EP3563654B1 - Simulation einer automatischen vorsatzgerätsteuerung - Google Patents

Simulation einer automatischen vorsatzgerätsteuerung Download PDF

Info

Publication number
EP3563654B1
EP3563654B1 EP19161928.7A EP19161928A EP3563654B1 EP 3563654 B1 EP3563654 B1 EP 3563654B1 EP 19161928 A EP19161928 A EP 19161928A EP 3563654 B1 EP3563654 B1 EP 3563654B1
Authority
EP
European Patent Office
Prior art keywords
implement
feedback
physical movement
movement
header
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19161928.7A
Other languages
English (en)
French (fr)
Other versions
EP3563654A1 (de
Inventor
Jacob van BERGEIJK
Grant Lewis GOOD
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGCO Corp
Original Assignee
AGCO Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AGCO Corp filed Critical AGCO Corp
Publication of EP3563654A1 publication Critical patent/EP3563654A1/de
Application granted granted Critical
Publication of EP3563654B1 publication Critical patent/EP3563654B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/12Details of combines
    • A01D41/14Mowing tables
    • A01D41/141Automatic header control
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B79/00Methods for working soil
    • A01B79/005Precision agriculture
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/12Details of combines
    • A01D41/127Control or measuring arrangements specially adapted for combines
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D61/00Elevators or conveyors for binders or combines
    • A01D61/008Elevators or conveyors for binders or combines for longitudinal conveying, especially for combines
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D69/00Driving mechanisms or parts thereof for harvesters or mowers
    • A01D69/03Driving mechanisms or parts thereof for harvesters or mowers fluid

