569753 B1 EP3569753 B1 EP 3569753B1
Authority
EP
European Patent Office
Prior art keywords
lubricant
spunbonded nonwoven
polypropylene
hardness
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19177272.2A
Other languages
German (de)
French (fr)
Other versions
EP3569753A1 (en
Inventor
Sebastian Sommer
Morten Rise Hansen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Reifenhaeuser GmbH and Co KG Maschinenenfabrik
Fibertex Personal Care AS
Original Assignee
Reifenhaeuser GmbH and Co KG Maschinenenfabrik
Fibertex Personal Care AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reifenhaeuser GmbH and Co KG Maschinenenfabrik, Fibertex Personal Care AS filed Critical Reifenhaeuser GmbH and Co KG Maschinenenfabrik
Priority to PL19177272T priority Critical patent/PL3569753T3/en
Publication of EP3569753A1 publication Critical patent/EP3569753A1/en
Application granted granted Critical
Publication of EP3569753B1 publication Critical patent/EP3569753B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • D04H3/147Composite yarns or filaments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/007Addition polymers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/098Melt spinning methods with simultaneous stretching
    • D01D5/0985Melt spinning methods with simultaneous stretching by means of a flowing gas (e.g. melt-blowing)
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/06Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • D10B2321/022Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polypropylene

Definitions

  • the invention relates to a spunbonded fabric made from continuous filaments made from thermoplastic material, the continuous filaments being in the form of multi-component filaments, in particular bi-component filaments with a core-sheath configuration.
  • the spunbonded webs have continuous filaments. Because of their almost endless length, such continuous filaments differ from staple fibers, which have much shorter lengths of, for example, 10 to 60 mm.
  • Spunbonded nonwovens of the type mentioned are known from practice in different variants. In the case of such spunbonded nonwovens, high strength or high tensile strength is generally desirable. For many applications, the spunbonded nonwovens should also have a smooth, soft feel. A soft hand of the spunbonded nonwovens on the one hand and high strength or tensile strength of the spunbonded nonwovens on the other hand is often not satisfactorily achievable in combination. Above all, a soft feel cannot be achieved at the same time as high productivity or system productivity.
  • Polypropylene spunbonded nonwovens have been known for a long time and are characterized by good running behavior on the associated system. In particular, relatively little soiling occurs.
  • these spunbonded nonwovens are not particularly soft and the options for improving softness - for example with finer fibers - are limited and often not economical.
  • the use of a lubricant to increase the softness of the spunbonded nonwoven fabric is possible, but does not change the relatively high flexural rigidity of the filaments and thus cannot give a satisfactory soft spunbonded nonwoven fabric.
  • the use of such a lubricant has the The disadvantage is that the lubricant diffuses out of the filament melt or from the initially hot filaments during the spinning process and soils the system, so that productivity is ultimately reduced.
  • Polypropylene blends have been introduced to improve softness, for example blends of homo-polypropylene and polypropylene-based copolymers such as "Random CoPP". These mixtures result in flexible filaments, which, however, are usually characterized by a rather dull handle, which in turn requires the use of additional lubricants. These soft polypropylene blends have disadvantageously reduced strength. In addition, the pollution problems described above are also present here. - When using certain bicomponent filaments with a core-sheath configuration, a compromise between acceptable softness and sufficient strength can be achieved.
  • a homo-polypropylene in the core improves the strength and soft polypropylene blends or the use of polypropylene copolymers in the sheath increase the softness of the filaments or the spunbonded nonwoven.
  • the filament surfaces in question are also relatively dull. This necessitates the use of a lubricant, which in turn brings with it the problems associated with contamination described above.
  • a combination of a so-called jumbo roll winder and a rewinder-cutting machine is used, since direct winding is no longer possible at these high production speeds.
  • the jumbo rolls are temporarily stored, and this period can take several hours.
  • a lubricant used can migrate to the surface of the filaments, so that the filaments or the spunbonded nonwovens become smoother and the rewinding behavior thus deteriorates.
  • the invention is based on the technical problem of specifying a spunbonded nonwoven of the type mentioned at the outset, which is characterized both by a smooth, soft feel and by sufficient strength, which can be produced easily and efficiently and in which, above all, evaporation of softening additives or evaporation of lubricants can be largely avoided.
  • the invention also teaches, according to a first embodiment, a method for producing a spunbonded nonwoven from continuous filaments made of thermoplastic material, the continuous filaments being multi-component filaments, in particular bi-component filaments, with a core-sheath configuration, the filaments being at least one lubricant included, the proportion of the lubricant - based on the entire filament - 250 to 5500 ppm, preferably 500 to 5000 ppm, preferably 700 to 3000 ppm and very preferably 700 to 2500 ppm, the lubricant being exclusively or at least 90% by weight.
  • % preferably at least 95% by weight, is present in the core component and the surface of the spunbonded nonwoven is harder in the period up to 150 minutes after the spunbonded nonwoven production, in particular by more than 3%, preferably by at least 3.2% is at least 3.3% and in particular at least 3.5% harder than that Surface of a comparison spunbonded nonwoven otherwise produced under the same conditions with homogeneous distribution of the lubricant with respect to the filament cross section and wherein the surface of the spunbonded nonwoven has the same degree of hardness or softness or approximately the same degree of hardness or softness as the comparison spunbonded nonwoven after 96 hours, wherein the degrees of hardness then preferably differ by a maximum of 3%, preferably by a maximum of 2.9% and in particular by a maximum of 2.8%.
  • the mass ratio between the core component and the sheath component is preferably 40:60 to 90:10, expediently 60:40 to 85:15, in particular 65:35 to 80:20, preferably 65:35 to 75:25 and very preferably 67:33 to 73:27.
  • the jacket component is designed to be free of lubricants or essentially free of lubricants.
  • the jacket can also serve as a migration brake for the lubricant present in the core.
  • the invention teaches, according to a second embodiment, a method for producing a spunbonded nonwoven from continuous filaments made of thermoplastic material, the continuous filaments being multi-component filaments, in particular bi-component filaments, with a core-sheath configuration, the filaments being at least one lubricant included, wherein the proportion of the lubricant - based on the entire filament - is 250 to 5500 ppm, preferably 500 to 5000 ppm, preferably 700 to 3000 ppm and very preferably 700 to 2500 ppm, the lubricant being present in the sheath component, wherein in the Sheath component contains at least one additive that reduces the migration speed of the lubricant through the sheath component, the surface of the spunbonded nonwoven being harder in the period of up to 150 minutes after the spunbonded nonwoven was produced, in particular by more than 3%, preferably by at least 3.2%, preferably by is at least 3.3% and in particular at least 3.5% harder than the surface
  • the surface of the spunbonded nonwoven is harder by more than 3% etc. than the surface of a comparative spunbonded nonwoven within a period of up to 150 minutes after the spunbonded nonwoven is produced means in particular that within the first 150 minutes after the production of the spunbonded nonwoven there is at least one point in time at which this tolerance limit is exceeded.
  • this tolerance limit is exceeded.
  • it can take 120 minutes, for example, for the tolerance limit to be exceeded.
  • the tolerance limit can already be exceeded after 15 minutes or the tolerance limit is exceeded over the entire period or essentially over the entire period.
  • the migration speeds depending on the raw material for the sheath or depending on the proportion of the sheath in the filament are relevant.
  • the time period of up to 150 minutes selected here is, on the one hand, adapted to the measuring device used described below and, on the other hand, also takes into account typical times from which the jumbo rolls can be rewound.
  • a hardness measurement directly in the course of spinning is not possible with the chosen method. It is within the scope of the invention that such a measurement lasts about 15 minutes and therefore cannot run continuously. However, the specified period cannot be selected too long, so that it can still serve as a decision-making aid during production. Overall, this period enables the decision regarding the spinning behavior (system cleanliness) and the winding behavior.
  • the mass ratio between the core component and the shell component is expediently 40:60 to 90:10, preferably 60:40 to 85:15, in particular 65:35 to 80:20, preferably 65:35 to 75:25 and very preferably 67:33 to 73:27.
  • the degree of hardness of the spunbonded nonwoven (see patent claims 1 and 3) on the nonwoven surface using a TSA measuring device (from Emtec, Leipzig, Germany) as the volume at the peak maximum of the volume/frequency spectrum is approximately 6550 Hz is determined.
  • This TSA meter returns the product property as a "TS7" value.
  • the TS7 value correlates with the softness of the fleece.
  • a spunbonded web made from rough/dull filaments has a higher TS7 value than a comparable spunbonded web made from smoother/softer filaments.
  • the degree of hardness or the volume is measured in the period of up to 150 minutes after the production of the spunbonded nonwoven on the surface of the spunbonded nonwoven.
  • spunbond production means the depositing of the filaments after they have been spun on the deposit or on the deposit sieve belt.
  • the measurement is therefore carried out within a period of up to 150 minutes after the filaments have been deposited on the deposit or on the deposit sieve belt. It is within the scope of the invention for this measurement to be carried out after all pre-consolidation and/or consolidation measures that are carried out on the fleece--in particular on the deposit or on the deposit sieve belt. In particular, this also involves solidification by means of a calender with an engraved roller. The degree of hardness is therefore measured after this hardening, but with the proviso that it is carried out within a period of up to 150 minutes after the filaments have been deposited on the deposit or on the deposit sieve belt.
  • the degree of hardness is expediently measured before the spunbonded nonwoven is wound up on a roll or after the spunbonded fabric is wound up on a roll, but always with the proviso that this measurement is carried out within a period of up to 150 minutes after the filament is deposited.
  • This sound frequency spectrum depends on the overall structure of the fleece surface and the amplitude of the volume depends, among other things, on the height of the fleece structure and on the degree of hardness of the fleece surface or the filament surfaces. Properties such as surface topology in the range below 1000 Hz become clear and softness in the range around 6550 Hz. The percentages given there for differences in the degree of hardness therefore refer to this value.
  • the volume or the degree of hardness of the comparison fleece is set equal to 100% and it is related to the volume or the degree of hardness of the spunbonded nonwoven according to the invention as a percentage Deviation determined.
  • the filaments are preferably deposited on a tray, in particular on a tray sieve belt. It is within the scope of the invention for the degree of hardness to be measured on the surface of the spunbonded nonwoven fabric that faces away from the deposit or from the deposit sieve belt. If the nonwoven web or spunbonded nonwoven is bonded using a calender with an engraved roller, the measurement of the degree of hardness is expediently carried out on the surface of the spunbonded nonwoven that faces the engraved roller and is preferably the surface of the spunbonded nonwoven that is exposed to the deposit or facing away from the deposit sieve belt.
  • the spunbonded nonwoven according to the invention on the one hand and the comparative nonwoven on the other hand are manufactured under the same conditions, in particular are manufactured with the same system or spunbond system and are deposited on the same tray or the same tray sieve belt. Furthermore, it is within the scope of the invention that the spunbonded nonwoven and the comparison nonwoven are bonded in the same way, in particular with the same calender or the like, and that the filaments of the spunbonded fabric on the one hand and the comparison nonwoven on the other hand have the same titer.
  • Raw material mixtures which are preferably compatible in each case can be used in the core component and/or in the shell component.
  • core-mantle configuration means that the mantle component completely or essentially completely surrounds the core component.
  • the continuous filaments of the spunbonded fabric preferably have a titer of 1.0 to 2.5 denier and particularly preferably a titre of 1.2 to 2.2 denier for all embodiments of the invention.
  • the core-shell configuration can be an eccentric core-shell configuration.
  • a spiral-crimped filament then preferably results through a suitable choice of the raw materials or the plastic components.
  • the core component and/or the shell component contain at least 90% by weight, preferably at least 95% by weight and preferably at least 96% by weight of at least one component from the group “polyolefin, polyolefin Copolymer, mixture of polyolefin and polyolefin copolymer”. It is particularly preferred that the core component and/or the shell component contain at least 90% by weight, preferably at least 95% by weight and preferably at least 96% by weight of at least one component from the group “polypropylene, polypropylene copolymer, mixture made of polypropylene and polypropylene copolymer”.
  • the core component and/or the sheath component expediently consists/consist essentially of a polyolefin and/or essentially of a polyolefin copolymer and/or essentially of a mixture of polyolefin and polyolefin copolymer.
  • the core component and/or the sheath component consists essentially of a polypropylene and/or essentially of a polypropylene copolymer and/or essentially of a mixture of a polypropylene and a polypropylene copolymer.
  • the limitation "substantially” in the embodiment variants described above takes into account the fact that the core component and/or the shell component contains additives, in particular the lubricant and optionally an additive that reduces the migration speed of the lubricant.
  • the proportion of the additives (lubricant, optionally the additive that reduces the migration speed of the lubricant and any other additives, such as color additives) - based on the entire filament - is at most 10% by weight, expediently at most 8% by weight, preferably at most 6 wt% and very preferably a maximum of 5 wt%.
  • the polypropylene copolymer used within the scope of the invention is, moreover, designed as an ethylene-propylene copolymer in accordance with an expedient embodiment. It is recommended that the ethylene-propylene copolymer used has an ethylene content of 1 to 6%, preferably 2 to 6%. It is advisable for the polypropylene copolymer preferably used to have a melt flow rate (MFI) of from 19 to 70 g/min, in particular from 20 to 70 g/min, preferably from 25 to 50 g/min. It has proven useful for the polypropylene copolymer to have a molecular weight distribution or molar mass distribution (M w /M n ) of from 2.5 to 6, preferably from 3 to 5.5 and very preferably from 3.5 to 5.
  • MFI melt flow rate
  • M w /M n molecular weight distribution or molar mass distribution
  • a recommended embodiment variant of the first and the second embodiment of the invention is characterized in that the core component essentially consists of a homo-polyolefin, in particular essentially of a homo-polypropylene. It has been proven that the core component at least 80% by weight, preferably at least 85% by weight, preferably at least 90% by weight and particularly preferably at least 95% by weight of the homopolyolefin, in particular of the homopolypropylene.
  • a recommended embodiment of the first and the second embodiment is further characterized in that the sheath component consists essentially of a polyolefin copolymer, in particular essentially of a polypropylene copolymer and/or essentially of a mixture of a polyolefin or homo-polyolefin with a polyolefin copolymer, in particular essentially consisting of a mixture of a polypropylene or homo-polypropylene with a polypropylene copolymer.
  • the substances specified below are preferably used as lubricants.
  • At least one fatty acid derivative and preferably at least one substance from the group “fatty acid ester, fatty acid alcohol, fatty acid amide” is expediently used as the lubricant.
  • a recommended embodiment of the invention is characterized in that at least one stearate - in particular glycerol monostearate - and/or a fatty acid amide such as e.g. B. erucic acid amide and / or an oleic acid amide used.
  • the use of distearylethylenediamide is also possible.
  • the erucic acid amide product SL05068PP from Constab is used as the lubricant masterbatch.
  • a variant of the first embodiment of the invention is characterized in that both the core component and the sheath component of the endless filaments of the spunbonded nonwoven according to the invention consist of a homo-polyolefin, preferably of a homo-polypropylene or essentially exist.
  • the mass ratio between the core component and the shell component is expediently 40:60 to 90:10 and preferably 67:33 to 75:25.
  • the at least one lubricant is recommended to be admixed only to the core component or the lubricant is present in the core component to an extent of at least 95% by weight, preferably at least 98% by weight.
  • a proportion or an average proportion of the lubricant of 250 to 5000 ppm and preferably of 1000 to 5000 ppm be present in the entire continuous filament.
  • a higher proportion of the sheath of the filaments with a core-sheath configuration impedes the migration of the lubricant from the core more effectively, on the other hand, the proportion of the lubricant in the core must continue to increase for the end effect.
  • a further variant of the first embodiment of the invention is characterized in that the core component consists or essentially consists of a homo-polyolefin, in particular of a homo-polypropylene, and that the sheath component consists of a mixture of a homo-polyolefin, in particular of a homo- Polypropylene and a polyolefin copolymer, in particular a polypropylene copolymer consists or essentially consists.
  • the homo-polyolefin, in particular the homo-polypropylene in the core component is identical to the homo-polyolefin or homo-polypropylene in the sheath component.
  • the proportion of the homopolyolefin, in particular the homopolypropylene, in the sheath component is preferably 40 to 90% by weight, preferably 70 to 90% by weight and preferably 75 to 90% by weight 85% by weight (relative to the sheath component).
  • the proportion of polyolefin copolymer or polypropylene copolymer in the shell component is expediently 50 to 10% by weight, preferably 30 to 10% by weight and preferably 25 to 15% by weight (based on the shell component).
  • the polyolefin copolymer used, in particular the polypropylene copolymer is recommended to have a melt flow rate (MFI) of from 5 to 30 g/10 min, preferably from 5 to 25 g/10 min.
  • melt flow rate is measured in particular according to ISO 1133, specifically for polypropylene and polypropylene copolymer at 230° C. and 2.16 kg.
  • the polyolefin copolymer or the polypropylene copolymer preferably has an ethylene content of 2 to 20%, preferably 4 to 20%.
  • the polyolefin copolymer or the polypropylene copolymer of this embodiment is preferably characterized by an average C2 content in the range from 2 to 6%.
  • Exxon Vistamaxx 3588 and/or Exxon Vistamaxx 6202 or a polypropylene with similar properties are preferably used as the polypropylene copolymer.
  • the polypropylene copolymer is mixed with the homo-polyolefin or homo-polypropylene for the sheath component as described above. Preferred specifications for the homo-polypropylene are listed further below.
  • recyclate recycling can be used with regard to the thermoplastic material used.
  • the recyclate stream is expediently used exclusively or primarily for the core component, particularly in the first embodiment of the invention.
  • a lubricant-loaded recycled recyclate is then only fed back into the core component and the sheath component is guaranteed to be lubricant-free or essentially remains free of lubricants.
  • the copolymer is then also converted into the core component. Nevertheless, the sheath remains lubricated or substantially lubricated.
  • the at least one lubricant is present exclusively or for the most part in the core component.
  • lubricant is present in the jacket component.
  • the lubricant can only be contained in the jacket component. In principle, however, lubricant can also be present in the core component in this second embodiment.
  • the core component can consist or essentially consist of a homopolyolefin and in particular of a homopolypropylene.
  • the core component in this second embodiment has at least 75% by weight, preferably at least 80% by weight, preferably at least 85% by weight and particularly preferably at least 90% by weight of the homo-polyolefin, in particular the homo -polypropylene.
  • a recommended variant of the second embodiment of the invention is characterized in that the jacket component or the jacket component containing the lubricant consists or essentially consists of a polyolefin copolymer, in particular of a polypropylene copolymer.
  • the lubricant may be or is contained in the sheath component and (additionally) the Additive that reduces the migration speed of the lubricant is included.
  • a polyolefin copolymer or a polypropylene copolymer is preferably selected for the sheath component which has a melt flow rate (MFI) of 20 to 70 g/10 min, preferably 25 to 50 g/10 min.
  • MFI melt flow rate
  • the polyolefin copolymer or polypropylene copolymer selected for the sheath component is recommended to have a narrow molar mass distribution and preferably a molecular weight distribution or molar mass distribution (M w /M n ) of from 2.5 to 6, preferably from 3 to 5.5 and very preferably from 3.5 to 5.
  • M w /M n molecular weight distribution or molar mass distribution
  • the molecular weight distribution M w /M n is determined in the context of the invention by gel permeation chromatography (GPC) according to ISO 16014-1:2003, ISO 16014-2:2003, ISO 16014-4:2003 and ASTM D 6474-12.
  • At least one additive that reduces the migration speed of the lubricant is used in the sheath component of the endless filaments.
  • This additive is at least one nucleating agent and/or at least one filler.
  • at least one nucleating agent is used.
  • the nucleating agent is expediently present in a proportion of 500 to 2500 ppm - based on the entire filament - included in the filaments.
  • a nucleating agent from the group "aromatic carboxylic acid, salt of an aromatic carboxylic acid, sorbitol derivative, talc, kaolin, quinacridone, pimelic acid salt, suberic acid salt, dicyclohexyl-naphthalenedicarboxamide, organophosphate, triphenyl compound, triphenyldithiazine” has proven particularly useful. used.
  • a sorbitol such as dibenzyl sorbitol (DBS) or 1,3:2,4-bis-(p-methylbenzylidene) sorbitol (MDBS) or 1,3:2,4-bis(3,4 -dimethylbenzylidene) sorbitol (DMDBS) can be used.
  • a preferred nucleating agent is a salt of an aromatic carboxylic acid, especially an alkali metal salt of benzoic acid, such as sodium benzoate.
  • At least one filler in the shell component can also reduce the migration speed of the lubricant.
  • At least one metal salt and particularly preferably at least one substance from the group “titanium dioxide”, calcium carbonate, talc” is preferably used as the filler.
  • random polypropylene copolymers with a narrow molar mass distribution can advantageously be used as polypropylene copolymers for the sheath component.
  • Polypropylene copolymers which are known from the injection molding sector and often contain antistatic agents and contain nucleating agents.
  • antistatic agents eg fatty acid esters such as glycerol monostearate or ethoxylated fatty amines or alkylamines
  • additional lubricant can be metered into the core component and/or shell component if the proportion already present from the copolymer is not sufficient.
  • the copolymer of the sheath component can be blended with homo-polypropylene. It is within the scope of the invention that the viscosity of these mixtures is lower than the viscosity of a homo-polypropylene.
  • the following explanations again relate both to the first embodiment and to the second embodiment of the invention: If a homo-polypropylene is used in the first or in the second embodiment of the invention, it is preferably a homo-polypropylene with the following properties.
  • the melt flow rate (MFI) is expediently 17 to 37 g/10 min, preferably 19 to 35 g/10 min.
  • the homo-polypropylene is recommended to have a narrow molar mass distribution in the range from 3.6 to 5.2, in particular in the range from 3 8 to 5 on.
  • the measurement of the molar mass distribution has already been specified above.
  • at least one of the following products is used as homo-polypropylene: Borealis HF420FB (MFI19), HG455FB (MFI25), HG475FB (MFI25), Basell Moplen HP561R (MFI25) and Exxon 3155 PP (MFI35).
  • homo-polypropylene and/or polypropylene copolymer in particular ethylene-propylene copolymer, is used for both the core component and the shell component and/or mixtures thereof are used.
  • the PP materials have proven particularly useful in the context of the invention.
  • a spunbonded nonwoven according to the invention is produced using a spunbond process.
  • multi-component filaments or bi-component filaments with a core-sheath configuration are spun as continuous filaments using at least one spinneret and then these continuous filaments are cooled in at least one cooling device and the continuous filaments then pass through a stretching device to stretch the filaments.
  • the stretched filaments are laid down as a spunbonded nonwoven on a deposit, in particular on a sieve belt.
  • a particularly recommended embodiment of the invention is characterized in this context in that the unit consisting of the cooling device and the stretching device is designed as a closed unit, with no further air being supplied to the closed unit apart from the supply of cooling air in the cooling device.
  • This closed design has proven particularly useful within the scope of the invention when producing a spunbonded nonwoven according to the invention.
  • At least one diffuser is expediently arranged between the stretching device and the deposit or the deposit sieve belt.
  • the continuous filaments emerging from the stretching device are guided through this diffuser and then deposited on the tray or on the tray sieve belt.
  • a recommended embodiment variant of the invention is characterized in that at least two diffusers, preferably two diffusers, are arranged one behind the other in the filament flow direction between the stretching device and the deposit are arranged.
  • At least one secondary air inlet gap for the entry of ambient air is expediently present between the two diffusers.
  • the embodiment with the at least one diffuser or with the at least two diffusers and the secondary air inlet gap has also proven itself particularly with regard to the production of the spunbonded nonwovens according to the invention.
  • this spunbonded nonwoven is bonded, prebonded according to a preferred embodiment and then finally bonded.
  • the pre-consolidation or consolidation of the spunbonded fabric is expediently carried out with at least one calender.
  • two interacting calender rolls are preferably used.
  • at least one of these calender rolls is designed to be heated.
  • the embossing area of the calender is expediently 8 to 20%, for example 12%.
  • the degree of softness is determined for a spunbonded nonwoven according to the invention on the one hand and for a comparison nonwoven on the other hand, the same preconsolidation or strengthening of the spunbonded nonwoven takes place in both nonwovens.
  • the invention is based on the finding that the spunbonded nonwovens according to the invention have an optimal, smooth, soft feel and nevertheless have high strength. This results in soft spunbonded nonwovens with good tensile strength.
  • the invention is also based on the knowledge that inhomogeneous introduction of the lubricant into the filaments contributes effectively to solving the technical problem according to the invention.
  • a comparable strength of the nonwovens can be achieved in comparison to the measures known from practice when producing the spunbonded nonwovens according to the invention and in particular when solidifying the spunbonded nonwovens with less energy expenditure - especially at lower calender temperatures. Due to the high strength of the spunbonded webs achieved according to the invention, material can also be saved in the production of the endless filaments, in particular in comparison to other raw material combinations, such as PP/PE. Furthermore, when producing the spunbonded nonwovens according to the invention, the components can be easily recycled in the production process.
  • spunbonded webs were produced from bicomponent filaments with a core-sheath configuration by the spunbond process described above. Homo-polypropylene and polypropylene copolymers were used as the material for the two components (core and jacket).
  • the in all exemplary embodiments, the spunbonded nonwoven laid down on the sieve belt was consolidated using a calender which had an engraving U5714A (12% embossed area, round engraved points, 25 figures/cm 2 ).
  • the fineness of the filaments of all examples was about 1.6 to 1.8 denier. All samples were produced with a spinning system at the same or similar throughputs.
  • Monocomponent filaments were made from homo-polypropylene (Borealis HG455FB with MFI25). The calendering took place at a surface temperature of the calender rolls of approx. 148.degree. The spunbonded fabric produced has good strength, but does not have a satisfactory soft hand compared to the following exemplary embodiments.
  • a spunbonded web of bicomponent filaments was produced according to the first embodiment of the invention, with both the core component and the sheath component made of homo-polypropylene (Borealis HG455FB with MFI25) with 8% of a polypropylene from Idemitsu "L-MODU X901S" as a soft additive polypropylene passed.
  • the mass ratio between the core component and the sheath component was 70:30.
  • Only the core contained the lubricant SL05068PP from Constab based on erucic acid amide.
  • the content of the lubricant was 2000 ppm with respect to the whole filament.
  • the spunbonded web was calendered at a surface temperature of the calender rolls of about 142°C.
  • the spunbonded fabric produced from these continuous filaments had a smooth, soft handle after one day's storage time.
  • the spunbonded fabric of this embodiment was also produced according to the first embodiment of the invention.
  • the bicomponent filaments of this spunbonded web contained homo-polypropylene (Basell Moplen HP561R with MFI25) with 10% by weight of a soft additive co-polypropylene (Exxon Vistamaxx VM 6202) both in the core component and in the sheath component.
  • the mass ratio between the core component and the sheath component was 70:30 here as well.
  • SL05068PP from Constab based on erucic acid amide was again used as the lubricant. This lubricant was contained only in the core, and the content of the lubricant was 2500 ppm based on the whole filament.
  • the spunbonded nonwoven was calendered at a surface temperature of the calender rolls of 132.degree.
  • This spunbonded nonwoven fabric was produced according to the second embodiment of the invention.
  • the bicomponent filaments contained homo-polypropylene (Borealis HG475FB) in the core and polypropylene copolymer (Basell Moplen RP248R with MFI 30) in the sheath.
  • the mass ratio between the core component and the sheath component was 70:30.
  • the polypropylene copolymer of the sheath contains a nucleating agent and an antistatic agent.
  • the spunbonded nonwoven was calendered at a surface temperature of the calender rolls of 121.degree.
  • the hand of the spunbonded nonwoven produced had to be initially classified as dull, after a day's storage time, the nonwoven had a smooth, soft hand. This in turn shows delayed migration of the lubricant or, in this case, the antistatic agent.
  • the spunbonded fabric was produced according to the second embodiment of the invention.
  • the core component of the bicomponent filaments consisted of homo-polypropylene (Borealis HG475FW with MFI25) and the sheath component consisted of polypropylene copolymer (Basell Moplen RP248R with MFI30).
  • the mass ratio between the core component and the sheath component was 50:50.
  • the polypropylene copolymer contained a nucleating agent and an antistatic agent. The solidification took place with calender rolls with a surface temperature of 121 °C.
  • the handle of the spunbonded fabric produced was initially dull and after a day's storage time, a smooth, soft handle then set in.
  • the bicomponent filaments of this spunbonded nonwoven had homo-polypropylene (Borealis HG475FB with MFI25) in the core and polypropylene copolymer in the sheath.
  • the mass ratio of the core component to the shell component was 70:30.
  • the polypropylene copolymer used is comparable to the Moplen RP248R copolymer, but has no nucleating agent and no antistatic agent.
  • the spunbonded nonwoven was consolidated using calender rolls with a surface temperature of 121.degree. Even after a three-day storage time, the spunbonded fabric produced in this way did not achieve the smooth, soft feel of exemplary embodiment 3. This shows that the use of polypropylene copolymer alone is not sufficient and a migrating one Lubricant is required to realize the properties of the invention.
  • This embodiment relates to the difference in hardness or referred to in relation to the hardness measurements. Measurements of the degree of hardness were carried out on a spunbonded nonwoven S1 according to the invention and on a comparative nonwoven C1 using a commercially available measuring device TSA (Tissue Softness Analyzer) from Emtec, Leipzig, Germany. The measurement method has already been explained above.
  • the measuring head was pressed against the fleece surface with a force of 100 mN. It was measured here on the surface of the spunbonded nonwoven facing away from the sieve belt.
  • the measuring head was equipped with eight rotating or rotatable measuring blades and the speed during the measurement was 2/sec.
  • a volume/frequency spectrum was recorded for the spunbonded nonwoven according to the invention and for the comparison nonwoven and the volume of the peak maximum (TS7 value) at 6550 Hz was determined therein. In each case, 5 individual measurements were averaged.
  • the two spunbonded webs were made using the same spunbond apparatus, preconsolidated in the same manner (ie, under the same calender bonding conditions), and both spunbonded webs had filaments of the same 1.8 denier. The difference between the filaments of the two spunbonded webs was the distribution of the lubricant in the polymer melt as it exited the spinning plate prior to spinning to form the respective filament.
  • the filaments consisted of a homogeneous mixture of homo-polypropylene and polypropylene copolymer.
  • the raw materials for the bicomponent filaments were selected analogously to example 2 above, the proportion of lubricant based on the entire filament was 2000 ppm and a calender engraving "U2888" with a surface proportion of 19% was used.
  • the proportion of the core was 50% (mass ratio between core component and sheath component 50:50).
  • 4000 ppm of lubricant were metered into the core component of the bicomponent filaments.
  • a spunbonded nonwoven with filaments made from the same components was used as comparison nonwoven V1, but the lubricant was distributed homogeneously over the filament cross section at 2000 ppm.
  • the volume values (TS7 values) were determined for both webs S1 and V1, specifically for three points in time, namely 15 minutes, 2 hours and 96 hours after the filaments had been deposited on a sieve belt. Loudness values for the spunbonded nonwoven S1 according to the invention and for the comparative nonwoven C1 are shown in the table below: L (dBV 2rms ) in % S1 V1 S1 V1 15 minutes 4:31 3.98 108.2 100 2 hours. 4.42 4:16 106.3 100 96 hours 3.93 3.84 102.2 100
  • the only figure shows the volume values TS7 (in dBV 2 rms) of the peak maximum at 6550 Hz as a function of the time of measurement.
  • the TS7 value that was determined 15 minutes after the filament was laid is shown on the far left and the TS7 value that was determined 2 hours after the filament was laid is shown on the right.
  • the TS7 value is shown on the far right, which was determined 4 days or 96 hours after filament laying.
  • the solid line characterizes the TS7 values for the spunbonded nonwoven S1 according to the invention and the dashed line shows the TS7 values for the comparative nonwoven C1.
  • the spunbonded nonwoven S1 according to the invention initially (after 15 minutes and after 2 hours) has a significantly higher volume value and thus a lower degree of softness or softness. has a higher degree of hardness than the comparison fleece V1.
  • migration takes place relatively quickly, so that high degrees of softness or low degrees of hardness are achieved here relatively early on.
  • the slope of the curve between 15 minutes and 2 hours for both spunbonded nonwovens is explained by the first post-crystallization of the polypropylene blend, which stiffens the filaments.
  • This shape of the curves may be considered typical for this combination of raw materials.
  • both lubricant migration and post-crystallization simultaneously affect softness. Since migration speeds can also change depending on the respective crystallinity, there is no generally applicable curve here, it is specific to the raw material.
  • the volume values and thus the degrees of softness or hardness of the spunbonded nonwoven S1 according to the invention on the one hand and the comparison nonwoven V1 on the other hand match or almost match.
  • the delayed migration of the lubricant to the filament surface in the spunbonded nonwovens according to the invention has the advantage that significantly less outgassing of lubricant from the filaments takes place in the course of the production of the filaments and the system components are correspondingly less soiled.
  • the winding behavior is positively influenced.
  • the percentages in the table also show that the volume value of the spunbonded nonwoven according to the invention within the first 150 minutes after filament deposition is more than 3% higher than the volume value of the comparison nonwoven C1 and the degree of hardness of the spunbonded nonwoven S1 according to the invention is accordingly more than 3% higher than the degree of hardness of the comparison fleece V1. It can also be seen that regardless of a the finished spunbonded nonwovens have become softer as a result of the post-crystallization that is taking place, which proves the effect and purpose of the lubricant.
  • the combination of raw materials was selected according to exemplary embodiment 5 with the same system and consolidation as in exemplary embodiment 6, but with a lubricant.
  • a homo-polypropylene Moplen HP561R was used in the core and the random CoPP with MFR 30 from example 5 was used in the jacket.
  • a core-case ratio of 70:30 was set and the same calendering temperature was used as in example 6
  • 2900 ppm of lubricant were added only to the core.
  • 2000 ppm of lubricant were added both to the core and to the sheath.
  • the seasoned spunbonded nonwoven is softer (lower TS7 value) than the freshly produced spunbonded nonwoven.
  • the following table shows the TS7 ratio of spunbonded nonwovens S according to the invention to the comparative nonwovens V (examples 6 and 7) after 15 minutes, 2 hours and 96 hours, as well as the strength values after production and the basis weights of the spunbonded nonwovens. Strengths and basis weights were determined according to the methods explained above, a pull-off speed of 200 mm/min being used for the strength measurement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Nonwoven Fabrics (AREA)
  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Description

