EP3566102B1 - Dispositif de surveillance autoconfigurable pour un système d'automatisation basé sur un réseau de communication de données industriel - Google Patents

Dispositif de surveillance autoconfigurable pour un système d'automatisation basé sur un réseau de communication de données industriel Download PDF

Info

Publication number
EP3566102B1
EP3566102B1 EP18700006.2A EP18700006A EP3566102B1 EP 3566102 B1 EP3566102 B1 EP 3566102B1 EP 18700006 A EP18700006 A EP 18700006A EP 3566102 B1 EP3566102 B1 EP 3566102B1
Authority
EP
European Patent Office
Prior art keywords
signal
monitoring means
communication network
data communication
process signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18700006.2A
Other languages
German (de)
English (en)
Other versions
EP3566102A1 (fr
Inventor
Stefan Windmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP3566102A1 publication Critical patent/EP3566102A1/fr
Application granted granted Critical
Publication of EP3566102B1 publication Critical patent/EP3566102B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0876Aspects of the degree of configuration automation
    • H04L41/0886Fully automatic configuration
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0426Programming the control sequence
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/25Pc structure of the system
    • G05B2219/25428Field device

Definitions

  • the invention relates to the monitoring of a process. More precisely, the invention relates to the automatic monitoring of a process which is controlled by means of an automation system which comprises an industrial data communication network, a process control device connected to the industrial data communication network, and one or more field devices connected to the industrial data communication network in order to automatically detect faults in the process to be able to.
  • an automation system which comprises an industrial data communication network, a process control device connected to the industrial data communication network, and one or more field devices connected to the industrial data communication network in order to automatically detect faults in the process to be able to.
  • monitoring modules are provided which are integrated directly into the software of the process control device, directly into the software of the field devices or directly into the software of a monitoring computer superordinate to the process control device. Since process control devices, field devices and also monitoring computers are standardized devices which are used to control a wide variety of processes, such monitoring modules have to be configured in a complex manner in order to be able to monitor the respective process.
  • a method is also known from the document [1] in which the regular data traffic on a fieldbus, which is used to control a process, is monitored by means of a system monitoring unit. If the regular data traffic provides indications of a malfunction in one of the field devices, the system monitoring unit requests further information from the respective field device.
  • a system monitoring unit also has to be configured in a complex manner in order to be able to monitor the respective process.
  • the object of the present invention is to improve the monitoring of a process which is controlled by means of an automation system which comprises an industrial data communication network, a process control device connected to the industrial data communication network and one or more field devices connected to the industrial data communication network.
  • a monitoring device for monitoring a process which is controlled by means of an automation system which comprises an industrial data communication network, a process control device connected to the industrial data communication network and one or more field devices connected to the industrial data communication network, wherein in the Automation system, several process signals are provided, each of the process signals being assigned a signal format and a channel of one of the field devices, and where for each of the process signals signal values in the respectively assigned signal format can be transmitted together with a channel identifier of the respective channel in a process telegram via the industrial data communication network ,
  • the monitoring device is designed to automatically create a process signal description during a configuration phase of the monitoring device on the basis of at least one initialization telegram for the automation system transmitted during an initialization phase of the industrial data communication network between the process control device and at least one of the field devices and on the basis of device description files which are each assigned to one of the field devices , wherein the process signal description for at least one of the process signals the associated signal format and the associated Channel identifier indicates
  • the monitoring device is designed to automatically create a database during a learning phase of the monitoring device, the database comprising several signal values of the respective process signal for at least one of the process signals, each of which is provided with a time stamp, the signal values and the associated time stamp with the aid of the process signal description extracted from a plurality of process telegrams transmitted via the industrial data communication network, with at least one impermissible value range being derived from the database for the signal values of the respective process signal for at least one of the process signals, and wherein the monitoring device is designed to automatically detect a fault in the process during an operating
  • the process can be a cyclical technical process, in particular a cyclical industrial technical process, for example a cyclical industrial technical production process.
  • the automation system comprises an industrial data communication network, at least one process control device connected to it and one or more field devices connected to it.
  • the industrial data communication network is used to transmit process signals between the process control device and the field devices.
  • the process control device can in particular be a programmable logic controller.
  • the process control device is used to control the process by means of communication with the field devices.
  • the field devices are devices that measure and / or influence process variables of the controlled process.
  • sensors and / or actuators are provided which are each connected to a channel of one of the field devices.
  • a field device can have one or more channels.
  • a channel of one of the field devices is assigned to each of the process signals, so that each of the process signals is assigned to an actuator or a sensor via the assigned channel.
  • a signal format is assigned to each of the process signals so that the respective transmitter and the respective receiver, to which the signal format is known, can communicate with one another.
  • the process signals are transmitted in such a way that signal values of the respective process signal in the respectively assigned signal format are transmitted together with a channel identifier of the respective channel in a process telegram via the industrial data communication network.
  • the monitoring device is designed to automatically create a process signal description during a configuration phase of the monitoring device.
  • the process signal description is determined by evaluating standardized initialization telegrams that are exchanged between the process control device and the field devices during an initialization phase of the automation system, and by evaluating device description files that are each assigned to one of the field devices.
  • the process signal description contains a description of the process signals of the automation system, the description including at least the associated signal format and the associated channel identifier.
  • the process signal description can be saved as a file in a volatile or in a non-volatile memory.
  • the process signal description can also be stored in a database.
  • the device description file is a file that is created by the manufacturer of a field device for precisely this field device, and which contains the basic properties of the field device in a standardized format.
  • the monitoring device is designed to automatically create a database during a learning phase of the monitoring device.
  • the database comprises a plurality of signal values of the respective process signal, which are provided with a time stamp.