Definitions

  • the present disclosure is generally related to work vehicles with implements, and, in particular, agricultural vehicles with implements.
  • a snowplow may be coupled to the front of a dump truck during winter seasons for use in clearing roadways and/or parking lots.
  • front loaders use a wide bucket to scoop up and/or carry heavy loads, such as gravel or soil.
  • a combine harvester may have, coupled at the front of the tractor, a crop-engaging implement such as a corn header for harvesting corn, or a Draper header for harvesting wheat.
  • sprayer vehicles may use spray booms coupled to the rear of the vehicle to dispense product onto the soil.
  • an automatic header height control (AHHC) system is used to maintain the header in desired position relative to ground.
  • the header should be positioned relative to the ground in a way that prevents damage to the header (e.g., from debris, obstacles, or from digging into the ground), while enabling efficient harvesting of the field (e.g., not too high to miss lower height crop, and not too low to collect debris).
  • the automatic header height control system has needed to have implement control adjustment, such as manual sensitivity/parameter adjustments, performed by an operator to optimize field performance of the system for a given header width and/or type.
  • Such adjustments may be made via controls at an operator console in a cab of the combine harvester, including via a user interface (e.g., graphical user interface rendered on a display monitor or switches/buttons/levers).
  • a user interface e.g., graphical user interface rendered on a display monitor or switches/buttons/levers.
  • too aggressive e.g., harder on the system with a risk of over-reaction
  • too lax e.g., header digging into the ground in spots along the field, missing crop.
  • the optimal settings vary depending on the exact header dimensions and weight, and may also vary based on the experience level and/or expertise of the operator.
  • a simulation system for adjusting settings of a vehicle having an implement coupled thereto comprising:
  • This wholly autonomous calibration procedure allows, for example, a sequence of expected sensor readings to be scheduled to generate a sequence of actual implement movements without requiring operator input.
  • a simulation method for adjusting settings of a vehicle having an implement coupled thereto comprising:
  • the invention further provides a non-transitory, computer readable medium comprising instructions that, when executed by a computing system, causes the computing system to implement the above method.
  • an automatic header control simulation system and method embodying the invention incorporate into a vehicle (e.g., combine harvester) a self-test of an automatic header height control (AHHC) system during a calibration procedure to enable the AHHC system to learn optimal settings for control of an installed implement (header).
  • vehicle e.g., combine harvester
  • AHHC automatic header height control
  • sensor inputs e.g., corresponding to implement movement
  • a computing system e.g., one or more controllers
  • control algorithms and/or parameters to optimize header control (e.g., a response of an AHHC system, position/orientation, float pressure, etc.) for the installed header.
  • settings for conventional AHHC systems are manually adjusted by an operator, such as when installing a header (e.g., switching over for the particular crop, seasonally, etc.).
  • headers of different masses e.g., different widths, different weights, etc.
  • the operator may select controls in a user interface (e.g., graphical user interface (GUI) and/or switches/levers) of the operator's console in a cab of the combine harvester.
  • GUI graphical user interface
  • the process of adjusting settings is operator specific, and varies depending on the skill level and/or expertise of the operator.
  • certain embodiments of an automatic header control simulation system comprise a computing system that automatically determines the appropriate (indeed optimized) response settings based on a simulated input, removing the subjectivity typical in current adjustment processes, which may improve performance and reduce operator involvement.
  • certain embodiments of a simulation system according to the invention may be used to automatically adjust settings for a skid steer loader, wheel loader, snowplow, spray boom, among other vehicles, implements, and/or industries.
  • a skid steer loader wheel loader
  • snowplow spray boom
  • the description identifies or describes specifics of one or more embodiments, such specifics are not necessarily part of every embodiment, nor are all various stated advantages necessarily associated with a single embodiment or all embodiments. On the contrary, the intent is to cover all alternatives, modifications and equivalents included within the scope of the appended claims.
  • reference to an implement is intended to include headers, booms, or other work implements, coupled either to the front of the vehicle or the rear of the vehicle.
  • FIG. 1 shown is a fragmentary (e.g., front portion), side-elevation view of an example vehicle in the form of a combine harvester 10 (hereinafter, also referred to simply as a combine 10), which illustrates an example environment in which an embodiment of an automatic header control simulation system may be implemented.
  • FIG. 1 illustrates an example arrangement of sensors and controls in the combine harvester 10 for an embodiment of an automatic header control simulation system that in part are used to optimize settings for control of a header 12, including sensitivity/aggressiveness of a header 12.
  • header control in the form of sensitivity adjustment
  • settings for other and/or additional types of implement control including position/elevation and/or orientation of the header 12, float pressure, etc.
  • the vehicle is shown as a combine harvester, other types of vehicles with a front or rear mounted implement, in the same or other industries, may be used, and hence are contemplated to be within the scope of the invention.
  • the combine 10 comprises a cab 14 mounted on a chassis 16, and further comprises a feeder house 18 that couples the header 12 to the chassis 16. Though shown with a front-mounted corn header 12, other header configurations are also applicable, including headers for the harvesting of wheat or other crop.
  • the cab 14 effectively provides a command and control center for an operator in a controlled environment.
  • the cab 14 includes a computing system 20 to provide the aforementioned command and control for the combine 10, as explained further below.
  • the feeder house 18 functions in part as an independently-moveable portion of the combine 10.
  • the feeder house 18 comprises a lateral tilt assembly 22, which rolls about an axis coincident with the fixed frame of the feeder house 18.
  • the lateral tilt assembly 22 surrounds the front face of the feeder house 18. Reference hereinafter to the feeder house 18 contemplates incorporation of the lateral tilt assembly 22.
  • the combine 10 comprises one or more hydraulic circuits that comprise the functionality required to enable movement of the header 12. In some embodiments, all or a portion of the hydraulic circuit functionality described herein may be replaced with other types of control, including electrical-based control (e.g., electromagnetic actuators, electrical actuators, etc.).
  • the lifting (e.g., raising and lowering) movement of the header 12 is achieved in part via one or more hydraulic cylinders 24 coupled between the chassis 16 and the lower portion of the feeder house 18, as is known.
  • the tilt movement of the header 12 is achieved in part via one or more hydraulic cylinders 26 coupled to the lateral tilt assembly 22. More specifically, the feeder house 18 moves correspondingly relative to the traversed terrain with the navigational movement of the combine 10, and the hydraulic circuit (e.g., including cylinder(s) 24) may be actuated by the computing system 20 of the combine 10 to raise and lower the feeder house 18.
  • the cylinder(s) 26 of the hydraulic circuit may be actuated by the computing system 20 to cause the tilt assembly 22 of the feeder house 18 to roll relative to an axis running longitudinally through the feeder house 18.
