EP3564629B1 - Sensor device and method for producing same - Google Patents
Sensor device and method for producing same Download PDFInfo
- Publication number
- EP3564629B1 EP3564629B1 EP19171828.7A EP19171828A EP3564629B1 EP 3564629 B1 EP3564629 B1 EP 3564629B1 EP 19171828 A EP19171828 A EP 19171828A EP 3564629 B1 EP3564629 B1 EP 3564629B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- solar cell
- sensor
- cover
- housing
- sensor apparatus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 239000000463 material Substances 0.000 claims description 37
- 238000000034 method Methods 0.000 claims description 19
- 230000003287 optical effect Effects 0.000 claims description 14
- 230000005540 biological transmission Effects 0.000 claims description 8
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 7
- 238000000149 argon plasma sintering Methods 0.000 claims description 7
- 239000002245 particle Substances 0.000 claims description 7
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 5
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 5
- 238000001125 extrusion Methods 0.000 claims description 4
- 238000001746 injection moulding Methods 0.000 claims description 4
- 239000012815 thermoplastic material Substances 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- 239000000428 dust Substances 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 239000004417 polycarbonate Substances 0.000 claims description 2
- 229920000515 polycarbonate Polymers 0.000 claims description 2
- 238000002834 transmittance Methods 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000009434 installation Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 230000003595 spectral effect Effects 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D11/00—Component parts of measuring arrangements not specially adapted for a specific variable
- G01D11/24—Housings ; Casings for instruments
- G01D11/245—Housings for sensors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D11/00—Component parts of measuring arrangements not specially adapted for a specific variable
- G01D11/24—Housings ; Casings for instruments
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the invention relates to the field of solar-powered sensor devices, in particular for the field of home automation in interior spaces.
- the invention also relates to a method of manufacturing such sensor devices.
- measuring devices are increasingly being used that measure environmental parameters such as temperature, humidity, pressure, brightness, gas concentration, dust, vibration, etc.
- such measuring devices are used indoors and equipped with an autonomous energy supply, i.e. without a mains supply.
- the measuring devices can be operated with a battery.
- the measuring devices can be operated by generating ambient energy, e.g. by using solar cells.
- silicon-based solar cells are increasingly being used.
- a-Si amorphous silicon
- Solar cells are the preferred choice.
- a disadvantage of a-Si solar cells is that, due to their typically dark brown optical appearance, they form a clear contrast to the measuring devices and their mounting environment and are therefore often judged to be unaesthetic. Since measuring devices for home automation are typically installed and mounted in visible places, for example on ceilings, walls or the like, adaptability of the optical appearance of the measuring device to the installation environment is of great interest.
- measuring devices used in home automation are typically attached to light-colored, in particular white, walls
- photovoltaic-operated measuring devices with a light, in particular white, optical appearance.
- Physical reasons make it difficult to reconcile such an appearance with a high photovoltaic output or conversion efficiency.
- To get a light or white appearance achieve a large part of the incident light must be reflected and / or scattered by the surface over the entire visible wavelength range.
- the spectral sensitivity of a-Si solar cells is highest in the visible wavelength range, so that usually a light appearance can only be achieved with high efficiency losses.
- JP 2016 157356 A and DE 10 2006 032250 A1 refer to the state of the art by way of example JP 2016 157356 A and DE 10 2006 032250 A1 referenced.
- document JP 2016 157356 A describes a wireless sensor terminal with a solar cell module as a power supply.
- document DE 10 2006 032250 A1 relates to an energy supply unit for a field device for measuring a pressure or a fill level, a field device with such an energy supply unit, the use of an energy supply unit for a field device and a method for supplying energy to such a field device.
- the object of the present invention is to at least partially or completely eliminate the disadvantages of the solutions known from the prior art for adapting the optical appearance of a sensor device operated by means of photovoltaics to its installation environment.
- a sensor device comprises at least one sensor and a housing for the at least one sensor. Furthermore, the sensor device comprises at least one solar cell for supplying energy to the at least one sensor, the at least one solar cell being attached to an outer wall of the housing.
- the term “solar cell” used herein can also be understood as “solar module”.
- the attachment of the solar cell to the outer wall of the housing can be implemented by fastening on the outside of the housing or on the inside of the housing (for example in the case of a transparent housing). Alternatively, the solar cell can be integrated into the outer wall of the housing.
- the sensor device comprises a cover which covers a photovoltaically active side of the at least one solar cell.
- the cover comprises a translucent material, in particular the cover consists at least for the most part of a translucent material.
- a sensor device that can be operated by means of photovoltaics is advantageously provided, which can be optically adapted to its installation environment without unduly impairing the energy conversion efficiency of the solar cell.
- a translucent material for the cover a cost-effective, functional and aesthetic sensor device that can be operated by means of photovoltaics can be provided.
- a method for producing a sensor device comprises the following method steps: producing a housing for at least one sensor, the housing having a receptacle for at least one solar cell; Producing a cover from translucent material, the cover being adapted to the housing; Providing at least one sensor in the housing; Placing a solar cell in the receptacle; Establishing an electrical connection between the at least one solar cell and the at least one sensor; and mounting the cover on the housing in such a way that the cover covers a photovoltaically active side of the at least one solar cell, in particular that the cover directly Contact is in direct contact with the photovoltaically active side of the at least one solar cell.
- a simple and cost-effective production method for a photovoltaic-operated sensor device is thus advantageously provided, which can be optically adapted to its mounting environment without unduly impairing the power efficiency of the solar cell.
- FIG. 1 shows a schematic sectional view of a sensor device 100 according to embodiments described herein.
- the sensor device 100 comprises at least one sensor 110 and a housing 120 for the at least one sensor 110.
- the at least one sensor 110 can comprise one or more sensors selected from the group consisting of temperature sensor, humidity sensor, pressure sensor, light sensor, acoustic sensor, magnetic field sensor , Gas concentration sensor, dust sensor, and vibration sensor or other suitable micro-electromechanical (MEMS) sensors are selected.
- MEMS micro-electromechanical
- the sensor device described herein can be a home automation sensor device, in particular for interiors.
- the sensor device 100 comprises at least one solar cell 130 for supplying energy to the at least one sensor 110.
- the at least one solar cell is typically a silicon-based solar cell.
- the solar cell can be a solar cell based on amorphous silicon (a-Si).
- the solar cell 130 is attached to an outer wall 121 of the housing 120.
- the solar cell 130 is attached to an outer wall of the housing, which is irradiated with direct or at least diffuse light in the assembly environment.
- the outer wall 121 of the housing 120, to which the solar cell 130 is attached is typically arranged opposite a mounting side 123 of the housing.
- the mounting side 123 is to be understood as that side or that wall of the housing which is used to mount the sensor device on a mounting surface, for example a wall.
