EP3552403B1 - Top-port mems microphone with reduced mechanical loads as well as a manufacturing process - Google Patents

Top-port mems microphone with reduced mechanical loads as well as a manufacturing process Download PDF

Info

Publication number
EP3552403B1
EP3552403B1 EP17804880.7A EP17804880A EP3552403B1 EP 3552403 B1 EP3552403 B1 EP 3552403B1 EP 17804880 A EP17804880 A EP 17804880A EP 3552403 B1 EP3552403 B1 EP 3552403B1
Authority
EP
European Patent Office
Prior art keywords
carrier
component
cap
mems
mems chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17804880.7A
Other languages
German (de)
French (fr)
Other versions
EP3552403A1 (en
Inventor
Florian Eder
Sven Pihale
Matthias Uebler
Wolfgang Pahl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Publication of EP3552403A1 publication Critical patent/EP3552403A1/en
Application granted granted Critical
Publication of EP3552403B1 publication Critical patent/EP3552403B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/06Arranging circuit leads; Relieving strain on circuit leads
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/005Electrostatic transducers using semiconductor materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • H04R1/04Structural association of microphone with electric circuitry therefor

Definitions

  • the invention relates to MEMS microphones in which electrical connections are subjected to less severe mechanical stress.
  • MEMS microphones have microstructured functional elements that can be formed in or on the surface of a chip.
  • the functional elements can, for. B. comprise a flexible membrane and a rigid backplate.
  • One or more flexible membranes form an electrode of a capacitor.
  • One or more stiffer backplates form the counter electrode.
  • An evaluation circuit uses the variation in capacitance over time to create an electrical signal that corresponds to the acoustic signal received.
  • the acoustic signals to be received should only hit the functional elements from one side. Viewed in the direction of the acoustic signal propagation, there should therefore be a rear volume behind the functional elements that is acoustically isolated from the area around the microphone.
  • MEMS microphones generally include other elements, e.g. B. a carrier and a cover. Carrier, cover and MEMS chip must be mechanically connected be.
  • the MEMS chip must be connected—directly or indirectly—to external contacts of the microphone so that the microphone can be connected to an external circuit environment.
  • the electrical connection points that connect the MEMS chip to its environment are sensitive to mechanical stress.
  • MEMS microphones can be embodied as so-called bottom-port microphones, in which a sound entry opening is arranged on the side that faces the object to which the microphone is attached.
  • Such bottom-port microphones can have a poorer signal quality than so-called top-port microphones, whose sound entry opening is not covered by the object, since the sound entry opening of top-port microphones is located on the side facing away from the object.
  • the type of microphone top port or bottom port
  • top-port microphones usually require a higher design effort, especially with the acoustic seal between the front volume and the rear volume.
  • a MEMS microphone with an acoustic seal of a sound channel is used in DE 10 2011 087963 A1 shown.
  • this document shows the features of the preamble of claims 1 and 7 respectively.
  • Similar microphones are from DE 10 2010 026519 A1 and DE 10 2004 011148 B3 known.
  • Multi-component materials that are used as seals, or are at least suitable as such, are made of U.S. 3,615,972 A and DE 10 2011 080142 A1 known.
  • MEMS microphones that provide good signal quality, can be produced with as little construction effort as possible, and whose reliability is increased by reduced mechanical stress on electrical connections.
  • Such a MEMS microphone is specified in independent claim 1.
  • a corresponding method for manufacturing a MEMS microphone is provided in claim 7.
  • Dependent claims specify advantageous configurations of the microphone.
  • the MEMS microphone has a carrier, a cap on the carrier and a MEMS chip.
  • the cap on the carrier encloses a cavity.
  • the MEMS chip is placed in the cavity.
  • the MEMS microphone also has a sound opening in the carrier or in the cap, with the arrangement in the cap being preferred.
  • the microphone has a back volume and a channel that connects the sound port to the MEMS chip.
  • the duct acoustically isolates the back volume from the sound port.
  • the canal - more precisely: its wall - comprises a heterogeneous material.
  • the heterogeneous material consists of at least two different components. The two different components have different thermomechanical properties.
  • the cap completely encloses the cavity. It is also possible that the cap and the carrier together enclose the cavity. In this respect, the cap at least partially encloses the cavity.
  • the fact that the channel acoustically isolates the sound port from the back volume means that acoustic signals reaching the sound port are prevented from reaching the back volume directly, i.e. without passing through the MEMS chip.
  • the channel - more precisely: its side walls - represent a barrier for acoustic signals.
  • the different thermomechanical properties of the two components of the material of the channel can include different thermally induced changes in length, different thermally induced changes in viscosity, different thermally induced changes in the acoustic Impedance, different temperature-dependent moduli of elasticity and different temperature-dependent densities and similar parameters include.
  • the MEMS chip is connected to its environment via electrical connections and wired up.
  • the MEMS chip is connected to a sound opening in such a way that the acoustic signals to be received should hit the functional elements, but not the rear volume directly.
  • Temperature changes can occur during operation, but especially during the manufacture of such a MEMS microphone.