  • the rolling movement is based on a known assembly of the hydraulic piston/cylinder unit 26 and clevis in cooperation with one or more rollers and roller tracks mounted behind the face (e.g., top face) of the lateral tilt assembly 22. Additional details of an example of a lateral tilt assembly may be found in commonly assigned U.S. Patent 5,918, 448 , though other structures or mechanisms to enable the rolling movement of the lateral tilt assembly 22 may be used.
  • Such movements of the feeder house 18 and/or lateral tilt assembly 22 not only facilitate the alignment of the feeder house 18 with a target crop area of the header 12, but also enable the header 12 to more closely follow the contours of the ground during operations over terrain (which may vary in contour).
  • the tilt assembly 22 of the feeder house 18 enables the header 12 to be selectively tiltable laterally relative to the combine 10 to thereby follow the contours of the ground over which the combine 10 operates. Cut crop material enters from an opening in the rear of the header 12 and into an opening (not shown) defined by the front face of the feeder house 18. From the feeder house 18, the cut crop is fed into the combine 10, with, for instance, the grain being threshed and separated therein from the plant residue in a known manner.
  • the combine 10 also comprises a global navigation satellite system (GNSS) device 28, which enables satellite-guided navigation for the combine harvester 10.
  • GNSS global navigation satellite system
  • the GNSS device 28 is mounted atop the cab 14, though in some embodiments, the GNSS device 28 may be located elsewhere in or on the combine harvester 10.
  • the GNSS device 28 comprises a receiver and possibly inertial sensors for use in guided travel, and may be configured for use in global positioning systems (GPS), GLONASS, Galileo, among other constellations.
  • GPS global positioning systems
  • GLONASS GLONASS
  • Galileo Galileo
  • the combine 10 also comprises one or more header sensors, including header sensor 30, which is secured proximal to the snout of the header 12.
  • the header sensor 30 may be located elsewhere (e.g., proximal to the cutting bar in a Draper header, among other locations depending on the design of the header, crop type, and/or type of header sensor).
  • the header sensor 30 is depicted as what some in the industry refer to as a drag rod, such as the type manufactured by Headsight Harvesting Solutions (e.g., a polyarm height sensor), which comprise a ground engaging sensor to monitor the height or changes in height and/or tilt and/or changes in tilt of the header 12.
  • header sensors 30 there may be plural header sensors 30 distributed among plural snouts of a corn header (or along the front edge, proximal the cutter bar, of other types of headers).
  • non-contact types of header sensors may be used, including time of flight based (e.g., radar, acoustic based, etc.) sensors or non-time of flight sensors (e.g., optical).
  • one or more sensors may be used to monitor hydraulic fluid pressure to the tilt influencing cylinder 26 and/or height influencing cylinders 24, where changes in pressure and/or absolute pressure are translated to changes in height/tilt or absolute height/tilt, respectively.
  • inputs simulating the movement of the header 12 are used in place of the actual signals from one or more of these types of header sensor 30.
  • the simulated inputs may also include inertial/position inputs.
  • the combine 10 also comprises a feedback sensor 32.
  • the feedback sensor 32 is used to monitor the actual height and/or tilt change of the feeder house 18 and/or tilt assembly 22 based on the output of the computing system 20, which in turn is based on the simulated inputs of header movement.
  • the feedback sensor(s) 32 may be located elsewhere, for instance, at or integrated with the hydraulic cylinders 24 and/or 26 (e.g., to measure stroke, which may be translated by the computing system 20 to a corresponding change in height or tilt).
  • the automatic header control simulation system 34 comprises a simulate component (SIMULATE) and an actual/physical component (ACTUAL/PHYSICAL).
  • SIMULATE simulate component
  • ACTUAL/PHYSICAL actual/physical component
  • predefined simulated inputs e.g., S1 through SN
  • corresponding to simulated, anticipated physical movement of the header 12 comprise the simulate component.
  • the inputs may comprise emulating (in software of the computing system (CS) 20) receipt of signals corresponding to sensed header movement, or the inputs may be physically generated by a signal generator actually delivering signals to the computing system 20. As depicted in FIG. 2 , those inputs are received in the automatic header height control system (AHHCS) 36.
  • the automatic header height control system 36 comprises the computing system 20, a hydraulic circuit (HYDR CKT) 38, a feeder house 18 (which includes the lateral tilt assembly 22 (not explicitly depicted in FIG. 2 )) coupled to a header 12, and one or more feedback sensors (FS) 32. Note that in some embodiments, all or a portion of the hydraulic circuit 38 may be replaced with an electrical-based control(s).
  • Electronic communications among the devices of the automatic header height control system 36 may be achieved over a wired medium (e.g., one or more CAN busses), over a wireless medium (e.g., using Bluetooth, near field communications, 802.11, etc.), or via a combination of a wired and wireless mediums.
  • a wired medium e.g., one or more CAN busses
  • a wireless medium e.g., using Bluetooth, near field communications, 802.11, etc.
  • the computing system 20 comprises one or more controllers, with an example hardware and software architecture for a computing system comprising a single controller described below in association with FIG. 4 .
  • the computing system 20 provides an output signal comprising an error signal that is based on a comparison of the inputs simulating header movement with setpoints (SP) for one or more parameters (e.g., height, tilt, pressure, sensitivity or rate of change).
  • the hydraulic circuit 38 may include one or more valves, each having an actuator (e.g., solenoid, motor, etc.) coupled thereto, and one or more hydraulic cylinders (e.g., hydraulic cylinders 24 and 26, FIG. 1 ).
  • the actuators receive the output signals from the computing system 20 and responsively actuate the hydraulic valves to cause a change in fluid flow through the valves and hence through the hydraulic cylinders of the hydraulic circuit 38.
  • the feeder house 18 receives hydraulic fluid flow from the hydraulic circuit 38, wherein changes in the flow result in movement (e.g., changes in magnitudes of height and/or tilt and rate of change) of the feeder house 18 and hence movement of the header 12.
  • the feedback sensor (FS) 32 monitors the actual change in height and/or tilt of the feeder house 18, and provides a feedback signal back to the computing system 20.
  • the computing system 20 compares the actual values to expected or ideal values, and also the rate of change or sensitivity, and responsively causes a change in settings (e.g., the sensitivity settings) pertaining to header movement control.
  • the sensitivity settings are one illustrative example of implement control, and other and/or additional controls may be adjusted based on the feedback.
  • the deviations from ideal or expected may be presented by the computing system 20 to an operator (e.g., on a display monitor) with suggestions on changing the sensitivity settings (prompting operator intervention), or the sensitivity settings may be changed automatically (with or without alerting the operator of these changes).
  • the computing system 20 may provide an indication pertaining to diagnostics of components of the automatic header height control system 36. For instance, a comparison of actual to ideal performance may be presented to the operator, or the computing system 20 may determine a threshold deterioration of performance and alert the operator (e.g., flag a suspect component of the automatic header height control system 36, such as a failing hydraulic valve or motor at a threshold (e.g., 10%) diminished performance for the system 36 or the component).
  • a threshold deterioration of performance e.g., flag a suspect component of the automatic header height control system 36, such as a failing hydraulic valve or motor at a threshold (e.g., 10%) diminished performance for the system 36 or the component).