- the mounting side 123 of the housing is more typically in contact with the mounting surface at least partially indirectly (eg with spacers) or directly (ie directly without spacers).
- one or more solar cells can be attached to one or more of the side walls 124 of the housing (not explicitly shown in the figures).
- the sensor device 100 comprises a cover 140, as shown schematically in FIG Figure 1 is shown.
- the cover 140 is designed in such a way that it covers a photovoltaically active side 131 of the solar cell 130.
- the photovoltaically active side of the solar cell is typically a side of the solar cell facing away from the housing.
- the cover 140 comprises a translucent material 141.
- at least that part of the cover 140 which covers the solar cell 130 consists of a translucent material 141.
- at least 80% of the cover consists of translucent material.
- the entire cover 140 consists of a translucent material.
- the embodiments described herein provide a solution, which is improved over the prior art, for adapting the optical appearance of a sensor device operated by means of photovoltaics to its mounting environment.
- a sensor device that can be operated by means of photovoltaics is provided, which can be optically adapted to its installation environment without unduly impairing the power efficiency of the solar cell.
- a translucent material for the cover an inexpensive and easily manufactured sensor device with a homogeneous appearance can be achieved to be provided.
- the cover is advantageously designed in such a way that incident light is scattered by the cover in the visible spectral range and thus optically covers the solar cell.
- the energy conversion of the solar cell is advantageously only slightly impaired. This means that the cover has a high optical transmission in the spectral range relevant for the solar cell.
- the cover 140 is in direct contact with the photovoltaically active side 131 of the solar cell 130. This advantageously makes it possible to achieve a high integral transmission, since optical interface effects can be avoided.
- a defined distance is provided between the cover 140 and the photovoltaically active side 131 of the solar cell 130.
- a high integral transmission can advantageously be achieved, since the diffuse transmission of a larger proportion of the cover 140 can be used.
- An example of this would be that light can also reach the solar cell 130 through the side walls 124, so that if the sensor device 100 is at least partially irradiated from the side, a higher energy conversion would be achieved by the solar cell 130.
- FIG. 10 shows a schematic sectional view of a detail of a cover 140 according to the embodiments described herein that is in direct contact with a solar cell 130 stands.
- the irradiated light is shown by way of example by the arrows 150.
- Reflected light components are shown by the arrows 151.
- the light components arriving at the solar cell are on the one hand the directly transmitted light components (shown by the arrows 153) and the diffusely (scattered) transmitted light components (shown by the arrows 152).
- the translucent material has an integral transmittance Tint of, for example, T int 70%, in particular T int 80%, in particular T int 85%.
- the integral transmittance Tint of the translucent material Tint can be 90%.
- the direct transmittance T d of the translucent material is typically relatively low.
- the direct transmittance T d of the translucent material can be T d 10%, in particular T d 8%, in particular T d 5%.
- the direct transmittance T d is typically 3%. It should be pointed out that the values for the integral transmittance Tint and the values for the direct transmittance T d can be set according to the desired appearance, for example in order to achieve a suitable compromise between appearance, transmission and costs.
- the values given here for the integral transmittance T int and the values for the direct transmittance T d apply to the wavelength range 350 nm ⁇ 1200 nm, in particular for the wavelength range 400 nm ⁇ 1100 nm.
- the translucent material is advantageously configured in such a way that the scattered light component of the integral transmittance is relatively high, so that a homogeneous Appearance of the cover and thus the sensor device can be realized.
- a homogeneously bright, in particular white, appearance of the cover and thus of the sensor device can advantageously be realized.
- the optical transmission of the translucent material and the quantum efficiency of the solar cell are matched to one another. This means in particular that the optical transmission of the translucent material is particularly high at the wavelengths at which the solar cell has a high energy conversion efficiency.
- the translucent material consists of a thermoplastic material.
- the cover can be produced from translucent material by means of an injection molding process or by means of an extrusion process.
- the translucent material can comprise a polymethyl methacrylate (PMMA).
- the translucent material can comprise a polycarbonate (PC).
- the housing 120 for the at least one sensor 110 can also be produced from a thermoplastic material, in particular from the same thermoplastic material as the cover 140.
- the housing can function as a cover in one Integrate component. This functional integration allows the assembly effort and thus costs to be reduced.
- particles 145 with light-scattering properties are embedded in the translucent material, as is exemplified in FIG Figure 1 is shown.
- the particles 145 can be colored to adapt the optical appearance of the cover. In other words, by adding particles with light-scattering properties, the light-scattering property of the cover is adjusted.
- the translucent material is adapted in such a way that it converts incident photons of the incident light into wavelengths at which the quantum efficiency of the solar cell is higher than the wavelengths of the original incident light.
- this is implemented through the use of fluorescent materials.
- the use of PMMA can provide a translucent material with fluorescent properties, so that the integral transmittance can be improved, i.e. increased.
- the cover 140 can be plate-shaped, as is exemplified in FIG Figure 1 shown.
- the cover 140 can be connected to the housing 120 via suitable fastening means.
- the fastening means can be provided, for example, by a snap or slide mechanism between cover 140 and housing 120. Alternatively or in addition, screws or other suitable fastening means can also be used.
- the cover is typically adapted to the shape of the housing.
- the cover 140 can be configured such that the cover at least partially engages around the side walls 124 of the housing 120.
- Figure 1 shows an exemplary embodiment in which the cover 140 completely encompasses the side walls 124 of the housing 120.
- the housing 120 has a light-permeable section 122, as is exemplified in FIG Figure 1 is shown.
- the translucent portion 122 can be an opening in the housing.
- the provision of a transparent section 122 in the housing is particularly advantageous for a configuration in which at least one sensor is designed as a light sensor.
- the light sensor is typically arranged below the light-permeable section 122, as is exemplified in FIG Figure 1 is shown.
- the housing 120 has a receptacle 125 for the solar cell 130.
- the receptacle can be a recess in the outer wall 121 of the housing to which the solar cell is attached.
- the cover 140 completely covers the outer wall 121 of the housing to which the solar cell is attached, as is exemplified in FIGS Figures 2A and 2B emerges.
- Figure 2A shows a schematic top view of a sensor device according to embodiments described herein without a cover
- FIG Figure 2B shows a schematic top view of a sensor device according to embodiments described herein with cover 140.
- the outer wall 121 of the housing 120, to which the solar cell is attached has a first roughness value R a1 , which is adapted to a second roughness value R a2 of the solar cell 130, in particular so that 0.75 ⁇ R a2 ⁇ R a1 ⁇ 1.25 ⁇ R a2 .
- This can be advantageous in order to achieve a homogeneous appearance.
