EP3553444A1 - Caloduc a artere a fonctionnement ameliore - Google Patents

Caloduc a artere a fonctionnement ameliore Download PDF

Info

Publication number
EP3553444A1
EP3553444A1 EP19168585.8A EP19168585A EP3553444A1 EP 3553444 A1 EP3553444 A1 EP 3553444A1 EP 19168585 A EP19168585 A EP 19168585A EP 3553444 A1 EP3553444 A1 EP 3553444A1
Authority
EP
European Patent Office
Prior art keywords
plates
grooves
heat pipe
grooved
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19168585.8A
Other languages
German (de)
English (en)
Other versions
EP3553444B1 (fr
Inventor
Jean-Antoine Gruss
Mathieu Mariotto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP3553444A1 publication Critical patent/EP3553444A1/fr
Application granted granted Critical
Publication of EP3553444B1 publication Critical patent/EP3553444B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular

Definitions

  • the present invention relates to an improved functioning arterial heat pipe.
  • the invention belongs to the field of heat exchange devices, in particular heat pipes, more particularly heat pipes with arteries.
  • a heat pipe comprises a hermetically sealed enclosure, a working fluid and a capillary network. During manufacture, all the air present in the heat pipe is removed and an amount of liquid is introduced to saturate the capillary network. There is then establishment of a balance between the liquid phase and the vapor phase.
  • the liquid Under the effect of a hot source applied to one end, designated evaporator, the liquid vaporizes by inducing a slight overpressure which causes the movement of steam towards the second end, designated condenser. At the condenser, the steam condenses and returns to the liquid phase.
  • the condensed fluid circulates in the capillary network and returns to the evaporator under the effect of capillary forces. The return of the liquid fluid from the condenser zone to the evaporator zone is obtained by capillary pumping.
  • An arterial heat pipe is a heat pipe in which the return of the liquid phase from the condenser zone to the evaporator zone is physically separated from the channel in which the steam flows from the evaporator zone to the condenser zone.
  • the circulation of the liquid is made in an artery which is adjacent to the channel in which the vapor circulates.
  • An example of such a heat pipe is described in the document US 4 422 501 .
  • the canal is formed by a tube and the artery is formed by an adjacent tube.
  • Grooves are formed in the inner face of the channel so as to open into the artery, which ensures the flow of the liquid from the channel to the artery at the level of the condenser zone, and the supply of the evaporator zone of the channel through the liquid. The grooves ensure also the distribution in the evaporator zone to maximize the exchange coefficient.
  • Such a heat pipe makes it possible to operate in the absence of gravity, it is then generally used in the spatial field.
  • the artery heat pipes can experience a defusing related to the appearance of vapor bubble in the liquid artery, preventing the supply of liquid water to the channel at the evaporator zone.
  • the appearance of vapor bubbles is due to the conduction of heat from the evaporator zone to the artery via the walls of the tube forming the channel.
  • an artery heat pipe sometimes has a support plate on the outer surface of the steam channel opposite the artery and providing the heat supply to the evaporator zone and the extraction of heat to the condenser zone.
  • a heat pipe with a stack comprising between two end plates, at least one structured plate or perforated so as to define a steam channel and a liquid channel or artery and at least two grooved plates arranged on either side of the structured plate, the grooves putting in communication the steam channel and the artery.
  • the structured plate also has grooves for connecting a groove of a grooved plate to a groove of the other grooved plate.
  • the conduction of the heat of the face of the heat pipe to be heated to the artery is reduced, especially through the grooved plates which are very thin and have grooves. Indeed, they represent a quantity of conductive material reduced compared to non-grooved plates. The risk of defusing is reduced.
  • the heat pipe comprises a plurality of structured plates, each surrounded by two grooved plates.
  • the steam channel is separated into subchannels as well as the liquid channel.
  • Each steam subchannel is supplied with liquid by the grooves of the grooved plates.
  • a feed that is distributed throughout the steam channel and not only at the edges is obtained, the production of steam is improved.
  • the grooved plates ensure effective drainage of the liquid to the liquid channel in the condensation zone.
  • the face for heat exchange is formed by an edge of the stack formed by the edges of the stacked plates. This edge is for example parallel to the stacking direction.
  • the face intended for heat exchange can therefore be advantageously flat, which can promote heat exchange and simplify the contacting of the heat pipe with a hot source.
  • this face is formed directly during stacking. It is therefore not necessary to add planar faces, which is the case in heat pipes with grooves of the state of the art in which faces planes are provided on the outer face of the tubes, and for which there is a significant thermal resistance despite the fact that they are thermal conducting material.
  • the first window may have third grooves formed in an inner edge of the first post, the third grooves being arranged such that they connect a first groove of a grooved plate, and a first groove of another grooved plate forming with a groove.
  • second groove a closed groove bordering the inside of the first window.
  • the thickness of the n +1 grooved plates is between 0.5 mm and 1 mm and the thickness of the n perforated plates is between 0.5 mm and 5 mm.
  • perforated plates is or are formed by a set of thin perforated plates assembled to each other.
  • the first, second and third grooves preferably have a width of between 0.2 mm and 0.5 mm.
  • the n + 1 grooved plates may have grooves distributed uniformly from the first end zone to the second end zone.
  • the heat pipe may comprise at least two perforated plates and three grooved plates and the steam channel and the liquid channel are divided into sub-steam channels and liquid sub-channels respectively by grooved plates, said vapor subchannels being in communication with each other by means of first grooves and the liquid subchannel being in fluid communication with each other by the first grooves.
  • each perforated plate may comprise the assembly of several thin plates.
  • the plates comprise an aluminum alloy core and on its outer faces an eutectic aluminum alloy with a melting point lower than that of the aluminum alloy core and the joining is obtained by eutectic soldering.
  • the heat pipe has a rectangular parallelepiped shape, this form is not limiting, as will be described in the following description.
  • the heat pipe extends along a longitudinal axis X.
  • the Y and Z axes are orthogonal to each other and to the X axis.
  • the Y direction corresponds to the thickness of the heat pipe and the Z direction corresponds to the height of the heat pipe. .
  • first face 2 through which the heat exchanges will take place, and a second face 4 opposite to the first face 2.
  • the first and second faces are connected by side walls 6 and end walls 8.
  • the first face 2 comprises at a first longitudinal end 2.1 a surface intended to be in thermal contact with a heat source and designated hot surface, and at a second longitudinal end 2.2, a surface intended to be in thermal contact with a cold source, and designated cold surface.
  • the heat pipe has a vaporization zone ZV located in the heat pipe to the right of the hot surface, a zone of condensation ZC located in the heat pipe to the right of the cold surface.
  • the vaporization zone ZV and the condensation zone ZC are connected by an adiabatic zone ZA
  • an arterial heat pipe like that of the invention, is divided into a CV channel in which the vapor of the vaporization zone flows to the condensation zone, and a CL channel or artery in which the liquid circulates. from the second end to the first end.
  • the CV steam channel is divided into subchannels 14, designated vapor subchannels, and the liquid channel CL is divided into sub-channels 16, designated liquid subchannel.
  • the vapor subchannels 14 and the liquid subchannels 16 extend between the first end and the second end. As will be explained below, the vapor subchannels are in fluid communication with each other and the liquid subchannels are in fluid communication with each other. In addition, the liquid subchannels are in fluid communication with the vapor subchannels.
  • the body of the heat pipe is obtained by stacking and solidifying plates of different structure to delimit the vapor and liquid channels and establish the communications between the liquid and vapor channels.
  • the end plates 18 are full. At least one of them has one or two orifices (not shown) for filling the heat pipe fluid. This or these orifices are then sealed.
  • the Figures 3, 4 and 5 represent the structures of the plates composing the stack forming the heat pipe.
  • the perforated plates, a perforated plate 20 is shown alone on the figure 4 , comprise a first window 24 of larger size and a second window 26 of smaller size separated by an inner upright 30.
  • the first window 24 has an outer upright 32 for forming a portion of the first surface.
  • the second window has an outer upright 34 for forming a portion of the second surface.
  • the inner pillar is parallel to the two outside pillars 32, 34.
  • the face of the inner pillar 30 on the side of the first window is also provided with grooves 38 extending between the two faces of the perforated plate 20 and opening into the two faces.
  • the inner face 32.1 of the outer upright 32 is provided with grooves 36 extending between the two faces of the perforated plate 20 and opening into the two faces.
  • the perforated plate 20 comprises a plurality of finer identical openwork plates assembled together, which simplifies the manufacture, for example when the added plate has a thickness greater than 1 mm.
  • the grooved plates 22, one of which is shown alone on the figure 5 has grooves 40 extending in the Z direction and dimension along the Z axis sufficient to be both in the vapor channels and in the liquid channels.
  • the grooves do not open at the ends of the plate 22 in the Z direction.
  • the grooves are through in the Y direction, ie they pass through the thickness of the plate.
  • the grooves 40 allow on the one hand a communication between the steam subchannels between them through the grooves 40, and on the other hand the communication between the liquid subchannel and the steam subchannels along the grooves 40 according to the direction Z.