  • FIG. 3 shows a data structure 40 with recorded entries for parameter setpoint(s) (SP), inputs simulating header movement (S) (e.g., simulating header sensor inputs), controller output, feedback data (e.g., recording actual movement of the feeder house 18), and expected or ideal feeder house movement corresponding to the header movement.
  • SP parameter setpoint
  • S simulating header movement
  • feedback data e.g., recording actual movement of the feeder house 18
  • expected or ideal feeder house movement corresponding to the header movement e.g., actual movement of the feeder house 18
  • a setpoint value for each parameter e.g., height, tilt, sensitivity
  • rate of change, sensitivity, and aggressiveness are all used interchangeably within this description.
  • S1-SN plural inputs
  • the identification of the header may be input into the system by an operator, or acquired via other mechanisms (e.g., extracted using RFID technology, image capture, etc.).
  • the setpoint may be inputted by an operator, or inserted automatically based on detection of the field (e.g., using historical data and a GNSS location).
  • the computing system 20 compares the setpoint (note that the term setpoint, though written in singular, is intended to mean a combination of parameters of height and/or tilt) to each respective value of inputs (S) (e.g., simulated header heights, tilts) while recording the sensitivity, and outputs an error or correction value that attempts to correct the deviation from setpoint as indicated by the inputs (S).
  • S inputs
  • the outputs may include a parameter magnitude and/or vector (e.g., height change and/or tilt change, B1) and a rate of change or sensitivity (Rate1).
  • the output is formatted as a proportional control signal (e.g., pulse width modulated signal).
  • a correction or error signal for each input for a given setpoint is recorded, including B10, Rate10, B11, Rate11, etc.
  • the output is delivered to the hydraulic circuit 38 (e.g., to an actuator or actuators of the hydraulic circuit), causing a change in fluid flow through the cylinders responsible for header height and/or tilt, the fluid flow represented in FIG.
  • the feedback sensor 32 measures the actual change (e.g., FS0, FS1, etc.) for each output and delivers the feedback to the computing system 20.
  • the computing system 20 compares the feedback data on the actual change to an expected or ideal performance (e.g., magnitude change, B10ideal, rate change rate10ideal, etc.) for each output. In other words, the performance in terms of height change, tilt change, and sensitivity is compared by the computing system 20 to historical expected or experimentally determined ideal values of those measures for the given combination of inputs and setpoints.
  • the computing system 20 causes a change in settings pertaining to one or more implement controls (e.g., the sensitivity settings).
  • the computing system 20 may provide diagnostic feedback based on the comparison of actual versus ideal performance. For instance, a threshold performance may be set, where the manufacturer may recommend that, if even the best selection from the data structure 40 results in performance less than a threshold (e.g., 10% below ideal), then a flag is triggered alerting the operator of a potential problem or diminished capability of one or more components of the automatic header height control system 36.
  • a threshold performance e.g. 10% below ideal
  • the visualization of some representation of all or a portion of the data structure 40 may be presented to the operator on a display monitor in, for instance, the cab 14 ( FIG. 1 ), which may inherently reflect the diminished capacity.
  • the visualization may include performance of one or more components of the automatic header height control system 36, and the combination of the diminished capacity and the data on the one or more components may assist the operator in diagnosing a potential problematic component.
  • a simple alert to the operator in a graphical user interface or console light (LED) or audio alert in the form of a buzzer, beeper, etc.
  • FIG. 4 An example computing system 20 as shown in FIG. 4 .
  • the computing system 20 is depicted in FIG. 4 as a single controller, though in some embodiments, the computing system 20 may comprise a plurality of controllers distributed within the automatic header control simulation system 34 shown in FIG. 2 .
  • the example computing system 20 is merely illustrative, and that some embodiments of the computing system 20 may comprise fewer or additional components, and/or some of the functionality associated with the various components depicted in FIG. 4 may be combined, or further distributed among additional modules, in some embodiments.
  • the computing system 20 is depicted in this example as a computer or computing device, but may be embodied as a programmable logic controller (PLC), FPGA, ASIC, among other devices. It should be appreciated that certain well-known components of computers are omitted here to avoid obfuscating relevant features of the computing system 20.
  • the computing system 20 comprises one or more processors, such as processor 42, input/output (I/O) interface(s) 44, a user interface 46, and memory 48, all coupled to one or more data busses, such as data bus 50.
  • the memory 48 may include any one or a combination of volatile memory elements (e.g., random-access memory RAM, such as DRAM, and SRAM, etc.) and nonvolatile memory elements (e.g., ROM, hard drive, tape, CDROM, etc.).
  • the memory 48 may store a native operating system, one or more native applications, emulation systems, or emulated applications for any of a variety of operating systems and/or emulated hardware platforms, emulated operating systems, etc.
  • the memory 48 comprises an operating system 52 and automatic header control simulation system (AHCSS) software 54.
  • AHCSS automatic header control simulation system
  • all or a portion of the automatic header control simulation system software 54 may be implemented in hardware.
  • a separate storage device may be coupled to the data bus 50, such as a persistent memory (e.g., optical, magnetic, and/or semiconductor memory and associated drives).
  • a persistent memory e.g., optical, magnetic, and/or semiconductor memory and associated drives
  • the processor 42 may be embodied as a custom-made or commercially available processor, a central processing unit (CPU) or an auxiliary processor among several processors, a semiconductor based microprocessor (in the form of a microchip), a macroprocessor, one or more application specific integrated circuits (ASICs), a plurality of suitably configured digital logic gates, and/or other well-known electrical configurations comprising discrete elements both individually and in various combinations to coordinate the overall operation of the computing system 20.
  • CPU central processing unit
  • ASICs application specific integrated circuits
  • the I/O interfaces 44 provide one or more interfaces to a network comprising a communication medium 56, which may be a wired medium (e.g., CAN bus) as depicted in FIG. 4 , a wireless medium (e.g., Bluetooth channel(s)), or a combination of wired and wireless mediums.
  • a communication medium 56 may be a wired medium (e.g., CAN bus) as depicted in FIG. 4 , a wireless medium (e.g., Bluetooth channel(s)), or a combination of wired and wireless mediums.
  • the I/O interfaces 44 may comprise any number of interfaces for the input and output of signals (e.g., analog or digital data) for conveyance over one or more communication mediums.
  • the GNSS device 28, the header sensors 30, and the hydraulic circuit 38 are coupled to the medium 56, enabling communication of signals/data with the computing system 20 via the I/O interfaces 44.
  • Additional components may be coupled to the medium 56, including other sensors, controllers, actuators, and/or telephony/radio components (e.g., cellular and/or radio frequency (RF) modem), enabling communications with the computing system 20.
  • RF radio frequency
  • the user interface (Ul) 46 may be a keyboard, mouse, microphone, touch-type display device, head-set, FNR joystick, and/or other devices (e.g., switches) that enable input by an operator (e.g., such as while in the cab 14 ( FIG. 1 )) and/or outputs (e.g., visual, audible, and/or tactile feedback of operations and/or responses to inputs).