Die Erfindung betrifft ein Spinnvlies aus Endlosfilamenten aus thermoplastischem Kunststoff, wobei die Endlosfilamente als Mehrkomponentenfilamente, insbesondere als Bikomponentenfilamente mit Kern-Mantel-Konfiguration ausgebildet sind. - Erfindungsgemäß weisen die Spinnvliese Endlosfilamente auf. Solche Endlosfilamente unterscheiden sich aufgrund ihrer quasi endlosen Länge von Stapelfasern, die viel geringere Längen von beispielsweise 10 bis 60 mm aufweisen.The invention relates to a spunbonded fabric made from continuous filaments made from thermoplastic material, the continuous filaments being in the form of multi-component filaments, in particular bi-component filaments with a core-sheath configuration. - According to the invention, the spunbonded webs have continuous filaments. Because of their almost endless length, such continuous filaments differ from staple fibers, which have much shorter lengths of, for example, 10 to 60 mm.

Spinnvliese der eingangs genannten Art sind aus der Praxis in unterschiedlichen Ausführungsvarianten bekannt. Bei solchen Spinnvliesen ist in der Regel eine hohe Festigkeit bzw. hohe Zugfestigkeit wünschenswert. Für viele Anwendungen sollen die Spinnvliese außerdem einen glatten weichen Griff aufweisen. Ein weicher Griff der Spinnvliese einerseits und eine hohe Festigkeit bzw. Zugfestigkeit der Spinnvliese andererseits ist häufig nicht zufriedenstellend in der Kombination erreichbar. Vor allem lässt sich ein weicher Griff nicht zugleich mit einer hohen Produktivität bzw. Anlagenproduktivität realisieren.Spunbonded nonwovens of the type mentioned are known from practice in different variants. In the case of such spunbonded nonwovens, high strength or high tensile strength is generally desirable. For many applications, the spunbonded nonwovens should also have a smooth, soft feel. A soft hand of the spunbonded nonwovens on the one hand and high strength or tensile strength of the spunbonded nonwovens on the other hand is often not satisfactorily achievable in combination. Above all, a soft feel cannot be achieved at the same time as high productivity or system productivity.

Spinnvliese aus Polypropylen sind seit langem bekannt und zeichnen sich durch ein gutes Laufverhalten auf der zugehörigen Anlage aus. Insbesondere treten verhältnismäßig wenige Verschmutzungen auf. Allerdings sind diese Spinnvliese nicht besonders weich und die Möglichkeiten zur Verbesserung der Weichheit - beispielsweise durch feinere Fasern - sind begrenzt und oft nicht wirtschaftlich. Der Einsatz eines Gleitmittels zur Erhöhung der Weichheit des Spinnvlieses ist möglich, verändert aber nicht die verhältnismäßig hohe Biegesteifigkeit der Filamente und kann somit kein zufriedenstellendes weiches Spinnvlies ergeben. Die Verwendung eines solchen Gleitmittels hat den Nachteil, dass das Gleitmittel während des Spinnprozesses aus der Filamentschmelze bzw. aus den anfangs heißen Filamenten ausdiffundiert und die Anlage verschmutzt, so dass die Produktivität letztendlich gesenkt wird.Polypropylene spunbonded nonwovens have been known for a long time and are characterized by good running behavior on the associated system. In particular, relatively little soiling occurs. However, these spunbonded nonwovens are not particularly soft and the options for improving softness - for example with finer fibers - are limited and often not economical. The use of a lubricant to increase the softness of the spunbonded nonwoven fabric is possible, but does not change the relatively high flexural rigidity of the filaments and thus cannot give a satisfactory soft spunbonded nonwoven fabric. The use of such a lubricant has the The disadvantage is that the lubricant diffuses out of the filament melt or from the initially hot filaments during the spinning process and soils the system, so that productivity is ultimately reduced.