  • the stack comprises two grooved plates 22 'in contact with the closing plate 18, the grooves 40' has a closed bottom, these grooves only serve for the circulation between the liquid subchannel and the steam subchannels.
  • the stack comprises interposed groove plates 22 arranged in the width of the vapor and liquid channels in the Y direction.
  • each groove 40 is in the same plane as a groove 36 and a groove 38 then forming a continuous groove bordering the interior of a steam channel.
  • the depths of the grooves 36, 38 and 40 are advantageously equal.
  • the stack alternates perforated plates 20, in one piece or having a plurality of perforated fine plates, and the grooved plates 22.
  • each perforated plate, integral or having a plurality of fine perforated plates, is surrounded two grooved plates 22.
  • each perforated plate integral or having a plurality of perforated thin plates, defines with two grooved plates, a steam subchannel and a liquid subchannel separated by the inner pillar.
  • the stack of the inner uprights 30 forms a partition wall between the liquid channel and the steam channel.
  • the grooves 40 allow the liquid to pass between the steam channel and the liquid channel and between the liquid sub-channels between them and between the vapor sub-channels between them.
  • the groove through the transverse wall separating the liquid channel from the steam channel can be seen.
  • the perforated plates integral or having a plurality of perforated fine plates, are thicker than the grooved plates, they ensure the rigidity of the heat pipe.
  • the grooved plates are advantageously made as thin as possible so as to reduce the amount of thermal conductive material between the hot surface and the liquid channels, and reduce the risk of occurrence of vapor bubbles in the liquid channels.
  • the grooves have a width of 0.2 mm and a depth of 0.2 mm equal to the thickness of the grooved plates.
  • the distance between the grooves is 0.8 mm.
  • the width of the grooves is for example between 0.2 mm and 1 mm, and the depth of the grooves is for example between 0.2 mm and 1 mm.
  • the thickness of the perforated plates in one piece is for example between 0.5 mm and 5 mm.
  • the thinner plates have for example a thickness of between 0.5 mm and 1 mm.
  • the thickness of the grooved plates is equal to the depth of the grooves, it is for example between 0.2 and 1mm.
  • the distance between the grooves is for example between 0.5 mm and 10 mm.
  • the interval between grooves is for example between 0.5 mm to 10 mm
  • the plates are joined to each other in a sealed manner, for example by welding diffusion, bonding ... the assembly technique depends on the materials of the plates.
  • the stack comprises at least two grooved plates 22 and a perforated plate 20, and preferably at most ten grooved plates 22 and nine perforated plates 20, in one piece or having a plurality of perforated fine plates.
  • the filling fluids used in the heat pipe and intended to vaporize and to be condensed, usable are fluids used in a known manner in the heat pipes.
  • the fluid is selected according to the operating temperature range and storage of the device. In addition, other criteria such as pressure, flammability, toxicity of the fluid may be taken into account.
  • the fluid is also selected so that it is compatible with the plate materials and the method of assembly.
  • the vaporizer zone ZV is heated by the hot source through the hot surface, the fluid in the vapor subchannels is vaporized, and moves towards the condensing zone ZC through the adiabatic zone in the steam subchannels. .
  • the vapor that reaches the condensation zone is cooled through the surface 2.2, the vapor condenses and the liquid is deposited on the walls of the steam subchannels, on the inner faces of the uprights 30 and 32 and on the grooved plates 22 and 22 '.
  • the liquid then flows to the liquid subchannels in the grooves 40.
  • the grooves 36 and 38 assist in draining the liquid in the condensation zone to the liquid channels.
  • the intermediate grooved plates provide liquid collection at the center of the steam channel, the plates 22 'collect the liquid on the side walls of the steam channel, and the grooves 40, 40' drain the liquid to the liquid channel.
  • Liquid located in the liquid subchannel at the second end of the heat pipe flows to the first end of the heat pipe in the liquid subchannel.
  • the liquid is then in the liquid sub-channels to the right of the vaporization zone.
  • the liquid then re-energizes the vaporization zone by capillarily migrating the liquid subchannels to the vapor subchannels in the grooves 40, then circulates in the grooves 36 and is vaporized again.
  • the grooves 40 of the intermediate grooved plates provide a liquid supply of the vaporization zone in the center of the channel and the grooves 40 'ensure a circulation of the liquid on the side walls of the steam channel.
  • the grooves 38 participate in the distribution of the liquid which evaporates over the entire width of the steam channel.
  • the grooves 36 distribute the unexpired liquid near the hot source over the width of the steam channel.
  • the grooves 36 and 38 increase the evaporation surfaces.
  • Liquid replenishment of the vaporization zone and collection of the liquid in the condensation zone are improved, optimizing the operation of the arterial heat pipe.
  • the communication between the vapor subchannels further allows a balancing of the pressures.
  • the communication between the liquid sub-channels allows a uniform distribution of the liquid throughout the width of the liquid channel.
  • the grooved plates can be made very thin and are also provided with a large number of grooves, the amount of material to conduct heat from the first face to the liquid subchannels is reduced , which reduces the risk of liquid heating in the liquid subchannels and the appearance of vapor bubbles, which would lead to the defusing of the heat pipe.
  • the heat pipe then has an improved operation compared to those of the state of the art.
  • the number and the spacing of the grooves are chosen so as to ensure the integrity of the grooved plate and to limit the losses of loading.
  • the grooves promote capillary pumping from the liquid zone to the vapor zone.
  • the risk of non-liquid supply of the vaporization zone is reduced.
  • the grooves are present on the entire grooved plate between the vaporization zone and the condensation zone, limiting the transfer of heat between the face 2 and the face 4.
  • the steam channel and the liquid channel are divided into several sub-channels by interlayered grooved plates, a heat pipe in which the steam channel and the single liquid channel are not divided into subchannels, ie having a perforated plate surrounded by two grooved plates and two end plates is not beyond the scope of the present invention.
  • grooves 40 may be inclined relative to the direction Z, In addition, the grooves may not be parallel to each other.
  • the heat pipe according to the invention can be made of different materials such as, for example, an aluminum alloy, copper, stainless steel.
  • the technique of joining the sheets depends on the material.
  • solder diffusion solder diffusion, bonding ...
  • the assembly of aluminum alloy plates is obtained by eutectic soldering.
  • Aluminum alloy plates are used in known manner, one or both of which faces or is coated with an aluminum alloy having a lower melting point.
  • an alloy sheet of the AA3xxxx series core is used, with a coating with a eutectic alloy of the AA4xxxx series comprising silicon having a lower melting point.
  • the coating is typically done by a roll-bond technique.
  • the total thickness of the plates is typically 0.05 mm to 5 mm, with a coating typically of 5% to 10% of the total thickness.
  • the eutectic alloy melts on the surface and forms a solder alloy. sealing assembly between the two plates.
  • a first capillary pumping heat pipe of the state of the art with rectangular grooves has longitudinal grooves 610, as shown in FIG. figure 6 . This is done by extrusion.
  • Each heat pipe has a length of the evaporator of 50 mm, a length of the adiabatic zone of 100 mm, a length of the condenser of 110 mm
  • Each heat pipe is made of copper.
  • the average temperature of the heat pipe is 60 ° C, which is approximately the vapor temperature in the adiabatic heat pipe zone.
  • the heat pipe according to the invention is substantially more efficient than the heat pipe with rectangular grooves of the state of the art, regardless of the inclination of the heat pipe.
  • the heat pipe according to the invention is substantially more efficient than the heat pipe of the state of the art, whatever the temperature of the heat pipe.
  • Each heat pipe has an evaporator length of 200 mm, a length of the adiabatic zone of 600 mm, a length of the condenser of 200 mm
  • Each heat pipe is made of aluminum alloy.
  • the average temperature of the heat pipe is 60 ° C.
  • the heat pipe according to the invention is substantially more efficient than the heat pipe of the state of the art, whatever the temperature of the heat pipe.
  • Plates of a given material are cut in the desired outer shape for the heat pipe.
  • the windows are made in all perforated plates 20, in one piece or having a plurality of perforated thin plates.
  • the windows are made for example by punching, laser cutting, water jet cutting or through-through etching ...
  • the grooves are made in the plates 22, for example by mechanical machining or chemical etching.
  • the plates are then stacked alternately perforated plates 20, in one piece or having a plurality of perforated thin plates, and the grooved plates 22, so as to delimit the vapor subchannels and liquid subchannels.
  • Grooved plates 22 are disposed at the ends so that the end channels also have grooves on both their faces, and then closure plates are provided on the grooved plates 22 to laterally close the channels.
  • the plates are assembled, the assembly technique being chosen according to the material or materials of the plates, for example welding, brazing, gluing ... the assembly of the plates is sealed.
  • the heat pipe is then filled.
  • a filling port was provided in one of the closure plates during the manufacture of the plates.
  • the fluid is chosen according to the operating conditions of the heat pipe (operating temperature, etc.) and the compatibility with the material or materials of the heat pipe.
  • the parallelepipedal shape of the heat pipe or at least provided with flat faces can facilitate its integration. Moreover, it gives it flexibility and a degree of freedom in its realization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)