  • MEMS microphone materials have different coefficients of thermal expansion. When the temperature changes, therefore, distances change, e.g. B. between MEMS chip and cap and / or between MEMS chip and carrier.
  • Electrical interconnections between the MEMS chip and its circuit environment, e.g. B. contact pads on the top of the carrier can be made via bump connections.
  • the solder material used and the corresponding connection pads on the top of the carrier or on the surface of the MEMS chip can tear off if the tensile stress is too high, rendering the microphone inoperable. Even at a low level, these forces affect the component characteristics.
  • the channel is shaped and the heterogeneous material with its two different components with different thermal properties is chosen in such a way that mechanical stresses induced by temperature changes on the electrical circuitry of the chip are reduced.
  • the specified material of the duct enables a good acoustic seal between the sound opening and the rear volume.
  • the acoustic sealing between the sound opening and the rear volume should not be achieved by arranging an elastic or compressible element between the cap and the MEMS chip under pretension. This would exert a temperature dependent force on the MEMS chip.
  • solder bumps, with which the MEMS chip can be mounted could be deformed by this force when they are melted in a soldering process, with the prestress being reduced at the same time and the sealing being eliminated.
  • the seal should be made by gluing the cap and MEMS chip. Nevertheless, unavoidable forces due to temperature changes are kept low by a very low modulus of elasticity of the heterogeneous sealing material.
  • the modulus of elasticity can be less than 100 MPa, preferably less than 10 MPa.
  • Suitable sealants are also gel-like sealants such as viscoelastic fluids.
  • the MEMS chip it is possible for the MEMS chip to be connected and mechanically connected to the carrier or the cap via an electrically conductive connection. Furthermore, the MEMS chip is arranged between the channel and the carrier.
  • thermally induced changes in length of the channel, the electrically conductive connection and the thickness of the chip as well as the distance between the carrier and the top of the cap mean that the mechanical stress on the electrical connection would increase if the channel were to comprise conventional materials.
  • the heterogeneous material of the channel comprises a first component as a matrix and a second component with elements embedded in the matrix.
  • thermomechanical properties Through a heterogeneous composition of the material of the duct, ducts with new thermomechanical properties can be obtained.
  • the matrix material of the first component can have a first temperature-dependent viscosity and a first temperature-dependent density.
  • the elements of the second material can correspondingly have different second temperature-dependent viscosities or stiffnesses and a second temperature-dependent density.
  • the ratio of these two components in the heterogeneous material determines the resulting thermomechanical properties, e.g. B. the temperature-dependent viscosity or the temperature-dependent density of the wall material of the acoustic channel.
  • thermomechanical properties of the first and the second component include a different thermal expansion behavior.
  • the first component and the second component can differ accordingly in their thermal expansion behavior.
  • Temperature-induced changes can be changes along the vertical direction perpendicular to the surface of the carrier or horizontal changes in length parallel to the top of the carrier. It is also possible that the temperature-dependent change in volume of the various components is different.
  • the first component comprises a thermoplastic material, an elastomer and/or a silicone gel
  • the second component includes polymer beads.
  • Spheres may be filled with a hydrocarbon prior to heat treatment. In an expanded state, the spheres may have a polymer shell and be hollow on the inside.
  • the hydrocarbon in the polymer beads can undergo a phase transition, e.g. B. a boiling point, which is in a preferred temperature range.
  • the spheres have a shell made of polymer, the rigidity of which is so low that changes in the volume of the hydrocarbon in the environment of the polymer spheres, i. H. to the matrix material of the first component.
  • the heterogeneous material has a non-linear thermal expansion behavior.
  • the second component can have a non-linear thermal expansion behavior.
  • the second component can have a non-reversible thermal expansion behavior.
  • the wall thickness drops so much that there is hardly any restoring force left. The expansion can therefore conclude with a stable new, permanent state.
  • the heterogeneous material as a whole can have non-reversible thermal expansion behavior.
  • the heterogeneous material can behave as follows when the temperature changes, in particular when the temperature increases:
  • the matrix material of the first component has a certain viscosity and can be deformed relatively easily.
  • the filling of the elements of the second component expands.
  • the filling of the elements of the second component expands.
  • the elements of the second component expands.
  • their volume increases relatively sharply.
  • the heterogeneous material, in which the elements are preferably distributed as evenly as possible in the matrix, is inflated.
  • a temperature treatment may be necessary to bond the cap to the carrier, e.g. B. to glue.
  • a reflow process establishes the electrical and mechanical connection between the chip and its circuitry.
  • the critical temperatures of the heterogeneous material, e.g. B. the phase transition temperature and the solidification temperature can be selected so that the mechanical stress on the electrical interconnections is minimized despite significantly different temperatures. So it is possible that a silver comprehensive connecting material that connects the cap to the carrier, or an adhesive that connects the cap to the carrier, a sufficiently strong connection between the cap and Carrier from a temperature T 1 allows.