Zur Verbesserung der Weichheit wurden Polypropylen-Mischungen eingeführt, beispielsweise Mischungen aus Homo-Polypropylen und Copolymeren auf Polypropylen-Basis, wie "Random CoPP". Diese Mischungen ergeben biegeweiche Filamente, die sich allerdings in der Regel durch einen eher stumpfen Griff auszeichnen, was wiederum den Einsatz von zusätzlichen Gleitmittel erfordert. Diese weichen Polypropylen-Mischungen weisen eine nachteilhaft reduzierte Festigkeit auf. Außerdem sind die oben beschriebenen Probleme mit Verschmutzungen hier ebenfalls vorhanden. - Bei Einsatz bestimmter Bikomponentenfilamente mit Kern-Mantel-Konfiguration kann ein Kompromiss aus akzeptabler Weichheit und ausreichender Festigkeit erzielt werden. So verbessert ein Homo-Polypropylen im Kern die Festigkeit und weiche Polypropylen-Mischungen oder der Einsatz von Polypropylen-Copolymerisat im Mantel steigern die Weichheit der Filamente bzw. des Spinnvlieses. Allerdings sind die betreffenden Filamentoberflächen auch relativ stumpf. Das macht den Einsatz eines Gleitmittels erforderlich, der aber wiederum die oben geschilderten Probleme im Zusammenhang mit Verschmutzungen mit sich bringt.Polypropylene blends have been introduced to improve softness, for example blends of homo-polypropylene and polypropylene-based copolymers such as "Random CoPP". These mixtures result in flexible filaments, which, however, are usually characterized by a rather dull handle, which in turn requires the use of additional lubricants. These soft polypropylene blends have disadvantageously reduced strength. In addition, the pollution problems described above are also present here. - When using certain bicomponent filaments with a core-sheath configuration, a compromise between acceptable softness and sufficient strength can be achieved. A homo-polypropylene in the core improves the strength and soft polypropylene blends or the use of polypropylene copolymers in the sheath increase the softness of the filaments or the spunbonded nonwoven. However, the filament surfaces in question are also relatively dull. This necessitates the use of a lubricant, which in turn brings with it the problems associated with contamination described above.

Bei den hohen Produktionsgeschwindigkeiten moderner Anlagen zur Erzeugung von Spinnvliesen wird mit einer Kombination aus einem sogenannten Jumborollen-Wickler und einer Umroll-Schneidmaschine gearbeitet, da bei diesen hohen Produktionsgeschwindigkeiten nicht mehr direkt aufgewickelt werden kann. Zwischen der Herstellung des Spinnvlieses und der damit einhergehenden Erzeugung der Jumborolle einerseits und dem Zeitpunkt des Umroll-Schneidvorganges andererseits werden die Jumborollen zwischengelagert, wobei dieser Zeitraum durchaus mehrere Stunden dauern kann. In dieser Zeit kann ein eingesetztes Gleitmittel an die Oberfläche der Filamente migrieren, so dass die Filamente bzw. die Spinnvliese glatter werden und sich damit das Umrollverhalten verschlechtert. - Es besteht somit ein Bedürfnis, die Filamente bzw. Spinnvliese bei Einsatz eines Gleitmittels so einzustellen, dass einerseits positive Endeigenschaften gewahrt bleiben, andererseits die Anlage möglichst wenig verschmutzt wird und weiterhin die Produktionsgeschwindigkeit, die Wickelfähigkeit und die Prozesssicherheit optimiert bleiben bzw. optimiert werden können.With the high production speeds of modern systems for producing spunbonded nonwovens, a combination of a so-called jumbo roll winder and a rewinder-cutting machine is used, since direct winding is no longer possible at these high production speeds. Between the production of the spunbonded nonwoven and the associated production of the jumbo roll on the one hand and the point in time On the other hand, during the rewinding and cutting process, the jumbo rolls are temporarily stored, and this period can take several hours. During this time, a lubricant used can migrate to the surface of the filaments, so that the filaments or the spunbonded nonwovens become smoother and the rewinding behavior thus deteriorates. - There is therefore a need to adjust the filaments or spunbonded webs when using a lubricant in such a way that on the one hand positive end properties are retained, on the other hand the system is soiled as little as possible and the production speed, winding ability and process reliability remain optimized or can be optimized .

Bei der Herstellung von Spinnvliesen aus Endlosfilamenten ist es grundsätzlich bereits bekannt, weichmachende Additive bzw. Gleitmittel in den thermoplastischen Kunststoff der Filamente einzumischen. Dabei erfolgt gleichsam ein homogenes Einbringen des Gleitmittels in die Filamente. Diese bekannten Maßnahmen haben jedoch den Nachteil, dass die Additive im Zuge der Spinnvlies-Erzeugung aus den Filamenten ausdampfen können und die Anlage verschmutzen bzw. sich insbesondere in den luftführenden Komponenten der Anlage niederschlagen. Diese negativen Effekte sind natürlich unerwünscht.In the production of spunbonded nonwovens from continuous filaments, it is basically already known to mix softening additives or lubricants into the thermoplastic of the filaments. At the same time, the lubricant is introduced homogeneously into the filaments. However, these known measures have the disadvantage that the additives can evaporate from the filaments in the course of the production of the spunbonded fabric and soil the system or are reflected in particular in the air-conducting components of the system. These negative effects are of course undesirable.

US 2011/165470 , US 6355348 und EP 2034057 offenbaren Spinnvliesen aus Endlosfilamenten aufweisend eine Kern-Mantel-Konfiguration. US2011/165470 , U.S.6355348 and EP2034057 disclose continuous filament spunbond webs having a core-sheath configuration.

Demgegenüber liegt der Erfindung das technische Problem zugrunde, ein Spinnvlies der eingangs genannten Art anzugeben, dass sich sowohl durch einen glatten weichen Griff als auch durch eine ausreichende Festigkeit auszeichnet, das einfach und effizient herstellbar ist und bei dem vor allem ein Ausdampfen weichmachender Additive bzw. ein Ausdampfen von Gleitmitteln weitgehend vermieden werden kann.In contrast, the invention is based on the technical problem of specifying a spunbonded nonwoven of the type mentioned at the outset, which is characterized both by a smooth, soft feel and by sufficient strength, which can be produced easily and efficiently and in which, above all, evaporation of softening additives or evaporation of lubricants can be largely avoided.

Zur Lösung des technischen Problems lehrt die Erfindung weiterhin gemäß einer ersten Ausführungsform ein Verfahren zur Herstellung eines Spinnvlieses aus Endlosfilamenten aus thermoplastischem Kunststoff, wobei die Endlosfilamente als Mehrkomponentenfilamente, insbesondere als Bikomponentenfilamente, mit Kern-Mantel-Konfiguration ausgebildet sind, wobei die Filamente zumindest ein Gleitmittel enthalten, wobei der Anteil des Gleitmittels - bezogen auf das gesamte Filament - 250 bis 5500 ppm, vorzugsweise 500 bis 5000 ppm, bevorzugt 700 bis 3000 ppm und sehr bevorzugt 700 bis 2500 ppm beträgt, wobei das Gleitmittel ausschließlich oder zu mindestens 90 Gew.-%, vorzugsweise zu mindestens 95 Gew.-% in der Kernkomponente vorhanden ist und wobei die Oberfläche des Spinnvlieses im Zeitraum bis 150 Minuten nach der Spinnvlies-Erzeugung härter ist, insbesondere um mehr als 3 %, vorzugsweise um mindestens 3,2 %, bevorzugt um mindestens 3,3 % und insbesondere um mindestens 3,5 % härter ist als die Oberfläche eines ansonsten unter gleichen Bedingungen hergestellten Vergleichs-Spinnvlieses mit homogener Verteilung des Gleitmittels bezüglich des Filamentquerschnittes und wobei die Oberfläche des Spinnvlieses nach 96 Stunden den gleichen Härtegrad bzw. Weichheitsgrad oder in etwa den gleichen Härtegrad bzw. Weichheitsgrad wie das Vergleichs-Spinnvlies aufweist, wobei sich die Härtegrade dann vorzugsweise um maximal 3 %, bevorzugt um maximal 2,9 % und insbesondere um maximal 2,8 % unterscheiden. -Vorzugsweise beträgt im Rahmen der ersten Ausführungsform das Massenverhältnis zwischen der Kernkomponente und der Mantelkomponente 40:60 bis 90:10, zweckmäßigerweise 60:40 bis 85:15, insbesondere 65:35 bis 80:20, bevorzugt 65:35 bis 75:25 und sehr bevorzugt 67:33 bis 73:27.To solve the technical problem, the invention also teaches, according to a first embodiment, a method for producing a spunbonded nonwoven from continuous filaments made of thermoplastic material, the continuous filaments being multi-component filaments, in particular bi-component filaments, with a core-sheath configuration, the filaments being at least one lubricant included, the proportion of the lubricant - based on the entire filament - 250 to 5500 ppm, preferably 500 to 5000 ppm, preferably 700 to 3000 ppm and very preferably 700 to 2500 ppm, the lubricant being exclusively or at least 90% by weight. %, preferably at least 95% by weight, is present in the core component and the surface of the spunbonded nonwoven is harder in the period up to 150 minutes after the spunbonded nonwoven production, in particular by more than 3%, preferably by at least 3.2% is at least 3.3% and in particular at least 3.5% harder than that Surface of a comparison spunbonded nonwoven otherwise produced under the same conditions with homogeneous distribution of the lubricant with respect to the filament cross section and wherein the surface of the spunbonded nonwoven has the same degree of hardness or softness or approximately the same degree of hardness or softness as the comparison spunbonded nonwoven after 96 hours, wherein the degrees of hardness then preferably differ by a maximum of 3%, preferably by a maximum of 2.9% and in particular by a maximum of 2.8%. In the context of the first embodiment, the mass ratio between the core component and the sheath component is preferably 40:60 to 90:10, expediently 60:40 to 85:15, in particular 65:35 to 80:20, preferably 65:35 to 75:25 and very preferably 67:33 to 73:27.

Nach sehr empfohlener Ausführungsvariante der ersten Ausführungsform ist die Mantelkomponente gleitmittelfrei bzw. im Wesentlichen gleitmittelfrei ausgebildet. - Bei der ersten Ausführungsform kann der Mantel gleichsam als Migrationsbremse für das im Kern vorhandene Gleitmittel dienen.According to a highly recommended embodiment variant of the first embodiment, the jacket component is designed to be free of lubricants or essentially free of lubricants. - In the first embodiment, the jacket can also serve as a migration brake for the lubricant present in the core.

Außerdem lehrt die Erfindung zur Lösung des technischen Problems gemäß einer zweiten Ausführungsform ein Verfahren zur Herstellung eines Spinnvlieses aus Endlosfilamenten aus thermoplastischem Kunststoff, wobei die Endlosfilamente als Mehrkomponentenfilamente, insbesondere als Bikomponentenfilamente, mit Kern-Mantel-Konfiguration ausgebildet sind, wobei die Filamente zumindest ein Gleitmittel enthalten, wobei der Anteil des Gleitmittels - bezogen auf das gesamte Filament - 250 bis 5500 ppm, vorzugsweise 500 bis 5000 ppm, bevorzugt 700 bis 3000 ppm und sehr bevorzugt 700 bis 2500 ppm beträgt, wobei das Gleitmittel der Mantelkomponente vorhanden ist, wobei in der Mantelkomponente zumindest ein die Migrationsgeschwindigkeit des Gleitmittels durch die Mantelkomponente reduzierender Zusatzstoff enthalten ist, wobei die Oberfläche des Spinnvlieses im Zeitraum bis 150 Minuten nach der Spinnvlies-Erzeugung härter ist, insbesondere um mehr als 3 %, vorzugsweise um mindestens 3,2 %, bevorzugt um mindestens 3,3 % und insbesondere um mindestens 3,5 % härter ist als die Oberfläche ein ansonsten unter gleichen Bedingungen hergestellten Vergleichs-Spinnvlieses ohne einen die Migrationsgeschwindigkeit des Gleitmittels reduzierenden Zusatzstoff und wobei die Oberfläche des Spinnvlieses 96 Stunden nach der Spinnvlies-Erzeugung einen gleichen Härtegrad bzw. Weichheitsgrad oder einen in etwa gleichen Härtegrad bzw. Weichheitsgrad aufweist wie das Vergleichs-Spinnvlies, wobei sich die Weichheitsgrade dann bevorzugt um maximal 3 %, vorzugsweise um maximal 2,9 % und insbesondere um maximal 2,8 % unterscheiden. Dass im Rahmen der ersten Ausführungsform und der zweiten Ausführungsform die Oberfläche des Spinnvlieses im Zeitraum bis 150 Minuten nach der Spinnvlies-Erzeugung um mehr als 3 %, etc. härter ist als die Oberfläche eines Vergleichs-Spinnvlieses meint insbesondere, dass es innerhalb der ersten 150 Minuten nach der Spinnvlies-Erzeugung zumindest einen Zeitpunkt gibt, bei dem diese Toleranzgrenze überschritten wird. Je nach Rohstoffwahl und je nach Gleitmittel bzw. Gleitmittelanteil kann es beispielsweise 120 Minuten dauern bis die Toleranzgrenze überschritten ist. Bei anderen Bedingungen kann aber auch nach 15 Minuten bereits die Toleranzgrenze überschritten sein oder die Überschreitung der Toleranzgrenze ist über den gesamten Zeitraum bzw. im Wesentlichen über den gesamten Zeitraum gegeben. Dabei sind beispielsweise die Migrationsgeschwindigkeiten je nach Mantelrohstoff bzw. je nach Mantelanteil des Filamentes relevant.In addition, to solve the technical problem, the invention teaches, according to a second embodiment, a method for producing a spunbonded nonwoven from continuous filaments made of thermoplastic material, the continuous filaments being multi-component filaments, in particular bi-component filaments, with a core-sheath configuration, the filaments being at least one lubricant included, wherein the proportion of the lubricant - based on the entire filament - is 250 to 5500 ppm, preferably 500 to 5000 ppm, preferably 700 to 3000 ppm and very preferably 700 to 2500 ppm, the lubricant being present in the sheath component, wherein in the Sheath component contains at least one additive that reduces the migration speed of the lubricant through the sheath component, the surface of the spunbonded nonwoven being harder in the period of up to 150 minutes after the spunbonded nonwoven was produced, in particular by more than 3%, preferably by at least 3.2%, preferably by is at least 3.3% and in particular at least 3.5% harder than the surface of a comparative spunbonded nonwoven otherwise produced under the same conditions without an additive that reduces the migration rate of the lubricant and the surface of the spunbonded nonwoven has the same hardness 96 hours after the spunbonded nonwoven was produced Degree of hardness or degree of softness or approximately the same degree of hardness or degree of softness as the comparative spunbonded nonwoven, the degree of softness then preferably differing by a maximum of 3%, preferably by a maximum of 2.9% and in particular by a maximum of 2.8%. In the first embodiment and the second embodiment, the surface of the spunbonded nonwoven is harder by more than 3% etc. than the surface of a comparative spunbonded nonwoven within a period of up to 150 minutes after the spunbonded nonwoven is produced means in particular that within the first 150 minutes after the production of the spunbonded nonwoven there is at least one point in time at which this tolerance limit is exceeded. Depending on the choice of raw material and depending on the lubricant or lubricant content, it can take 120 minutes, for example, for the tolerance limit to be exceeded. Under other conditions, however, the tolerance limit can already be exceeded after 15 minutes or the tolerance limit is exceeded over the entire period or essentially over the entire period. For example, the migration speeds depending on the raw material for the sheath or depending on the proportion of the sheath in the filament are relevant.

Der hier gewählte Zeitraum bis 150 min. ist einerseits an das unten beschriebene eingesetzte Messgerät angepasst und im Übrigen werden damit auch typische Zeiten berücksichtigt, ab denen die Jumborollen umgerollt werden können. Eine Härtemessung direkt im Zuge des Spinnens ist mit dem gewählten Verfahren nicht möglich. Es liegt im Rahmen der Erfindung, dass eine solche Messung ca. 15 min. dauert und deshalb auch nicht kontinuierlich ablaufen kann. Der genannte Zeitraum kann aber auch nicht zu lange gewählt werden, damit er noch als Entscheidungshilfe während der Produktion dienen kann. Insgesamt ermöglicht dieser Zeitraum die Entscheidung bezüglich des Spinnverhaltens (Anlagensauberkeit) und des Wickelverhaltens.The time period of up to 150 minutes selected here is, on the one hand, adapted to the measuring device used described below and, on the other hand, also takes into account typical times from which the jumbo rolls can be rewound. A hardness measurement directly in the course of spinning is not possible with the chosen method. It is within the scope of the invention that such a measurement lasts about 15 minutes and therefore cannot run continuously. However, the specified period cannot be selected too long, so that it can still serve as a decision-making aid during production. Overall, this period enables the decision regarding the spinning behavior (system cleanliness) and the winding behavior.

Zweckmäßigerweise beträgt im Rahmen der zweiten Ausführungsform das Massenverhältnis zwischen der Kernkomponente und der Mantelkomponente 40:60 bis 90:10, vorzugsweise 60:40 bis 85:15, insbesondere 65:35 bis 80:20, bevorzugt 65:35 bis 75:25 und sehr bevorzugt 67:33 bis 73:27.In the context of the second embodiment, the mass ratio between the core component and the shell component is expediently 40:60 to 90:10, preferably 60:40 to 85:15, in particular 65:35 to 80:20, preferably 65:35 to 75:25 and very preferably 67:33 to 73:27.

Es liegt im Rahmen der Erfindung, dass der Härtegrad des Spinnvlieses (siehe Patentansprüche 1 und 3) an der Vliesoberfläche mittels eines TSA-Messgerätes (der Firma Emtec, Leipzig, Deutschland) als die Lautstärke bei dem Peakmaximum des Lautstärke/ Frequenz-Spektrums bei etwa 6550 Hz bestimmt wird. Dieses TSA-Messgerät gibt die Produkteigenschaft als "TS7"-Wert aus. Der TS7-Wert korreliert mit der Weichheit des Vlieses. Ein Spinnvlies aus rauen/stumpfen Filamenten weist einen höheren TS7-Wert auf als ein vergleichbares Spinnvlies aus glatteren/weicheren Filamenten. - Erfindungsgemäß erfolgt die Messung des Härtegrades bzw. der Lautstärke in dem Zeitraum bis 150 Minuten nach der Spinnvlies-Erzeugung an der Oberfläche des Spinnvlieses. Mit dem Begriff Spinnvlies-Erzeugung ist dabei die Ablage der Filamente nach ihrem Erspinnen auf der Ablage bzw. auf dem Ablagesiebband gemeint. Die Messung erfolgt also in dem Zeitraum bis 150 Minuten nach dieser Ablage der Filamente auf der Ablage bzw. auf dem Ablagesiebband. Es liegt im Rahmen der Erfindung, dass diese Messung nach allen Vorverfestigungs- und/oder Verfestigungsmaßnahmen erfolgt, die an dem Vlies - insbesondere auf der Ablage bzw. auf dem Ablagesiebband - durchgeführt werden. Dabei handelt es sich insbesondere auch um eine Verfestigung mittels eines Kalanders mit einer Gravurwalze. Die Messung des Härtegrades erfolgt also nach diesen Verfestigungen, jedoch mit der Maßgabe, dass sie in einem Zeitraum bis 150 Minuten nach der Ablage der Filamente auf der Ablage bzw. auf dem Ablagesiebband durchgeführt wird. Zweckmäßigerweise erfolgt die Messung des Härtegrades vor dem Aufwickeln des Spinnvlieses auf einer Rolle oder nach Aufwickeln des Spinnvlieses auf einer Rolle aber immer mit der Maßgabe, dass diese Messung in einem Zeitraum bis 150 Minuten nach der Filamentablage durchgeführt wird.It is within the scope of the invention that the degree of hardness of the spunbonded nonwoven (see patent claims 1 and 3) on the nonwoven surface using a TSA measuring device (from Emtec, Leipzig, Germany) as the volume at the peak maximum of the volume/frequency spectrum is approximately 6550 Hz is determined. This TSA meter returns the product property as a "TS7" value. The TS7 value correlates with the softness of the fleece. A spunbonded web made from rough/dull filaments has a higher TS7 value than a comparable spunbonded web made from smoother/softer filaments. According to the invention, the degree of hardness or the volume is measured in the period of up to 150 minutes after the production of the spunbonded nonwoven on the surface of the spunbonded nonwoven. The term spunbond production means the depositing of the filaments after they have been spun on the deposit or on the deposit sieve belt. The measurement is therefore carried out within a period of up to 150 minutes after the filaments have been deposited on the deposit or on the deposit sieve belt. It is within the scope of the invention for this measurement to be carried out after all pre-consolidation and/or consolidation measures that are carried out on the fleece--in particular on the deposit or on the deposit sieve belt. In particular, this also involves solidification by means of a calender with an engraved roller. The degree of hardness is therefore measured after this hardening, but with the proviso that it is carried out within a period of up to 150 minutes after the filaments have been deposited on the deposit or on the deposit sieve belt. The degree of hardness is expediently measured before the spunbonded nonwoven is wound up on a roll or after the spunbonded fabric is wound up on a roll, but always with the proviso that this measurement is carried out within a period of up to 150 minutes after the filament is deposited.