Abstract

Caloduc à artère comportant un canal vapeur et un canal liquide s'étendant entre une première zone d'extrémité et une deuxième zone d'extrémité, et un empilement comprenant :- deux plaques d'extrémité (18),- n plaques ajourées (20), n ≥ 1 comprenant une première fenêtre (24), les n premières fenêtres (24) délimitant en partie le canal vapeur et les n deuxièmes fenêtres (26) délimitant en partie le canal liquide,- n+ 1 plaques rainurées (22), chaque plaque rainurée (22) comportant des premières rainures (40), la plaque ajourée (20) étant interposée ente deux plaques rainurées (22), les premières rainures (40) s'étendant entre la première fenêtre (24) et la deuxième fenêtre (26),- la première fenêtre (24) comportant des deuxièmes rainures (38) réalisées dans un bord intérieur du troisième montant (30), les deuxièmes rainures (38) étant disposées de sorte qu'elles relient deux premières rainures (40) de deux plaques rainurées (22).

Description

    DOMAINE TECHNIQUE ET ÉTAT DE LA TECHNIQUE ANTÉRIEURE
  • La présente invention se rapporte à un caloduc à artère à fonctionnement amélioré.
  • L'invention appartient au domaine des dispositifs d'échange thermique, en particulier des caloducs, plus particulièrement des caloducs à artère.
  • Un caloduc comporte une enceinte hermétiquement close, un fluide de travail et un réseau capillaire. Lors de la fabrication, tout l'air présent dans le tube caloduc est évacué et on introduit une quantité de liquide permettant de saturer le réseau capillaire. Il y a alors établissement d'un équilibre entre la phase liquide et la phase vapeur.
  • Sous l'effet d'une source chaude appliquée à l'une des extrémités, désignée évaporateur, le liquide se vaporise en induisant une légère surpression qui provoque le mouvement de la vapeur vers la seconde extrémité, désignée condenseur. Au condenseur, la vapeur se condense et repasse en phase liquide. Le fluide condensé circule dans le réseau capillaire et revient vers l'évaporateur sous l'effet de forces capillaires. Le retour du fluide liquide de la zone condenseur à la zone évaporateur est obtenu par pompage capillaire.
  • Un caloduc à artère est un caloduc dans lequel le retour de la phase liquide de la zone condenseur à la zone évaporateur est physiquement séparé du canal dans lequel circule la vapeur de la zone évaporateur vers la zone condenseur. La circulation du liquide se fait dans une artère qui est adjacente au canal dans lequel circule la vapeur. Un exemple d'un tel caloduc est décrit dans le document US 4 422 501 . Le canal est formé par un tube et l'artère est formée par un tube adjacent. Des rainures sont formées dans la face intérieure du canal de sorte à déboucher dans l'artère, qui assure l'écoulement du liquide du canal vers l'artère au niveau de la zone condenseur, et la réalimentation de la zone évaporateur du canal par le liquide. Les rainures assurent également la distribution dans la zone évaporateur pour maximiser le coefficient d'échange.
  • En séparant le flux liquide du flux vapeur, les interfaces liquide/vapeur dans la partie adiabatique du caloduc, le flux maximum d'entraînement des particules liquides par la vapeur est annihilé.
  • Un tel caloduc permet de fonctionner en l'absence de gravité, il est alors généralement utilisé dans le domaine spatial.
  • Les caloducs à artère peuvent connaître un désamorçage lié à l'apparition de bulle de vapeur dans l'artère liquide, empêchant la réalimentation en eau liquide du canal au niveau de la zone évaporateur. L'apparition de bulles de vapeur est due à la conduction de la chaleur de la zone évaporateur à l'artère via les parois du tube formant le canal.
  • En outre, un caloduc à artère comporte parfois une platine support sur la surface extérieure du canal vapeur à l'opposé de l'artère et assurant l'apport de chaleur à la zone évaporateur et l'extraction, de chaleur à la zone condenseur.
  • On connait également les caloducs cylindriques à rainures réentrantes utilisées principalement dans le domaine spatial dont une représentation schématique est visible sur la figure 7. La forme des rainures réentrantes est limitée par les contraintes mécaniques sur la filière du procédé de fabrication par extrusion. Une vue de face et une vue arrière de cette filière sont représentées sur les figures 8A et 8B respectivement tirées du document Ömür, Cem, A. Bilge Uygur, ilhami Horuz, H. Gürgüç I
    Figure imgb0001
    k, Sad
    Figure imgb0002
    k Ayan, et Murat Konar. 2018. « Incorporation of manufacturing constraints into an algorithm for the determination of maximum heat transport capacity of extruded axially grooved heat pipes ». International Journal of Thermal Sciences 123 (January).
  • EXPOSÉ DE L'INVENTION
  • C'est par conséquent un but de la présente invention d'offrir un caloduc à artère présentant un fonctionnement amélioré, et présentant notamment un risque de désamorçage réduit.
  • Le but énoncé ci-dessus est atteint par caloduc à artère comportant un empilement comprenant entre deux plaques d'extrémité, au moins une plaque structurée ou ajourée de sorte à délimiter un canal vapeur et un canal liquide ou artère et au moins deux plaques rainurées disposées de part et d'autre de la plaque structurée, les rainures mettant en communication le canal vapeur et l'artère. La plaque structurée comporte également des rainures de sorte à relier une rainure d'une plaque rainurée à une rainure de l'autre plaque rainurée.
  • Grâce à l'invention, la conduction de la chaleur de la face du caloduc destinée à être échauffée vers l'artère est réduite, notamment à travers les plaques rainurées qui sont très fines et présentent des rainures. En effet, elles représentent une quantité de matériau conducteur réduite par rapport à des plaques non rainurées. Le risque de désamorçage est réduit.
  • De préférence, le caloduc comporte plusieurs plaques structurées, chacune entourée par deux plaques rainurées. Ainsi le canal vapeur est séparé en sous-canaux ainsi que le canal liquide. Chaque sous-canal vapeur est réalimenté en liquide par les rainures des plaques rainurées Une réalimentation distribuée dans tout le canal vapeur et non pas uniquement sur les bords, est obtenue, la production de vapeur est améliorée. En outre les plaques rainurées assurent un drainage efficace du liquide vers le canal liquide dans la zone de condensation.
  • La réalisation d'un caloduc à artère par empilements de plaques est simplifiée par rapport à la réalisation d'un caloduc à artère de l'état de la technique comportant deux tubes parallèles, obtenu par extrusion. En outre la réalisation de rainures est simplifiée.
  • En outre, la face destinée aux échanges thermiques est formée par un bord de l'empilement formé par les bords des plaques empilées. Ce bord est par exemple parallèle à la direction d'empilement. La face destinée aux échanges thermique peut donc être avantageusement plane ce qui peut favoriser les échanges thermiques et simplifier la mise en contact du caloduc avec une source chaude. En outre, cette face est formée directement lors de l'empilement. Il n'est donc pas requis de rajouter des faces planes, ce qui est le cas dans les caloducs à rainures de l'état de la technique dans lesquels des faces planes sont prévues sur la face extérieure des tubes, et pour lesquelles il existe une résistance thermique importante malgré le fait qu'elles sont en matériau conducteur thermique.
  • La présente invention a alors pour objet un caloduc à artère comportant une première face, dont une première zone d'extrémité est destinée à être échauffée et une deuxième zone d'extrémité est destinée à être refroidie, une deuxième face opposée à la première face, un canal vapeur et un canal liquide s'étendant entre la première zone d'extrémité et la deuxième zone d'extrémité, le caloduc comportant également un empilement de plaques comprenant :
    • deux plaques d'extrémité,
    • n plaques ajourées, n ≥ 1, chaque plaque ajourée comprenant une première fenêtre comportant un premier montant du côté de la première face, une deuxième fenêtre comportant un deuxième montant du côté de la deuxième face et un troisième montant commun aux première et deuxième fenêtres, les n premières fenêtres délimitant en partie le canal vapeur et les n deuxièmes fenêtres délimitant en partie le canal liquide,
    • n+ 1 plaques rainurées, chaque plaque rainurée comportant des premières rainures, la plaque ajourée étant interposée entre deux plaques rainurées, les premières rainures étant orientées par rapport à la plaque ajourée, de sorte que les premières rainures s'étendent entre la première fenêtre et la deuxième fenêtre, les premières rainures traversant l'épaisseur des plaques rainurées,