  • the signal values and the associated time stamps are automatically extracted during an operating phase of the automation system from process telegrams transmitted via the industrial data communication network with the aid of the process signal description.
  • at least one impermissible value range for the signal values of the respective process signal is derived from the database for at least one of the process signals.
  • the impermissible value range is thus obtained from empirical values or historical process data and indicates which signal values cannot be reached in the trouble-free process of the process to be controlled.
  • the monitoring device is designed to automatically detect a fault in the process during an operating phase of the monitoring device.
  • a malfunction is recognized by the fact that a current signal value of one of the process signals is in the respective impermissible value range.
  • the current signal value is the currently evaluated signal value and thus, as a rule, the last signal value received.
  • the current signal value is extracted from the current process telegram with the help of the process signal description.
  • the current process telegram is the currently evaluated process telegram and therefore generally the most recently received process telegram.
  • a recognized fault can then be output to an operator of the automation system via a user interface.
  • the detected fault can be sent to the process control device and / or to a monitoring computer superordinate to the process control device. In this way it is possible to interrupt the process manually or automatically in the event of a fault.
  • the monitoring device according to the invention allows the automatic detection of a fault in the course of the monitored process.
  • the monitoring device according to the invention can be integrated into any automation system that is based on an industrial data communication network. For integration, it is only necessary to connect the monitoring device to the automation system in such a way that the initialization telegrams and process telegrams transmitted via the industrial data communication network are also available to the monitoring device.
  • a manual configuration of the monitoring device according to the invention is not necessary. Furthermore, there is no need to change the configuration of the process control device or the configuration of the field devices.
  • the monitoring device has the advantage that signal values of one of the process signals can also be recorded automatically without manual configuration when the associated signal format and the associated channel are initially unknown.
  • malfunctions can also be recognized automatically and without configuration effort if impermissible value ranges for the signal values of the process signals are initially unknown.
  • the process signals, for each of which at least one impermissible value range is derived are measurement signals from a sensor that is connected to one of the channels of one of the field devices.
  • the process signals, for each of which at least one impermissible value range is derived are control signals of the control device for one actuator that is connected to one of the channels of one of the field devices.
  • the industrial data communication network is an industrial Ethernet.
  • Industrial Ethernet can be based on levels 1-2 of the ISO-OSI standard, with the Ethernet transmission technology and the bus access method of the Ethernet standard can be used.
  • Examples of Industrial Ethernet are Profinet, Ethernet / IP or EtherCAT.
  • the process signals for each of which at least one impermissible value range is derived, comprise at least one measurement signal from a sensor connected to one of the channels of one of the field devices, and / or at least one control signal for an actuator connected to a the channels of one of the field devices is connected.
  • the signal values of the measurement signal can be referred to as measurement values.
  • the signal values of the control signal can be referred to as control values. In this way, a fault can be detected both when impermissible control values occur and when impermissible measured values occur.
  • the device description files are stored in the monitoring device.
  • the monitoring device could also be designed to query the required device description files via a data network.
  • the monitoring device for each of the field devices is designed to read out a manufacturer identifier and / or a device type identifier from the at least one initialization telegram during the configuration phase. This enables a simple automatic assignment of the field device to a manufacturer and / or a device type.
  • the monitoring device for each of the field devices is designed to select the associated device description file based on the manufacturer identifier and / or the device type identifier. This enables simple and automatic identification of the device description file which is associated with the respective field device.
  • the monitoring device for each of the field devices is for reading out the channel identifier formed from the at least one initialization telegram during the configuration phase. This enables a simple assignment of process telegrams to channels of the field devices, since the process telegrams also contain the channel identifier.
  • the signal format of one of the process signals includes first start information for the signal values in the respective process telegrams, the monitoring device for each of the process signals to read out the first start information from the device description file of that field device which corresponds to the channel identifier associated with the respective process signal , is trained.
  • the signal format of one of the process signals includes second start information for the signal values in the respective process telegrams, the monitoring device being designed for each of the process signals to read the second start information from the at least one initialization telegram during the configuration phase.
  • the first start information obtained in this way and / or the second start information obtained in this way enable the exact determination of a start position of the signal values in the process telegram.
  • the signal format of one of the process signals includes a data type definition for the signal values in the respective process telegrams, the monitoring device for each of the process signals to read out the data type definition from the device description file of the field device that corresponds to the channel identifier associated with the respective process signal, while the configuration phase is formed.
  • the signal format of one of the process signals includes a data length definition for the signal values in the respective process telegrams
  • the monitoring device for each of the process signals for reading out the data length definition is formed from the device description file of that field device which corresponds to the channel identifier associated with the respective process signal, during the configuration phase.
  • the monitoring device is designed to read out the names of the field devices from the at least one initialization telegram during the configuration phase, the monitoring device being designed to output a data record containing at least one of the signal values of one of the process signals and the name of the respective process signal includes associated field device.
  • the monitoring device is designed to read out the names of the process signals from the device description file of that field device which corresponds to the channel identifier associated with the respective process signal, during the configuration phase, the monitoring device being designed to output a data record containing at least one of the Comprises signal values of one of the process signals and the name of the respective process signal.
  • the monitoring device is designed to read out the names of the field devices from the at least one initialization telegram during the configuration phase, the monitoring device being designed to read out the names of the process signals from the device description file of that field device which corresponds to the channel identifier associated with the respective process signal, is designed during the configuration phase, and wherein the monitoring device is designed to output a data record which includes at least one of the signal values of one of the process signals, the name of the respective process signal and the name of the field device assigned to the respective process signal.
  • the data record can in particular be output via a user station.