- FIG. 10 shows a flow diagram to illustrate a method 200 for producing a sensor device according to embodiments described herein.
- the method 200 comprises the following method steps: producing (represented by block 210) a housing 120 for at least one sensor 110, the housing having a receptacle 125 for a solar cell 130; Manufacture (represented by block 220) a cover 140 made of translucent material, comprising a fluorescent material, whereby impinging photons of the incident light are converted into wavelengths at which the quantum efficiency of the solar cell is higher than at the wavelengths of the originally incident light, the cover 140 is adapted to the housing 120; Providing (represented by block 230) at least one sensor in the housing; Placing (represented by block 240) a solar cell 130 in the receptacle 125; Establishing (represented by block 250) an electrical connection between the solar cell 130 and the at least one sensor 110; and mounting (represented by block 260) the cover 140 on the housing such that the cover 140 covers in direct contact with the photovoltaically active side 131 of
- the production 220 of the cover 140 includes embedding particles 145 with light-scattering properties.
- the production 210 of the housing 120 and / or the production 220 of the cover 140 comprises an injection molding process and / or an extrusion process.
- a sensor device operated by means of photovoltaics and a corresponding manufacturing method are advantageously provided which, compared to the prior art, enable an improved and more cost-effective solution for setting and adapting the optical appearance without unduly impairing the energy conversion efficiency of the solar cell.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Description
Die Erfindung bezieht sich auf das Gebiet der solarbetriebenen Sensorvorrichtungen, insbesondere für den Anwendungsbereich der Hausautomation in Innenräumen. Ferner betrifft die Erfindung ein Herstellungsverfahren derartiger Sensorvorrichtungen.The invention relates to the field of solar-powered sensor devices, in particular for the field of home automation in interior spaces. The invention also relates to a method of manufacturing such sensor devices.
Im Zuge der Entwicklung der Hausautomation werden zunehmend Messgeräte eingesetzt, die Umgebungsgrößen wie Temperatur, Feuchte, Druck, Helligkeit, Gaskonzentration, Staub, Vibration usw. messen. Typischerweise werden derartige Messgeräte im Innenbereich verwendet und mit einer autonomen Energieversorgung, d.h. ohne Netzversorgung, ausgestattet. Beispielsweise können die Messgeräte mit einer Batterie betrieben werden. Alternativ können die Messgeräte durch die Gewinnung von Umgebungsenergie, z.B. durch die Verwendung von Solarzellen, betrieben werden. Aus Kosten- und Robustheitsgründen werden zunehmend siliziumbasierte Solarzellen eingesetzt.In the course of the development of home automation, measuring devices are increasingly being used that measure environmental parameters such as temperature, humidity, pressure, brightness, gas concentration, dust, vibration, etc. Typically, such measuring devices are used indoors and equipped with an autonomous energy supply, i.e. without a mains supply. For example, the measuring devices can be operated with a battery. Alternatively, the measuring devices can be operated by generating ambient energy, e.g. by using solar cells. For reasons of cost and robustness, silicon-based solar cells are increasingly being used.
Insbesondere hat sich herausgestellt, dass für Lichtverhältnisse mit niedriger Bestrahlungsstärke, insbesondere unter Kunstlicht, auf amorphem Silizium (a-Si) basierende Solarzellen die bevorzugte Wahl darstellen. Nachteilig an a-Si-Solarzellen ist, dass diese durch ihr typischerweise dunkelbraunes optisches Erscheinungsbild einen deutlichen Kontrast zu den Messgeräten und deren Montageumgebung bilden und daher oft als nicht ästhetisch beurteilt werden. Da Messgeräte zur Hausautomation typischerweise an sichtbaren Stellen, z.B. an Decken, Wänden oder Ähnlichem, installiert und montiert werden, ist eine Anpassbarkeit des optischen Erscheinungsbilds des Messgeräts an die Montageumgebung von großem Interesse.In particular, it has been found that for light conditions with low irradiance, in particular under artificial light, based on amorphous silicon (a-Si) Solar cells are the preferred choice. A disadvantage of a-Si solar cells is that, due to their typically dark brown optical appearance, they form a clear contrast to the measuring devices and their mounting environment and are therefore often judged to be unaesthetic. Since measuring devices for home automation are typically installed and mounted in visible places, for example on ceilings, walls or the like, adaptability of the optical appearance of the measuring device to the installation environment is of great interest.
Zur Realisierung der Anpassbarkeit des optischen Erscheinungsbilds von Solarzellen sind aus dem Stand der Technik farbige Solarzellen auf Si-Basis bekannt. Die aus dem Stand der Technik bekannten farbigen Solarzellen sind allerdings recht kostenintensiv, da spezielle Prozessschritte bei deren Herstellung angewendet werden müssen. Aus diesem Grund eignen sich derartige Solarzellen nicht für Massenprodukte, insbesondere für Messgeräte zur Verwendung in der Hausautomation. Ferner sind bekannte Lösungen zur Anpassung des optischen Erscheinungsbildes von Solarzellen hauptsächlich für Solaranwendungen im Außenbereich konzipiert, so dass diese für den Innenbereich, wo vergleichsweise schwache Lichtverhältnisse herrschen, schlecht geeignet sind.For realizing the adaptability of the optical appearance of solar cells, colored solar cells based on Si are known from the prior art. The colored solar cells known from the prior art are, however, quite cost-intensive, since special process steps have to be used in their manufacture. For this reason, solar cells of this type are not suitable for mass products, in particular for measuring devices for use in home automation. Furthermore, known solutions for adapting the optical appearance of solar cells are mainly designed for solar applications in the outdoor area, so that these are poorly suited for the indoor area, where comparatively weak light conditions prevail.
Da in der Hausautomation verwendete Messgeräte, typischerweise an hellfarbigen, insbesondere weißen Wänden, angebracht werden, besteht die Nachfrage nach Photovoltaik betriebenen Messgeräten mit einem hellen, insbesondere weißen, optischen Erscheinungsbild. Physikalische Gründe machen es schwer ein derartiges Erscheinungsbild mit einer hohen Photovoltaikleistung bzw. Umwandlungswirkungsgrad zu vereinbaren. Um ein helles bzw. weißes Erscheinungsbild zu erreichen, muss ein großer Teil des auftreffenden Lichts von der Oberfläche über den gesamten sichtbaren Wellenlängenbereich reflektiert und / oder gestreut werden. Andererseits ist die spektrale Empfindlichkeit von a-Si-Solarzellen im sichtbaren Wellenlängenbereich am höchsten, so dass üblicherweise ein helles Erscheinungsbild nur mit hohen Wirkungsgradverlusten erreicht werden kann.Since measuring devices used in home automation are typically attached to light-colored, in particular white, walls, there is a demand for photovoltaic-operated measuring devices with a light, in particular white, optical appearance. Physical reasons make it difficult to reconcile such an appearance with a high photovoltaic output or conversion efficiency. To get a light or white appearance achieve, a large part of the incident light must be reflected and / or scattered by the surface over the entire visible wavelength range. On the other hand, the spectral sensitivity of a-Si solar cells is highest in the visible wavelength range, so that usually a light appearance can only be achieved with high efficiency losses.