    • la première fenêtre comportant des deuxièmes rainures réalisées dans un bord intérieur du troisième montant, les deuxièmes rainures étant disposées de sorte qu'elles relient une première rainure d'une plaque rainurée et une première rainure d'une autre plaque rainurée.
  • La première fenêtre peut comporter des troisièmes rainures réalisées dans un bord intérieur du premier montant, les troisièmes rainures étant disposées de sorte qu'elles relient une première rainure d'une plaque rainurée, et une première rainure d'une autre plaque rainurée formant avec une deuxième rainure, une rainure fermée bordant l'intérieur de la première fenêtre.
  • Avantageusement, l'épaisseur des n +1 plaques rainurées est comprise entre 0,5 mm et 1 mm et l'épaisseur des n plaques ajourées est comprise entre 0,5 mm et 5 mm.
  • Dans un exemple de réalisation, ou plusieurs plaques ajourées est ou sont formées par un ensemble de plaques ajourées fines assemblées les unes aux autres.
  • Les premières, deuxièmes et troisièmes rainures ont avantageusement une largeur comprise entre 0,2 mm et 0,5 mm.
  • Les n + 1 plaques rainurées peuvent comporter des rainures réparties uniformément de la première zone d'extrémité vers la deuxième zone d'extrémité.
  • Le caloduc peut comporter au moins deux plaques ajourées et trois plaques rainurées et le canal vapeur et le canal liquide sont divisés en sous canaux vapeur et en sous canaux liquide respectivement par des plaques rainurées, lesdits sous-canaux vapeur étant en communication entre eux par les premières rainures et les sous-canaux liquide étant en communication fluidique entre eux par les premières rainures.
  • La présente invention a également pour objet un procédé de fabrication d'un caloduc à artère comportant, à partir de plaques de dimensions extérieures données :
    • Réalisation des plaques ajourées,
    • Réalisation des plaques rainurées,
    • Réalisation des plaques de fermeture,
    • Empilement desdites plaques de sorte qu'une plaque ajourée soit entourée de deux plaques rainurées, et que chaque plaque d'extrémité soit en contact direct avec une plaque rainurée,
    • Solidarisation desdites plaques de sorte à délimiter une enceinte étanche,
    • Remplissage partiel du caloduc avec un fluide sous forme liquide.
  • La réalisation chaque plaque ajourée peut comporter l'assemblage de plusieurs plaques fines.
  • Par exemple, les plaques comportent à coeur un alliage d'aluminium et sur ses faces extérieures un alliage d'aluminium eutectique à point de fusion inférieur à celui de l'alliage d'aluminium à coeur et la solidarisation est obtenue par brasure eutectique.
  • BRÈVE DESCRIPTION DES DESSINS
  • La présente invention sera mieux comprise sur la base de la description qui va suivre et des dessins en annexe sur lesquels:
    • - la figure 1 est une vue en perspective d'un caloduc à artère selon un exemple de réalisation,
    • - la figure 2A est une vue en coupe selon un plan A-A orthogonal à l'axe du caloduc,
    • - la figure 2B est une vue en coupe selon un plan B-B incliné par rapport au plan A-A,
    • - la figure 3 est une vue éclatée du caloduc de la figure 1,
    • - la figure 4 est une vue d'une plaque de l'empilement de la figure 3,
    • - la figure 5 est une vue d'une autre plaque de l'empilement de la figure 3,
    • - - la figure 6 est une vue en coupe transversale d'un caloduc à artère de l'état de la technique,
    • - - la figure 7 est une vue en coupe transversale d'un caloduc à rainures réentrantes de l'état de la technique,
    • - les figures 8A et 8B sont des vues avant et arrière de la filière utilisée pour réaliser les rainures réentrantes lors de la réalisation par extrusion du caloduc de la figure 7,
    • - la figure 9 est un graphique représentant les variations de limite capillaire Lc en Watt en fonction de l'inclinaison du caloduc de la figure 1 et du caloduc de la figure 6 utilisant l'eau comme fluide de travail, ceci à une température de 60°.
    • - la figure 10 est un graphique représentant les variations de la limite capillaire Lc en Watt en fonction de la température du caloduc dans le cas du caloduc de la figure 1 et du caloduc de la figure 6 utilisant de l'eau comme fluide de travail, ceci à une inclinaison de 0° par rapport à l'horizontale,
    • - La figure 11 est un graphique représentant les variations de la limite capillaire Lc en Watt en fonction de la température du caloduc dans le cas du caloduc de la figure 1 et du caloduc de la figure 7 utilisant de l'ammoniac comme fluide de travail, ceci à une inclinaison de 0° par rapport à l'horizontal.
    EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
  • Sur la figure 1, on peut voir une vue en perspective d'un caloduc selon un exemple de réalisation.
  • Dans l'exemple représenté, le caloduc à une forme parallélépipédique rectangle, cette forme n'est pas limitative, comme cela sera décrit dans la suite de la description.
  • Le caloduc s'étend le long d'un axe longitudinal X. Les axes Y et Z sont orthogonaux entre eux et à l'axe X. La direction Y correspond à l'épaisseur du caloduc et la direction Z correspond à la hauteur du caloduc.
  • Il comporte une première face 2 à travers laquelle les échanges thermiques vont avoir lieu, et une deuxième face 4 opposée à la première face 2. Les première et deuxième faces sont reliées par des parois latérales 6 et des parois d'extrémité 8.
  • La première face 2 comporte à une première extrémité longitudinale 2.1 une surface destinée à être en contact thermique avec une source de chaleur et désignée surface chaude, et à une deuxième extrémité longitudinale 2.2, une surface destinée à être en contact thermique avec une source froide, et désignée surface froide.
  • L'apport de chaleur à la surface chaude est symbolisé par les flèches F.
  • Le caloduc comporte une zone de vaporisation ZV située dans le caloduc au droit de la surface chaude, une zone de condensation ZC située dans le caloduc au droit de la surface froide. La zone de vaporisation ZV et la zone de condensation ZC sont reliées par une zone adiabatique ZA
  • L'intérieur d'un caloduc à artère, comme celui de l'invention, est divisé en un canal CV dans lequel circule la vapeur de la zone de vaporisation à la zone de condensation, et un canal CL ou artère dans lequel circule le liquide de la deuxième extrémité à la première extrémité.
  • Sur les figures 2A et 2B, on peut voir une vue en coupe du caloduc. Le canal vapeur CV est divisé en sous-canaux 14, désignés sous-canaux vapeur, et le canal liquide CL est divisé en sous-canaux 16, désignés sous-canaux liquide.
  • Les sous-canaux vapeur 14 et les sous-canaux liquides 16 s'étendent entre la première extrémité et la deuxième extrémité. Comme cela sera expliqué ci-dessous, les sous-canaux vapeur sont en communication fluidique entre eux et les sous-canaux liquides sont en communication fluidique entre eux. En outre, les sous-canaux liquides sont en communication fluidique avec les sous-canaux vapeur. Le corps du caloduc est obtenu en empilant et en solidarisant des plaques de structure différente pour délimiter les canaux vapeur et liquide et établir les communications entre les canaux liquide et vapeur.
  • Dans l'exemple représenté, l'empilement d'axe Y comporte des plaques de trois types :
    • des plaques d'extrémité 18 formant les parois latérales du caloduc et destinées à fermer de manière étanche les canaux,
    • des plaques ajourées 20 structurées de sorte à délimiter la partie vapeur et la partie liquide,
    • des plaques rainurées 22 délimitant les canaux et assurant la communication entre la partie vapeur et la partie liquide.
  • Dans l'exemple représenté, toutes les plaques 18, 20 et 22 ont les mêmes dimensions extérieures.
  • Les plaques d'extrémité 18 sont pleines. Au moins l'une d'entre elles comporte un ou deux orifices (non représentés) pour permettre de remplir le caloduc en fluide. Ce ou ces orifices sont ensuite obturés de manière étanche.
  • Les figures 3, 4 et 5 représentent les structures des plaques composant l'empilement formant le caloduc.
  • Les plaques ajourées, une plaque ajourée 20 est représentée seule sur la figure 4, comportent une première fenêtre 24 de plus grande taille et une deuxième fenêtre 26 de plus petite taille séparées par un montant intérieur 30. La première fenêtre 24 comporte un montant extérieur 32 destiné à former une partie de la première surface. La deuxième fenêtre comporte un montant extérieur 34 destiné à former une partie de la deuxième surface. Le montant intérieur est parallèle aux deux montants extérieurs 32, 34.
  • La face du montant intérieur 30 du côté de la première fenêtre est également munie de rainures 38 s'étendant entre les deux faces de la plaque ajourée 20 et débouchant dans les deux faces. De manière avantageuse, la face intérieure 32.1 du montant extérieur 32 est munie de rainures 36 s'étendant entre les deux faces de la plaque ajourée 20 et débouchant dans les deux faces.