  • the user interface 46 enables the setpoints to be established by the operator for the automatic header height control system 36, for adjustments to sensitivity (e.g., in embodiments where not performed automatically) based on comparisons to expected and/or ideal performance, and for feedback of performance and/or performance/component issues.
  • the manner of connections among two or more components may be varied.
  • the user interface 46 may be connected to the medium 56, and in communication with the computing system 20 via the I/O interfaces 44.
  • the automatic header control simulation system software 54 comprises executable code/instructions that, when executed by the processor 42, receives the simulated inputs corresponding to header movement, compares the inputs to the setpoint (e.g., of the header height, tilt, and/or sensitivity), outputs an error signal (e.g., proportional control signal, including pulse width modulated signal, pulse amplitude modulation, pulse code modulation, etc.) to the hydraulic circuit 38 (also referred to herein as a control system) to cause an adjustment in header height, tilt, and/or rate of change (via the feeder house 18 ( FIG. 1 )), and receives feedback via feedback sensor 32 (or sensors) of the feeder house movement, and compares the actual movement indicated by the signal from the feedback sensor 32 to an expected or ideal performance.
  • an error signal e.g., proportional control signal, including pulse width modulated signal, pulse amplitude modulation, pulse code modulation, etc.
  • the automatic header control simulation system software 54 receives feedback (from one or more sensors) indicating movement of the header in response to the output that is based on the error signal, compares the physical movement of the header with the anticipated physical movement associated with the simulated inputs, and responsive to detecting a difference between the physical movement of the header and the anticipated physical movement, causes a change in one or more settings corresponding to control of the header (based on the feedback).
  • the automatic header control simulation system software 54 alerts an operator to adjust a setting pertaining to implement control, including a sensitivity setting, to cause operation to more resemble ideal/expected performance.
  • expected or ideal performance may correspond to lowering the sensitivity to avoid over aggressive operations, such as that causing excessive wear and tear on the combine components, or raise the sensitivity to avoid lax performance, such as digging the header into the ground or missing crop.
  • the alert may be provided to the operator via the user interface 46.
  • the automatic header control simulation system software 54 may automatically adjust the sensitivity setting or other or additional settings (e.g., without operator intervention).
  • the automatic header control simulation system software 54 may adjust the sensitivity (and/or other control) and then alert the operator of the change, or alert the operator of the impending change with or without providing an opportunity for the operator to intervene.
  • the automatic header control simulation system software 54 may provide diagnostic feedback in the manner explained above.
  • the simulation process may end without operator intervention, enabling normal combine operations (e.g., with simulated inputs of header performance switching to actual inputs from the header sensors 30).
  • the automatic header control simulation system software 54 may alert the operator of the completion of the calibration process and await an input corresponding to an acknowledge button presented on the user interface 46 before commencing normal (non-simulation) operations.
  • the simulated inputs of header movement may be achieved via emulation of receipt of such inputs in the automatic header control simulation system software 54.
  • a signal generator 58 coupled to the data bus 50 (or elsewhere, such as coupled to the medium 56) may be used to generate simulated inputs corresponding to header movement.
  • Execution of the automatic header control simulation system software 54 is implemented by the processor 42 under the management and/or control of the operating system 52.
  • the operating system 52 may be omitted and a more rudimentary manner of control implemented.
  • functionality of the automatic header control simulation system software 54 may be distributed among plural controllers (and hence, plural processors). For instance, one controller may be disposed between the header sensors 30 ( FIG. 1 ) and the computing system 20, and another between the computing system 20 and the hydraulic circuit 38 ( FIG. 3 ) to achieve functionality of the automatic header height control system 36 or the automatic header control simulation system 34. Other arrangements may be used in some embodiments. In such embodiments, each controller may be similarly configured in hardware and/or software (e.g., one or more processors, memory comprising executable code/instructions, etc.) as the computing system 20, with the control strategy including a peer-to-peer or master-slave control arrangement.
  • the software can be stored on a variety of non-transitory computer-readable medium for use by, or in connection with, a variety of computer-related systems or methods.
  • a computer-readable medium may comprise an electronic, magnetic, optical, or other physical device or apparatus that may contain or store a computer program (e.g., executable code or instructions) for use by or in connection with a computer-related system or method.
  • the software may be embedded in a variety of computer-readable mediums for use by, or in connection with, an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions.
  • an instruction execution system, apparatus, or device such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions.
  • such functionality may be implemented with any or a combination of the following technologies, which are all well-known in the art: a discrete logic circuit(s) having logic gates for implementing logic functions upon data signals, an application specific integrated circuit (ASIC) having appropriate combinational logic gates, a programmable gate array(s) (PGA), a field programmable gate array (FPGA), etc.
  • ASIC application specific integrated circuit
  • PGA programmable gate array
  • FPGA field programmable gate array
  • an automatic header control simulation method comprises receiving predefined simulated inputs corresponding to movement of the implement attached to the vehicle, the simulated inputs being associated with anticipated physical movement of the implement (62); providing an output to a control system operably coupled to the implement based on the inputs, the output causing physical movement of the implement based on one or more settings (64); receiving feedback from one or more feedback sensors indicating physical movement of the implement responsive to the output (66); comparing physical movement of the implement with the anticipated physical movement associated with the simulated inputs (68); and causing a change in at least one of the one or more settings corresponding to control of the implement based on the feedback in response to detecting a difference between the physical movement of the implement and the anticipated physical movement (70).
  • the setting(s) corresponding to control of the implement may include
  • fewer steps may be implemented, and in some embodiments, additional steps may be employed.
  • the method 60 may be implemented by the computing system 20 residing in the cab 14 ( FIG. 1 ), or in some embodiments, the method 60 may be implemented by a controller of similar functionality located remotely from the combine 10 ( FIG. 1 ).
  • telephony or wireless radio functionality residing on the combine 10 may enable the communication of the settings, setpoint, and feedback sensor data to a remote controller (e.g., application server located external to the combine 10), where the processing is carried out remotely and command signals communicated wirelessly back to the combine 10 for effecting the change in the sensitivity adjustments and/or other adjustments.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Soil Sciences (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Claims (20)