Es liegt im Rahmen der Erfindung, dass der Härtegrad mit einem handelsüblichen Messgerät TSA (Tissue Softness Analyzer) der Firma Emtec, Leipzig, Deutschland gemessen wird. Es wird dabei bevorzugt das folgende Standardverfahren durchgeführt:

  • Einspannen eines Teststückes des zu analysierenden Vlieses,
  • Absenken des mit 8 Platten bestückten Standard-Rotors auf die Vliesoberfläche. Bei einer Kraft von 100 mN des Rotors auf die Vliesprobe dreht der Rotor mit einer Geschwindigkeit von 2/sec.
  • Durch diese Rotation wird die Vliesprobe bzw. der Rotor zu Schwingungen/Geräuschen angeregt und ein Mikrofon zeichnet diese Reaktion auf. Die gemessenen Geräusche werden mittels FourierTransformation in ein Schallfrequenzspektrum umgewandelt.
  • Die Lautstärke des lokalen Lautstärkemaximums im Bereich um etwa 6550 Hz wird als "TS7" von dem Messgerät ausgegeben.
It is within the scope of the invention for the degree of hardness to be measured using a commercially available measuring device TSA (Tissue Softness Analyzer) from Emtec, Leipzig, Germany. The following standard procedure is preferably carried out:
  • Clamping a test piece of the fleece to be analyzed,
  • Lowering the standard rotor equipped with 8 plates onto the fleece surface. When the rotor exerts a force of 100 mN on the nonwoven sample, the rotor rotates at a speed of 2/sec.
  • This rotation causes the fleece sample or the rotor to vibrate/noise and a microphone records this reaction. The noises measured are converted into a sound frequency spectrum using Fourier transformation.
  • The loudness of the local loudness maximum in the area around about 6550 Hz is output by the measuring device as "TS7".

Dieses Schallfrequenzspektrum ist abhängig von der Gesamtstruktur der Vliesoberfläche und die Amplitude der Lautstärke ist unter anderem abhängig von der Höhe der Vliesstruktur als auch von dem Härtegrad der Vliesoberfläche bzw. der Filamentoberflächen. Hierbei werden Eigenschaften wie Oberflächentopologie im Bereich unter 1000 Hz deutlich und die Weichheit im Bereich um 6550 Hz. Der TS7-Wert wird als charakteristischer Messwert des Härtegrades im Rahmen der Erfindung - im Rahmen der Lehre der Patentansprüche 1 und 3 - verwendet. Die dort aufgeführten prozentualen Angaben zu Unterschieden im Härtegrad beziehen sich also auf diesen Wert. Zweckmäßigerweise wird die Lautstärke bzw. der Härtegrad des Vergleichsvlieses gleich 100 % gesetzt und es wird in Bezug auf die Lautstärke bzw. den Härtegrad des erfindungsgemäßen Spinnvlieses die prozentuale Abweichung bestimmt. - Eine Beschreibung eines solchen Messverfahrens für den Härtegrad bzw. für den Weichheitsgrad findet sich im Übrigen in " Schloßer U., Bahners T., Schollmeyer E., Gutmann J.: Griffbeurteilung von Textilien mittels Schallanalyse, Melliand Textilberichte 1/2012, 43 bis 45 ".This sound frequency spectrum depends on the overall structure of the fleece surface and the amplitude of the volume depends, among other things, on the height of the fleece structure and on the degree of hardness of the fleece surface or the filament surfaces. Properties such as surface topology in the range below 1000 Hz become clear and softness in the range around 6550 Hz. The percentages given there for differences in the degree of hardness therefore refer to this value. Appropriately, the volume or the degree of hardness of the comparison fleece is set equal to 100% and it is related to the volume or the degree of hardness of the spunbonded nonwoven according to the invention as a percentage Deviation determined. - A description of such a measuring method for the degree of hardness or for the degree of softness can be found in " Schloßer U., Bahners T., Schollmeyer E., Gutmann J.: Evaluation of the feel of textiles using sound analysis, Melliand Textilreports 1/2012, 43 to 45 ".

Im Rahmen der Herstellung des erfindungsgemäßen Spinnvlieses werden die Filamente vorzugsweise auf einer Ablage, insbesondere auf einem Ablagesiebband, abgelegt. Es liegt im Rahmen der Erfindung, dass die Messung des Härtegrades an der Oberfläche des Spinnvlieses erfolgt, die von der Ablage bzw. vom Ablagesiebband abgewandt ist. Wenn die Vliesbahn bzw. das Spinnvlies mittels eines Kalanders mit Gravurwalze verfestigt wird, erfolgt die Messung des Härtegrades zweckmäßigerweise an der Oberfläche des Spinnvlieses, die der Gravurwalze zugewandt ist und vorzugsweise handelt es sich dabei um die Oberfläche des Spinnvlieses, die von der Ablage bzw. von dem Ablagesiebband abgewandt ist. Es liegt im Rahmen der Erfindung, dass das erfindungsgemäße Spinnvlies einerseits und das Vergleichsvlies andererseits unter gleichen Bedingungen hergestellt werden, insbesondere mit der gleichen Anlage bzw. Spunbond-Anlage hergestellt werden und auf der gleichen Ablage bzw. dem gleichen Ablagesiebband abgelegt werden. Weiterhin liegt es im Rahmen der Erfindung, dass das Spinnvlies zum einen und das Vergleichsvlies zum anderen auf gleiche Weise verfestigt werden, insbesondere mit dem gleichen Kalander oder dergleichen verfestigt werden und dass die Filamente des Spinnvlieses einerseits und des Vergleichsvlieses andererseits den gleichen Titer aufweisen.As part of the production of the spunbonded nonwoven according to the invention, the filaments are preferably deposited on a tray, in particular on a tray sieve belt. It is within the scope of the invention for the degree of hardness to be measured on the surface of the spunbonded nonwoven fabric that faces away from the deposit or from the deposit sieve belt. If the nonwoven web or spunbonded nonwoven is bonded using a calender with an engraved roller, the measurement of the degree of hardness is expediently carried out on the surface of the spunbonded nonwoven that faces the engraved roller and is preferably the surface of the spunbonded nonwoven that is exposed to the deposit or facing away from the deposit sieve belt. It is within the scope of the invention that the spunbonded nonwoven according to the invention on the one hand and the comparative nonwoven on the other hand are manufactured under the same conditions, in particular are manufactured with the same system or spunbond system and are deposited on the same tray or the same tray sieve belt. Furthermore, it is within the scope of the invention that the spunbonded nonwoven and the comparison nonwoven are bonded in the same way, in particular with the same calender or the like, and that the filaments of the spunbonded fabric on the one hand and the comparison nonwoven on the other hand have the same titer.

Für alle Ausführungsformen (erste und zweite Ausführungsform) gelten die folgenden Maßgaben:
In der Kernkomponente und/oder in der Mantelkomponente können Rohstoffmischungen eingesetzt werden, die bevorzugt jeweils kompatibel sind. Kern-Mantel-Konfiguration meint im Rahmen der Erfindung, dass die Mantelkomponente die Kernkomponente vollständig bzw. im Wesentlichen vollständig umgibt. - Die Endlosfilamente des Spinnvlieses haben für alle Ausführungsformen der Erfindung vorzugsweise einen Titer von 1,0 bis 2,5 denier und besonders bevorzugt einen Titer von 1,2 bis 2,2 denier.
The following stipulations apply to all embodiments (first and second embodiment):
Raw material mixtures which are preferably compatible in each case can be used in the core component and/or in the shell component. In the context of the invention, core-mantle configuration means that the mantle component completely or essentially completely surrounds the core component. - The continuous filaments of the spunbonded fabric preferably have a titer of 1.0 to 2.5 denier and particularly preferably a titre of 1.2 to 2.2 denier for all embodiments of the invention.

Es liegt im Rahmen der Erfindung, dass es sich bei der Kern-Mantel-Konfiguration um eine exzentrische Kern-Mantel-Konfiguration handeln kann. Vorzugsweise ergibt sich dann durch geeignete Wahl der Rohstoffe bzw. der Kunststoffkomponenten ein spiral-gekräuseltes Filament.It is within the scope of the invention that the core-shell configuration can be an eccentric core-shell configuration. A spiral-crimped filament then preferably results through a suitable choice of the raw materials or the plastic components.

Empfohlenermaßen weist im Rahmen der ersten und der zweiten Ausführungsform die Kernkomponente und/oder die Mantelkomponente zumindest 90 Gew.-%, vorzugsweise zumindest 95 Gew.-% und bevorzugt zumindest 96 Gew.-% zumindest einer Komponente aus der Gruppe "Polyolefin, Polyolefin-Copolymerisat, Mischung aus Polyolefin und Polyolefin-Copolymerisat" auf. Besonders bevorzugt ist dabei, dass die Kernkomponente und/oder die Mantelkomponente zumindest 90 Gew.-%, vorzugsweise zumindest 95 Gew.-%, und bevorzugt zumindest 96 Gew.-% zumindest einer Komponente aus der Gruppe "Polypropylen, Polypropylen-Copolymerisat, Mischung aus Polypropylen und Polypropylen-Copolymerisat" aufweist. - Zweckmäßigerweise besteht/bestehen die Kernkomponente und/oder die Mantelkomponente im Wesentlichen aus einem Polyolefin und/oder im Wesentlichen aus einem Polyolefin-Copolymerisat und/oder im Wesentlichen aus einer Mischung aus Polyolefin und Polyolefin-Copolymerisat. Nach sehr empfohlener Ausführungsvariante der ersten und zweiten Ausführungsform besteht/bestehen die Kernkomponente und/oder die Mantelkomponente im Wesentlichen aus einem Polypropylen und/oder im Wesentlichen aus einem Polypropylen-Copolymerisat und/oder im Wesentlichen aus einer Mischung aus einem Polypropylen und einem Polypropylen-Copolymerisat. Die Einschränkung "im Wesentlichen" in den vorstehend beschriebenen Ausführungsvarianten trägt dem Umstand Rechnung, dass in der Kernkomponente und/oder Mantelkomponente Additive, insbesondere das Gleitmittel und gegebenenfalls ein die Migrationsgeschwindigkeit des Gleitmittels reduzierender Zusatzstoff, enthalten ist/sind. Vorzugsweise beträgt der Anteil der Additive (Gleitmittel, gegebenenfalls die Migrationsgeschwindigkeit des Gleitmittels reduzierender Zusatzstoff sowie eventuelle andere Additive, wie beispielsweise Farbadditive) - bezogen auf das gesamte Filament - maximal 10 Gew.-%, zweckmäßigerweise maximal 8 Gew.-%, bevorzugt maximal 6 Gew.-% und sehr bevorzugt maximal 5 Gew.-%. - Das im Rahmen der Erfindung eingesetzte Polypropylen-Copolymerisat ist im Übrigen gemäß einer zweckmäßigen Ausgestaltung als Ethylen-Propylen-Copolymerisat ausgeführt. Empfohlenermaßen weist das eingesetzte Ethylen-Propylen-Copolymerisat einen Ethylen-Anteil von 1 bis 6 %, bevorzugt von 2 bis 6 % auf. Es empfiehlt sich, dass das bevorzugt eingesetzte Polypropylen-Copolymerisat eine Schmelzflussrate (MFI) von 19 bis 70 g/min, insbesondere von 20 bis 70 g/min, vorzugsweise von 25 bis 50 g/min aufweist. Es hat sich bewährt, dass das Polypropylen-Coplymerisat eine Molekulargewichtsverteilung bzw. Molmassenverteilung (Mw/Mn) von 2,5 bis 6, bevorzugt von 3 bis 5,5 und sehr bevorzugt von 3,5 bis 5 aufweist.In the context of the first and second embodiment, it is recommended that the core component and/or the shell component contain at least 90% by weight, preferably at least 95% by weight and preferably at least 96% by weight of at least one component from the group “polyolefin, polyolefin Copolymer, mixture of polyolefin and polyolefin copolymer". It is particularly preferred that the core component and/or the shell component contain at least 90% by weight, preferably at least 95% by weight and preferably at least 96% by weight of at least one component from the group “polypropylene, polypropylene copolymer, mixture made of polypropylene and polypropylene copolymer". The core component and/or the sheath component expediently consists/consist essentially of a polyolefin and/or essentially of a polyolefin copolymer and/or essentially of a mixture of polyolefin and polyolefin copolymer. According to the highly recommended variant of the first and second embodiment, there is/are the core component and/or the sheath component consists essentially of a polypropylene and/or essentially of a polypropylene copolymer and/or essentially of a mixture of a polypropylene and a polypropylene copolymer. The limitation "substantially" in the embodiment variants described above takes into account the fact that the core component and/or the shell component contains additives, in particular the lubricant and optionally an additive that reduces the migration speed of the lubricant. Preferably, the proportion of the additives (lubricant, optionally the additive that reduces the migration speed of the lubricant and any other additives, such as color additives) - based on the entire filament - is at most 10% by weight, expediently at most 8% by weight, preferably at most 6 wt% and very preferably a maximum of 5 wt%. The polypropylene copolymer used within the scope of the invention is, moreover, designed as an ethylene-propylene copolymer in accordance with an expedient embodiment. It is recommended that the ethylene-propylene copolymer used has an ethylene content of 1 to 6%, preferably 2 to 6%. It is advisable for the polypropylene copolymer preferably used to have a melt flow rate (MFI) of from 19 to 70 g/min, in particular from 20 to 70 g/min, preferably from 25 to 50 g/min. It has proven useful for the polypropylene copolymer to have a molecular weight distribution or molar mass distribution (M w /M n ) of from 2.5 to 6, preferably from 3 to 5.5 and very preferably from 3.5 to 5.

Eine empfohlene Ausführungsvariante der ersten und der zweiten Ausführungsform der Erfindung ist dadurch gekennzeichnet, dass die Kernkomponente im Wesentlichen aus einem Homo-Polyolefin, insbesondere im Wesentlichen aus einem Homo-Polypropylen besteht. Es hat sich bewährt, dass die Kernkomponente zumindest 80 Gew.-%, vorzugsweise zumindest 85 Gew.-%, bevorzugt zumindest 90 Gew.-% und besonders bevorzugt zumindest 95 Gew.-% des Homo-Polyolefins, insbesondere des Homo-Polypropylens aufweist. - Eine empfohlene Ausführungsform der ersten und der zweiten Ausführungsform zeichnet sich weiterhin dadurch aus, dass die Mantelkomponente im Wesentlichen aus einem Polyolefin-Copolymerisat, insbesondere im Wesentlichen aus einem Polypropylen-Copolymerisat und/oder im Wesentlichen aus einer Mischung eines Polyolefins bzw. Homo-Polyolefins mit einem Polyolefin-Copolymerisat, insbesondere im Wesentlichen aus einer Mischung eines Polypropylens bzw. Homo-Polypropylens mit einem Polypropylen-Copolymerisat besteht.A recommended embodiment variant of the first and the second embodiment of the invention is characterized in that the core component essentially consists of a homo-polyolefin, in particular essentially of a homo-polypropylene. It has been proven that the core component at least 80% by weight, preferably at least 85% by weight, preferably at least 90% by weight and particularly preferably at least 95% by weight of the homopolyolefin, in particular of the homopolypropylene. - A recommended embodiment of the first and the second embodiment is further characterized in that the sheath component consists essentially of a polyolefin copolymer, in particular essentially of a polypropylene copolymer and/or essentially of a mixture of a polyolefin or homo-polyolefin with a polyolefin copolymer, in particular essentially consisting of a mixture of a polypropylene or homo-polypropylene with a polypropylene copolymer.

Sowohl bei der ersten als auch bei der zweiten Ausführungsform der Erfindung werden vorzugsweise die nachfolgend spezifizierten Substanzen als Gleitmittel eingesetzt. Zweckmäßigerweise wird als Gleitmittel zumindest ein Fettsäurederivat und bevorzugt zumindest eine Substanz aus der Gruppe "Fettsäureester, Fettsäurealkohol, Fettsäureamid" verwendet. Eine empfohlene Ausführungsvariante der Erfindung zeichnet sich dadurch aus, dass als Gleitmittel zumindest ein Stearat - insbesondere Glycerin-Monostearat - und/oder ein Fettsäureamid wie z. B. Erucasäureamid und/oder ein Ölsäureamid eingesetzt. Beispielsweise ist auch der Einsatz von Distearylethylendiamid möglich. Als Gleitmittel-Masterbatch wird gemäß einer bewährten Ausführungsvariante das Erucasäureamid-Produkt SL05068PP der Firma Constab verwendet.Both in the first and in the second embodiment of the invention, the substances specified below are preferably used as lubricants. At least one fatty acid derivative and preferably at least one substance from the group “fatty acid ester, fatty acid alcohol, fatty acid amide” is expediently used as the lubricant. A recommended embodiment of the invention is characterized in that at least one stearate - in particular glycerol monostearate - and/or a fatty acid amide such as e.g. B. erucic acid amide and / or an oleic acid amide used. For example, the use of distearylethylenediamide is also possible. According to a proven embodiment, the erucic acid amide product SL05068PP from Constab is used as the lubricant masterbatch.