Zum Stand der Technik wird beispielhaft auf die Dokumente
Aufgabe der vorliegenden Erfindung ist es, die Nachteile der aus dem Stand der Technik bekannten Lösungen zur Anpassung des optischen Erscheinungsbildes einer mittels Photovoltaik betriebenen Sensorvorrichtung an deren Montageumgebung zumindest teilweise oder vollständig zu beseitigen.The object of the present invention is to at least partially or completely eliminate the disadvantages of the solutions known from the prior art for adapting the optical appearance of a sensor device operated by means of photovoltaics to its installation environment.
Zur Lösung der obengenannten Aufgabe werden eine Sensorvorrichtung und ein Verfahren zum Herstellen einer Sensorvorrichtung gemäß den unabhängigen Ansprüchen bereitgestellt. Weitere Aspekte, Vorteile und Merkmale der vorliegenden Erfindung sind den abhängigen Patentansprüchen, der Beschreibung und den beiliegenden Figuren zu entnehmen.To achieve the above-mentioned object, a sensor device and a method for producing a sensor device according to the independent claims are provided. Further aspects, advantages and features of the present invention can be found in the dependent claims, the description and the accompanying figures.
Gemäß einem Aspekt der Erfindung wird eine Sensorvorrichtung bereitgestellt. Die Sensorvorrichtung umfasst mindestens einen Sensor und ein Gehäuse für den mindestens einen Sensor. Des Weiteren umfasst die Sensorvorrichtung mindestens eine Solarzelle zur Energieversorgung des mindestens einen Sensors, wobei die mindestens eine Solarzelle an einer Außenwand des Gehäuses angebracht ist. Der hierin verwendete Begriff "Solarzelle" kann auch als "Solarmodul" verstanden werden. Die Anbringung der Solarzelle an der Außenwand des Gehäuses kann dabei durch eine Befestigung auf der Außenseite des Gehäuses oder auf der Innenseite des Gehäuses (z.B. im Falle eines transparenten Gehäuses) umgesetzt werden. Alternative kann die Solarzelle in die Außenwand des Gehäuses integriert sein. Ferner umfasst die Sensorvorrichtung eine Abdeckung, welche eine photovoltaisch aktive Seite der mindestens einen Solarzelle abdeckt. Die Abdeckung umfasst ein transluzentes Material, insbesondere besteht die Abdeckung zumindest zu einem überwiegenden Teil aus einem transluzenten Material.According to one aspect of the invention, a sensor device is provided. The sensor device comprises at least one sensor and a housing for the at least one sensor. Furthermore, the sensor device comprises at least one solar cell for supplying energy to the at least one sensor, the at least one solar cell being attached to an outer wall of the housing. The term “solar cell” used herein can also be understood as “solar module”. The attachment of the solar cell to the outer wall of the housing can be implemented by fastening on the outside of the housing or on the inside of the housing (for example in the case of a transparent housing). Alternatively, the solar cell can be integrated into the outer wall of the housing. Furthermore, the sensor device comprises a cover which covers a photovoltaically active side of the at least one solar cell. The cover comprises a translucent material, in particular the cover consists at least for the most part of a translucent material.
Somit wird vorteilhafterweise eine mittels Photovoltaik betreibbare Sensorvorrichtung bereitgestellt, welche optisch an deren Montageumgebung angepasst werden kann, ohne die Energiewandlungseffizienz der Solarzelle übermäßig zu beeinträchtigen. Insbesondere kann durch die Verwendung eines transluzenten Materials für die Abdeckung eine kostengünstige, funktionelle und ästhetische mittels Photovoltaik betreibbare Sensorvorrichtung bereitgestellt werden.In this way, a sensor device that can be operated by means of photovoltaics is advantageously provided, which can be optically adapted to its installation environment without unduly impairing the energy conversion efficiency of the solar cell. In particular, by using a translucent material for the cover, a cost-effective, functional and aesthetic sensor device that can be operated by means of photovoltaics can be provided.
Gemäß einem weiteren Aspekt der Erfindung wird ein Verfahren zum Herstellen einer Sensorvorrichtung bereitgestellt. Das Verfahren umfasst die folgenden Verfahrensschritte: Herstellen eines Gehäuses für mindestens einen Sensor, wobei das Gehäuse eine Aufnahme für mindestens eine Solarzelle aufweist; Herstellen einer Abdeckung aus transluzentem Material, wobei die Abdeckung an das Gehäuse angepasst ist; Bereitstellen von mindestens einem Sensor in dem Gehäuse; Platzieren einer Solarzelle in der Aufnahme; Herstellen einer elektrischen Verbindung zwischen der mindestens einen Solarzelle und dem mindestens einen Sensor; und Montieren der Abdeckung an dem Gehäuse derart, dass die Abdeckung eine photovoltaisch aktive Seite der mindestens einen Solarzelle abdeckt, insbesondere dass die Abdeckung in direktem Kontakt mit der photovoltaisch aktiven Seite der mindestens einen Solarzelle in direktem Kontakt steht.According to a further aspect of the invention, a method for producing a sensor device is provided. The method comprises the following method steps: producing a housing for at least one sensor, the housing having a receptacle for at least one solar cell; Producing a cover from translucent material, the cover being adapted to the housing; Providing at least one sensor in the housing; Placing a solar cell in the receptacle; Establishing an electrical connection between the at least one solar cell and the at least one sensor; and mounting the cover on the housing in such a way that the cover covers a photovoltaically active side of the at least one solar cell, in particular that the cover directly Contact is in direct contact with the photovoltaically active side of the at least one solar cell.
Somit wird vorteilhafterweise ein einfaches und kostengünstiges Herstellungsverfahren für eine Photovoltaik betreibbare Sensorvorrichtung bereitgestellt, die an deren Montageumgebung optisch angepasst werden kann ohne die Leistungseffizienz der Solarzelle übermäßig zu beeinträchtigen.A simple and cost-effective production method for a photovoltaic-operated sensor device is thus advantageously provided, which can be optically adapted to its mounting environment without unduly impairing the power efficiency of the solar cell.