  1. Simulationssystem zum Anpassen der Einstellungen eines Fahrzeugs mit einem damit verbundenen Arbeitsgerät, wobei das Simulationssystem das Folgende aufweist:
    einen oder mehrere Rückmeldesensoren zum Feststellen einer physikalischen Bewegung des Arbeitsgeräts; und
    ein Rechensystem, das durch Befehle für das Folgende konfiguriert ist:
    Empfangen vordefinierter simulierter Eingänge, die einer erwarteten Rückmeldung von dem einen oder den mehreren Rückmeldesensoren entsprechen, als Antwort auf eine Bewegung des an dem Fahrzeug befestigten Arbeitsgeräts, wobei die simulierten Eingänge einer antizipierten physikalischen Bewegung des Arbeitsgeräts zugeordnet sind;
    Bereitstellen eines Ausgangs für ein Steuersystem oder Regelsystem, das mit dem Arbeitsgerät wirkend verbunden ist, basierend auf den Eingängen, wobei der Ausgang eine physikalische Bewegung des Arbeitsgeräts basierend auf einer oder mehreren Einstellungen bewirkt;
    Empfangen einer Rückmeldung von dem einen oder den mehreren Rückmeldesensoren, die eine tatsächliche physikalische Bewegung des Arbeitsgeräts als Reaktion auf den Ausgang indiziert;
    Vergleichen der physikalischen Bewegung des Arbeitsgeräts mit der antizipierten physikalischen Bewegung, die den simulierten Eingängen zugeordnet ist; und
    als Reaktion auf die Feststellung einer Differenz zwischen der physikalischen Bewegung des Arbeitsgeräts und der antizipierten physikalischen Bewegung: Bewirken einer Veränderung der oder mindestens einer Einstellung entsprechend der Steuerung oder Regelung des Arbeitsgeräts basierend auf der Rückmeldung.
  2. Simulationssystem nach Anspruch 1, wobei das Rechensystem ein oder mehrere Steuergerät(e) oder Regelgerät(e) aufweist.
  3. Simulationssystem nach Anspruch 1 oder 2, wobei das Steuersystem oder Regelsystem einen Hydraulikkreis aufweist, wobei die Veränderung der Einstellungen eine Veränderungsrate des hydraulischen Fluidflusses durch den Hydraulikkreis bewirkt, die eine entsprechende Bewegung des Arbeitsgeräts bewirkt.
  4. Simulationssystem nach Anspruch 1, 2 oder 3, wobei der Ausgang ein proportionales Steuersignal oder Regelsignal aufweist.
  5. Simulationssystem nach einem der vorhergehenden Ansprüche, wobei das Rechensystem geeignet konfiguriert ist, um einen Ausgang basierend auf einem Vergleich der empfangenen Eingänge mit einem oder mehreren Sollwerten bereitzustellen.
  6. Simulationssystem nach einem der vorhergehenden Ansprüche, wobei das Rechensystem geeignet konfiguriert ist, um eine Veränderung mindestens einer Einstellung basierend auf einem Vergleich der Rückmeldung mit einem Richtwert zu bewirken.
  7. Simulationssystem nach Anspruch 6, wobei der Richtwert auf einer früheren Erfahrung, experimentellen Daten oder einer Kombination davon beruht.
  8. Simulationssystem nach einem der vorhergehenden Ansprüche, wobei das Fahrzeug einen Mähdrescher mit einem Einzugsgehäuse und das Arbeitsgerät ein mit dem Einzugsgehäuse verbundenes Vorsatzgerät aufweist, wobei das Steuersystem oder Regelsystem einen Hydraulikkreis oder eine elektrisch basierte Steuerung oder Regelung aufweist, der bzw. die eine Bewegung des Einzugsgehäuses anpasst.
  9. Simulationssystem nach einem der vorhergehenden Ansprüche, wobei das Computersystem geeignet konfiguriert ist, um eine Veränderung der mindestens einen Einstellung mit oder ohne Eingriff eines Bedieners zu bewirken.
  10. Simulationssystem nach einem der vorhergehenden Ansprüche, wobei die Rückmeldung weiterhin eine diagnostische Rückmeldung aufweist, wobei das Computersystem geeignet konfiguriert ist, um basierend auf der Rückmeldung einen Hinweis auf eine Leistung , die niedriger als erwartet ist, bereitzustellen.
  11. Simulationsverfahren zum Anpassen von Einstellungen eines Fahrzeugs mit einem damit verbundenen Arbeitsgerät, wobei das Simulationsverfahren das Folgende aufweist:
    Empfangen vordefinierter simulierter Eingänge, die einer erwarteten Rückmeldung von dem einen oder den mehreren Rückmeldesensoren entsprechen, als Antwort auf eine Bewegung des an dem Fahrzeug befestigten Arbeitsgeräts, wobei die simulierten Eingänge einer antizipierten physikalischen Bewegung des Arbeitsgeräts zugeordnet sind;