  • Dans un exemple avantageux, la plaque ajourée 20 comporte plusieurs plaques identiques plus fines ajourées assemblées ensemble, ce qui permet de simplifier la fabrication, par exemple lorsque la plaque ajoutée a une épaisseur supérieure à 1 mm.
  • Les plaques rainurées 22, dont une est représentée seule sur la figure 5, comporte des rainures 40 s'étendant dans la direction Z et de dimension le long de l'axe Z suffisante pour être à la fois dans les canaux vapeur et dans les canaux liquide. Les rainures ne débouchent pas au niveau des extrémités de la plaque 22 dans la direction Z. les rainures sont traversantes dans la direction Y, i.e. elles traversent l'épaisseur de la plaque.
  • Les rainures 40 permettent d'une part une communication entre les sous-canaux vapeur entre eux à travers les rainures 40, et d'autre part la communication entre les sous-canaux liquide et les sous-canaux vapeur le long des rainures 40 selon la direction Z.
  • L'empilement comporte deux plaques rainurées 22' en contact avec les plaque de fermeture 18, les rainures 40' présente un fond fermé, ces rainures ne servent qu'à la circulation entre les sous-canaux liquide et les sous-canaux vapeur. L'empilement comporte des plaques rainures 22 intercalaires disposées dans la largeur des canaux vapeur et liquide dans la direction Y.
  • En outre l'espacement entre les rainures 40 le long de la direction X est identique à celui des rainures 36 et 38 de sorte qu'une fois les plaques empilées, chaque rainure 40 est dans le même plan qu'une rainure 36 et une rainure 38 formant alors une rainure continue bordant l'intérieur d'un canal vapeur. Il y a donc autant de rainures 40 que de rainures 36 et 38. Les profondeurs des rainures 36, 38 et 40 sont avantageusement égales.
  • L'empilement alterne les plaques ajourées 20, d'un seul tenant ou comportant une pluralité de plaques fines ajourées, et les plaques rainurées 22. Ainsi chaque plaque ajourée, d'un seul tenant ou comportant une pluralité de plaques fines ajourées, est entourée de deux plaques rainurées 22.
  • Sur la figure 2A, on peut voir la structure intérieure du caloduc obtenue par l'empilement des plaques. Chaque plaque ajourée, d'un seul tenant ou comportant une pluralité de plaques fines ajourées, délimite avec deux plaques rainurées, un sous-canal vapeur et un sous-canal liquide séparé par le montant intérieur. L'empilement des montants intérieurs 30 forme une paroi de séparation entre le canal liquide et le canal vapeur.
  • Les rainures 40 permettent au liquide de passer entre le canal vapeur et le canal liquide et entre les sous-canaux liquides entre eux et entre les sous-canaux vapeurs entre eux. Sur la figure 2B, on peut voir la rainure traversant la paroi transversale séparant le canal liquide du canal vapeur.
  • Les plaques ajourées, d'un seul tenant ou comportant une pluralité de plaques fines ajourées, sont plus épaisses que les plaques rainurées, elles assurent la rigidité du caloduc. Les plaques rainurées sont réalisées avantageusement les plus fines possible de sorte à réduire la quantité de matériau conducteur thermique entre la surface chaude et les canaux liquide, et réduire les risques d'apparition des bulles de vapeur dans les canaux liquides.
  • Par exemple, les rainures ont une largeur de 0,2 mm et une profondeur de 0,2 mm égale à l'épaisseur des plaques rainurées. La distance entre les rainures est de 0,8 mm.
  • La largeur des rainures est par exemple comprise entre 0,2 mm et 1 mm, et la profondeur des rainures est par exemple comprise entre 0,2 mm et à 1 mm. L'épaisseur des plaques ajourées d'un seul tenant est par exemple comprise entre 0,5 mm et 5 mm. Dans le cas des plaques ajourées comportant un ensemble de plaques plus fines, par exemple lorsque les plaques ajourées ont une épaisseur supérieure à 1 mm, les plaques plus fines ont par exemple une épaisseur comprise entre 0,5 mm et 1 mm. L'épaisseur des plaques rainurées est égale à la profondeur des rainures, elle est donc par exemple comprise entre 0,2 et 1mm.
  • La distance entre les rainures est par exemple comprise entre 0, 5 mm et 10 mm.
  • L'intervalle entre rainures est compris par exemple entre 0,5 mm à 10 mm
    Les plaques sont solidarisées entre elles de manière étanche, par exemple par soudure diffusion, collage...la technique d'assemblage dépendant des matériaux des plaques.
  • L'empilement comporte au moins deux plaques rainurées 22 et une plaque ajourée 20, et de préférence au plus dix plaques rainurées 22 et neuf plaques ajourées 20, d'un seul tenant ou comportant une pluralité de plaques fines ajourées.
  • Les fluides de remplissage mis en oeuvre dans le caloduc et destinés à se vaporiser et à se condenser, utilisables, sont des fluides utilisés de manière connue dans les caloducs. Le fluide est choisi en fonction de la gamme de température de fonctionnement et de stockage du dispositif. En outre, peuvent être pris en compte d'autres critères tels que la pression, l'inflammabilité, la toxicité du fluide. Le fluide est également choisi de sorte qu'il soit compatible avec les matériaux des plaques et le mode d'assemblage.
  • A titre d'exemple, dans le cas d'un caloduc réalisé en alliage d'aluminium assemblé par brasure eutectique, l'ammoniac, l'acétone, le méthanol, le n-heptane, le R134a et autres fluides frigorigènes fluorés peuvent être utilisés.
  • Le fonctionnement du caloduc va maintenant être décrit.
  • La zone vaporisateur ZV est échauffée par la source chaude à travers la surface chaude, le fluide situé dans les sous-canaux vapeurs est vaporisé, et se déplace en direction de la zone de condensation ZC à travers la zone adiabatique dans les sous-canaux vapeur. La vapeur qui arrive à la zone de condensation est refroidie à travers la surface 2.2, la vapeur se condense et la liquide se dépose sur les parois des sous-canaux vapeur, sur les faces intérieures des montants 30 et 32 et sur les plaques rainurées 22 et 22'. Le liquide s'écoule alors vers les sous-canaux liquides dans les rainures 40. Les rainures 36 et 38 aident au drainage du liquide dans la zone de condensation vers les canaux liquide. Les plaques rainurées intercalaires assurent une collecte du liquide au centre du canal vapeur, les plaques 22' assurent une collecte du liquide sur les parois latérales du canal vapeur, et les rainures 40, 40' drainent le liquide vers le canal liquide.
  • Le liquide situé dans les sous-canaux liquide au niveau de la deuxième extrémité du caloduc circule vers la première extrémité du caloduc dans les sous-canaux liquide. Le liquide se trouve alors dans les sous-canaux liquides au droit de la zone de vaporisation. Le liquide réalimente alors la zone de vaporisation en migrant par capillarité des sous-canaux liquides aux sous-canaux vapeurs dans les rainures 40, puis circule dans les rainures 36 et est à nouveau vaporisé. Les rainures 40 des plaques rainurées intercalaires assurent une réalimentation en liquide de la zone de vaporisation au centre du canal et les rainures 40' assurent une circulation du liquide sur les parois latérales du canal vapeur. Les rainures 38 participent à la distribution du liquide qui s'évapore sur toute la largeur du canal vapeur. Les rainures 36 assurent la distribution du liquide non encore évaporé à proximité de la source chaude sur la largeur du canal vapeur. Les rainures 36 et 38 augmentent les surfaces d'évaporation.
  • Selon une variante, les plaques 22' sont omises aux extrémités, néanmoins l'équilibre thermique des cellules des bords peut être affecté.
  • La réalimentation en liquide de la zone de vaporisation et la collecte du liquide dans la zone de condensation sont améliorées, optimisant le fonctionnement du caloduc à artère.
  • La communication entre les sous-canaux vapeurs permet en outre un équilibrage des pressions. La communication entre les sous-canaux liquides permet une répartition uniforme du liquide dans toute la largeur du canal liquide.
  • En outre, la distance entre la paroi chauffée 2 et l'artère permet d'éviter de trop chauffer l'artère et l'apparition de bulles de vapeur dans celle ci
    Du fait de la structure du caloduc, les plaques rainurées peuvent être réalisées très fines et sont en outre munies d'un grand nombre de rainures, la quantité de matériau pour conduire la chaleur de la première face vers les sous-canaux liquides est donc réduite, ce qui réduit les risques d'échauffements du liquide dans les sous-canaux liquides et l'apparition de bulles de vapeur, qui conduirait au désamorçage du caloduc. Le caloduc présente alors un fonctionnement amélioré par rapport à ceux de l'état de la technique. Le nombre et l'espacement des rainures sont choisis de sorte à assurer l'intégrité de la plaque rainurée et limiter les pertes de charger.