Im Weiteren soll die Erfindung anhand von in Figuren dargestellten Ausführungsbeispielen erläutert werden, aus denen sich weitere Vorteile und Abwandlungen ergeben. Hierbei zeigt:
- Figur 1
- eine schematische Schnittansicht einer Sensorvorrichtung gemäß hierin beschriebenen Ausführungsformen;
- Figur 2A
- eine schematische Draufsicht einer Sensorvorrichtung gemäß hierin beschriebenen Ausführungsformen ohne Abdeckung;
- Figur 2B
- eine schematische Draufsicht einer Sensorvorrichtung gemäß hierin beschriebenen Ausführungsformen mit Abdeckung;
- Figur 3
- eine schematische Schnittansicht eines Ausschnitts einer mit einer Solarzelle in Kontakt stehenden Abdeckung gemäß hierin beschriebenen Ausführungsformen; und
- Figur 4
- eine Flussdiagramm zur Veranschaulichung eines Verfahrens zum Herstellen einer Sensorvorrichtung gemäß hierin beschriebenen Ausführungsformen.
- Figure 1
- a schematic sectional view of a sensor device according to embodiments described herein;
- Figure 2A
- a schematic top view of a sensor device according to embodiments described herein without a cover;
- Figure 2B
- a schematic top view of a sensor device according to embodiments described herein with a cover;
- Figure 3
- a schematic sectional view of a detail of a cover in contact with a solar cell according to embodiments described herein; and
- Figure 4
- a flowchart for illustrating a method for producing a sensor device according to embodiments described herein.
Ferner umfasst die Sensorvorrichtung 100 mindestens eine Solarzelle 130 zur Energieversorgung des mindestens einen Sensors 110. Typischerweise ist die mindestens eine Solarzelle eine siliziumbasierte Solarzelle. Beispielsweise, kann die Solarzelle eine auf amorphem Silizium (a-Si) basierte Solarzelle sein.Furthermore, the
Wie beispielhaft in
Darüber hinaus umfasst die Sensorvorrichtung 100 eine Abdeckung 140, wie es schematisch in
Demnach wird durch die hierin beschriebenen Ausführungsformen eine gegenüber dem Stand der Technik verbesserte Lösung zur Anpassung des optischen Erscheinungsbildes einer mittels Photovoltaik betriebenen Sensorvorrichtung an deren Montageumgebung bereitgestellt. Insbesondere wird eine mittels Photovoltaik betreibbare Sensorvorrichtung bereitgestellt, welche optisch an deren Montageumgebung angepasst werden kann ohne die Leistungseffizienz der Solarzelle übermäßig zu beeinträchtigen. Insbesondere kann durch die Verwendung eines transluzenten Materials für die Abdeckung eine kostengünstige und einfach herstellbare Sensorvorrichtung mit homogenen Erscheinungsbild bereitgestellt werden.Accordingly, the embodiments described herein provide a solution, which is improved over the prior art, for adapting the optical appearance of a sensor device operated by means of photovoltaics to its mounting environment. In particular, a sensor device that can be operated by means of photovoltaics is provided, which can be optically adapted to its installation environment without unduly impairing the power efficiency of the solar cell. In particular, by using a translucent material for the cover, an inexpensive and easily manufactured sensor device with a homogeneous appearance can be achieved to be provided.
Durch die Verwendung eines transluzenten Materials ist die Abdeckung vorteilhafterweise derart ausgebildet, dass auftreffendes Licht von der Abdeckung im sichtbaren Spektralbereich gestreut wird und somit die Solarzelle optisch verdeckt. Gleichzeitig wird vorteilhafterweise die Energiewandlung der Solarzelle nur geringfügig beeinträchtigt. Dies bedeutet, dass die Abdeckung eine hohe optische Transmission im für die Solarzelle relevanten Spektralbereich aufweist.By using a translucent material, the cover is advantageously designed in such a way that incident light is scattered by the cover in the visible spectral range and thus optically covers the solar cell. At the same time, the energy conversion of the solar cell is advantageously only slightly impaired. This means that the cover has a high optical transmission in the spectral range relevant for the solar cell.
Gemäß einer Ausführungsform, die mit anderen hierin beschriebenen Ausführungsformen kombiniert werden kann, steht die Abdeckung 140 in direktem Kontakt mit der photovoltaisch aktiven Seite 131 der Solarzelle 130. Dadurch kann vorteilhafterweise eine hohe integrale Transmission erreicht werden, da optische Grenzflächeneffekte vermieden werden können.According to one embodiment, which can be combined with other embodiments described herein, the
Gemäß einer Ausführungsform, die mit anderen hierin beschriebenen Ausführungsformen kombiniert werden kann, wird zwischen die Abdeckung 140 und der photovoltaisch aktiven Seite 131 der Solarzelle 130 ein definierter Abstand vorgesehen. Dadurch kann vorteilhafterweise eine hohe integrale Transmission erreicht werden, da die diffuse Transmission eines größeren Anteils der Abdeckung 140 genutzt werden kann. Ein Beispiel hierfür wäre, dass auch durch die Seitenwände 124 Licht zur Solarzelle 130 gelangen kann, sodass bei einer zumindest teilweisen Bestrahlung der Sensorvorrichtung 100 von der Seite eine höhere Energiewandlung durch die Solarzelle 130 erzielt würde.According to one embodiment, which can be combined with other embodiments described herein, a defined distance is provided between the
Gemäß einer Ausführungsform, die mit anderen hierin beschriebenen Ausführungsformen kombiniert werden kann, weist das transluzente Material einen integralen Transmissionsgrad Tint von beispielsweise Tint ≥ 70%, insbesondere Tint ≥ 80%, insbesondere Tint ≥ 85% auf. Beispielsweise kann der integralen Transmissionsgrad Tint des transluzenten Materials Tint ≥ 90% sein. Der direkte Transmissionsgrad Td des transluzenten Materials ist typischerweise relativ gering. Beispielswiese kann der direkte Transmissionsgrad Td des transluzenten Materials Td ≤ 10%, insbesondere Td ≤ 8%, insbesondere Td ≤ 5% sein. Typischerweise ist der direkte Transmissionsgrad Td ≤ 3%. Es sei darauf hingewiesen, dass die Werte für den integralen Transmissionsgrad Tint als auch die Werte für den direkten Transmissionsgrad Td gemäß dem erwünschten Erscheinungsbild eingestellt werden können, um beispielsweise einen geeigneten Kompromiss zwischen Aussehen, Transmission und Kosten zu erzielen.According to one embodiment, which can be combined with other embodiments described herein, the translucent material has an integral transmittance Tint of, for example, T int 70%, in particular T int 80%, in particular T int 85%. For example, the integral transmittance Tint of the translucent material Tint can be 90%. The direct transmittance T d of the translucent material is typically relatively low. For example, the direct transmittance T d of the translucent material can be T d 10%, in particular T d 8%, in particular T d 5%. The direct transmittance T d is typically 3%. It should be pointed out that the values for the integral transmittance Tint and the values for the direct transmittance T d can be set according to the desired appearance, for example in order to achieve a suitable compromise between appearance, transmission and costs.