    Bereitstellen eines Ausgangs für ein Steuersystem oder Regelsystem, das mit dem Arbeitsgerät wirkverbunden ist, basierend auf den Eingängen, wobei der Ausgang eine physikalische Bewegung des Arbeitsgeräts basierend auf einer oder mehreren Einstellungen bewirkt;
    Empfangen einer Rückmeldung von dem einen oder den mehreren Rückmeldesensoren, die eine tatsächliche physikalische Bewegung des Arbeitsgeräts als Reaktion auf den Ausgang indiziert;
    Vergleichen der physikalischen Bewegung des Arbeitsgeräts mit der antizipierten physikalischen Bewegung, die den simulierten Eingängen zugeordnet ist; und
    Bewirken einer Veränderung mindestens einer der Steuerung oder Regelung des Arbeitsgeräts entsprechenden Einstellung basierend auf der Rückmeldung als Reaktion auf die Feststellung einer Differenz zwischen der physikalischen Bewegung des Arbeitsgeräts und der antizipierten physikalischen Bewegung.
  12. Verfahren nach Anspruch 11, wobei das Bewirken der Veränderung eine Veränderungsrate des hydraulischen Fluidflusses durch den Hydraulikkreis bewirkt, die eine entsprechende Bewegung des Arbeitsgeräts bewirkt.
  13. Verfahren nach Anspruch 11 oder 12, wobei der Ausgang ein proportionales Steuersignal oder Regelsignal aufweist.
  14. Verfahren nach Anspruch 11, 12 oder 13, weiterhin mit dem Vergleichen der empfangenen Eingänge mit einem oder mehreren Sollwerten.
  15. Verfahren nach einem der Ansprüche 11 bis 14, weiterhin mit dem Vergleichen der Rückmeldung mit einem Richtwert.
  16. Verfahren nach einem der Ansprüche 11 bis 15, wobei der Richtwert auf einer früheren Erfahrung, experimentellen Daten oder einer Kombination davon beruht.
  17. Verfahren nach einem der Ansprüche 11 bis 16, wobei das Fahrzeug einen Mähdrescher mit einem Einzugsgehäuse und das Arbeitsgerät ein mit dem Einzugsgehäuse verbundenes Vorsatzgerät aufweist, wobei das Steuersystem oder Regelsystem einen Hydraulikkreis oder eine elektrisch basierte Steuerung oder Regelung aufweist, der bzw. die eine Bewegung des Einzugsgehäuses anpasst.
  18. Verfahren nach einem der Ansprüche 11 bis 17, wobei das Bewirken der Veränderung mit oder ohne Eingriff eines Bedieners erfolgt.
  19. Verfahren nach einem der Ansprüche 11 bis 18, wobei die Rückmeldung eine diagnostische Rückmeldung aufweist, und weiterhin basierend auf der Rückmeldung ein Hinweis auf eine Leistung, die niedriger als erwartet ist, bereitgestellt wird.
  20. Nicht-flüchtiges computerlesbares Medium mit Befehlen, die bei ihrer Ausführung durch ein Rechensystem bewirken, dass das Rechensystem das Folgende ausführt:
    Empfangen vordefinierter simulierter Eingänge, die einer erwarteten Rückmeldung von dem einen oder den mehreren Rückmeldesensoren entsprechen, als Antwort auf eine Bewegung eines an einem Fahrzeug befestigten Arbeitsgeräts, wobei die simulierten Eingänge mit einer antizipierten physikalischen Bewegung des Arbeitsgeräts verbunden sind;
    Bereitstellen eines Ausgangs für ein Steuersystem oder Regelsystem, das mit dem Arbeitsgerät wirkverbunden ist, basierend auf den Eingängen, wobei der Ausgang eine physikalische Bewegung des Arbeitsgeräts basierend auf einer oder mehreren Einstellungen bewirkt;
    Empfangen einer Rückmeldung von dem einen oder den mehreren Rückmeldesensoren, die eine tatsächliche physikalische Bewegung des Arbeitsgeräts als Reaktion auf den Ausgang indiziert;
    Vergleichen der physikalischen Bewegung des Arbeitsgeräts mit der antizipierten physikalischen Bewegung, die den simulierten Eingängen zugeordnet ist; und
    Bewirken einer Veränderung mindestens einer der Steuerung oder Regelung des Arbeitsgeräts entsprechenden Einstellung basierend auf der Rückmeldung als Reaktion auf die Feststellung einer Differenz zwischen der physikalischen Bewegung des Arbeitsgeräts und der antizipierten physikalischen Bewegung.
EP19161928.7A 2018-05-02 2019-03-11 Simulation einer automatischen vorsatzgerätsteuerung Active EP3563654B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201862665630P 2018-05-02 2018-05-02