  • Les rainures favorisent le pompage capillaire de la zone liquide vers la zone vapeur. Ainsi le risque de non alimentation en liquide de la zone de vaporisation est réduit. Plus le pompage du canal liquide vers le canal vapeur est favorisé, plus le retour du liquide dans les sous-canaux liquides est favorisé.
  • De manière préférée, les rainures sont présentes sur toute la plaque rainurée entre la zone de vaporisation et la zone de condensation, limitant le transfert de chaleur entre la face 2 et la face 4.
  • Dans l'exemple représenté, le canal vapeur et le canal liquide sont divisées en plusieurs sous-canaux par des plaques rainurées intercalaires, un caloduc dans lequel le canal vapeur et le seul canal liquide ne sont pas divisés en sous-canaux, i.e. comportant une plaque ajourée entourée de deux plaques rainurées et deux plaques d'extrémité ne sort pas du cadre de la présente invention.
  • En outre, les rainures 40 peuvent être inclinées par rapport à la direction Z, En outre, les rainures peuvent ne pas être parallèles entre elles.
  • Le caloduc selon l'invention peut être réalisé en différents matériaux tels que, par exemple un alliage d'aluminium, en cuivre, en acier inoxydable.
  • La technique d'assemblage des tôles dépend du matériau.
  • Par exemple, dans le cas de plaques en alliage d'aluminium, on peut utiliser la brasure sous vide avec tôles cladées, la brasure au bain de sel, la brasure sous gaz inerte, le soudage par ultrasons, le collage...
  • Dans le cas de plaque en cuivre, en acier inoxydable ou en superalliage, on peut utiliser la soudure diffusion, la brasure diffusion, le collage...
  • A titre d'exemple, l'assemblage de plaques en alliage d'aluminium est obtenu par brasure eutectique. On utilise de manière connue des plaques en alliage d'aluminium dont une ou les deux faces est ou sont revêtue(s) d'un alliage aluminium à plus bas point de fusion.
  • Par exemple, on utilise une tôle en alliage de la série AA3xxxx à coeur, avec un revêtement avec un alliage eutectique de la série AA4xxxx comprenant du silicium à plus bas point de fusion.
  • Le revêtement se fait typiquement par une technique de roll-bond.
  • L'épaisseur totale des plaques est typiquement de 0,05 mm à 5 mm, avec un revêtement typiquement de 5% à 10% de l'épaisseur totale.
  • En pressant à chaud deux plaques d'aluminium ainsi revêtues à une température supérieure à la température de fusion de l'eutectique, mais inférieure à la température de l'alliage à coeur, l'alliage eutectique en surface fond et forme un alliage de brasure d'assemblage étanche entre les deux plaques.
  • Nous allons maintenant comparer les performances de caloducs selon l'invention et de caloducs à pompage capillaire de l'état de la technique.
  • Un premier caloduc à pompage capillaire de l'état de la technique avec rainures rectangulaires comporte des rainures longitudinales 610, tel que représenté sur la figure 6. Celui-ci est réalisé par extrusion.
  • Chaque caloduc présente une longueur de l'évaporateur de 50 mm, une longueur de la zone adiabatique de 100 mm, une longueur du condenseur de 110 mm
    Chaque caloduc est réalisé en cuivre. La température moyenne du caloduc est de 60°C, qui est approximativement la température vapeur dans la zone adiabatique de caloduc.
  • Le caloduc à pompage capillaire à rainures rectangulaires de la figure 6 de l'état de la technique présente les caractéristiques suivantes :
    • Diamètre intérieur Di : 10 mm,
    • Diamètre extérieur De : 12 mm,
    • Largeur de rainure Le: 0,2 mm,
    • Profondeur de rainure Pe : 0,2 mm,
    • Nombre de rainures : 44.
  • Le caloduc à artère selon l'invention présente les caractéristiques suivantes (figure 2A) :
    • Dimension extérieure Le: 12 mm,
    • Hauteur extérieure He: 12 mm,
    • Largeur du canal vapeur Lv : 10 mm,
    • Hauteur du canal vapeur Hv : 7,5 mm,
    • Largeur du canal liquide LI: 10 mm,
    • Hauteur du canal liquide HI : 1,5 mm,
    • Largeur de rainures Lr : 0,2 mm,
    • Profondeur des rainures Pr: 0,5 mm.
  • Sur la figure 9, on peut voir la variation de la limite capillaire Lc en Watt en fonction de l'angle d'inclinaison α du caloduc en °, i.e. l'inclinaison de l'axe X par rapport à la direction horizontale. La courbe I correspond à l'invention et la courbe II au caloduc selon l'invention. Les valeurs d'inclinaison négatives correspondent à des positions du caloduc dans lesquelles l'évaporateur est au-dessus du condenseur. Le fluide est de l'eau.
  • On constate que le caloduc selon l'invention est sensiblement plus performant que le caloduc à rainures rectangulaires de l'état de la technique, quelle que soit l'inclinaison du caloduc.
  • Sur la figure 10, on peut voir la variation de la limite capillaire Lc en Watt en fonction de la température moyenne adiabatique du caloduc. La courbe l' correspond à l'invention et la courbe II' au caloduc selon l'invention. Le fluide est de l'eau. Le caloduc est à l'horizontal.
  • On constate que le caloduc selon l'invention est sensiblement plus performant que le caloduc de l'état de la technique, quelle que soit la température du caloduc.
  • Sur la figure 7, on peut voir un deuxième caloduc à pompage capillaire cylindrique de l'état de la technique, à rainures réentrantes longitudinales, tel que représenté. Celui-ci est réalisé par extrusion.
  • Chaque caloduc présente une longueur de l'évaporateur de 200 mm, une longueur de la zone adiabatique de 600 mm, une longueur du condenseur de 200 mm
  • Chaque caloduc est réalisé en alliage d'aluminium. La température moyenne du caloduc est de 60°C.
  • Le caloduc cylindrique à pompage capillaire à rainures réentrantes de la figure 7 de l'état de la technique présente les caractéristiques suivantes :
    • Diamètre intérieur Di : 8,5 mm,
    • Diamètre extérieur De : 13,2 mm,
    • Largeur de rainure Le: 0,5 mm,
    • Diamètre des canaux réentrants : 1,1 mm,
    • Nombre de rainures : 21.
  • Le caloduc plat à artère selon l'invention présente les caractéristiques suivantes (figure 2A) :
    • Dimension extérieure Le: 13,2 mm,
    • Hauteur extérieure He: 13,2 mm,
    • Largeur du canal vapeur Lv : 10,2 mm,
    • Hauteur du canal vapeur Hv : 3,6 mm
    • Largeur du canal liquide Ll: 10,2 mm,
    • Hauteur du canal liquide Hl : 2,5 mm,
    • Largeur de rainures Lr : 0,5 mm,
    • Profondeur des rainures Pr: 0,5 mm.
  • Sur la figure 11, on peut voir la variation de la limite capillaire Lc en Watt en fonction de la température moyenne adiabatique du caloduc. La courbe I" correspond à l'invention et la courbe II" au caloduc selon l'invention. Le fluide est de l'ammoniac.
  • On constate que le caloduc selon l'invention est sensiblement plus performant que le caloduc de l'état de la technique, quelle que soit la température du caloduc.
  • Il sera compris que les différents exemples et variantes de réalisation ne sont pas exclusives les uns des autres et peuvent être combinées tout ou en partie.
  • Un exemple de procédé de réalisation va maintenant être décrit.
  • Des plaques en un matériau données sont découpées suivant la forme extérieure souhaitée pour le caloduc.
  • Lors d'une étape suivante, les fenêtres sont réalisées dans toutes les plaques ajourée 20, d'un seul tenant ou comportant une pluralité de plaques fines ajourées. Les fenêtres sont réalisées par exemple par poinçonnage, découpe laser, par découpe au jet d'eau ou par gravure chimique traversante...
  • Les rainures sont réalisées dans les plaques 22, par exemple par usinage mécanique ou gravure chimique.
  • Les plaques sont ensuite empilées en alternant les plaques ajourées 20, d'un seul tenant ou comportant une pluralité de plaques fines ajourées, et les plaques rainurées 22, de sorte à délimiter les sous-canaux vapeur et les sous-canaux liquide. Des plaques rainurées 22 sont disposées aux extrémités de sorte que les canaux d'extrémité comportent également des rainures sur leurs deux faces, et ensuite des plaques de fermetures sont disposées sur les plaques rainurées 22 pour fermer latéralement les canaux. Les plaques sont assemblées, la technique d'assemblage étant choisie en fonction du ou des matériaux des plaques, par exemple soudage, brasage, collage...l'assemblage des plaques est étanche.
  • Le caloduc est ensuite rempli. Un orifice de remplissage a été ménagé dans une des plaques de fermeture lors de la fabrication des plaques. Le fluide est choisi en fonction des conditions de fonctionnement du caloduc (température de fonctionnement...) et de la compatibilité avec le ou les matériaux du caloduc.
  • La réalisation d'un caloduc selon l'invention est simplifiée par rapport à celle de caloducs à artère de l'état de la technique.
  • En outre la forme parallélépipédique du caloduc, ou au moins muni de faces planes peut faciliter son intégration. De plus elle lui confère une souplesse et un degré de liberté dans sa réalisation.