Eine Ausführungsvariante der ersten Ausführungsform der Erfindung ist dadurch gekennzeichnet, dass sowohl die Kernkomponente als auch die Mantelkomponente der Endlosfilamente des erfindungsgemäßen Spinnvlieses aus einem Homo-Polyolefin, bevorzugt aus einem Homo-Polypropylen bestehen bzw. im Wesentlichen bestehen. Bei dieser Ausführungsvariante der ersten Ausführungsform beträgt das Massenverhältnis zwischen der Kernkomponente und der Mantelkomponente zweckmäßigerweise 40:60 bis 90:10 und bevorzugt 67:33 bis 75:25. Empfohlenermaßen wird bei der ersten Ausführungsform das zumindest eine Gleitmittel lediglich der Kernkomponente beigemischt oder das Gleitmittel ist zu mindestens 95 Gew.-%, bevorzugt zu mindestens 98 Gew.-% in der Kernkomponente vorhanden. Es empfiehlt sich, dass bei dieser Ausführungsvariante in dem gesamten Endlosfilament ein Anteil bzw. ein mittlerer Anteil des Gleitmittels von 250 bis 5000 ppm und bevorzugt von 1000 bis 5000 ppm vorliegen. - Ein höherer Mantelanteil der Filamente mit Kern-Mantel-Konfiguration behindert die Migration des Gleitmittels aus dem Kern effektiver, andererseits muss für den Endeffekt der Gleitmittelanteil im Kern immer weiter steigen. Hier sind Grenzen des Kernanteiles nach unten z. B. durch die eingesetzten Extruder oder durch das Rückspeisen eines Rezyklates in den Kern gegeben.A variant of the first embodiment of the invention is characterized in that both the core component and the sheath component of the endless filaments of the spunbonded nonwoven according to the invention consist of a homo-polyolefin, preferably of a homo-polypropylene or essentially exist. In this variant of the first embodiment, the mass ratio between the core component and the shell component is expediently 40:60 to 90:10 and preferably 67:33 to 75:25. In the first embodiment, the at least one lubricant is recommended to be admixed only to the core component or the lubricant is present in the core component to an extent of at least 95% by weight, preferably at least 98% by weight. In this embodiment, it is recommended that a proportion or an average proportion of the lubricant of 250 to 5000 ppm and preferably of 1000 to 5000 ppm be present in the entire continuous filament. - A higher proportion of the sheath of the filaments with a core-sheath configuration impedes the migration of the lubricant from the core more effectively, on the other hand, the proportion of the lubricant in the core must continue to increase for the end effect. Here are the lower limits of the core portion z. B. given by the extruder used or by feeding back a recyclate in the core.

Eine weitere Ausführungsvariante der ersten Ausführungsform der Erfindung ist dadurch gekennzeichnet, dass die Kernkomponente aus einem Homo-Polyolefin, insbesondere aus einem Homo-Polypropylen besteht bzw. im Wesentlichen besteht und dass die Mantelkomponente aus einer Mischung aus einem Homo-Polyolefin, insbesondere einem Homo-Polypropylen und aus einem Polyolefin-Copolymerisat, insbesondere einem Polypropylen-Copolymerisat besteht bzw. im Wesentlichen besteht. Gemäß einer zweckmäßigen Ausgestaltung ist dabei das Homo-Polyolefin, insbesondere das Homo-Polypropylen in der Kernkomponente identisch mit dem Homo-Polyolefin bzw. Homo-Polypropylen in der Mantelkomponente. Vorzugsweise beträgt der Anteil des Homo-Polyolefins, insbesondere des Homo-Polypropylens in der Mantelkomponente 40 bis 90 Gew.-%, vorzugsweise 70 bis 90 Gew.-% und bevorzugt 75 bis 85 Gew.-% (bezogen auf die Mantelkomponente). Zweckmäßigerweise beträgt der Anteil des Polyolefin- Copolymerisats bzw. des Polypropylen-Copolymerisats in der Mantelkomponente 50 bis 10 Gew.-%, vorzugsweise 30 bis 10 Gew.-% und bevorzugt 25 bis 15 Gew.-% (bezogen auf die Mantelkomponente). Empfohlenermaßen weist das dabei eingesetzte Polyolefin-Copolymerisat, insbesondere das Polypropylen-Copolymerisat eine Schmelzflussrate (MFI) von 5 bis 30 g/10 min, vorzugsweise von 5 bis 25 g/10 min auf. Die Schmelzflussrate (MFI) wird im Rahmen der Erfindung insbesondere nach ISO 1133 gemessen und zwar für Polypropylen und Polypropylen-Copolymerisat bei 230 °C und 2,16 kg. Das Polyolefin-Copolymerisats bzw. das Polypropylen-Copolymerisats weist vorzugsweise einen Ethylen-Anteil von 2 bis 20 %, bevorzugt von 4 bis 20 % auf. Das Polyolefin-Copolymerisat bzw. das Polypropylen-Copolymerisat dieser Ausführungsvariante zeichnet sich bevorzugt bezüglich der Kohlenstoffatome durch einen mittleren C2-Anteil im Bereich von 2 bis 6 % aus. Vorzugsweise werden als Polypropylen-Copolymerisat Exxon Vistamaxx 3588 und/oder Exxon Vistamaxx 6202 oder ein Polypropylen mit ähnlichen Eigenschaften eingesetzt. Das Polypropylen-Copolymerisat wird entsprechend den obigen Angaben mit dem Homo-Polyolefin bzw. Homo-Polypropylen für die Mantelkomponente gemischt. Bevorzugte Angaben für das Homo-Polypropylen sind weiter unten noch aufgeführt.A further variant of the first embodiment of the invention is characterized in that the core component consists or essentially consists of a homo-polyolefin, in particular of a homo-polypropylene, and that the sheath component consists of a mixture of a homo-polyolefin, in particular of a homo- Polypropylene and a polyolefin copolymer, in particular a polypropylene copolymer consists or essentially consists. According to an expedient embodiment, the homo-polyolefin, in particular the homo-polypropylene in the core component, is identical to the homo-polyolefin or homo-polypropylene in the sheath component. The proportion of the homopolyolefin, in particular the homopolypropylene, in the sheath component is preferably 40 to 90% by weight, preferably 70 to 90% by weight and preferably 75 to 90% by weight 85% by weight (relative to the sheath component). The proportion of polyolefin copolymer or polypropylene copolymer in the shell component is expediently 50 to 10% by weight, preferably 30 to 10% by weight and preferably 25 to 15% by weight (based on the shell component). The polyolefin copolymer used, in particular the polypropylene copolymer, is recommended to have a melt flow rate (MFI) of from 5 to 30 g/10 min, preferably from 5 to 25 g/10 min. In the context of the invention, the melt flow rate (MFI) is measured in particular according to ISO 1133, specifically for polypropylene and polypropylene copolymer at 230° C. and 2.16 kg. The polyolefin copolymer or the polypropylene copolymer preferably has an ethylene content of 2 to 20%, preferably 4 to 20%. With regard to the carbon atoms, the polyolefin copolymer or the polypropylene copolymer of this embodiment is preferably characterized by an average C2 content in the range from 2 to 6%. Exxon Vistamaxx 3588 and/or Exxon Vistamaxx 6202 or a polypropylene with similar properties are preferably used as the polypropylene copolymer. The polypropylene copolymer is mixed with the homo-polyolefin or homo-polypropylene for the sheath component as described above. Preferred specifications for the homo-polypropylene are listed further below.

Im Zuge der Herstellung des erfindungsgemäßen Spinnvlieses kann im Hinblick auf den eingesetzten thermoplastischen Kunststoff mit einer Recyclat-Rückführung gearbeitet werden. Dabei wird zweckmäßigerweise - insbesondere bei der ersten Ausführungsform der Erfindung - der Recyclat-Strom ausschließlich oder vornehmlich für die Kernkomponente eingesetzt. Ein mit Gleitmittel beladenes zurückgeführtes Recyclat wird dann nur in die Kernkomponente zurückgeführt und es wird gewährleistet, dass die Mantelkomponente gleitmittelfrei bzw. im Wesentlichen gleitmittelfrei bleibt. - Bei einer Recyclat-Rückführung mit Copolymerisat-Anteilen im Recyclat-Strom wird dann Copolymerisat auch in die Kernkomponente überführt. Nichtsdestoweniger bleibt der Mantel gleitmittelfrei bzw. im Wesentlichen gleitmittelfrei.In the course of the production of the spunbonded nonwoven according to the invention, recyclate recycling can be used with regard to the thermoplastic material used. In this case, the recyclate stream is expediently used exclusively or primarily for the core component, particularly in the first embodiment of the invention. A lubricant-loaded recycled recyclate is then only fed back into the core component and the sheath component is guaranteed to be lubricant-free or essentially remains free of lubricants. - In the case of recyclate recycling with copolymer shares in the recyclate stream, the copolymer is then also converted into the core component. Nevertheless, the sheath remains lubricated or substantially lubricated.

Bei der ersten Ausführungsform der Erfindung ist das zumindest eine Gleitmittel ausschließlich oder zum größten Teil in der Kernkomponente vorhanden. Nachfolgend wird die zweite Ausführungsform der Erfindung näher erläutert. Gemäß der zweiten Ausführungsvariante ist Gleitmittel in der Mantelkomponente vorhanden. Dabei kann nach einer Ausgestaltung das Gleitmittel lediglich in der Mantelkomponente enthalten sein. Prinzipiell kann bei dieser zweiten Ausführungsform Gleitmittel aber auch in der Kernkomponente vorhanden sein.In the first embodiment of the invention, the at least one lubricant is present exclusively or for the most part in the core component. The second embodiment of the invention is explained in more detail below. According to the second variant, lubricant is present in the jacket component. According to one embodiment, the lubricant can only be contained in the jacket component. In principle, however, lubricant can also be present in the core component in this second embodiment.

Bei der zweiten Ausführungsform der Erfindung kann die Kernkomponente aus einem Homo-Polyolefin und insbesondere aus einem Homo-Polypropylen bestehen bzw. im Wesentlichen bestehen. Nach einer anderen Ausführungsvariante weist die Kernkomponente bei dieser zweiten Ausführungsform zumindest 75 Gew.-%, vorzugsweise zumindest 80 Gew.-%, bevorzugt zumindest 85 Gew.-% und besonders bevorzugt zumindest 90 Gew.-% des Homo-Polyolefins, insbesondere des Homo-Polypropylens auf.In the second embodiment of the invention, the core component can consist or essentially consist of a homopolyolefin and in particular of a homopolypropylene. According to another embodiment variant, the core component in this second embodiment has at least 75% by weight, preferably at least 80% by weight, preferably at least 85% by weight and particularly preferably at least 90% by weight of the homo-polyolefin, in particular the homo -polypropylene.

Eine empfohlene Ausführungsvariante der zweiten Ausführungsform der Erfindung ist dadurch gekennzeichnet, dass die Mantelkomponente bzw. die das Gleitmittel enthaltende Mantelkomponente aus einem Polyolefin-Copolymerisat, insbesondere aus einem Polypropylen-Copolymerisat besteht bzw. im Wesentlichen besteht. Dabei ist zu berücksichtigen, dass in der Mantelkomponente das Gleitmittel enthalten sein kann bzw. enthalten ist und (zusätzlich) der die Migrationsgeschwindigkeit des Gleitmittels reduzierende Zusatzstoff enthalten ist. Bei der zweiten Ausführungsform wird bevorzugt ein Polyolefin-Copolymerisat bzw. ein Polypropylen-Copolymerisat für die Mantelkomponente gewählt, das eine Schmelzflussrate (MFI) von 20 bis 70 g/10 min, vorzugsweise von 25 bis 50 g/10 min aufweist. Zweckmäßigerweise wird ein Ethylen-Propylen-Copolymerisat mit einem Ethylen-Anteil von 1 bis 6 %, bevorzugt von 2 bis 6 % eingesetzt. Empfohlenermaßen zeichnet sich das für die Mantelkomponente gewählte Polyolefin-Copolymerisat bzw. Polypropylen-Copolymerisat durch eine enge Molmassenverteilung aus und vorzugweise durch eine Molekulargewichtsverteilung bzw. Molmassenverteilung (Mw/Mn) von 2,5 bis 6, bevorzugt von 3 bis 5,5 und sehr bevorzugt von 3,5 bis 5. Die Molekulargewichtsverteilung Mw/Mn wird im Rahmen der Erfindung nach der Gel-Permeations-Chromatographie (GPC) und zwar entsprechend ISO 16014-1:2003, ISO 16014-2:2003, ISO 16014-4:2003 und ASTM D 6474-12. - Empfohlenermaßen wird ein ein Nukleierungsmittel aufweisendes oder sonst wie für eine hohe Kristallisationsgeschwindigkeit modifiziertes Random-Polypropylen-Copolymerisat eingesetzt, wie beispielsweise Borealis RJ377MO oder Basell Moplen RP24R. Dieses letztgenannte Random-Polypropylen-Copolymerisat weist z. B. eine Schmelzflussrate von 30 g/10 min und eine Vicat-Temperatur von 120 °C (ISO 306/A50, 10 N) auf.A recommended variant of the second embodiment of the invention is characterized in that the jacket component or the jacket component containing the lubricant consists or essentially consists of a polyolefin copolymer, in particular of a polypropylene copolymer. It should be noted that the lubricant may be or is contained in the sheath component and (additionally) the Additive that reduces the migration speed of the lubricant is included. In the second embodiment, a polyolefin copolymer or a polypropylene copolymer is preferably selected for the sheath component which has a melt flow rate (MFI) of 20 to 70 g/10 min, preferably 25 to 50 g/10 min. An ethylene-propylene copolymer with an ethylene content of 1 to 6%, preferably 2 to 6%, is expediently used. The polyolefin copolymer or polypropylene copolymer selected for the sheath component is recommended to have a narrow molar mass distribution and preferably a molecular weight distribution or molar mass distribution (M w /M n ) of from 2.5 to 6, preferably from 3 to 5.5 and very preferably from 3.5 to 5. The molecular weight distribution M w /M n is determined in the context of the invention by gel permeation chromatography (GPC) according to ISO 16014-1:2003, ISO 16014-2:2003, ISO 16014-4:2003 and ASTM D 6474-12. - It is recommended to use a random polypropylene copolymer containing a nucleating agent or otherwise modified for a high crystallization rate, such as Borealis RJ377MO or Basell Moplen RP24R. This latter random polypropylene copolymer has z. B. a melt flow rate of 30 g/10 min and a Vicat temperature of 120 °C (ISO 306/A50, 10 N).

Im Rahmen der zweiten Ausführungsform der Erfindung wird in der Mantelkomponente der Endlosfilamente zumindest ein die Migrationsgeschwindigkeit des Gleitmittels reduzierender Zusatzstoff eingesetzt. Bei diesem Zusatzstoff handelt es sich um zumindest ein Nukleierungsmittel und/oder um zumindest einen Füllstoff. Nach besonders bevorzugter Ausführungsform der Erfindung wird zumindest ein Nukleierungsmittel eingesetzt. Zweckmäßigerweise ist das Nukleierungsmittel mit einem Anteil von 500 bis 2500 ppm - bezogen auf das gesamte Filament - in den Filamenten enthalten. Dabei hat es sich besonders bewährt ein Nukleierungsmittel aus der Gruppe "Aromatische Carbonsäure, Salz einer aromatischen Carbonsäure, Sorbit-Derivat, Talkum, Kaolin, Chinacridon, Pimelinsäure-Salz, Suberinsäure-Salz, Dicyclohexyl-naphthalendicarboxamid, Organophosphat, Triphenyl-Verbindung, Triphenyldithiazin" verwendet. Als Nukleierungsmittel kann ein Sorbitol wie das Dibenzyl-Sorbitol (DBS) bzw. 1,3:2,4-bis-(p-methylbenzylidene) Sorbitol (MDBS) bzw. das 1,3:2,4-bis(3,4-Dimethylbenzylidene) Sorbitol (DMDBS) eingesetzt werden. Ein bevorzugtes Nukleierungsmittel ist ein Salz einer aromatischen Carbonsäure, insbesondere ein Alkalisalz der Benzoesäure und beispielsweise Natriumbenzoat.In the context of the second embodiment of the invention, at least one additive that reduces the migration speed of the lubricant is used in the sheath component of the endless filaments. This additive is at least one nucleating agent and/or at least one filler. According to a particularly preferred embodiment of the invention, at least one nucleating agent is used. The nucleating agent is expediently present in a proportion of 500 to 2500 ppm - based on the entire filament - included in the filaments. A nucleating agent from the group "aromatic carboxylic acid, salt of an aromatic carboxylic acid, sorbitol derivative, talc, kaolin, quinacridone, pimelic acid salt, suberic acid salt, dicyclohexyl-naphthalenedicarboxamide, organophosphate, triphenyl compound, triphenyldithiazine" has proven particularly useful. used. A sorbitol such as dibenzyl sorbitol (DBS) or 1,3:2,4-bis-(p-methylbenzylidene) sorbitol (MDBS) or 1,3:2,4-bis(3,4 -dimethylbenzylidene) sorbitol (DMDBS) can be used. A preferred nucleating agent is a salt of an aromatic carboxylic acid, especially an alkali metal salt of benzoic acid, such as sodium benzoate.

Durch die Nukleierung der Mantelkomponente, insbesondere des Polyolefin-Copolymerisates bzw. des Polypropylen-Copolymerisates der Mantelkomponente mit zumindest einem Nukleierungsmittel wird die Migrationsgeschwindigkeit des Gleitmittels im Mantel gesenkt und somit im Hinblick auf die Lösung des technischen Problems der problemlose Einsatz von Gleitmitteln in der Mantelkomponente ermöglicht. - Auch zumindest ein Füllstoff in der Mantelkomponente kann die Migrationsgeschwindigkeit des Gleitmittels reduzieren. Dabei wird als Füllstoff vorzugsweise zumindest ein Metallsalz und besonders bevorzugt zumindest eine Substanz aus der Gruppe "Titandioxid", Calciumcarbonat, Talkum" eingesetzt.By nucleating the sheath component, in particular the polyolefin copolymer or the polypropylene copolymer of the sheath component, with at least one nucleating agent, the migration rate of the lubricant in the sheath is reduced and thus, with regard to solving the technical problem, the problem-free use of lubricants in the sheath component is made possible . - At least one filler in the shell component can also reduce the migration speed of the lubricant. At least one metal salt and particularly preferably at least one substance from the group “titanium dioxide”, calcium carbonate, talc” is preferably used as the filler.

Im Rahmen der zweiten Ausführungsform der Erfindung können als Polypropylen-Copolymerisate für die Mantelkomponente zweckmäßigerweise Random-Polypropylen-Copolymerisate mit enger Molmassenverteilung eingesetzt werden. Hier kommen insbesondere auch Polypropylen-Copolymerisate in Frage, die aus dem Spritzguss-Sektor bekannt sind und oft Antistatika und Nukleierungsmittel enthalten. Solche Antistatika (z. B. Fettsäureester wie beispielsweise Glycerin Monostearat oder auch ethoxylierte Fettamine bzw. Alkylamine) können oftmals als Gleitmittel bereits ausreichen und würden unter die erfindungsgemäß beanspruchte Gleitmittelmenge fallen. - Optional kann in die Kernkomponente und/oder Mantelkomponente zusätzliches Gleitmittel zudosiert werden, wenn der bereits vorhandene Anteil aus dem Copolymerisat nicht ausreicht. Das Copolymerisat der Mantelkomponente kann mit Homo-Polypropylen abgemischt werden. Es liegt im Rahmen der Erfindung, dass die Viskosität dieser Mischungen geringer als die Viskosität eines Homo- Polypropylens. Die nachfolgenden Ausführungen beziehen sich wieder sowohl auf die erste Ausführungsform als auch auf die zweite Ausführungsform der Erfindung: Wenn bei der ersten oder bei der zweiten Ausführungsform der Erfindung ein Homo-Polypropylen eingesetzt wird, so handelt es sich dabei vorzugsweise um ein Homo-Polypropylen mit den folgenden Eigenschaften. Die Schmelzflussrate (MFI) beträgt zweckmäßigerweise 17 bis 37 g/10 min, bevorzugt 19 bis 35 g/10 min. Das Homo-Polypropylen weist empfohlenermaßen eine enge Molmassenverteilung im Bereich von 3,6 bis 5,2, insbesondere im Bereich von 3,8 bis 5 auf. Die Messung der Molmassenverteilung wurde weiter oben bereits spezifiziert. Nach bevorzugter Ausführungsform der Erfindung wird als Homo-Polypropylen zumindest eines der folgenden Produkte eingesetzt: Borealis HF420FB (MFI19), HG455FB (MFI25), HG475FB (MFI25), Basell Moplen HP561R (MFI25) und Exxon 3155 PP (MFI35).In the context of the second embodiment of the invention, random polypropylene copolymers with a narrow molar mass distribution can advantageously be used as polypropylene copolymers for the sheath component. Polypropylene copolymers, which are known from the injection molding sector and often contain antistatic agents and contain nucleating agents. Such antistatic agents (eg fatty acid esters such as glycerol monostearate or ethoxylated fatty amines or alkylamines) can often already be sufficient as lubricants and would fall under the amount of lubricant claimed according to the invention. - Optionally, additional lubricant can be metered into the core component and/or shell component if the proportion already present from the copolymer is not sufficient. The copolymer of the sheath component can be blended with homo-polypropylene. It is within the scope of the invention that the viscosity of these mixtures is lower than the viscosity of a homo-polypropylene. The following explanations again relate both to the first embodiment and to the second embodiment of the invention: If a homo-polypropylene is used in the first or in the second embodiment of the invention, it is preferably a homo-polypropylene with the following properties. The melt flow rate (MFI) is expediently 17 to 37 g/10 min, preferably 19 to 35 g/10 min. The homo-polypropylene is recommended to have a narrow molar mass distribution in the range from 3.6 to 5.2, in particular in the range from 3 8 to 5 on. The measurement of the molar mass distribution has already been specified above. According to a preferred embodiment of the invention, at least one of the following products is used as homo-polypropylene: Borealis HF420FB (MFI19), HG455FB (MFI25), HG475FB (MFI25), Basell Moplen HP561R (MFI25) and Exxon 3155 PP (MFI35).