  • the output of such a data record enables the user to quickly grasp the current state of the process or the course of the process so that he can carry out any necessary operator interventions without delay.
  • the data record includes the channel identifier of the channel assigned to the respective process signal. This makes it easier for the operator to record the current status of the process or the course of the process, particularly when multi-channel field devices are present.
  • the impermissible value range for the signal values of one of the process signals is derived by means of a knowledge base obtained from the database or by means of a process model obtained from the database.
  • the knowledge base can be constructed qualitatively, for example in the form of an expert system, or quantitatively, for example in the form of a neural network.
  • the process model is a model that allows the normal behavior of the process to be simulated.
  • the impermissible value range for the signal values of one of the process signals is derived in such a way that it is time-dependent. This means that the impermissible range of values is not fixed statically but variable over time. This improves the accuracy of the detection of a fault at least when it is known how a signal value changes over time during a normal course of the process.
  • the impermissible value range for the signal values of one of the process signals is derived in such a way that it is dependent on at least one signal value of another of the process signals. This improves the accuracy detection of a fault at least when it is known how a signal value changes in a normal course of the process as a function of another signal value.
  • a passive reading device for example a network TAP, is a device which is designed to read telegrams in a network, but not to send telegrams to the network sent telegrams are not affected. If the reading device is passive, in contrast to the field devices that are active network participants, it does not have to be taken into account when planning the automation system, so that the monitoring device system according to the invention can easily be provided in any automation system based on an industrial data communication network .
  • the object is achieved by a computer program for carrying out a method according to the invention when it is executed on a computer or processor.
  • Fig. 1 illustrates in a schematic representation exemplary embodiments of an automation system 1 based on an industrial data communication network 2 according to the prior art.
  • the automation system 1 of the Fig. 1 comprises an industrial data communication network 2 to which a process control device 3, a first field device 4.1 and a second field device 4.2 are connected.
  • the automation system also includes a monitoring computer 5 which is superordinate to the process control device 3 and is connected to the process control device 3.
  • the process control device 3 can be a programmable logic controller (PLC).
  • PLC programmable logic controller
  • the monitoring computer 5 can be a suitably equipped personal computer (PC).
  • a first monitoring module 6.1 is integrated directly into the software of the first field device 4.1 and a second monitoring module 6.2 is integrated directly into the software of the second field device 4.2.
  • a monitoring module 7 is integrated directly into the software of the process control device 3.
  • a monitoring module 8 is integrated directly into the software of the higher-level monitoring computer 5.
  • Such monitoring modules 6, 7, 8 have to be configured in a complex manner in order to be able to monitor the respective process.
  • An installation of the monitoring modules 6, 7, 8 in the individual field devices 4 or the process control device 3 requires a modification of the software of the field devices 4 and the software of the process control device 3.
  • only those process signals can be taken into account that are also from the process control device 3 are forwarded. Modifications of the process signals by the process control device 3 cannot be ruled out.
  • Fig. 2 illustrates in a schematic representation an exemplary embodiment of an automation system 1 based on an industrial data communication network 2 with a monitoring device 10 according to the invention.
  • the invention creates a monitoring device for monitoring a process PZ (see Fig. 7 ), which is controlled by means of an automation system 1 which comprises an industrial data communication network 2, a process control device 3 connected to the industrial data communication network 2, and one or more field devices 4 connected to the industrial data communication network 2, several process signals PS being provided in the automation system 1, whereby each of the process signals PS has a signal format SF (see Fig.
  • a channel 9 is assigned to one of the field devices 4, and where for each of the process signals PS signal values SW in the respectively assigned signal format SF can be transmitted together with a channel identifier KK of the respective channel 9 in a process telegram PT via the industrial data communication network 2, wherein the monitoring device 10 for the automatic creation of a process signal description PSB (see Fig. 6 ) during a configuration phase KP (see Fig. 3 ) of the monitoring device 10 based on at least one initialization telegram IT for the automation system 1 transmitted between the process control device 3 and at least one of the field devices 4 during an initialization phase of the industrial data communication network 2 and based on device description files GB (see Fig.
  • the process signal description PSB specifying the associated signal format SF and the associated channel identifier KK for at least one of the process signals PS
  • the monitoring device 10 for the automatic creation of a database DB (see Fig. 3 ) during a learning phase LP (see Fig. 3 ) of the monitoring device 10, the database DB for at least one of the process signals PS comprising several signal values SW of the respective process signal PS, which are each provided with a time stamp ZT, the signal values SW and the associated time stamp ZT with the aid of the process signal description PSB
  • a plurality of process telegrams PT transmitted via the industrial data communication network 2 are extracted, with at least one impermissible value range UW (see FIG.
  • the process signals PS comprise at least one impermissible value range for each UW is derived, at least one measurement signal of a sensor that is connected to one of the channels 9 of one of the field devices 4, and / or at least one control signal for an actuator that is connected to one of the channels 9 of one of the field devices 4.
  • the industrial data communication network 2 is an industrial Ethernet 2.
  • the impermissible value range UW for the signal values SW of one of the process signals PS is derived by means of a knowledge base obtained from the database DB or by means of a process model obtained from the database.
  • the impermissible value range UW for the signal values SW of one of the process signals PS is derived in such a way that it is time-dependent.
  • the impermissible value range UW for the signal values SW of one of the process signals PS is derived in such a way that it is dependent on at least one signal value SW of another of the process signals PS.
  • a first field device 4.1 For example, a first field device 4.1, a second field device 4.2 and a third field device 4.N are provided.
  • the first field device 4.1 is multi-channel and comprises seven channels 9.1 to 9.7.
  • a channel identifier KK1 to KK7 is assigned to each of the channels 9.1 to 9.7.
  • the second field device 4.2 has a similar structure.
  • the third field device 4.N has a single-channel structure, with the identifier KK being assigned to the channel 9.
  • Actuators or sensors are connected to at least some of the channels 9, 9.1 to 9.7.
  • Process telegrams PT can be transmitted via the industrial data communication network 2, each of which includes at least one signal value SW, a time stamp TT assigned to the respective signal value SW and a channel identifier KK assigned to the respective signal value.
  • initialization telegrams IT can be transmitted via the industrial data communication network 2, which are required during a system start of the automation system 1.
  • the assigned time stamp ZT indicates the point in time at which the measured value SW was measured.
  • the channel identifier KK indicates the channel 9 to which the sensor detected the measured value SW is connected. If, on the other hand, the signal value SW is a control value SW, then the time stamp ZT indicates the point in time at which the control value SW was output by the process control device 3. In this case, the channel identifier KK indicates to which channel 9 the control value SW is addressed in order to control an actuator connected there.