Claims (10)

  1. Caloduc à artère comportant une première face (2) dont une première zone d'extrémité est destinée à être échauffée et une deuxième zone d'extrémité est destinée à être refroidie, une deuxième face (4) opposée à la première face, un canal vapeur (CV) et un canal liquide (CL)s'étendant entre la première zone d'extrémité et la deuxième zone d'extrémité, dans lequel le caloduc comporte également un empilement de plaques comprenant :
    - deux plaques d'extrémité (18),
    - n plaques ajourées (20), n ≥ 1, chaque plaque ajourée comprenant une première fenêtre (24) comportant un premier montant (32) du côté de la première face (2), une deuxième fenêtre (26) comportant un deuxième montant (34) du côté de la deuxième face (4) et un troisième montant (30) commun aux première (24) et deuxième (26) fenêtres, les n premières fenêtres (24) délimitant en partie le canal vapeur (CV) et les n deuxièmes fenêtres (26) délimitant en partie le canal liquide (CL),
    - n+ 1 plaques rainurées (22), chaque plaque rainurée (22) comportant des premières rainures (40), la plaque ajourée (20) étant interposée entre deux plaques rainurées (22), les premières rainures (40) étant orientées par rapport à la plaque ajourée (20), de sorte que les premières rainures (40) s'étendent entre la première fenêtre (24) et la deuxième fenêtre (26), les premières rainures (40) traversant l'épaisseur des plaques rainurées (22),
    - la première fenêtre (24) comportant des deuxièmes rainures (38) réalisées dans un bord intérieur du troisième montant (30), les deuxièmes rainures (38) étant disposées de sorte qu'elles relient une première rainure (40) d'une plaque rainurée (22) et une première rainure (40) d'une autre plaque rainurée (22).
  2. Caloduc à artère selon la revendication 1, dans lequel la première fenêtre (24) comporte des troisièmes rainures (36) réalisées dans un bord intérieur du premier montant (32), les troisièmes rainures (36) étant disposées de sorte qu'elles relient une première rainure (40) d'une plaque rainurée (22) et une première rainure (40) d'une autre plaque rainurée (22) formant avec une deuxième rainure (38), une rainure fermée bordant l'intérieur de la première fenêtre (24).
  3. Caloduc à artère selon la revendication 1 ou 2, dans lequel l'épaisseur des n +1 plaques rainurées (22) est comprise entre 0,5 mm et 1 mm et l'épaisseur des n plaques ajourées (20) est comprise entre 0,5 mm et 5 mm.
  4. Caloduc à artère selon la revendication 1, 2 ou 3, dans lequel un ou plusieurs plaques ajourées est ou sont formées par un ensemble de plaques ajourées fines assemblées les unes aux autres.
  5. Caloduc à artère selon l'une des revendications 1 à 4, dans lequel les premières (40), deuxièmes (38) et troisièmes (36) rainures ont une largeur comprise entre 0,2 mm et 0,5 mm.
  6. Caloduc à artère selon l'une des revendications 1 à 5, dans lequel les n + 1 plaques rainurées (22) comportent des rainures (40) réparties uniformément de la première zone d'extrémité vers la deuxième zone d'extrémité.
  7. Caloduc à artère selon l'une des revendications 1 à 6, dans lequel n ≥ 2 et dans lequel le canal vapeur (CV) et le canal liquide (CL) sont divisés en sous canaux vapeur (14) et en sous canaux liquide (16) respectivement par des plaques rainurées, lesdits sous-canaux vapeur (14) étant en communication entre eux par les premières rainures (22) et les sous-canaux liquide (16) étant en communication fluidique entre eux par les premières rainures (22).
  8. Procédé de fabrication d'un caloduc à artère selon l'une des revendications 1 à 7, ledit procédé comportant, à partir de plaques de dimensions extérieures données :
    - réalisation des plaques ajourées,
    - réalisation des plaques rainurées,
    - réalisation des plaques de fermeture,
    - empilement desdites plaques de sorte qu'une plaque ajourée soit entourée de deux plaques rainurées, et que chaque plaque d'extrémité soit en contact direct avec une plaque rainurée,
    - solidarisation desdites plaques de sorte à délimiter une enceinte étanche,
    - remplissage partiel du caloduc avec un fluide sous forme liquide.
  9. Procédé de fabrication selon la revendication 8, dans lequel la réalisation chaque plaque ajourée comporte l'assemblage de plusieurs plaques fines.
  10. Procédé de fabrication selon la revendication 8 ou 9, dans lequel les plaques comportent à coeur un alliage d'aluminium et sur ses faces extérieures un alliage d'aluminium eutectique à point de fusion inférieur à celui de l'alliage d'aluminium à coeur et dans lequel la solidarisation est obtenue par brasure eutectique.
EP19168585.8A 2018-04-11 2019-04-11 Caloduc a artere a fonctionnement ameliore Active EP3553444B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1853172A FR3080170B1 (fr) 2018-04-11 2018-04-11 Caloduc a artere a fonctionnement ameliore