Sowohl bei der ersten als auch bei der zweiten Ausführungsform wird nach ganz besonders empfohlener Ausführungsform der Erfindung sowohl für die Kernkomponente als auch für die Mantelkomponente Homo-Polypropylen und/oder Polypropylen-Copolymerisat, insbesondere Ethylen-Propylen-Copolymerisat und/oder Mischungen davon eingesetzt. Die PP-Materialien haben sich im Rahmen der Erfindung ganz besonders bewährt.In the first as well as in the second embodiment, according to a particularly recommended embodiment of the invention, homo-polypropylene and/or polypropylene copolymer, in particular ethylene-propylene copolymer, is used for both the core component and the shell component and/or mixtures thereof are used. The PP materials have proven particularly useful in the context of the invention.

Es liegt im Rahmen der Erfindung, dass sowohl bei der ersten Ausführungsform als auch bei der zweiten Ausführungsform ein erfindungsgemäßes Spinnvlies mit einem Spunbond-Verfahren hergestellt wird. Dabei werden zunächst Mehrkomponentenfilamente bzw. Bikomponentenfilamente mit Kern-Mantel-Konfiguration als Endlosfilamente mittels zumindest einer Spinnerette ersponnen und anschließend werden diese Endlosfilamente in zumindest einer Kühleinrichtung gekühlt und daraufhin durchlaufen die Endlosfilamente eine Verstreckeinrichtung zum Verstrecken der Filamente. Die verstreckten Filamente werden auf einer Ablage, insbesondere auf einem Ablagesiebband als Spinnvlies abgelegt.It is within the scope of the invention that, both in the first embodiment and in the second embodiment, a spunbonded nonwoven according to the invention is produced using a spunbond process. First, multi-component filaments or bi-component filaments with a core-sheath configuration are spun as continuous filaments using at least one spinneret and then these continuous filaments are cooled in at least one cooling device and the continuous filaments then pass through a stretching device to stretch the filaments. The stretched filaments are laid down as a spunbonded nonwoven on a deposit, in particular on a sieve belt.

Eine besonders empfohlene Ausführungsform der Erfindung ist in diesem Zusammenhang dadurch gekennzeichnet, dass das Aggregat aus der Kühleinrichtung und der Verstreckeinrichtung als geschlossenes Aggregat ausgebildet ist, wobei außer der Zufuhr der Kühlluft in der Kühleinrichtung keine weitere Luftzufuhr in das geschlossene Aggregat stattfindet. Diese geschlossene Ausführung hat sich im Rahmen der Erfindung bei der Herstellung eines erfindungsgemäßen Spinnvlieses besonders bewährt.A particularly recommended embodiment of the invention is characterized in this context in that the unit consisting of the cooling device and the stretching device is designed as a closed unit, with no further air being supplied to the closed unit apart from the supply of cooling air in the cooling device. This closed design has proven particularly useful within the scope of the invention when producing a spunbonded nonwoven according to the invention.

Zweckmäßigerweise ist zwischen der Verstreckeinrichtung und der Ablage bzw. dem Ablagesiebband zumindest ein Diffusor angeordnet. Die aus der Verstreckeinrichtung austretenden Endlosfilamente werden durch diesen Diffusor hindurchgeführt und dann auf der Ablage bzw. auf dem Ablagesiebband abgelegt. Eine empfohlene Ausführungsvariante der Erfindung zeichnet sich dadurch aus, dass zwischen der Verstreckeinrichtung und der Ablage zumindest zwei Diffusoren, bevorzugt zwei Diffusoren in Filamentströmungsrichtung hintereinander angeordnet sind. Zweckmäßigerweise ist zwischen den beiden Diffusoren zumindest ein Sekundärlufteintrittsspalt für den Eintritt von Umgebungsluft vorhanden. Die Ausführungsform mit dem zumindest einen Diffusor bzw. mit den zumindest zwei Diffusoren und dem Sekundärlufteintrittsspalt hat sich ebenfalls im Hinblick auf die Herstellung der erfindungsgemäßen Spinnvliese besonders bewährt.At least one diffuser is expediently arranged between the stretching device and the deposit or the deposit sieve belt. The continuous filaments emerging from the stretching device are guided through this diffuser and then deposited on the tray or on the tray sieve belt. A recommended embodiment variant of the invention is characterized in that at least two diffusers, preferably two diffusers, are arranged one behind the other in the filament flow direction between the stretching device and the deposit are arranged. At least one secondary air inlet gap for the entry of ambient air is expediently present between the two diffusers. The embodiment with the at least one diffuser or with the at least two diffusers and the secondary air inlet gap has also proven itself particularly with regard to the production of the spunbonded nonwovens according to the invention.

Nach der Ablage der Filamente zum Spinnvlies wird dieses Spinnvlies verfestigt, nach bevorzugter Ausführungsform vorverfestigt und anschließend endverfestigt. Die Vorverfestigung bzw. Verfestigung des Spinnvlieses erfolgt zweckmäßigerweise mit zumindest einem Kalander. Dabei werden bevorzugt zwei miteinander wechselwirkende Kalanderwalzen eingesetzt. Nach einer empfohlenen Ausführungsform ist zumindest eine dieser Kalanderwalzen beheizt ausgeführt. Die Prägefläche des Kalanders beträgt zweckmäßigerweise 8 bis 20 %, beispielsweise 12 %. - Wenn im Rahmen der Erfindung der Weichheitsgrad bei einem erfindungsgemäßen Spinnvlies einerseits und bei einem Vergleichsvlies andererseits ermittelt wird, erfolgt bei beiden Vliesen die gleiche Vorverfestigung bzw. Verfestigung des Spinnvlieses.After the filaments have been deposited to form the spunbonded nonwoven, this spunbonded nonwoven is bonded, prebonded according to a preferred embodiment and then finally bonded. The pre-consolidation or consolidation of the spunbonded fabric is expediently carried out with at least one calender. In this case, two interacting calender rolls are preferably used. According to a recommended embodiment, at least one of these calender rolls is designed to be heated. The embossing area of the calender is expediently 8 to 20%, for example 12%. - If, within the scope of the invention, the degree of softness is determined for a spunbonded nonwoven according to the invention on the one hand and for a comparison nonwoven on the other hand, the same preconsolidation or strengthening of the spunbonded nonwoven takes place in both nonwovens.

Der Erfindung liegt die Erkenntnis zugrunde, dass die erfindungsgemäßen Spinnvliese einen optimalen glatten weichen Griff und nichtsdestoweniger eine hohe Festigkeit aufweisen. Es resultieren weiche Spinnvliese mit guter Zugfestigkeit. Das gilt vor allem für den bevorzugten Einsatz der Polypropylene bzw. Polypropylen-Copolymerisate für die Kernkomponente und/oder Mantelkomponente der Endlosfilamente des erfindungsgemäßen Spinnvlieses. Wesentlich ist weiterhin, dass gegenüber bekannten Lösungen das Ausdampfen von Gleitmittel aus den Filamenten effektiv reduziert werden kann und dadurch werden unerwünschte Abscheidungen in der Anlage vermieden. Somit kann die Sauberkeit der Anlage gegenüber den bekannten Maßnahmen erhöht werden und dadurch auch die Effizienz und Verfügbarkeit der Anlage gesteigert werden. Insbesondere kann die Anlagenlaufzeit erhöht werden. Der Erfindung liegt insoweit auch die Erkenntnis zugrunde, dass ein inhomogenes Einbringen des Gleitmittels in die Filamente zur Lösung des erfindungsgemäßen technischen Problems effektiv beiträgt. - Wie mit den nachfolgenden Ausführungsbeispielen noch belegt wird, kann im Vergleich zu den aus der Praxis bekannten Maßnahmen bei der Erzeugung der erfindungsgemäßen Spinnvliese und insbesondere bei der Verfestigung der Spinnvliese bei geringerem Energieaufwand - insbesondere bei geringeren Kalandertemperaturen - eine vergleichbare Festigkeit der Vliese erreicht werden. Aufgrund der erfindungsgemäß erreichten hohen Festigkeit der Spinnvliese kann bei der Herstellung der Endlosfilamente auch Material eingespart werden, insbesondere im Vergleich zu anderen Rohstoffkombinationen, wie beispielsweise PP/PE. Weiterhin kann bei der Herstellung der erfindungsgemäßen Spinnvliese eine einfache Recyclierung der Komponenten in den Herstellungsprozess erfolgen. Aufgrund der Kompatibilität der verwendeten Rohstoffe ist eine problemlose Rückführung von Recyclat mit hohen Anteilen möglich. Auch dadurch ergibt sich ein erheblicher Kostenvorteil gegenüber z. B. einer PP/PE-Kombination. Im Ergebnis resultieren weiche, glatte und zugfeste Spinnvliese, die mit verhältnismäßig geringen Kosten realisiert werden können.The invention is based on the finding that the spunbonded nonwovens according to the invention have an optimal, smooth, soft feel and nevertheless have high strength. This results in soft spunbonded nonwovens with good tensile strength. This applies above all to the preferred use of polypropylenes or polypropylene copolymers for the core component and/or sheath component of the continuous filaments of the spunbonded nonwoven according to the invention. It is also important that, compared to known solutions, the evaporation of lubricant from the filaments can be effectively reduced, thereby avoiding undesirable deposits in the system. Consequently the cleanliness of the system can be increased compared to the known measures and thus the efficiency and availability of the system can also be increased. In particular, the system running time can be increased. In this respect, the invention is also based on the knowledge that inhomogeneous introduction of the lubricant into the filaments contributes effectively to solving the technical problem according to the invention. - As will be demonstrated with the following exemplary embodiments, a comparable strength of the nonwovens can be achieved in comparison to the measures known from practice when producing the spunbonded nonwovens according to the invention and in particular when solidifying the spunbonded nonwovens with less energy expenditure - especially at lower calender temperatures. Due to the high strength of the spunbonded webs achieved according to the invention, material can also be saved in the production of the endless filaments, in particular in comparison to other raw material combinations, such as PP/PE. Furthermore, when producing the spunbonded nonwovens according to the invention, the components can be easily recycled in the production process. Due to the compatibility of the raw materials used, a high proportion of recyclate can be returned without any problems. This also results in a significant cost advantage compared to z. B. a PP / PE combination. The result is soft, smooth and strong spunbonded nonwovens that can be produced at relatively low cost.

Es wird die Erfindung anhand von Ausführungsbeispielen näher erläutert:
Nachfolgend wurden Spinnvliese aus Bikomponentenfilamenten mit Kern-Mantel-Konfiguration nach dem oben beschriebenen Spunbond-Verfahren hergestellt. Als Material für die beiden Komponenten (Kern und Mantel) kamen dabei Homo-Polypropylene und Polypropylen-Copolymerisate zum Einsatz. Das auf dem Ablagesiebband abgelegte Spinnvlies wurde bei allen Ausführungsbeispielen mit einem Kalander verfestigt, der eine Gravur U5714A aufwies (12 % Prägefläche, runde Gravurpunkte, 25 Fig/cm2). Die Feinheit der Filamente aller Beispiele betrug ca. 1,6 bis 1,8 denier. Alle Muster wurden mit einem Spinnsystem bei gleichen bzw. ähnlichen Durchsätzen produziert.
The invention is explained in more detail using exemplary embodiments:
Subsequently, spunbonded webs were produced from bicomponent filaments with a core-sheath configuration by the spunbond process described above. Homo-polypropylene and polypropylene copolymers were used as the material for the two components (core and jacket). The In all exemplary embodiments, the spunbonded nonwoven laid down on the sieve belt was consolidated using a calender which had an engraving U5714A (12% embossed area, round engraved points, 25 figures/cm 2 ). The fineness of the filaments of all examples was about 1.6 to 1.8 denier. All samples were produced with a spinning system at the same or similar throughputs.

Vergleichsbeispiel:Comparative example:

Es wurden Monokomponentenfilamente aus Homo-Polypropylen (Borealis HG455FB mit MFI25) hergestellt. Die Kalandrierung erfolgte bei einer Oberflächentemperatur der Kalanderwalzen von ca. 148 °C. Das erzeugte Spinnvlies hat eine gute Festigkeit, im Vergleich zu den nachfolgenden Ausführungsbeispielen aber keinen zufriedenstellenden weichen Griff.Monocomponent filaments were made from homo-polypropylene (Borealis HG455FB with MFI25). The calendering took place at a surface temperature of the calender rolls of approx. 148.degree. The spunbonded fabric produced has good strength, but does not have a satisfactory soft hand compared to the following exemplary embodiments.

Ausführungsbeispiel 1:Example 1:

Ein Spinnvlies aus Bikomponentenfilamenten wurde gemäß der ersten Ausführungsform der Erfindung erzeugt, wobei sowohl die Kernkomponente als auch die Mantelkomponente aus Homo-Polypropylen (Borealis HG455FB mit MFI25) mit 8 % eines Polypropylens der Firma Idemitsu "L-MODU X901S" als weichem Zusatz-Polypropylen bestanden. Das Massenverhältnis zwischen der Kernkomponente und der Mantelkomponente betrug 70:30. Ausschließlich im Kern war das Gleitmittel SL05068PP der Firma Constab auf Basis von Erucasäureamid enthalten. Der Gehalt des Gleitmittels betrug in Bezug auf das gesamte Filament 2000 ppm. Das Spinnvlies wurde bei einer Oberflächentemperatur der Kalanderwalzen von etwa 142 °C kalandriert. Das aus diesen Endlosfilamenten erzeugte Spinnvlies wies nach einem Tag Ablagerzeit einen glatten weichen Griff auf.A spunbonded web of bicomponent filaments was produced according to the first embodiment of the invention, with both the core component and the sheath component made of homo-polypropylene (Borealis HG455FB with MFI25) with 8% of a polypropylene from Idemitsu "L-MODU X901S" as a soft additive polypropylene passed. The mass ratio between the core component and the sheath component was 70:30. Only the core contained the lubricant SL05068PP from Constab based on erucic acid amide. The content of the lubricant was 2000 ppm with respect to the whole filament. The spunbonded web was calendered at a surface temperature of the calender rolls of about 142°C. The spunbonded fabric produced from these continuous filaments had a smooth, soft handle after one day's storage time.

Ausführungsbeispiel 2:Example 2:

Auch das Spinnvlies dieses Ausführungsbeispiels wurde gemäß der ersten Ausführungsform der Erfindung erzeugt. Die Bikomponentenfilamente dieses Spinnvlieses enthielten sowohl in der Kernkomponente als auch in der Mantelkomponente Homo-Polypropylen (Basell Moplen HP561R mit MFI25) mit 10 Gew.-% eines weichen Zusatz-Co-Polypropylens (Exxon Vistamaxx VM 6202). Das Massenverhältnis zwischen der Kernkomponente und der Mantelkomponente betrug auch hier 70:30. Als Gleitmittel wurde wiederum SL05068PP der Firma Constab auf Basis von Erucasäureamid eingesetzt. Dieses Gleitmittel war nur im Kern enthalten und der Gehalt an dem Gleitmittel betrug 2500 ppm, bezogen auf das gesamte Filament. Die Kalandrierung des Spinnvlieses erfolgte bei einer Oberflächentemperatur der Kalanderwalzen von 132 °C. Der Griff des erzeugten Filamentes musste anfangs als stumpf eingestuft werden, nach einem Tag Ablagerzeit stellte sich ein glatter weicher Griff ein. Dies zeigt die verzögerte Migration des Gleitmittels.The spunbonded fabric of this embodiment was also produced according to the first embodiment of the invention. The bicomponent filaments of this spunbonded web contained homo-polypropylene (Basell Moplen HP561R with MFI25) with 10% by weight of a soft additive co-polypropylene (Exxon Vistamaxx VM 6202) both in the core component and in the sheath component. The mass ratio between the core component and the sheath component was 70:30 here as well. SL05068PP from Constab based on erucic acid amide was again used as the lubricant. This lubricant was contained only in the core, and the content of the lubricant was 2500 ppm based on the whole filament. The spunbonded nonwoven was calendered at a surface temperature of the calender rolls of 132.degree. The handle of the filament produced initially had to be classified as dull, after one day of storage a smooth, soft handle developed. This shows the delayed migration of the lubricant.

Ausführungsbeispiel 3:Example 3:

Dieses Spinnvlies wurde gemäß der zweiten Ausführungsform der Erfindung erzeugt. Die Bikomponentenfilamente enthielten Homo-Polypropylen (Borealis HG475FB) im Kern und Polypropylen-Copolymerisat (Basell Moplen RP248R mit MFI 30) im Mantel. Das Massenverhältnis zwischen der Kernkomponente und der Mantelkomponente betrug 70:30. In dem Polypropylen-Copolymerisat des Mantels ist ein Nukleierungsmittel und ein Antistatikum enthalten. Die Kalandrierung des Spinnvlieses erfolgte bei einer Oberflächentemperatur der Kalanderwalzen von 121 °C. Der Griff des hergestellten Spinnvlieses musste anfangs als stumpf eingestuft werden, nach einem Tag Ablagerzeit stellte sich ein glatter weicher Griff des Vlieses ein. Das zeigt wiederum eine verzögerte Migration des Gleitmittels bzw. hier des Antistatikums.This spunbonded nonwoven fabric was produced according to the second embodiment of the invention. The bicomponent filaments contained homo-polypropylene (Borealis HG475FB) in the core and polypropylene copolymer (Basell Moplen RP248R with MFI 30) in the sheath. The mass ratio between the core component and the sheath component was 70:30. The polypropylene copolymer of the sheath contains a nucleating agent and an antistatic agent. The spunbonded nonwoven was calendered at a surface temperature of the calender rolls of 121.degree. The hand of the spunbonded nonwoven produced had to be initially classified as dull, after a day's storage time, the nonwoven had a smooth, soft hand. This in turn shows delayed migration of the lubricant or, in this case, the antistatic agent.