Publications (2)

Publication Number Publication Date
EP3563654A1 EP3563654A1 (de) 2019-11-06
EP3563654B1 true EP3563654B1 (de) 2022-12-21

Family

ID=65763367

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19161928.7A Active EP3563654B1 (de) 2018-05-02 2019-03-11 Simulation einer automatischen vorsatzgerätsteuerung

Country Status (2)

Country Link
US (1) US20190335662A1 (de)
EP (1) EP3563654B1 (de)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11079725B2 (en) 2019-04-10 2021-08-03 Deere & Company Machine control using real-time model
US11178818B2 (en) 2018-10-26 2021-11-23 Deere & Company Harvesting machine control system with fill level processing based on yield data
US11641800B2 (en) 2020-02-06 2023-05-09 Deere & Company Agricultural harvesting machine with pre-emergence weed detection and mitigation system
US11653588B2 (en) 2018-10-26 2023-05-23 Deere & Company Yield map generation and control system
US11957072B2 (en) 2020-02-06 2024-04-16 Deere & Company Pre-emergence weed detection and mitigation system
US11240961B2 (en) 2018-10-26 2022-02-08 Deere & Company Controlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity
US11589509B2 (en) 2018-10-26 2023-02-28 Deere & Company Predictive machine characteristic map generation and control system
US11467605B2 (en) 2019-04-10 2022-10-11 Deere & Company Zonal machine control
US11672203B2 (en) 2018-10-26 2023-06-13 Deere & Company Predictive map generation and control
US11140825B2 (en) * 2019-01-04 2021-10-12 Deere & Company Header positioning assembly for agricultural work vehicle
US11116133B2 (en) * 2019-01-04 2021-09-14 Deere & Company Header positioning assembly for an agricultural work vehicle and control system for the same
US11778945B2 (en) 2019-04-10 2023-10-10 Deere & Company Machine control using real-time model
US11234366B2 (en) 2019-04-10 2022-02-01 Deere & Company Image selection for machine control
US11997947B2 (en) * 2019-12-23 2024-06-04 Cnh Industrial America Llc System and method for setting a profile of a header during a non-harvesting mode
US11452259B2 (en) * 2020-03-17 2022-09-27 Cnh Industrial America Llc System and method for controlling harvester implement position of an agricultural harvester
US11477940B2 (en) 2020-03-26 2022-10-25 Deere & Company Mobile work machine control based on zone parameter modification
US11727680B2 (en) 2020-10-09 2023-08-15 Deere & Company Predictive map generation based on seeding characteristics and control
US11927459B2 (en) 2020-10-09 2024-03-12 Deere & Company Machine control using a predictive map
US11983009B2 (en) 2020-10-09 2024-05-14 Deere & Company Map generation and control system
US11849671B2 (en) 2020-10-09 2023-12-26 Deere & Company Crop state map generation and control system
US11946747B2 (en) 2020-10-09 2024-04-02 Deere & Company Crop constituent map generation and control system
US11474523B2 (en) 2020-10-09 2022-10-18 Deere & Company Machine control using a predictive speed map
US11849672B2 (en) 2020-10-09 2023-12-26 Deere & Company Machine control using a predictive map
US11874669B2 (en) 2020-10-09 2024-01-16 Deere & Company Map generation and control system
US11635765B2 (en) 2020-10-09 2023-04-25 Deere & Company Crop state map generation and control system
US11675354B2 (en) 2020-10-09 2023-06-13 Deere & Company Machine control using a predictive map
US11650587B2 (en) 2020-10-09 2023-05-16 Deere & Company Predictive power map generation and control system
US20220113729A1 (en) * 2020-10-09 2022-04-14 Deere & Company Predictive map generation and control system
US11889788B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive biomass map generation and control
US11711995B2 (en) 2020-10-09 2023-08-01 Deere & Company Machine control using a predictive map
US11864483B2 (en) 2020-10-09 2024-01-09 Deere & Company Predictive map generation and control system
US11871697B2 (en) 2020-10-09 2024-01-16 Deere & Company Crop moisture map generation and control system
US12013245B2 (en) 2020-10-09 2024-06-18 Deere & Company Predictive map generation and control system
US11844311B2 (en) 2020-10-09 2023-12-19 Deere & Company Machine control using a predictive map
US11845449B2 (en) 2020-10-09 2023-12-19 Deere & Company Map generation and control system
US11895948B2 (en) 2020-10-09 2024-02-13 Deere & Company Predictive map generation and control based on soil properties
US11825768B2 (en) 2020-10-09 2023-11-28 Deere & Company Machine control using a predictive map
US11592822B2 (en) 2020-10-09 2023-02-28 Deere & Company Machine control using a predictive map
US11889787B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive speed map generation and control system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5918448A (en) 1997-02-06 1999-07-06 Agco Corporation Combine header lateral tilt assembly
DE10227484A1 (de) * 2002-06-19 2004-02-26 Claas Selbstfahrende Erntemaschinen Gmbh Vorrichtung und Verfahren zur Lagesteuerung eines Erntegutaufnahmegerätes landwirtschaftlicher Erntemaschinen
US9148998B2 (en) * 2012-08-11 2015-10-06 Deere & Company Header height control system
US9609806B2 (en) * 2013-02-12 2017-04-04 Headsight, Inc. Automatic calibration system for header height controller with operator feedback

Also Published As

Publication number Publication date
US20190335662A1 (en) 2019-11-07
EP3563654A1 (de) 2019-11-06

Similar Documents

Publication Publication Date Title
EP3563654B1 (de) Simulation einer automatischen vorsatzgerätsteuerung
EP2676177B1 (de) System und verfahren zur automatischen seitenführungssteuerung eines landwirtschaftlichen fahrzeuges
EP2020170B1 (de) System und Verfahren zur Steuerung eines Fahrzeugs mit einer Reihe von Fahrzeugereignissen
JP7143451B2 (ja) 自律的に動作する作業機械を動作させるための方法及び装置
US7707811B1 (en) Header flotation and lift system with dual mode operation for a plant cutting machine
KR20210039398A (ko) 수확기, 주위 상황 검출 시스템, 주위 상황 검출 프로그램, 주위 상황 검출 프로그램을 기록한 기록 매체, 및 주위 상황 검출 방법
EP3456174B1 (de) Verfahren und system zur steuerung der höhe eines landwirtschaftlichen arbeitsgeräts in bezug auf den boden
KR20200096503A (ko) 슬립 판정 시스템, 주행 경로 생성 시스템, 및 포장 작업차
US9717172B2 (en) Machine turn maneuver management
US10506762B2 (en) Computer controlled hydraulic conditioner roll tensioning adjustment
US20190343032A1 (en) System and method for controlling the operation of an agricultural implement being towed by a work vehicle
KR20170081686A (ko) 포장 상태 검지 시스템
CA3037811A1 (en) Header float and skin plate adjustment
JP6974155B2 (ja) スリップ判定システム
US20220061218A1 (en) Automated header float optimization and field learning for a work vehicle
EP4021160A1 (de) System und verfahren zur detektion der ebenheit von werkzeugen eines bodenbearbeitungsgeräts auf basis des materialflusses
EP3815482A1 (de) System und verfahren zur detektion der ebenheit von werkzeugen eines bodenbearbeitungsgeräts auf basis der werkzeugbelastung
US11399463B2 (en) Method for controlling the height of a harvesting implement relative to the ground and related height control systems
CA3009724C (en) Automatic control of windrower swathboard
WO2014105927A1 (en) Using a virtual boom to steer agricultural equipment along the edge of worked/unworked areas
US20230345857A1 (en) Calibration mode of an agricultural system
US20240044346A1 (en) Hydraulic cylinder position control for lifting and lowering towed implements
US20220364324A1 (en) Motor grader blade with ability to follow front tires
EP4014709A1 (de) Landwirtschaftliche vorrichtung mit schnitthöhenregelung
US11821162B2 (en) System and method for adaptive calibration of blade position control on self-propelled work vehicles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200506

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200728

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220927

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019023299

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1538453

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20221221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221221

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230321

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221221

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221221

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1538453

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221221

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221221

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221221

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230322

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221221

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221221

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230421

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221221

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221221

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221221

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221221

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221221

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230421

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221221

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602019023299

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221221

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221221

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20230922

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230311

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221221

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230311

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230321

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240320

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221221

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240328

Year of fee payment: 6

Ref country code: BE

Payment date: 20240320

Year of fee payment: 6