  • the industrial data communication network 2 can be an Industrial Ethernet 2, which can be based on levels 1-2 of the ISO-OSI standard. It can thus use the Ethernet transmission technology and the bus access method of the Ethernet standard, examples of Industrial Ethernets 2 are Profinet, Ethernet / IP or EtherCAT.
  • the industrial data communication network 2 can transmit process signals PS between field devices 4 and at least one higher-level process control device 3 serve.
  • the process control device 3 can in particular be designed as a programmable logic control device (PLC) 3. At least some of the field devices 4 can be used to measure process variables, such as temperatures, fill levels, pressures, etc. by means of at least one sensor.
  • PLC programmable logic control device
  • the field devices 4 are designed to send process signals PS via the industrial data communication network 2 to the process control device 3, the signal values SW of which are measured values SW of the process variables. Furthermore, the process control device 3 is designed to derive control values SW from the measured values SW of the received process signals PS and to send the control values SW as signal values SW of a process signal PS via the industrial data communication network 2 to the field devices 4. At least some of the field devices 4 are designed such that they can influence the process variables on the basis of the control values SW of the received process signals PS.
  • the control of the process PZ in the industrial data communication network 2 takes place via a cyclic data transfer between the process control device 3 and the field devices 4.
  • the field devices 4 exchange measured values SW with the process control device 3 at regular intervals. generated for the corresponding actuators.
  • the communication between the process control unit 3 and the field device 4 is generally cyclical, the process control device 3 receiving the measurement signals PS from the individual field devices 4 within a specified cycle time and sending the control signals to the field devices.
  • the measured values SW of the field devices 4 and the control values SW of the process control device 3 can provide information about the state of the controlled process PZ or possible process errors. For example, it is possible to detect deviations between the measured values SW and setpoint values (e.g. temperatures or pressures that are too high).
  • Fig. 3 illustrates in a schematic representation an exemplary embodiment of a method for operating the monitoring device 10 according to the invention.
  • the invention creates a computer program for carrying out a method according to the invention when it is executed on a computer or processor.
  • Fig. 3 the functional principle of the monitoring device 10 is shown.
  • the data processed by the monitoring device 10 are shown on the left. These are essentially data packets that are recorded by the passive reading device 11 from the industrial data communication network 2 as well as standardized device description files GB of the individual field devices 4.
  • the monitoring device 10 works in three phases KP, LP, BP and produces the phases below the phases KP, LP, Results presented by BP PSB, DB, ST.
  • the self-configuration of the monitoring device 10 is based on the recording of initialization telegrams IT when the automation system 1 starts up during a configuration phase KP.
  • the positions of the signal values SW in the process telegrams PT of the industrial data communication network s 2 are automatically determined from the initialization telegrams IT and the standardized device description files GB.
  • the monitoring device 10 then extracts signal values SW of the correct process behavior using the process signal description PSB in a learning phase LP.
  • a comparison of new signal values SW with inadmissible areas UW derived from the historical database DB is carried out in order to identify a fault ST.
  • the advantage of the present invention is in particular that the monitoring device 10 according to the invention automatically configures itself. Another advantage is that the monitoring device 10 according to the invention, in contrast to the existing monitoring modules, configures itself when it is introduced into any industrial data communication network 2. After an automatic configuration phase KP and an automatic learning phase LP, it begins to automatically detect faults ST in an operating phase BP, without manual configuration being necessary.
  • the invention can be used in all automation systems 1 which require process monitoring and which also have an industrial data communication network 2.
  • the described monitoring device 9 can be integrated into such automation systems 1 as a passive network subscriber and, after an automatic configuration phase KP and an automatic learning phase LP in an operating phase BP, automatically detects errors ST and anomalies ST in the course of the process PZ.
  • Fig. 4 illustrates in a schematic representation an exemplary initialization telegram IT of an automation system 1 based on an industrial data communication network 2.
  • the monitoring device 10 is designed for each of the field devices 4 to read out the channel identifier KK from the at least one initialization telegram IT during the configuration phase KP.
  • the monitoring device 10 is designed for each of the field devices 4 to read out a manufacturer identifier HK and / or a device type identifier GK from the at least one initialization telegram IT during the configuration phase KP.
  • the monitoring device 10 is designed for each of the field devices 4 to select the associated device description file GB on the basis of the manufacturer identifier HK and / or the device type identifier GK.
  • the in Fig. 4 The initialization telegram IT shown is an example of a Profinet Connect Frame.
  • Fig. 5 illustrates in a schematic representation an exemplary device description file GB of a field device 4 for an automation system 1 based on an industrial data communication network 2 and an exemplary process telegram PT of an automation system 1 based on an industrial data communication network 2.
  • the device description files GB are stored in the monitoring device 10.
  • the signal format SF of one of the process signals PS includes first start information SIG for the signal values SW in the respective process telegrams PT, the monitoring device 10 for each of the process signals PS for reading out the first start information SIG from the device description file GB of that field device 4 , which corresponds to the channel identifier KK associated with the respective process signal, is formed.
  • the signal format SF of one of the process signals PS includes second start information SIT for the signal values SW in the respective process telegrams PT, the monitoring device 10 for each of the process signals PS for reading out the second start information SIT from the at least one initialization telegram during the Configuration phase KP is formed.
  • the signal format SF of one of the process signals PS includes a data type definition DT for the signal values SW in the respective process telegrams PT, the monitoring device 10 for each of the process signals PS for reading out the Data type definition DT from the device description file GB of that field device 4 which corresponds to the channel identifier KK belonging to the respective process signal PS, is formed during the configuration phase KP.
  • the signal format SF of one of the process signals PS includes a data length definition DL for the signal values SW in the respective process telegrams PT, the monitoring device 10 for each of the process signals PS for reading out the data length definition DL from the device description file GB of that field device 4 which corresponds to the channel identifier KK belonging to the respective process signal PS, while the configuration phase KP is formed.
  • the monitoring device 10 is designed to read out the names of the field devices 4 from the at least one initialization telegram IT during the configuration phase KP, the monitoring device 10 being designed to output a data record containing at least one of the signal values SW of one of the process signals PS and the name of the field device 4 assigned to the respective process signal PS.