Die hierin angegebenen Werte für den integralen Transmissionsgrad Tint als auch die Werte für den direkten Transmissionsgrad Td gelten für den Wellenlängenbereich 350 nm ≤ λ ≤ 1200 nm, insbesondere für den Wellenlängenbereich 400 nm ≤ λ ≤ 1100 nm.The values given here for the integral transmittance T int and the values for the direct transmittance T d apply to the wavelength range 350 nm λ 1200 nm, in particular for the wavelength range 400 nm λ 1100 nm.
Demnach ist das transluzente Material vorteilhafterweise derart konfiguriert, dass der Streulichtanteil des integralen Transmissionsgrads relativ hoch ist, so dass ein homogenes Erscheinungsbild der Abdeckung und damit der Sensorvorrichtung realisiert werden kann. Insbesondere kann mit den hierein beschriebenen Ausführungsformen vorteilhafterweise ein homogen helles, insbesondere weißes, Erscheinungsbild der Abdeckung und damit der Sensorvorrichtung realisiert werden kann.Accordingly, the translucent material is advantageously configured in such a way that the scattered light component of the integral transmittance is relatively high, so that a homogeneous Appearance of the cover and thus the sensor device can be realized. In particular, with the embodiments described herein, a homogeneously bright, in particular white, appearance of the cover and thus of the sensor device can advantageously be realized.
Gemäß einer Ausführungsform, die mit anderen hierin beschriebenen Ausführungsformen kombiniert werden kann, werden die optische Transmission des transluzenten Materials und die Quanteneffizienz der Solarzelle aufeinander abgestimmt. Dies bedeutet insbesondere, dass die optische Transmission des transluzenten Materials bei den Wellenlängen besonders hoch ist, bei denen die Solarzelle eine hohe Energiewandlugsneffizienz besitzt.According to one embodiment, which can be combined with other embodiments described herein, the optical transmission of the translucent material and the quantum efficiency of the solar cell are matched to one another. This means in particular that the optical transmission of the translucent material is particularly high at the wavelengths at which the solar cell has a high energy conversion efficiency.
Gemäß einer Ausführungsform, die mit anderen hierin beschriebenen Ausführungsformen kombiniert werden kann, besteht das transluzente Material aus einem thermoplastischen Kunststoff. Dies hat den Vorteil, dass die Abdeckung aus transluzentem Material mittels eines Spritzgussverfahrens oder mittels eines Extrudierverfahrens hergestellt werden kann. Insbesondere kann das transluzente Material ein Polymethylmethacrylat (PMMA) umfassen. Alternativ oder zusätzlich kann das transluzente Material ein Polycarbonat (PC) umfassen.According to one embodiment, which can be combined with other embodiments described herein, the translucent material consists of a thermoplastic material. This has the advantage that the cover can be produced from translucent material by means of an injection molding process or by means of an extrusion process. In particular, the translucent material can comprise a polymethyl methacrylate (PMMA). Alternatively or additionally, the translucent material can comprise a polycarbonate (PC).
Gemäß einer Ausführungsform, die mit anderen hierin beschriebenen Ausführungsformen kombiniert werden kann, kann auch das Gehäuse 120 für den mindestens einen Sensor 110 aus einem thermoplastischen Kunststoff, insbesondere aus dem gleichen thermoplastischen Kunststoff wie die Abdeckung 140, hergestellt sein. Somit können vorteilhafterweise kostengünstige, funktionell und optisch optimierte Sensorvorrichtungen bereitgestellt werden. In diesem Fall kann das Gehäuse die Funktion der Abdeckung in einem Bauteil integrieren. Durch diese Funktionsintegration kann der Montageaufwand und damit Kosten reduziert werden.According to one embodiment, which can be combined with other embodiments described herein, the
Erfindungsgemäß sind Partikel 145 mit lichtstreuenden Eigenschaften in das transluzente Material eingebettet, wie es beispielhaft in
Erfindungsgemäß ist das transluzente Material derart angepasst, dass es auftreffende Photonen des eingestrahlten Lichtes in Wellenlängen umwandelt, bei denen die Quanteneffizienz der Solarzelle höher ist als bei den Wellenlängen des ursprünglichen eingestrahlten Lichts. Dies ist erfindungsgemäß durch den Einsatz von fluoreszierenden Materialien umgesetzt. Insbesondere kann durch die Verwendung von PMMA ein transluzentes Material mit Fluoreszenzeigenschaften bereitgestellt werden, so dass der integrale Transmissionsgrad verbessert, d.h. erhöht, werden kann.According to the invention, the translucent material is adapted in such a way that it converts incident photons of the incident light into wavelengths at which the quantum efficiency of the solar cell is higher than the wavelengths of the original incident light. According to the invention, this is implemented through the use of fluorescent materials. In particular, the use of PMMA can provide a translucent material with fluorescent properties, so that the integral transmittance can be improved, i.e. increased.
Gemäß einer Ausführungsform, die mit anderen hierin beschriebenen Ausführungsformen kombiniert werden kann, kann die Abdeckung 140 plattenförmig ausgebildet sein, wie es beispielhaft in
Wie beispielhaft aus
Gemäß einer Ausführungsform, die mit anderen hierin beschriebenen Ausführungsformen kombiniert werden kann, weist das Gehäuse 120 einen lichtdurchlässigen Abschnitt 122 auf, wie es beispielhaft in
Gemäß einer Ausführungsform, die mit anderen hierin beschriebenen Ausführungsformen kombiniert werden kann, weist das Gehäuse 120 eine Aufnahme 125 für die Solarzelle 130 auf. Beispielsweise kann die Aufnahme eine Vertiefung in der Außenwand 121 des Gehäuses sein, an der die Solarzelle angebracht ist.According to one embodiment, which can be combined with other embodiments described herein, the
Gemäß einer Ausführungsform, die mit anderen hierin beschriebenen Ausführungsformen kombiniert werden kann, deckt die Abdeckung 140 die Außenwand 121 des Gehäuses, an der die Solarzelle angebracht ist, vollständig ab, wie es beispielhaft aus den
Gemäß einer Ausführungsform, die mit anderen hierin beschriebenen Ausführungsformen kombiniert werden kann, weist die Außenwand 121 des Gehäuses 120, an der die Solarzelle angebracht ist, einen ersten Rauheitswert Ra1 auf, der an einen zweiten Rauheitswert Ra2 der Solarzelle 130 angepasst ist, insbesondere so dass 0,75·Ra2 ≤ Ra1 ≤ 1,25·Ra2 ist. Dies kann vorteilhaft sein um ein homogenes Erscheinungsbild zu erreichen.According to one embodiment, which can be combined with other embodiments described herein, the
Erfindungsgemäß umfasst das Herstellen 220 der Abdeckung 140 ein Einbetten von Partikeln 145 mit lichtstreuenden Eigenschaften.According to the invention, the
Gemäß einer Ausführungsform des Verfahrens zum Herstellen der Sensorvorrichtung, die mit anderen hierin beschriebenen Ausführungsformen kombiniert werden kann, umfasst das Herstellen 210 des Gehäuses 120 und/oder das Herstellen 220 der Abdeckung 140 ein Spritzgussverfahren und/oder ein Extrudierverfahren.According to one embodiment of the method for producing the sensor device, which can be combined with other embodiments described herein, the
Wie aus den hierin beschriebenen Ausführungsformen hervorgeht wird vorteilhafterweise eine mittels Photovoltaik betriebene Sensorvorrichtung und ein entsprechendes Herstellungsverfahren bereitgestellt, welche gegenüber dem Stand der Technik eine verbesserte und kostengünstigere Lösung zur Einstellung und Anpassung des optischen Erscheinungsbildes ermöglichen, ohne die Energiewandlungseffizienz der Solarzelle übermäßig zu beeinträchtigen.As can be seen from the embodiments described herein, a sensor device operated by means of photovoltaics and a corresponding manufacturing method are advantageously provided which, compared to the prior art, enable an improved and more cost-effective solution for setting and adapting the optical appearance without unduly impairing the energy conversion efficiency of the solar cell.