Ausführungsbeispiel 4:Example 4:

Das Spinnvlies wurde nach der zweiten Ausführungsform der Erfindung erzeugt. Die Kernkomponente der Bikomponentenfilamente bestand aus Homo-Polypropylen (Borealis HG475FW mit MFI25) und die Mantelkomponente bestand aus Polypropylen-Copolymerisat (Basell Moplen RP248R mit MFI30). Das Massenverhältnis zwischen der Kernkomponente und der Mantelkomponente betrug 50:50. In dem Polypropylen-Copolymerisat war ein Nukleierungsmittel und ein Antistatikum enthalten. Die Verfestigung erfolgte mit Kalanderwalzen mit einer Oberflächentemperatur von 121 °C. Der Griff des hergestellten Spinnvlieses war anfangs stumpf und nach einem Tag Ablagerzeit stellte sich dann ein glatter weicher Griff ein. Das zeigt wiederum die verzögerte Migration des als Gleitmittel eingesetzten Stearates. Im Vergleich zum Ausführungsbeispiel 3 zeigt sich eine verminderte Festigkeit des Vlieses (s. Tabelle unten), die auf den größeren Anteil von Polypropylen-Copolymerisat im Vergleich zum Homo-Polypropylen zurückzuführen ist.The spunbonded fabric was produced according to the second embodiment of the invention. The core component of the bicomponent filaments consisted of homo-polypropylene (Borealis HG475FW with MFI25) and the sheath component consisted of polypropylene copolymer (Basell Moplen RP248R with MFI30). The mass ratio between the core component and the sheath component was 50:50. The polypropylene copolymer contained a nucleating agent and an antistatic agent. The solidification took place with calender rolls with a surface temperature of 121 °C. The handle of the spunbonded fabric produced was initially dull and after a day's storage time, a smooth, soft handle then set in. This in turn shows the delayed migration of the stearate used as a lubricant. Compared to Example 3, the fleece has reduced strength (see table below), which is due to the larger proportion of polypropylene copolymer compared to homo-polypropylene.

Ausführungsbeispiel 5:Example 5:

Die Bikomponentenfilamente dieses Spinnvlieses wiesen Homo-Polypropylen (Borealis HG475FB mit MFI25) im Kern auf und Polypropylen-Copolymerisat im Mantel. Das Massenverhältnis der Kernkomponente zur Mantelkomponente betrug 70:30. Das eingesetzte Polypropylen-Copolymerisat ist vergleichbar zum Copolymerisat Moplen RP248R, besitzt aber kein Nukleierungsmittel und kein Antistatikum. Eine Verfestigung des Spinnvlieses wurde mit Kalanderwalzen mit einer Oberflächentemperatur von 121 °C durchgeführt. Auch nach dreitätiger Ablagerzeit erreichte das auf diese Weise hergestellte Spinnvlies nicht den glatten weichen Griff des Ausführungsbeispiels 3. Das zeigt, dass der Einsatz von Polypropylen-Copolymerisat allein nicht ausreicht und ein migrierendes Gleitmittel zur Realisierung der erfindungsgemäßen Eigenschaften erforderlich ist.The bicomponent filaments of this spunbonded nonwoven had homo-polypropylene (Borealis HG475FB with MFI25) in the core and polypropylene copolymer in the sheath. The mass ratio of the core component to the shell component was 70:30. The polypropylene copolymer used is comparable to the Moplen RP248R copolymer, but has no nucleating agent and no antistatic agent. The spunbonded nonwoven was consolidated using calender rolls with a surface temperature of 121.degree. Even after a three-day storage time, the spunbonded fabric produced in this way did not achieve the smooth, soft feel of exemplary embodiment 3. This shows that the use of polypropylene copolymer alone is not sufficient and a migrating one Lubricant is required to realize the properties of the invention.

In der nachfolgenden Tabelle werden für die obigen Beispiele die Flächengewichte der Spinnvliese in g/m2 sowie die die Festigkeiten in Maschinenrichtung (MD) und quer zur Maschinenrichtung (CD) angegeben und zwar in N/5cm. Die Festigkeiten wurden dabei gemäß EDANA ERT 20.2-89 mit 100 mm Einspannlänge und 200 mm/min Abzugsgeschwindigkeit gemessen. Das Vergleichsbeispiel V wird hier mit den Ausführungsbeispielen 1 bis 5 verglichen: Beispiel Flächengewicht Festigkeit MD Festigkeit CD "V" 22 49 35 1 22 44 28 2 22 39 31 3 20 55 31 4 20 48 30 5 20 55 35 The table below gives the basis weights of the spunbonded nonwovens in g/m 2 and the strengths in the machine direction (MD) and transversely to the machine direction (CD) for the above examples, specifically in N/5 cm. The strengths were measured according to EDANA ERT 20.2-89 with a clamping length of 100 mm and a pull-off speed of 200 mm/min. Comparative example V is compared here with exemplary embodiments 1 to 5: example basis weight Strength MD Strength CD "V" 22 49 35 1 22 44 28 2 22 39 31 3 20 55 31 4 20 48 30 5 20 55 35

Hervorzuheben ist, dass die Spinnvliese der Ausführungsbeispiele 3 bis 5 bei einer deutlich geringeren Kalandertemperatur verfestigt wurden als beim Vergleichsbeispiel V. Trotzdem sind vergleichbare Festigkeiten zu beobachten, so dass der Energieaufwand bei der Herstellung der Spinnvliese gemäß Ausführungsbeispielen 3 bis 5 reduziert werden konnte. Die niedrigere Kalandertemperatur unterstützt den weichen Griff und ermöglicht somit eine Senkung der zusätzlich zuzudosierenden Gleitmittel.It should be emphasized that the spunbonded nonwovens of Examples 3 to 5 were consolidated at a significantly lower calender temperature than in Comparative Example V. Nevertheless, comparable strengths can be observed, so that the energy consumption in the production of the spunbonded nonwovens according to Examples 3 to 5 could be reduced. The lower calender temperature supports the soft handle and thus enables a reduction in the amount of additional lubricant to be added.

Ausführungsbeispiel 6:Example 6:

Dieses Ausführungsbeispiel betrifft den Unterschied im Härtegrad bzw. in Bezug auf die Härtegradmessungen angeführt. Es wurde an einem erfindungsgemäßen Spinnvlies S1 und an einem Vergleichsvlies V1 Messungen des Härtegrades mit einem handelsüblichen Messgerät TSA (Tissue Softness Analyzer) der Firma Emtec, Leipzig, Deutschland durchgeführt. Das Messverfahren wurde bereits weiter oben erläutert. Der Messkopf wurde mit einer Kraft von 100 mN an die Vliesoberfläche angedrückt. Es wurde hier an der dem Ablagesiebband abgewandten Spinnvliesoberfläche gemessen. Der Messkopf war mit acht rotierenden bzw. rotierbaren Messblättern bestückt und die Drehzahl betrug während der Messung 2/sec. - Mit dem Messgerät wurde das erfindungsgemäße Spinnvlies und für das Vergleichsvlies jeweils ein Lautstärke/Frequenz-Spektrum aufgenommen und darin wurde jeweils die Lautstärke des Peakmaximums (TS7-Wert) bei 6550 Hz bestimmt. Es wurden jeweils 5 Einzelmessungen gemittelt. Die beiden Spinnvliese wurden mit der gleichen Spunbond-Vorrichtung hergestellt, auf die gleiche Weise vorverfestigt bzw. verfestigt (d. h. unter gleichen Bedingungen der Kalanderverfestigung) und beide Spinnvliese wiesen Filamente mit dem gleichen Titer von 1,8 denier auf. Der Unterschied zwischen den Filamenten der beiden Spinnvliese bestand in der Verteilung des Gleitmittels in der Polymerschmelze beim Austritt aus der Spinnplatte vor dem Verspinnen zum jeweiligen Filament. Bei dem erfindungsgemäßen Spinnvlies S1 bestanden die Filamente aus einer homogenen Mischung aus Homo-Polypropylen und Polypropylen-Copolymerisat bestanden. Die Rohstoffe für die Bikomponentenfilamente wurden analog zu dem obigen Ausführungsbeispiel 2 gewählt, der Gleitmittelanteil bezogen auf das gesamte Filament lag bei 2000 ppm und es kam eine Kalandergravur "U2888" mit 19 % Flächenanteil zur Anwendung. Der Anteil des Kerns betrug 50 % (Massenverhältnis zwischen Kernkomponente und Mantelkomponente 50:50). Zu der Kernkomponente der Bikomponentenfilamente wurden entsprechend 4000 ppm Gleitmittel zudosiert. Als Vergleichsvlies V1 wurde ein Spinnvlies mit Filamenten aus den gleichen Komponenten eingesetzt, wobei aber das Gleitmittel homogen mit 2000 ppm über den Filamentquerschnitt verteilt war. Für beide Vliese S1 und V1 wurden die Lautstärkewerte (TS7-Werte) ermittelt, und zwar für drei Zeitpunkte, nämlich 15 Minuten, 2 Stunden und 96 Stunden nach der Ablage der Filamente auf einem Ablagesiebband. Lautstärkewerte für das erfindungsgemäße Spinnvlies S1 und für das Vergleichsvlies V1 ergeben sich aus der nachfolgenden Tabelle: L (dBV2rms) in % S1 V1 S1 V1 15 min 4,31 3,98 108,2 100 2 Std. 4,42 4,16 106,3 100 96 Std. 3,93 3,84 102,2 100 This embodiment relates to the difference in hardness or referred to in relation to the hardness measurements. Measurements of the degree of hardness were carried out on a spunbonded nonwoven S1 according to the invention and on a comparative nonwoven C1 using a commercially available measuring device TSA (Tissue Softness Analyzer) from Emtec, Leipzig, Germany. The measurement method has already been explained above. The measuring head was pressed against the fleece surface with a force of 100 mN. It was measured here on the surface of the spunbonded nonwoven facing away from the sieve belt. The measuring head was equipped with eight rotating or rotatable measuring blades and the speed during the measurement was 2/sec. A volume/frequency spectrum was recorded for the spunbonded nonwoven according to the invention and for the comparison nonwoven and the volume of the peak maximum (TS7 value) at 6550 Hz was determined therein. In each case, 5 individual measurements were averaged. The two spunbonded webs were made using the same spunbond apparatus, preconsolidated in the same manner (ie, under the same calender bonding conditions), and both spunbonded webs had filaments of the same 1.8 denier. The difference between the filaments of the two spunbonded webs was the distribution of the lubricant in the polymer melt as it exited the spinning plate prior to spinning to form the respective filament. In the case of the spunbonded nonwoven S1 according to the invention, the filaments consisted of a homogeneous mixture of homo-polypropylene and polypropylene copolymer. The raw materials for the bicomponent filaments were selected analogously to example 2 above, the proportion of lubricant based on the entire filament was 2000 ppm and a calender engraving "U2888" with a surface proportion of 19% was used. The proportion of the core was 50% (mass ratio between core component and sheath component 50:50). Correspondingly, 4000 ppm of lubricant were metered into the core component of the bicomponent filaments. A spunbonded nonwoven with filaments made from the same components was used as comparison nonwoven V1, but the lubricant was distributed homogeneously over the filament cross section at 2000 ppm. The volume values (TS7 values) were determined for both webs S1 and V1, specifically for three points in time, namely 15 minutes, 2 hours and 96 hours after the filaments had been deposited on a sieve belt. Loudness values for the spunbonded nonwoven S1 according to the invention and for the comparative nonwoven C1 are shown in the table below: L (dBV 2rms ) in % S1 V1 S1 V1 15 minutes 4:31 3.98 108.2 100 2 hours. 4.42 4:16 106.3 100 96 hours 3.93 3.84 102.2 100

In der einzigen Figur sind die Lautstärkewerte TS7 (in dBV2rms) des Peakmaximums bei 6550 Hz in Abhängigkeit vom Messzeitpunkt aufgeführt. Ganz links ist der TS7-Wert dargestellt, der 15 Minuten nach der Filamentablage ermittelt wurde und rechts daneben ist der TS7-Wert dargestellt, der 2 Stunden nach der Filamentablage bestimmt wurde. Ganz rechts ist entsprechend der TS7-Wert gezeigt, der 4 Tage bzw. 96 Stunden nach Filamentablage ermittelt wurde. Die durchgezogene Linie charakterisiert die TS7-Werte für das erfindungsgemäße Spinnvlies S1 und die gestrichelte Linie zeigt die TS7-Werte für das Vergleichsvlies V1. Es zeigt sich hier, dass das erfindungsgemäße Spinnvlies S1 zunächst (nach 15 Minuten und nach 2 Stunden) einen deutlich höheren Lautstärkewert und somit einen geringeren Weichheitsgrad bzw. höheren Härtegrad aufweist als das Vergleichsvlies V1. Das resultiert daher, dass das Gleitmittel bei den Filamenten des erfindungsgemäßen Spinnvlieses S1 wesentlich langsamer zur Filamentoberfläche hin wandert bzw. migriert. Bei dem Vergleichsvlies erfolgt dagegen eine relativ schnelle Migration, so dass hier schon verhältnismäßig früh hohe Weichheitsgrade bzw. geringe Härtegrade erzielt werden. Der Anstieg der Kurve zwischen 15 Minuten und 2 Stunden für beide Spinnvliese wird durch die erste Nachkristallisation des Polypropylen-Gemisches erklärt, der die Filamente versteift. Diese Form der Kurven mag als typisch für diese Rohstoffkombination gelten. Wie zu erwarten beeinflussen sowohl Migration des Gleitmittels und Nachkristallisation gleichzeitig die Weichheit. Da sich Migrationsgeschwindigkeiten auch abhängig von der jeweiligen Kristallinität verändern können, gibt es hier keinen allgemeingültigen Kurvenverlauf, dieser ist rohstoffspezifisch. - Nach 96 Stunden stimmen die Lautstärkewerte und somit die Weichheitsgrade bzw. Härtegrade des erfindungsgemäßen Spinnvlieses S1 einerseits und des Vergleichsvlieses V1 andererseits überein bzw. quasi überein. Die verzögerte Migration des Gleitmittels zur Filamentoberfläche bei den erfindungsgemäßen Spinnvliesen hat den Vorteil, dass im Zuge der Erzeugung der Filamente eine wesentlich geringere Ausgasung von Gleitmittel aus den Filamenten stattfindet und somit auch die Anlagenkomponenten entsprechend weniger verschmutzt werden. Gleichzeitig wird das Wickelverhalten positiv beeinflusst. - Den prozentuellen Angaben in der Tabelle ist im Übrigen entnehmbar, dass der Lautstärkewert des erfindungsgemäßen Spinnvlieses innerhalb der ersten 150 Minuten nach der Filamentablage um mehr als 3 % höher liegt als der Lautstärkewert des Vergleichsvlieses V1 und entsprechend liegt der Härtegrad des erfindungsgemäßen Spinnvlieses S1 um mehr als 3 % höher als der Härtegrad des Vergleichsvlieses V1. Es ist auch ersichtlich, dass unabhängig von einer ablaufenden Nachkristallisation die fertigen Spinnvliese weicher geworden sind, was den Effekt und Sinn des Gleitmittels belegt.The only figure shows the volume values TS7 (in dBV 2 rms) of the peak maximum at 6550 Hz as a function of the time of measurement. The TS7 value that was determined 15 minutes after the filament was laid is shown on the far left and the TS7 value that was determined 2 hours after the filament was laid is shown on the right. The TS7 value is shown on the far right, which was determined 4 days or 96 hours after filament laying. The solid line characterizes the TS7 values for the spunbonded nonwoven S1 according to the invention and the dashed line shows the TS7 values for the comparative nonwoven C1. It can be seen here that the spunbonded nonwoven S1 according to the invention initially (after 15 minutes and after 2 hours) has a significantly higher volume value and thus a lower degree of softness or softness. has a higher degree of hardness than the comparison fleece V1. This results from the fact that the lubricant in the filaments of the spunbonded nonwoven S1 according to the invention moves or migrates much more slowly towards the filament surface. In the case of the comparison nonwoven, on the other hand, migration takes place relatively quickly, so that high degrees of softness or low degrees of hardness are achieved here relatively early on. The slope of the curve between 15 minutes and 2 hours for both spunbonded nonwovens is explained by the first post-crystallization of the polypropylene blend, which stiffens the filaments. This shape of the curves may be considered typical for this combination of raw materials. As expected, both lubricant migration and post-crystallization simultaneously affect softness. Since migration speeds can also change depending on the respective crystallinity, there is no generally applicable curve here, it is specific to the raw material. - After 96 hours, the volume values and thus the degrees of softness or hardness of the spunbonded nonwoven S1 according to the invention on the one hand and the comparison nonwoven V1 on the other hand match or almost match. The delayed migration of the lubricant to the filament surface in the spunbonded nonwovens according to the invention has the advantage that significantly less outgassing of lubricant from the filaments takes place in the course of the production of the filaments and the system components are correspondingly less soiled. At the same time, the winding behavior is positively influenced. - The percentages in the table also show that the volume value of the spunbonded nonwoven according to the invention within the first 150 minutes after filament deposition is more than 3% higher than the volume value of the comparison nonwoven C1 and the degree of hardness of the spunbonded nonwoven S1 according to the invention is accordingly more than 3% higher than the degree of hardness of the comparison fleece V1. It can also be seen that regardless of a the finished spunbonded nonwovens have become softer as a result of the post-crystallization that is taking place, which proves the effect and purpose of the lubricant.

Ausführungsbeispiel 7:Example 7:

Mit der gleichen Anlage und Verfestigung wie im Ausführungsbeispiel 6 wurde die Rohstoffkombination entsprechend Ausführungsbeispiel 5 gewählt, jedoch mit einem Gleitmittel. Im Kern kam ein Homo-Polypropylen Moplen HP561R zum Einsatz und im Mantel das Random-CoPP mit MFR 30 aus Ausführungsbeispiel 5. Es wurde ein Kern-Mantel-Verhältnis von 70:30 eingestellt und es wurde mit der gleichen Kalandertemperatur gearbeitet wie im Ausführungsbeispiel 6. Im erfindungsgemäßen Spinnvlies S2 wurden 2900 ppm Gleitmittel nur in dem Kern zudosiert. Im Vergleichsvlies V2 wurden jeweils 2000 ppm Gleitmittel sowohl im Kern als auch im Mantel zudosiert. Auch hier stellt sich wieder eine ähnliche Relation der TS7-Werte wie im Ausführungsbeispiel 6 ein, wobei allerdings der hier verwendete Mantelrohstoff mit seiner andersartigen Grundweichheit und Kristallisations- bzw. Migrationsgeschwindigkeit einen anderen zeitlichen Verlauf ergibt. Der TS7-Unterschied bildet sich hier besonders nach 2 Stunden heraus. L (dBV2rms) S2 V2 15 min 5,03 4,91 2 Std. 5,64 4,86 96 Std. 4,3 4,19 The combination of raw materials was selected according to exemplary embodiment 5 with the same system and consolidation as in exemplary embodiment 6, but with a lubricant. A homo-polypropylene Moplen HP561R was used in the core and the random CoPP with MFR 30 from example 5 was used in the jacket. A core-case ratio of 70:30 was set and the same calendering temperature was used as in example 6 In the spunbonded nonwoven S2 according to the invention, 2900 ppm of lubricant were added only to the core. In comparison nonwoven C2, 2000 ppm of lubricant were added both to the core and to the sheath. Here, too, a similar relationship of the TS7 values is established as in exemplary embodiment 6, although the casing raw material used here, with its different basic softness and crystallization or migration speed, results in a different time course. The TS7 difference is particularly evident here after 2 hours. L (dBV 2rms ) S2 v2 15 minutes 5.03 4.91 2 hours. 5.64 4.86 96 hours 4.3 4:19

Auch hier ist das abgelagerte Spinnvlies weicher (niedriger im TS7-Wert) als das frisch produzierte Spinnvlies.Here, too, the seasoned spunbonded nonwoven is softer (lower TS7 value) than the freshly produced spunbonded nonwoven.