  • the monitoring device 10 is designed to read out names NP of the process signals PS from the device description file GB of the field device 4 which corresponds to the channel identifier KK associated with the respective process signal PS, during the configuration phase KP, the monitoring device 10 for output of a data record is formed which comprises at least one of the signal values SW of one of the process signals PS and the name NP of the respective process signal PS.
  • the monitoring device 10 is designed to read out the names of the field devices 4 from the at least one initialization telegram IT during the configuration phase KP, the monitoring device 10 to read out names NP of the process signals PS from the device description file GB of that field device 4 which corresponds to the channel identifier KK belonging to the respective process signal PS, is designed during the configuration phase KP, and the monitoring device 10 is designed to output a data record containing at least one of the signal values SW of one of the process signals PS, the name NP of the respective process signal PS and the name of the field device 4 assigned to the respective process signal PS.
  • the data record includes the channel identifier KK of the channel 9 assigned to the respective process signal PS.
  • the in Fig. 5 Process telegrams PT shown are, for example, a Profinet frame.
  • Fig. 6 illustrates in a schematic representation an exemplary process signal description PSB of a monitoring device 10 according to the invention.
  • a process signal description PSB is shown, which describes the process signals PS1 and PS2 by way of example.
  • the process signal PS1 is described by the signal format SF1 and by the channel identifier KK 1.
  • the process signal PS2 is described by the signal format SF2 and the channel separation KK2.
  • Fig. 7 illustrates in a schematic representation a learning phase LP and an operating phase BP of a monitoring device 10 according to the invention.
  • the mode of operation of the monitoring device 10 is explained, without loss of generality, using an example in which the industrial data communication network 2 is an Industrial Ethernet 2, namely a Profinet 2.
  • the names of the field devices 4 in Profinet 2 can be extracted from first initialization telegrams IT, namely from so-called Profinet frames IT, which can be recorded when the Profinet 2 system starts up.
  • second initialization telegrams IT namely so-called Profinet Connect Frames IT
  • a 2nd initialization telegram IT ie a data packet containing information on establishing a connection
  • the extracted information on different levels of the Profinet protocol stack ie in different sections of the data package
  • the telegram identification (frame ID) and the second start information SIT (frame offsets) can be used in the learning phase LP and operating phase BP to identify signal values SW.
  • the manufacturer identifier HK (Vendor ID) and the device type identifier GK (Device ID) can be used to uniquely identify a device description file GB (GSDML file) for the respective field device 4.
  • the extracted module names (module ID) and submodule names (submodule ID) can be used to determine the channel identifiers KK of the field devices 4, so that the process signals PS can be assigned to the channels 9 of the field devices 4.
  • the channel identifiers KK can be present as MAC addresses.
  • the device description files GB for the field devices 4 can be analyzed.
  • the required device description files GB can be clearly identified using the previously determined manufacturer identifier HK and / or using the device type identifier GK.
  • the descriptions of the process signals PS which are to be evaluated in the learning phase LP and in the operating phase BP, can be identified via the extracted module names (module ID) and submodule names (submodule ID).
  • the descriptions for each of the process signals PS, the respective name NP and the data type definition DT, the data length definition DL and the first start information SIG for the signal values SW can be determined from the device description files GB.
  • the first start information SIG is required to calculate the exact positions of the signal values SW of the individual process signals PS in the section for the signal values SW in the process telegram PT.
  • the second start information SIT extracted from the second initialization telegrams IT only gives the beginning of the section for the signal values SW in a cyclic PROFINET data package.
  • the first start information SIG and the second start information SIT are thus added up in order to determine the exact start position of the signal values SW in the process telegram PT.
  • the data records can be used when logging sensor signals.
  • the data records can also be used in the operating phase BP when errors are output.
  • the data types, the information as to whether signal values SW should be interpreted as bit fields, and the information about the number of bytes that are used to represent a signal value SW in the PROFINET frame, can be used as a numerical value for the correct interpretation of the process signal PS will.
  • anomalies are assumed if the learned barriers are significantly below or exceeded.
  • the outlined procedure is particularly suitable for cyclical processes, since the normal behavior of the process PZ can be learned in the LP learning phase. In such cyclical processes, the deviations from normal behavior can be interpreted as indicators of a process error.
  • process models or more complex rules in the knowledge base can be used as simple barriers for the signal values SW in the monitoring device 10, since, for example, dependencies between the individual process signals PS and time dependencies in the process signals PS can also be used for error detection.
  • exemplary embodiments of the device according to the invention can be implemented at least partially in hardware or at least partially in software.
  • the implementation can be carried out using a digital storage medium such as a floppy disk, a DVD, a Blu-ray disc, a CD, a ROM, a PROM, an EPROM, an EEPROM or a FLASH memory, a hard disk or other magnetic memory or optical memory, on which electronically readable control signals are stored, which can interact with a programmable computer system in such a way that one or more or all of the functional elements of the device according to the invention are implemented.
  • a digital storage medium such as a floppy disk, a DVD, a Blu-ray disc, a CD, a ROM, a PROM, an EPROM, an EEPROM or a FLASH memory, a hard disk or other magnetic memory or optical memory, on which electronically readable control signals are stored, which can interact with a programmable computer system in such a way that one or more or all of the functional elements of the device
  • a programmable logic component for example a field-programmable gate array, an FPGA
  • a field-programmable gate array can interact with a microprocessor in order to implement one of the devices described herein.
  • embodiments of the method according to the invention can be implemented by means of a device be carried out, which is implemented at least partially in hardware or at least partially in software.
  • the implementation can be carried out using a digital storage medium such as a floppy disk, a DVD, a Blu-ray disc, a CD, a ROM, a PROM, an EPROM, an EEPROM or a FLASH memory, a hard disk or other magnetic memory or optical memory, on which electronically readable control signals are stored, which can interact with a programmable computer system in such a way that the method according to the invention is carried out.
  • the methods are performed by any hardware device.
  • This can be universally applicable hardware such as a computer processor (CPU) or hardware specific to the process, such as an ASIC,
  • Another exemplary embodiment comprises a computer on which the computer program for performing one of the methods described herein is installed.
  • embodiments of the present invention can be implemented as a computer program with a program code, the program code being effective to carry out one of the methods when the computer program runs on a computer.
  • the program code can for example also be stored on a machine-readable carrier.
  • Some exemplary embodiments of the invention include a, preferably non-volatile data carrier or data memory which has a computer program with electronically readable control signals which is capable of interact with a programmable computer system in such a way that one of the methods described herein is carried out.
  • Embodiments of the present invention can be implemented as a computer program product with a computer program, the computer program being effective to carry out one of the methods when the computer program runs on a computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Claims (15)