- 100100
- SensorvorrichtungSensor device
- 110110
- Sensorsensor
- 120120
- Gehäusecasing
- 121121
- Außenwand des GehäusesOuter wall of the housing
- 122122
- lichtdurchlässiger Abschnitt des Gehäusestranslucent portion of the housing
- 123123
- Montageseite des GehäusesMounting side of the housing
- 124124
- Seitenwände des GehäusesSide walls of the housing
- 125125
- Aufnahme für die SolarzelleHolder for the solar cell
- 130130
- SolarzelleSolar cell
- 131131
- photovoltaisch aktive Seite der Solarzellephotovoltaically active side of the solar cell
- 140140
- Abdeckungcover
- 141141
- transluzentes Materialtranslucent material
- 145145
- Partikel mit lichtstreuenden EigenschaftenParticles with light-scattering properties
- 200200
- Verfahren zum Herstellen einer SensorvorrichtungMethod for manufacturing a sensor device
- 210210
- Verfahrensschritt: Herstellen eines Gehäuses für mindestens einen SensorMethod step: producing a housing for at least one sensor
- 220220
- Verfahrensschritt: Herstellen einer Abdeckung aus transluzentem MaterialProcess step: production of a cover from translucent material
- 230230
- Verfahrensschritt: Bereitstellen eines SensorsProcess step: providing a sensor
- 240240
- Verfahrensschritt: Platzieren einer SolarzelleProcess step: placing a solar cell
- 250250
- Verfahrensschritt: Herstellen einer elektrischen VerbindungProcess step: Establishing an electrical connection
- 260260
- Verfahrensschritt: Montieren der Abdeckung an dem GehäuseMethod step: mounting the cover on the housing
Claims (16)
- Sensor apparatus (100) comprising:- at least one sensor (110);- a housing (120) for the at least one sensor (110);- at least one solar cell (130) for supplying energy to the at least one sensor (110), wherein the at least one solar cell (130) is mounted on an external wall (121) of the housing (120); and- a cover (140), which covers a photovoltaically active side (131) of the at least one solar cell (130), wherein the cover (140) comprises a translucent material (141), wherein particles (145) having light-scattering properties are embedded in the translucent material, and wherein the translucent material comprises a fluorescent material through which incident photons of the incoming light are converted into wavelengths in which the quantum efficiency of the solar cell is greater than in the case of the wavelengths of the original incoming light.
- Sensor apparatus (100) according to Claim 1, wherein the cover (140) is in direct contact with the photovoltaically active side (131) of the at least one solar cell (130).
- Sensor apparatus (100) according to Claim 1, wherein a defined distance is provided between the cover (140) and the photovoltaically active side (131) of the at least one solar cell (130).
- Sensor apparatus (100) according to one of Claims 1 to 3, wherein the cover (140) completely covers the external wall (121) of the housing on which the at least one solar cell is mounted.
- Sensor apparatus (100) according to one of Claims 1 to 4, wherein the external wall (121) of the housing (120), on which the solar cell is mounted, has a first roughness value Rai, which is adapted to a second roughness value Ra2 of the at least one solar cell (130), so that 0.75·Ra2 ≤ Ra1 ≤ 1.25·Ra2.
- Sensor apparatus (100) according to one of Claims 1 to 5, wherein the optical transmission of the translucent material of the cover (140) and the quantum efficiency of the at least one solar cell (130) are matched to one another.
- Sensor apparatus (100) according to one of Claims 1 to 6, wherein the translucent material consists of a thermoplastic material, in particular comprising polymethyl methacrylate (PMMA) and/or polycarbonate (PC) .
- Sensor apparatus (100) according to one of Claims 1 to 7, wherein the cover (140) is produced by means of an injection-moulding method or by means of an extrusion method.
- Sensor apparatus (100) according to one of Claims 1 to 8, wherein the housing (120) has a holder (125) for the at least one solar cell (130).
- Sensor apparatus (100) according to one of Claims 1 to 9, wherein the at least one solar cell (130) is a silicon-based solar cell, in particular a solar cell based on amorphous silicon.
- Sensor apparatus (100) according to one of Claims 1 to 10, wherein the at least one sensor (110) comprises one or more sensors selected from the group consisting of: temperature sensor, humidity sensor, pressure sensor, light sensor, gas concentration sensor, acoustic sensor, magnetic field sensor, dust sensor and vibration sensor or other suitable micro-electromechanical (MEMS) sensors.
- Sensor apparatus (100) according to one of Claims 1 to 11, wherein the housing (120) has a light-transmissive portion (122), in particular an opening.
- Sensor apparatus (100) according to one of Claims 1 to 12, wherein the sensor apparatus is a house automation sensor apparatus, in particular for internal spaces.
- Method (200) for producing a sensor apparatus, comprising:- producing (210) a housing (120) for at least one sensor (110), wherein the housing has a holder (125) for at least one solar cell (130);- producing (220) a cover (140) made of translucent material comprising a fluorescent material through which incident photons of the incoming light are converted into wavelengths in which the quantum efficiency of the solar cell is greater than in the case of the wavelengths of the original incoming light, wherein the cover (140) is adapted to the housing (120), and wherein the production (220) of the cover (140) comprises embedding particles (145) having light-scattering properties;- providing (230) at least one sensor (110) in the housing;- placing (240) at least one solar cell (130) in the holder (125);- establishing (250) an electrical connection between the at least one solar cell (130) and the at least one sensor (110); and- mounting (260) the cover (140) on the housing such that the cover (140) covers a photovoltaically active side (131) of the at least one solar cell (130), in particular such that the cover (140) is in direct contact with the photovoltaically active side of the at least one solar cell.