In der folgenden Tabelle wird die TS7-Relation von erfindungsgemäßem Spinnvliesen S zu den Vergleichsvliesen V (Ausführungsbeispiele 6 und 7) nach 15 Minuten, 2 Stunden und 96 Stunden wiedergegeben sowie die Festigkeitswerte nach der Produktion und die Flächengewichte der Spinnvliese. Festigkeiten und Flächengewichte wurden nach den oben erläuterten Methoden bestimmt, wobei für die Festigkeitsmessung eine Abzugsgeschwindigkeit von 200 mm/min verwendet wurde. Muster V1 S1 V2 S2 TS7 (15 min) [%] 100 108,2 100 102,4 TS7 (2 Stunden) [%] 100 106,3 100 116,1 TS7 (96 Stunden) [%] 100 102,2 100 102,5 Festigkeit MD [N/5cm] 41,6 39,4 44,2 42,3 Festigkeit CD [N/5cm] 23,7 23 28,1 28,4 Flächengewicht [gr/m2] 20,6 20,3 20,6 20,3 The following table shows the TS7 ratio of spunbonded nonwovens S according to the invention to the comparative nonwovens V (examples 6 and 7) after 15 minutes, 2 hours and 96 hours, as well as the strength values after production and the basis weights of the spunbonded nonwovens. Strengths and basis weights were determined according to the methods explained above, a pull-off speed of 200 mm/min being used for the strength measurement. template V1 S1 v2 S2 TS7 (15min) [%] 100 108.2 100 102.4 TS7 (2 hours) [%] 100 106.3 100 116.1 TS7 (96 hours) [%] 100 102.2 100 102.5 Strength MD [N/5cm] 41.6 39.4 44.2 42.3 Strength CD [N/5cm] 23.7 23 28.1 28.4 Weight per unit area [gr/m 2 ] 20.6 20.3 20.6 20.3

Es zeigt sich ein Festigkeitsvorteil des Ausführungsbeispiels 7 gegenüber dem Ausführungsbeispiel 6. Es zeigt den Vorteil sowie die Möglichkeiten der Bikomponenten-Technologie.It shows a strength advantage of embodiment 7 compared to embodiment 6. It shows the advantage and the possibilities of the bi-component technology.

Claims (14)

  1. Method for producing a spunbonded nonwoven from continuous filaments of thermoplastic material, wherein the continuous filaments are produced as multicomponent filaments, in particular as bicomponent filaments having a core-sheath configuration, wherein the filaments contain at least one lubricant, wherein the fraction of the lubricant - relative to the entire filament - is 250 to 5500 ppm, preferably 500 to 5000 ppm, more preferably 700 to 3000 ppm and very preferably 700 to 2500 ppm, wherein the lubricant is present in the core component in an amount of at least 90 wt.%, preferably at least 95 wt.%,
    wherein the degree of hardness of the surface of the spunbonded nonwoven is measured, wherein the TS7 value of a TSA measuring device (Emtec, Leipzig, Germany), i.e. the loudness at the peak maximum of the loudness/frequency spectrum at about 6550 Hz is used as the degree of hardness of the spunbonded nonwoven at the nonwoven surface,
    wherein the surface of the spunbonded nonwoven in the time interval up to 150 minutes after production of the spunbonded nonwoven has a higher degree of hardness, in particular a degree of hardness more than 3% higher than a comparative spunbonded nonwoven having a homogeneous distribution of the lubricant relative to the filament cross-section produced under otherwise the same conditions and wherein the surface of the spunbonded nonwoven after 96 hours has the same degree of hardness or approximately the same degree of hardness as the comparative spunbonded nonwoven, wherein the degrees of hardness then preferably differ by a maximum of 3%.
  2. Method according to Claim 1, wherein the mass ratio between core component and sheath component is 67:33 to 73:27 and preferably 70:30 or about 70:30.
  3. Method for producing a spunbonded nonwoven from continuous filaments of thermoplastic material, wherein the continuous filaments are produced as multicomponent filaments, in particular as bicomponent filaments having a core-sheath configuration, wherein the filaments contain at least one lubricant, wherein the fraction of the lubricant - relative to the entire filament - is 250 to 5500 ppm, preferably 500 to 5000 ppm, more preferably 700 to 3000 ppm and very preferably 700 to 2500 ppm, wherein the lubricant is present in the sheath component, wherein at least one additive which reduces the migration speed of the lubricant through the sheath component is contained in the sheath component,
    wherein the degree of hardness of the surface of the spunbonded nonwoven is measured, wherein the TS7 value of a TSA measuring device (Emtec, Leipzig, Germany), i.e. the loudness at the peak maximum of the loudness/frequency spectrum at about 6550 Hz is used as the degree of hardness of the spunbonded nonwoven at the nonwoven surface,
    wherein the surface of the spunbonded nonwoven in the time interval up to 150 minutes after production of the spunbonded nonwoven has a higher degree of hardness, in particular a degree of hardness more than 3% higher than a comparative spunbonded nonwoven without an additive which reduces the migration speed of the lubricant, produced under otherwise the same conditions and wherein the surface of the spunbonded nonwoven 96 hours after production of the spunbonded nonwoven has the same degree of hardness or approximately the same degree of hardness as the comparative spunbonded nonwoven, wherein the degrees of softness then preferably differ by a maximum of 3%.
  4. Method according to one of Claims 1 to 3, wherein the core component and/or the sheath component have at least 90 wt.%, preferably at least 95 wt.% and more preferably at least 96 wt.% of at least one component from the group "polyolefin, polyolefin copolymerisate, mixture of polyolefin and polyolefin copolymerisate".
  5. Method according to one of Claims 1 to 4, wherein the core component and/or the sheath component have at least 90 wt.%, preferably at least 95 wt.% and more preferably at least 96 wt.% of at least one component from the group "polypropylene, polypropylene copolymerisate, mixture of polypropylene and polypropylene copolymerisate".
  6. Method according to one of Claims 1 to 5, wherein the core component consists or substantially consists of a homopolyolefin, in particular consists or substantially consists of a homopolypropylene or wherein the core component has at least 80 wt.%, preferably at least 85.wt %, more preferably at least 90 wt. % and particularly preferably at least 95 wt.% of the homopolyolefin, in particular of the homopolypropylene.
  7. Method according to one of Claims 1 to 6, wherein the sheath component consists or substantially consists of a polyolefin copolymerisate, in particular of a polypropylene copolymerisate and/or a mixture of a polyolefin with a polyolefin copolymerisate, in particular of a polypropylene with a polypropylene copolymerisate.
  8. Method according to one of Claims 1 to 7, wherein the polyolefin copolymerisate, in particular the polypropylene copolymerisate has a molecular weight distribution or molar mass distribution (Mw/Mn) of from 2.5 to 6, preferably from 3 to 5.5 and very preferably from 3.5 to 5.
  9. Method according to one of Claims 1 to 8, wherein at least one fatty acid derivative and preferably at least one substance from the group "fatty acid ester, fatty acid alcohol, fatty acid amide" is used as lubricant.
  10. Method according to one of Claims 1 to 9, wherein at least one stearate and/or at least one erucic acid amide and/or at least one oleamide is used as lubricant.
  11. Method according to one of Claims 3 to 10, wherein the lubricant is contained in the sheath component and according to one embodiment only in the sheath component.
  12. Method according to one of Claims 3 to 10, wherein at least one nucleating agent and/or at least one filler, preferably at least one nucleating agent is contained in the sheath component as an additive that reduces the migration speed of the lubricant.
  13. Method according to one of Claims 3 to 12, wherein at least one additive from the group "aromatic carboxylic acid, salt of an aromatic carboxylic acid, sorbitol derivative, talc, kaolin, quinacridone, pimelic acid salt, suberic acid salt, dicyclohexyl naphthalene dicarboxamide, organophosphate, triphenyl compound, triphenyl dithiazine" is used as the additive that reduces the migration speed of the lubricant.
  14. Method according to one of Claims 12 or 13, wherein at least one metal salt or at least one substance from the group "titanium dioxide, calcium carbonate, talc" is used as filler.
EP19177272.2A 2016-05-18 2017-05-17 Methods for producing spunbond nonwoven fabrics made from continuous fibres Active EP3569753B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL19177272T PL3569753T3 (en) 2016-05-18 2017-05-17 Methods for producing spunbond nonwoven fabrics made from continuous fibres

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016109115.4A DE102016109115A1 (en) 2016-05-18 2016-05-18 Spunbonded nonwoven made of continuous filaments
EP17171592.3A EP3246447B1 (en) 2016-05-18 2017-05-17 Spunbond nonwoven fabrics made from continuous filaments

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP17171592.3A Division EP3246447B1 (en) 2016-05-18 2017-05-17 Spunbond nonwoven fabrics made from continuous filaments
EP17171592.3A Division-Into EP3246447B1 (en) 2016-05-18 2017-05-17 Spunbond nonwoven fabrics made from continuous filaments

Publications (2)

Publication Number Publication Date
EP3569753A1 EP3569753A1 (en) 2019-11-20
EP3569753B1 true EP3569753B1 (en) 2022-02-16

Family

ID=58737565

Family Applications (3)

Application Number Title Priority Date Filing Date
EP17193288.2A Active EP3296438B1 (en) 2016-05-18 2017-05-17 Spunbond nonwoven fabrics made from continuous fibres
EP19177272.2A Active EP3569753B1 (en) 2016-05-18 2017-05-17 Methods for producing spunbond nonwoven fabrics made from continuous fibres
EP17171592.3A Active EP3246447B1 (en) 2016-05-18 2017-05-17 Spunbond nonwoven fabrics made from continuous filaments

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP17193288.2A Active EP3296438B1 (en) 2016-05-18 2017-05-17 Spunbond nonwoven fabrics made from continuous fibres

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP17171592.3A Active EP3246447B1 (en) 2016-05-18 2017-05-17 Spunbond nonwoven fabrics made from continuous filaments

Country Status (15)

Country Link
US (1) US11788208B2 (en)
EP (3) EP3296438B1 (en)
JP (4) JP6728397B2 (en)
KR (2) KR102335064B1 (en)
CN (2) CN113062050B (en)
AR (1) AR110601A1 (en)
BR (1) BR112018072335A2 (en)
DE (1) DE102016109115A1 (en)
DK (3) DK3296438T3 (en)
ES (3) ES2751134T3 (en)
MX (1) MX371463B (en)
MY (1) MY189928A (en)
PL (3) PL3246447T3 (en)
WO (1) WO2017198730A1 (en)
ZA (2) ZA201806891B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3771764T3 (en) * 2019-07-30 2022-05-23 Reifenhäuser GmbH & Co. KG Maschinenfabrik Method and device for producing a nonwoven fabric
EP3771761B1 (en) * 2019-07-30 2021-05-19 Reifenhäuser GmbH & Co. KG Maschinenfabrik Spunbond nonwoven fabric made from endless filaments and device for producing spunbond nonwoven fabric

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5082720A (en) * 1988-05-06 1992-01-21 Minnesota Mining And Manufacturing Company Melt-bondable fibers for use in nonwoven web
TW339377B (en) * 1996-09-30 1998-09-01 Mitsui Petroleum Chemicals Ind Flexible nonwoven fabric and laminate thereof
JP3712511B2 (en) * 1996-09-30 2005-11-02 三井化学株式会社 Flexible nonwoven fabric
US6225243B1 (en) * 1998-08-03 2001-05-01 Bba Nonwovens Simpsonville, Inc. Elastic nonwoven fabric prepared from bi-component filaments
KR100662827B1 (en) * 1998-12-16 2006-12-28 미쓰이 가가쿠 가부시키가이샤 Composite-fiber nonwoven fabric
JP2001226865A (en) * 2000-02-10 2001-08-21 Idemitsu Unitech Co Ltd Nonwoven fabric, method for producing the same and sanitary material
JP2001254256A (en) * 2000-03-08 2001-09-21 Japan Polychem Corp Heat adhesive nonwoven fabric
JP2002069820A (en) * 2000-06-13 2002-03-08 Idemitsu Unitech Co Ltd Spun-bonded nonwoven fabric and absorbing article
JP3733317B2 (en) * 2001-10-31 2006-01-11 日本ポリプロ株式会社 Flame retardant polypropylene fiber
US20070055015A1 (en) * 2005-09-02 2007-03-08 Kraton Polymers U.S. Llc Elastomeric fibers comprising controlled distribution block copolymers
MX2008015005A (en) * 2006-05-25 2009-02-05 Dow Global Technologies Inc Soft and extensible polypropylene based spunbond nonwovens.
EP2034057A1 (en) * 2007-09-10 2009-03-11 ALBIS Spa Elastic spunbonded nonwoven and elastic nonwoven fabric comprising the same
EP2151512A1 (en) * 2008-08-01 2010-02-10 Total Petrochemicals Research Feluy Fibers and nonwovens with increased surface roughness.
JP5262514B2 (en) * 2008-09-25 2013-08-14 東レ株式会社 Polyester composite fiber
EP2383236B1 (en) 2009-01-26 2018-04-18 Asahi Glass Company, Limited Glass composition and member having the same on substrate
JP2011006823A (en) * 2009-06-29 2011-01-13 Unitika Ltd Biodegradable agricultural covering material
US8389426B2 (en) * 2010-01-04 2013-03-05 Trevira Gmbh Bicomponent fiber
US20120045956A1 (en) * 2010-08-19 2012-02-23 Dow Global Technologies Inc. Fabricated articles comprising polyolefins
CN103249773A (en) * 2010-08-19 2013-08-14 美国布拉斯科姆有限公司 Fabricated articles comprising polyolefins
CN103201416B (en) * 2010-11-09 2016-07-06 埃克森美孚化学专利公司 Bicomponent fibre and manufacture method thereof
WO2012105567A1 (en) * 2011-02-01 2012-08-09 出光興産株式会社 Method for producing spun-bonded nonwoven fabric and spun-bonded nonwoven fabric
JP5404967B2 (en) * 2011-05-11 2014-02-05 三井化学株式会社 Crimped composite fiber and nonwoven fabric made of the fiber
WO2014022988A1 (en) * 2012-08-08 2014-02-13 Daiwabo Holdings Co., Ltd. Nonwoven, sheet for absorbent article from the same, and absorbent article using the same
RU2620747C2 (en) * 2012-12-21 2017-05-29 Ска Хайджин Продактс Аб Elastic laminated material and method for manufacturing of elastic laminated material
EP3011089B1 (en) * 2013-06-18 2020-12-02 ExxonMobil Chemical Patents Inc. Fibers and nonwoven materials prepared therefrom
US20160153122A1 (en) * 2013-07-23 2016-06-02 Ube Exsymo Co., Ltd. Method for producing drawn conjugated fiber, and drawn conjugated fiber
KR101664544B1 (en) * 2014-05-27 2016-10-12 도레이첨단소재 주식회사 Spunbond nonwoven fabric having three dimensional geometry and manufacturing method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20190194826A1 (en) 2019-06-27
MY189928A (en) 2022-03-22
CN109154117A (en) 2019-01-04
EP3246447A1 (en) 2017-11-22
US11788208B2 (en) 2023-10-17
KR102396246B1 (en) 2022-05-09
MX2018012969A (en) 2019-03-28
JP2020117853A (en) 2020-08-06
EP3569753A1 (en) 2019-11-20
CN109154117B (en) 2021-08-03
JP2019516874A (en) 2019-06-20
ES2751134T3 (en) 2020-03-30
EP3296438A1 (en) 2018-03-21
JP6728397B2 (en) 2020-07-22
DK3246447T3 (en) 2019-11-25
WO2017198730A1 (en) 2017-11-23
JP7066769B2 (en) 2022-05-13
ES2796629T3 (en) 2020-11-27
CN113062050B (en) 2022-12-16
KR102335064B1 (en) 2021-12-03
CN113062050A (en) 2021-07-02
PL3569753T3 (en) 2022-06-20
JP2022081627A (en) 2022-05-31
KR20190008364A (en) 2019-01-23
KR20210075215A (en) 2021-06-22
MX371463B (en) 2020-01-27
EP3296438B1 (en) 2020-04-01
PL3246447T3 (en) 2020-02-28
PL3296438T3 (en) 2020-09-21
DE102016109115A1 (en) 2017-11-23
ZA201906809B (en) 2021-03-31
DK3569753T3 (en) 2022-04-04
JP2020117852A (en) 2020-08-06
ZA201806891B (en) 2019-12-18
BR112018072335A2 (en) 2019-02-19
AR110601A1 (en) 2019-04-17
DK3296438T3 (en) 2020-06-02
ES2911262T3 (en) 2022-05-18
EP3246447B1 (en) 2019-08-21

Similar Documents

Publication Publication Date Title
EP3054042B1 (en) Method for manufacturing a laminate and laminate
DE102007049031A1 (en) polypropylene blend
EP1964956B1 (en) Highly stable light carpet backing and method for its production
DE102019107771A1 (en) Process for producing a non-woven laminate and non-woven laminate
EP2826897B1 (en) Bicomponent fibre for producing spun nonwoven fabrics
EP3569753B1 (en) Methods for producing spunbond nonwoven fabrics made from continuous fibres
DE102021102287B3 (en) Spunbonded nonwoven laminate and method of making a spunbonded nonwoven laminate
DE1964060C3 (en) Process for the production of tangled nonwovens from high polymers
EP2826898B2 (en) Bicomponent fibre for producing spun nonwoven fabrics
DE202014010538U1 (en) Bicomponent fiber for the production of spunbonded nonwovens
EP0464400B1 (en) Method for making needled nonwoven fabrics
EP4036297B1 (en) Spun nonwoven laminate and method for producing a spun nonwoven laminate
DE10237803B4 (en) Polypropylene reinforcement and polypropylene matrix composite and various methods for its production
DE10345953B4 (en) Nonwoven fabric and process for its production
DE2438918A1 (en) PROCESS FOR THE PRODUCTION OF FIBER MATERIALS FROM THERMOPLASTIC Polymers
DE102023109607A1 (en) Method for producing a molded part and molded part
DE4340562A1 (en) Mfr. of nonwoven material for use as insulation material
DD211369A1 (en) METHOD FOR PRODUCING POLTEXTILES

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AC Divisional application: reference to earlier application

Ref document number: 3246447

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200415

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20201012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502017012615

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: D04H0003000000

Ipc: D04H0003160000

RIC1 Information provided on ipc code assigned before grant

Ipc: D01F 8/06 20060101ALI20210810BHEP

Ipc: D01F 8/00 20060101ALI20210810BHEP

Ipc: D01F 1/10 20060101ALI20210810BHEP

Ipc: D01D 5/098 20060101ALI20210810BHEP

Ipc: D04H 3/16 20060101AFI20210810BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210929

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 3246447

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017012615

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1468928

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20220331

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2911262

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220518

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220216

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20220400945

Country of ref document: GR

Effective date: 20220608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220616

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220516

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220516

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20220524

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20220526

Year of fee payment: 6

Ref country code: BE

Payment date: 20220520

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017012615

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20221117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220517

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1468928

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220517

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231208

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230518

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240516

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240523

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20240522

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240602

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240603

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20240423

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240522

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240422

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240529

Year of fee payment: 8