  1. Dispositif de surveillance pour surveiller un processus (PZ) qui est commandé au moyen d'un système d'automatisation (1) qui comporte un réseau de communication de données industriel (2), un appareil de commande de processus (3) raccordé au réseau de communication de données industriel (2) et un ou plusieurs dispositifs de terrain (4) raccordés au réseau de communication de données industriel (2), dans lequel sont prévus, dans le système d'automatisation (1), plusieurs signaux de processus (PS), où à chacun des signaux de processus (PS) est attribué un format de signal (SF) et un canal (9) de l'un des dispositifs de terrain (4), et où pour chacun des signaux de processus (PS) peuvent être transmises par le réseau de communication de données industriel (2) des valeurs de signal (SW) dans le format de signal (SF) attribué respectif ensemble avec un identificateur (KK) du canal respectif (9) chaque fois par un télégramme de processus (PT),
    dans lequel le dispositif de surveillance (10) est conçu pour élaborer automatiquement une description de signal de processus (PSB) pendant une phase de configuration (KP) du dispositif de surveillance (10) à l'aide d'au moins un télégramme d'initialisation (IT) pour le système d'automatisation (1) transmis pendant une phase d'initialisation du réseau de communication de données industriel (2) entre l'appareil de commande de processus (3) et au moins l'un des dispositifs de terrain (4) et à l'aide de fichiers de description de dispositif (GB) qui sont associés, chacun, à l'un des dispositifs de terrain (4), où la description de signal de processus (PSB) indique, pour au moins un des signaux de processus (PS), le format de signal (SF) associé et l'identificateur de canal (KK) associé,
    dans lequel le dispositif de surveillance (10) est conçu pour élaborer automatiquement une base de données (DB) pendant une phase d'apprentissage (LP) du dispositif de surveillance (10), dans lequel la base de données (DB) comporte, pour au moins l'un des signaux de processus (PS), plusieurs valeurs de signal (SW) du signal de processus respectif (PS) qui sont pourvues, chacune, d'un horodatage (ZT), dans lequel les valeurs de signal (SW) et l'horodatage associé (ZT) sont extraits, à l'aide de la description de signal de processus (PSB) de plusieurs télégrammes de processus (PT) transmis par le réseau de communication de données industriel (2), où pour au moins un des signaux de processus (PS) est dérivée de la base de données (DB), pour les valeurs de signal (SW) du signal de processus respectif (PS), au moins une plage de valeurs non admissible (UW), et
    dans lequel le dispositif de surveillance (10) est conçu pour détecter automatiquement une perturbation (ST) dans le processus (PZ) pendant une phase de fonctionnement (BP) du dispositif de surveillance (10) au cas où une valeur de signal actuelle (SW) des valeurs de signal (SW) de l'un des signaux de processus (PS) se situe dans la plage de valeurs non admissible (UW), dans lequel la valeur de signal (SW) actuelle est extraite à l'aide de la description de signal de processus (PSB) d'un télégramme de processus actuel (PT) parmi les télégrammes de processus (PT) transmis par le réseau de communication de données industriel (2).
  2. Dispositif de surveillance selon la revendication précédente, dans lequel les signaux de processus (PS) pour lesquels est dérivée respectivement au moins une plage de valeurs non admissible (UW) comportent au moins un signal de mesure d'un capteur qui est raccordé à l'un des canaux (9) de l'un des dispositifs de terrain (4), et/ou au moins un signal de commande pour un actionneur qui est raccordé à l'un des canaux (9) de l'un des dispositifs de terrain (4).
  3. Dispositif de surveillance selon l'une des revendications précédentes, dans lequel le dispositif de surveillance (10) est conçu pour lire de l'au moins un télégramme d'initialisation (IT), pour chacun des dispositifs de terrain (4), un identificateur de fabricant (HK) et/ou un identificateur de type d'appareil (GK) pendant la phase de configuration (KP), dans lequel le dispositif de surveillance (10) est conçu pour sélectionner, pour chacun des dispositifs de terrain (4), le fichier de description de dispositif associé (GB) sur base de l'identificateur de fabricant (HK) et/ou de l'identificateur de type d'appareil (GK).
  4. Dispositif de surveillance selon l'une des revendications précédentes, dans lequel le dispositif de surveillance (10) est conçu pour lire, pour chacun des dispositifs de terrain (4), de l'au moins un télégramme d'initialisation (IT) l'identificateur de canal (KK) pendant la phase de configuration (KP).
  5. Dispositif de surveillance selon l'une des revendications précédentes, dans lequel le format de signal (SF) de l'un des signaux de processus (PS) comporte une première information de départ (SIG) pour les valeurs de signal (SW) dans les télégrammes de processus respectifs (PT), dans lequel le dispositif de surveillance (10) est conçu pour lire, pour chacun des signaux de processus (PS), la première information de départ (SIG) du fichier de description de dispositif (GB) de l'appareil de terrain (4) qui correspond à l'identificateur de canal (KK) appartenant au signal de processus respectif.
  6. Dispositif de surveillance selon l'une des revendications précédentes, dans lequel le format de signal (SF) de l'un des signaux de processus (PS) comporte une deuxième information de départ (SIT) pour les valeurs de signal (SW) dans les télégrammes de processus (PT) respectifs, dans lequel le dispositif de surveillance (10) est conçu pour lire, pour chacun des signaux de processus (PS), la deuxième information de départ (SIT) de l'au moins un télégramme d'initialisation (IT) pendant la phase de configuration (KP).
  7. Dispositif de surveillance selon l'une des revendications précédentes, dans lequel le format de signal (SF) de l'un des signaux de processus (PS) comporte une définition de type de données (DT) pour les valeurs de signal (SW) dans les télégrammes de processus (PT) respectifs, dans lequel le dispositif de surveillance (10) est conçu pour lire, pour chacun des signaux de processus (PS), la définition de type de données (DT) du fichier de description de dispositif (GB) du dispositif de terrain (4) qui correspond à l'identificateur de canal (KK) appartenant au signal de processus respectif (PS) pendant la phase de configuration (KP).
  8. Dispositif de surveillance selon l'une des revendications précédentes, dans lequel le format de signal (SF) de l'un des signaux de processus (PS) comporte une définition de longueur de données (DL) pour les valeurs de signal (SW) dans les télégrammes de processus respectifs (PT), dans lequel le dispositif de surveillance (10) est conçu pour lire, pour chacun des signaux de processus (PS), la définition de longueur de données (DL) du fichier de description de dispositif (GB) du dispositif de terrain (4) qui correspond à l'identificateur de canal (KK) appartenant au signal de processus respectif (PS) pendant la phase de configuration (KP).