- Method (200) according to Claim 14, wherein a defined distance is provided between the cover (140) and the photovoltaically active side (131) of the at least one solar cell (130).
- Method (200) according to Claim 14 or 15, wherein the production (210) of the housing (120) and/or the production (220) of the cover (140) comprises an injection-moulding method and/or an extrusion method.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102018110783.8A DE102018110783A1 (en) | 2018-05-04 | 2018-05-04 | Sensor device and method for producing a sensor device |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3564629A1 EP3564629A1 (en) | 2019-11-06 |
EP3564629B1 true EP3564629B1 (en) | 2021-11-10 |
Family
ID=66397031
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19171828.7A Active EP3564629B1 (en) | 2018-05-04 | 2019-04-30 | Sensor device and method for producing same |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3564629B1 (en) |
DE (1) | DE102018110783A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102020125103B4 (en) | 2020-09-25 | 2024-07-18 | Vega Grieshaber Kg | Removable solar module for a level measuring device |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4334509C2 (en) * | 1993-10-09 | 1998-01-15 | Temperaturmestechnik Geraberg | Thermometer for measuring the outside temperature |
JP3429882B2 (en) * | 1995-01-12 | 2003-07-28 | 株式会社ミツトヨ | Dust and waterproof structure of measuring instrument |
JP4682856B2 (en) * | 2006-02-01 | 2011-05-11 | 株式会社デンソー | Angular velocity sensor device |
DE102006032250B4 (en) * | 2006-07-12 | 2008-08-14 | Vega Grieshaber Kg | Sensors with integrated solar energy generation |
HUE031159T2 (en) * | 2009-04-09 | 2017-06-28 | Grieshaber Vega Kg | Energy-controlled data transmission of a field device |
DE102009028044B4 (en) * | 2009-07-28 | 2023-05-04 | Endress+Hauser SE+Co. KG | Process automation field device |
DE102012112917A1 (en) * | 2012-12-21 | 2014-06-26 | Endress + Hauser Gmbh + Co. Kg | Process automation device e.g. coriolis volumetric flow meter, for analysis or inspection of flow of medium in container, has energy production unit formed as integral part of transmitter housing and/or sensor housing |
DE102012224424A1 (en) * | 2012-12-27 | 2014-07-17 | Robert Bosch Gmbh | Sensor system and cover device for a sensor system |
DE102013206689A1 (en) * | 2013-04-15 | 2014-10-16 | Robert Bosch Gmbh | Sensor and method for manufacturing a sensor |
DE102014103633B4 (en) * | 2014-03-17 | 2017-07-27 | ConnectMeSmart GmbH | Device for interacting with a mobile terminal |
JP6433335B2 (en) * | 2015-02-26 | 2018-12-05 | 一般財団法人マイクロマシンセンター | Wireless sensor terminal |
-
2018
- 2018-05-04 DE DE102018110783.8A patent/DE102018110783A1/en not_active Withdrawn
-
2019
- 2019-04-30 EP EP19171828.7A patent/EP3564629B1/en active Active
Non-Patent Citations (1)
Title |
---|
BWF: "Ideen nehmen Profil an. Ideas turn into profiles", 31 May 2015 (2015-05-31), pages 42 - 51, XP055745309, Retrieved from the Internet <URL:https://www.kanetis.gr/wp-content/uploads/kanetis/Lagerkatalog_de+en_2015_web.pdf> [retrieved on 20201029] * |
Also Published As
Publication number | Publication date |
---|---|
EP3564629A1 (en) | 2019-11-06 |
DE102018110783A8 (en) | 2020-01-23 |
DE102018110783A1 (en) | 2019-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105144397B (en) | Photovoltaic module | |
DE10231428A1 (en) | solar cell module | |
EP2146383A3 (en) | Building integrated photovoltaic (BIPV) junction box | |
DE102011055092A1 (en) | Layer for use with solar cell modules and module with such a layer | |
DE102012224424A1 (en) | Sensor system and cover device for a sensor system | |
EP3564629B1 (en) | Sensor device and method for producing same | |
DE202015102947U1 (en) | Photovoltaic module | |
DE102010004439A1 (en) | solar cell module | |
DE202007017775U1 (en) | photovoltaic module | |
EP1638150A2 (en) | Solar module | |
EP1272371A1 (en) | Electric energy production and sun protection device for motor vehicles | |
EP3030833A1 (en) | Led illumination module | |
DE102011089916A1 (en) | Solar cell arrangement in tandem configuration | |
DE102004032810B4 (en) | Photovoltaic solar cell with a layer of light-scattering properties and solar module | |
JP2023507945A (en) | Louver assembly to which solar panels can be attached | |
KR20110139948A (en) | Photovoltaic module | |
WO2005033772A1 (en) | Camera module with a heatable cover disk | |
DE102013222481A1 (en) | Optical element for a lamp, as well as light | |
EP2157617A3 (en) | Solar cell and manufacturing method thereof | |
DE102014223298A1 (en) | Optical assembly and photovoltaic module, process for their manufacture and uses thereof | |
DE202017107007U1 (en) | LED glass tube construction with internal protective cover | |
DE102013107613A1 (en) | Optoelectronic component and method for producing an optoelectronic component | |
WO2011110329A4 (en) | Photovoltaic element with optically functional conversion layer for improving the conversion of the incident light and method for producing said photovoltaic element | |
CN201724736U (en) | Shadow sensor | |
DE102009058738A1 (en) | solar cell module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200330 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20201104 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210618 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ABB SCHWEIZ AG |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: DE JAGER, DIRK PETRUS GIJSBERTUS Inventor name: MAIER, VLADIMIR Inventor name: ZIERACH, FALK Inventor name: BENISTON, JOHN Inventor name: RODENBUSCH-MOHR, THOMAS Inventor name: MENDOZA, FRANCISCO Inventor name: KAUL, HOLGER Inventor name: SOSALE, GURUPRASAD Inventor name: GEBHARDT, JOERG Inventor name: DECKER, ANDREAS Inventor name: AHREND, ULF |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1446484 Country of ref document: AT Kind code of ref document: T Effective date: 20211115 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502019002678 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220310 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220310 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220210 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220211 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502019002678 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20220811 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220430 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20230430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20190430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240418 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240418 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240501 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240419 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 |