Publications (2)

Publication Number Publication Date
EP3553444A1 true EP3553444A1 (fr) 2019-10-16
EP3553444B1 EP3553444B1 (fr) 2020-11-04

Family

ID=62684912

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19168585.8A Active EP3553444B1 (fr) 2018-04-11 2019-04-11 Caloduc a artere a fonctionnement ameliore

Country Status (2)

Country Link
EP (1) EP3553444B1 (fr)
FR (1) FR3080170B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4325155A1 (fr) 2022-08-17 2024-02-21 Commissariat à l'énergie atomique et aux énergies alternatives Caloduc à section transversale non cylindrique, comprenant un évaporateur à structure d'interface vapeur/liquide améliorée afin d'augmenter la limite d'ébullition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7051793B1 (en) * 1998-04-20 2006-05-30 Jurgen Schulz-Harder Cooler for electrical components
WO2011019847A1 (fr) * 2009-08-11 2011-02-17 Molex Incorporated Unité de transport de chaleur et dispositif électronique
EP2811251A1 (fr) * 2013-06-04 2014-12-10 ABB Research Ltd. Appareil de refroidissement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7051793B1 (en) * 1998-04-20 2006-05-30 Jurgen Schulz-Harder Cooler for electrical components
WO2011019847A1 (fr) * 2009-08-11 2011-02-17 Molex Incorporated Unité de transport de chaleur et dispositif électronique
EP2811251A1 (fr) * 2013-06-04 2014-12-10 ABB Research Ltd. Appareil de refroidissement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4325155A1 (fr) 2022-08-17 2024-02-21 Commissariat à l'énergie atomique et aux énergies alternatives Caloduc à section transversale non cylindrique, comprenant un évaporateur à structure d'interface vapeur/liquide améliorée afin d'augmenter la limite d'ébullition
FR3138943A1 (fr) 2022-08-17 2024-02-23 Commissariat A L'energie Atomique Et Aux Energies Alternatives Caloduc à section transversale non cylindrique, comprenant un évaporateur à structure d’interface vapeur/liquide améliorée afin d’augmenter la limite d’ébullition.

Also Published As

Publication number Publication date
FR3080170B1 (fr) 2020-11-27
EP3553444B1 (fr) 2020-11-04
FR3080170A1 (fr) 2019-10-18

Similar Documents

Publication Publication Date Title
EP3553445B1 (fr) Caloduc a pompage capillaire a rainures reentrantres offrant un fonctionnement ameliore
EP3207324B1 (fr) Caloduc plat avec fonction reservoir
EP2689205B1 (fr) Renfort de liaison entre plaques d'un echangeur de chaleur
EP3561428B1 (fr) Caloduc a pompage capillaire a fonctionnement ameliore
EP2181301A1 (fr) Dispositif passif de regulation thermique a micro boucle fluide a pompage capillaire
EP0567393B1 (fr) Evaporateur à plaques à hautes performances thermiques fonctionnant en régime d'ébullition nucléée
EP3553444B1 (fr) Caloduc a artere a fonctionnement ameliore
FR2790825A1 (fr) Echangeur de chaleur a circulations multiples du type a empilement
FR2865027A1 (fr) Ailette pour echangeur de chaleur et echangeur de chaleur muni de telles ailettes
EP3728976A1 (fr) Element intercalaire a texturation de surface, echangeur de chaleur et procede de fabrication associes
FR2591504A1 (fr) Procede d'evaporation-condensation de films ruisselants, elements pour sa mise en oeuvre et ses applications.
EP3728977B1 (fr) Echangeur de chaleur avec elements et plaques a texturation de surface
EP1068481B1 (fr) Dispositif d'echanges thermiques a fluide biphasique actif et procede de fabrication d'un tel dispositif
EP3027995B1 (fr) Evaporateur à dispositif anti-retour pour boucle diphasique
EP3553443A1 (fr) Thermosiphon et caloduc pulse de realisation simplifiee
WO2019122663A1 (fr) Element intercalaire a texturation de surface, echangeur de chaleur comprenant un tel element
EP0217777B1 (fr) Caloduc capillaire
EP4325156A1 (fr) Caloduc de type à pompage capillaire, à rainures réentrantes intégrant au moins un substrat poreux à l'évaporateur
WO2010100367A1 (fr) Appareil de séparation d'air incorporant un échangeur de chaleur à plaques
EP3394545A1 (fr) Échangeur thermique, notamment pour vehicule automobile
EP3394555A1 (fr) Échangeur thermique, notamment pour vehicule automobile
WO2023066753A1 (fr) Caloduc de type a pompage capillaire avec rainures reentrantes a gestion de liquide amelioree
FR3138943A1 (fr) Caloduc à section transversale non cylindrique, comprenant un évaporateur à structure d’interface vapeur/liquide améliorée afin d’augmenter la limite d’ébullition.
EP3394546A1 (fr) Échangeur thermique, notamment pour véhicule automobile
EP3394544A1 (fr) Échangeur thermique, notamment pour véhicule automobile

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190411

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200529

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1331377

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019001178

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201104

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1331377

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210205

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210204

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210304

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210204

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210304

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602019001178

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210411

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20190411

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230424

Year of fee payment: 5

Ref country code: DE

Payment date: 20230418

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230419

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230421

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104