  9. Dispositif de surveillance selon l'une des revendications précédentes, dans lequel le dispositif de surveillance (10) est conçu pour lire les noms des dispositifs de terrain (4) de l'au moins un télégramme d'initialisation (IT) pendant la phase de configuration (KP) et dans lequel le dispositif de surveillance (10) est conçu pour sortir un ensemble de données qui comporte au moins l'une des valeurs de signal (SW) de l'un des signaux de processus (PS) et le nom du dispositif de terrain (4) associé au signal de processus (PS) respectif.
  10. Dispositif de surveillance selon l'une des revendications 1 à 8, dans lequel le dispositif de surveillance (10) est conçu pour lire les noms (NP) des signaux de processus (PS) du fichier de description de dispositif (GB) du dispositif de terrain (4) qui correspond à l'identificateur de canal (KK) appartenant au signal de processus respectif (PS) pendant la phase de configuration (KP) et dans lequel le dispositif de surveillance (10) est conçu pour sortir un ensemble de données qui comporte au moins une des valeurs de signal (SW) de l'un des signaux de processus (PS) et le nom (NP) du signal de processus (PS) respectif.
  11. Dispositif de surveillance selon l'une des revendications 1 à 8, dans lequel le dispositif de surveillance (10) est conçu pour lire les noms des dispositifs de terrain de l'au moins un télégramme d'initialisation (IT) pendant la phase de configuration (KP), dans lequel le dispositif de surveillance (10) est conçu pour lire les noms (NP) des signaux de processus (PS) du fichier de description de dispositif (GB) du dispositif de terrain (4) qui correspond à l'identificateur de canal (KK) appartenant au signal de processus respectif (PS) pendant la phase de configuration (KP), et dans lequel le dispositif de surveillance (10) est conçu pour sortir un ensemble de données qui comporte au moins une des valeurs de signal (SW) de l'un des signaux de processus (PS), le nom (NP) du signal de processus respectif (PS) et le nom du dispositif de terrain (4) associé au signal de processus respectif (PS).
  12. Dispositif de surveillance selon l'une des revendications précédentes, dans lequel la plage de valeurs non admissible (UW) pour les valeurs de signal (SW) d'un des signaux de processus (PS) est dérivée au moyen d'une base de connaissances obtenue à partir de la base de données (DB) ou au moyen d'un modèle de processus obtenu à partir de la base de données.
  13. Système de dispositif de surveillance pour surveiller un processus (PZ) qui est commandé au moyen d'un système d'automatisation (1) qui comporte un réseau de communication de données industriel (2), un dispositif de commande de processus (3) raccordé au réseau de communication de données industriel (2) et un ou plusieurs dispositifs de terrain (4) raccordés au réseau de communication de données industriel (2), dans lequel le système de dispositif de surveillance comprend:
    un dispositif de surveillance (10) selon l'une des revendications 1 à 12, et
    un dispositif de lecture passif (11) qui est conçu pour lire au moins un télégramme d'initialisation (IT) transmis par le réseau de communication de données industriel (2) et pour lire les télégrammes de processus (PT) et qui est conçu pour envoyer l'au moins un télégramme d'initialisation (IT) et les télégrammes de processus (PT) au dispositif de surveillance (10).
  14. Procédé permettant de faire fonctionner un dispositif de surveillance (10) pour surveiller un processus (PZ) qui est commandé au moyen d'un système d'automatisation (1) qui comporte un réseau de communication de données industriel (2), un dispositif de commande de processus (3) raccordé au réseau de communication de données industriel (2) et un ou plusieurs dispositifs de terrain (4) raccordés au réseau de communication de données industriel (2), dans lequel sont prévus, dans le système d'automatisation (1), plusieurs signaux de processus (PS), où à chacun des signaux de processus (PS) est attribué un format de signal (SF) et un canal (9) de l'un des dispositifs de terrain (4), et où pour chacun des signaux de processus (PS) peuvent être transmises par le réseau de communication de données industriel (2) des valeurs de signal (SW) dans le format de signal (SF) attribué respectif ensemble avec un identificateur (KK) du canal respectif (9) chaque fois par un télégramme de processus (PT), aux étapes suivantes consistant à:
    élaborer automatiquement, par le dispositif de surveillance (10), une description de signal de processus (PSB) pendant une phase de configuration (KP) du dispositif de surveillance (10) à l'aide d'au moins un télégramme d'initialisation (IT) pour le système d'automatisation (1) transmis pendant une phase d'initialisation du réseau de communication de données industriel (2) entre l'appareil de commande de processus (3) et au moins l'un des dispositifs de terrain et à l'aide de fichiers de description de dispositif (GB) qui sont associés, chacun, à l'un des dispositifs de terrain (4), où la description de signal de processus (PSB) indique, pour au moins un des signaux de processus (PS), le format de signal (SF) associé et l'identificateur de canal (KK) associé,
    élaborer automatiquement, par le dispositif de surveillance (10), une base de données (DB) pendant une phase d'apprentissage (LP) du dispositif de surveillance (10), où la base de données (DB) comporte, pour au moins l'un des signaux de processus (PS), plusieurs valeurs de signal (SW) du signal de processus respectif (PS) qui sont pourvues, chacune, d'un horodatage (ZT), où les valeurs de signal (SW) et l'horodatage associé (ZT) sont extraits à l'aide de la description de signal de processus (PSB) de plusieurs télégrammes de processus (PT) transmis par le réseau de communication de données industriel (2), où pour au moins un des signaux de processus (PS) est dérivée de la base de données (DB), pour les valeurs de signal (SW) du signal de processus respectif (PS), au moins une plage de valeurs non admissible (UW), et
    détecter automatiquement, par le dispositif de surveillance (10), une perturbation (ST) dans le processus (PZ) pendant une phase de fonctionnement (BP) du dispositif de surveillance (10) au cas où une valeur de signal actuelle (SW) des valeurs de signal (SW) de l'un des signaux de processus (PS) se situe dans la plage de valeurs non admissible (UW), où la valeur de signal (SW) actuelle est extraite à l'aide de la description de signal de processus (PSB) d'un télégramme de processus actuel (PT) parmi les télégrammes de processus (PT) transmis par le réseau de communication de données industriel (2).
  15. Programme d'ordinateur pour réaliser un procédé selon la revendication précédente lorsqu'il est exécuté sur un ordinateur ou un processeur.
EP18700006.2A 2017-01-05 2018-01-02 Dispositif de surveillance autoconfigurable pour un système d'automatisation basé sur un réseau de communication de données industriel Active EP3566102B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017200134.8A DE102017200134A1 (de) 2017-01-05 2017-01-05 Selbstkonfigurierende Überwachungseinrichtung für ein auf einem industriellen Datenkommunikationsnetzwerk basierendes Automatisierungssystem
PCT/EP2018/050028 WO2018127475A1 (fr) 2017-01-05 2018-01-02 Dispositif de surveillance autoconfigurable pour un système d'automatisation basé sur un réseau de communication de données industriel

Publications (2)

Publication Number Publication Date
EP3566102A1 EP3566102A1 (fr) 2019-11-13
EP3566102B1 true EP3566102B1 (fr) 2020-11-18

Family

ID=60915553

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18700006.2A Active EP3566102B1 (fr) 2017-01-05 2018-01-02 Dispositif de surveillance autoconfigurable pour un système d'automatisation basé sur un réseau de communication de données industriel

Country Status (3)

Country Link
EP (1) EP3566102B1 (fr)
DE (1) DE102017200134A1 (fr)
WO (1) WO2018127475A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018123436A1 (de) * 2018-09-24 2020-03-26 Endress+Hauser Conducta Gmbh+Co. Kg Verfahren zum Überwachen einer Anlage der Automatisierungstechnik
DE102018128254A1 (de) 2018-11-12 2020-05-14 Endress+Hauser SE+Co. KG Verfahren zur Verbesserung derMessperformance eines zu konfigurierenden Feldgeräts der Automatisierungstechnik
DE102019106566B3 (de) 2019-03-14 2020-09-10 Samson Aktiengesellschaft Konfiguration eines zweipoligen Eingangs
DE102019133600A1 (de) * 2019-12-09 2021-06-10 Endress+Hauser SE+Co. KG Verfahren zur Optimierung einer Mess-Rate eines Feldgerätes

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1523826B1 (fr) 2002-07-18 2007-12-12 VEGA Grieshaber KG Station de bus a fonction integree de surveillance des bus
DE10252278B4 (de) 2002-11-11 2006-01-12 Abb Patent Gmbh Systemintegrierter Busmonitor
DE102005063053A1 (de) 2005-12-29 2007-07-05 Endress + Hauser Process Solutions Ag Verfahren zur Anlagenüberwachung mit einem Feldbus der Prozessautomatisierungstechnik
DE102007041240A1 (de) * 2007-08-30 2009-03-05 Endress + Hauser Process Solutions Ag Verfahren zum Verbessern einer Diagnosefunktion eines Feldgerätes
JP5364530B2 (ja) * 2009-10-09 2013-12-11 株式会社日立製作所 設備状態監視方法、監視システム及び監視プログラム
ITTV20110173A1 (it) * 2011-12-07 2013-06-08 Texa Spa Datalogger autoveicolistico autoapprendente per identificare messaggi autoveicolistici transitanti in un bus can collegante differenti unita' elettroniche di controllo autoveicolistiche
EP2881822A1 (fr) * 2013-12-05 2015-06-10 Bayer Technology Services GmbH Procédé implémenté par ordinateur et système de surveillance automatique et de détermination de l'état de l'intégralité des étapes de processus dans une unité de traitement

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102017200134A1 (de) 2018-07-05
WO2018127475A1 (fr) 2018-07-12
EP3566102A1 (fr) 2019-11-13

Similar Documents

Publication Publication Date Title
EP3566102B1 (fr) Dispositif de surveillance autoconfigurable pour un système d'automatisation basé sur un réseau de communication de données industriel
EP3519903B1 (fr) Dispositif d'interface de données à utiliser dans une machine-outil à commande numérique
EP3353610B1 (fr) Unité de liaison, système de surveillance et procédé permettant de faire fonctionner un système d'automatisation
EP3648416B1 (fr) Appareil d'automatisation à analyse de réseau intégrée et connexion en nuage
EP3251302B1 (fr) Dispositif accès via un pilote de communication générique
EP1527554B1 (fr) Reseau informatique comportant des noeuds informatiques de diagnostic
DE102009045386A1 (de) Verfahren zum Betreiben eines Feldbus-Interface
EP3306424B1 (fr) Procédé d'utilisation de données appartenant à plusieurs machines pour déterminer un état de fonctionnement d'une autre machine
EP1328853B1 (fr) Procede, dispositif et systeme pour la saisie, la visualisation ou la modification de donnees d'exploitation d'au moins une machine de l'industrie du tabac
DE102016124350A1 (de) Verfahren und System zum Überwachen einer Anlage der Prozessautomatisierung
DE102007032715A1 (de) System und Verfahren zur Überwachung des Datenverkehrs bei einem Feldbus
DE102012108990A1 (de) Verfahren zum Lokalisieren eines Feldgerätes in einer Automatisierungsanlage
DE102011005062A1 (de) Verfahren zum Bereitstellen von Daten eines Feldgeräts
EP3414632A1 (fr) Procédé et dispositif pour contrôler un traitement et une transmission de données dans une chaîne de sécurité d'un système de sécurité
WO2016026622A1 (fr) Procédé de paramétrage d'un appareil de terrain
DE102015205370A1 (de) Verfahren und Vorrichtung zur Bereitstellung von Daten für eine Zustandsüberwachung einer Maschine
DE102009046041A1 (de) Anordnung zur Bedienung von Feldgeräten in der Automatisierungstechnik mittels eines Konfigurier-/Managementsystems
EP3692422A1 (fr) Montre intelligente et procédé de maintenance d'une installation de la technique d'automatisation
DE102012112875A1 (de) Verfahren zum Fernbedienen eines Feldgeräts der Automatisierungstechnik
WO2010118864A1 (fr) Procédé permettant d'obtenir une information concernant l'usure d'un composant d'une machine et procédé de préparation d'un algorithme alternatif
DE102007054925A1 (de) Verfahren zur Überwachung eines Netzwerkes der Prozessautomatisierungstechnik
WO2012028366A1 (fr) Procédé garantissant le mode de fonctionnement correct d'une installation d'automatisation
DE102010028152A1 (de) Aufzeichnung von History-Informationen in einem Feldgerät
WO2011042258A2 (fr) Procédé pour faire fonctionner une interface de bus de terrain
DE102006062477A1 (de) Verfahren zum Betreiben eines nach dem Blockmodell arbeitenden Feldgerätes für ein verteiltes Automatisierungssystem

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190624

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200529

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018003049

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1336437

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201215

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210218

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210219

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210318

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210218

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210318

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018003049

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210102

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210131

26N No opposition filed

Effective date: 20210819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220102

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180102

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1336437

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118