  • a material can be selected for the material of the first component that begins to stiffen above a further temperature T 2 , while the elements of the second component expand at a temperature T 3 .
  • the cap can first be firmly connected to the carrier.
  • the channel is then formed by foaming the heterogeneous material between chip and cap or between chip and carrier.
  • the heterogeneous material can have been applied in a raw state before the volume expansion in a closed curve around the functional elements on the chip or around the sound opening on the carrier substrate or cap before the cap is put on.
  • the matrix material preferably still has reactivity or stickiness when the swelling front reaches the opposite surface. This will ensure a good seal.
  • the density and the rigidity of the material of the acoustic channel are so low that the mechanical tensile or compressive stress passed on to the electrical wiring does not exceed critical values.
  • the first component comprises an elastomer or a silicone gel
  • its viscosity is initially preferably very low in order to ensure easy application, e.g. B. by applying using dispensing needles with an inner diameter between 0.09 mm and 0.11 mm. From a transition temperature Components of the first component can crosslink so that the viscosity then assumes a sufficiently high value when the heterogeneous material has assumed the desired shape, in particular the desired height, and the acoustic seal is achieved over a wide temperature range without critical stresses on the electrical circuitry .
  • the carrier can be a printed circuit board material, e.g. B. PCB, or a ceramic material.
  • the carrier can consist of one or more layers.
  • the carrier can comprise dielectric layers and metallization layers arranged in between.
  • Signal conductors and/or circuit elements e.g. B. inductive elements or capacitive elements.
  • Contact areas on the upper side or on the underside of the carrier and metallization structured inside the carrier can be interconnected via vias.
  • the cap can consist of a metal or at least include a metallic layer for shielding.
  • the sound opening in the cap is structured above the carrier and the channel is arranged between the upper segment of the cap and the MEMS chip, a top-port microphone with good acoustic properties is obtained, in which the mechanical stress on the electrical Interconnection is minimized, thereby reducing the probability of a defect during manufacture and increasing the service life during operation.
  • the materials specified for forming the channel essentially do without solvents, so that contamination is avoided.
  • the two components of the heterogeneous material can be matched to one another in such a way that a slight solidification of the first component begins even as the volume increases, but this does not appreciably impair the expansion of the second component.
  • the acoustic sealing compound cured in this way retains a certain elasticity (E ⁇ 100 MPa, preferably E ⁇ 10 MPa) and can absorb temperature fluctuations. Due to the low density, acoustic energy is absorbed and not transmitted.
  • E ⁇ 100 MPa preferably E ⁇ 10 MPa
  • the mechanical force that the bloated heterogeneous material exerts on the cap and MEMS chip is extremely low and e.g. controllable via the degree of expansion.
  • the shear modulus of the heterogeneous material can be selected to be less than 1.5 MPa.
  • the rate of expansion of the heterogeneous material can be three or more, where the rate of expansion is the ratio of the volumes in the inflated state and in the applied state.
  • Heat-expanding elements for the second component are e.g. B. from the U.S. Patent 3,615,972 known. Suitable balls are z. B. the microspheres sold under the brand name Expancel ® .
  • the matrix material has a thermal setting mechanism which is activated above the temperature at which the expansion of the second component begins.
  • a method for producing a corresponding MEMS microphone therefore includes applying the heterogeneous material in a ring shape to the MEMS chip, the carrier and/or to the underside of the cap. Afterwards, e.g. B. after assembling the carrier, MEMS chip and cap, the material is inflated by heating to form the final acoustic seal. Ideally, such channeling occurs after the cap is secured to the carrier.
  • the connecting material between cap and carrier is solidified at a temperature that is below the temperature required for the expansion of the heterogeneous material.
  • figure 1 shows a possible arrangement of the elements of a MEMS microphone MM, in which a cap KP is arranged on a carrier TR and encloses a cavity together with the carrier TR.
  • a preferably large area of the cavity forms the rear volume RV, which is arranged behind the functional elements, here MEMS structures MS on the MEMS chip MC, as viewed in the direction of sound.
  • Acoustic signals can reach the microphone MM via a sound opening SO.
  • the MEMS structures MS include a rigid backplate and a flexible membrane. These two elements form the electrodes of a capacitor whose capacitance varies with the frequency of the acoustic signals received.
  • the sound entry opening SO and the rear volume RV are formed by an acoustic seal AI in the form of the channel K.
  • the channel K includes the expanded heterogeneous material HM.
  • figure 1 shows the representation of a section through a microphone MM.
  • the channel K encloses the sound opening SO along a closed curve. If the rear volume RV were acoustically coupled to the sound opening SO, the microphone MM would be acoustically short-circuited and practically no signal would be present. Due to a deflection of the membrane of the MEMS structures MS directed towards the rear volume RV, the rear volume RV is compressed and a restoring force on the membrane is increased. In order to obtain the best possible signal quality, a rear volume RV that is as large as possible is therefore advantageous.
  • the MEMS chip MC is connected and interconnected to the carrier TR via bump connections BU.
  • Thermal expansion jeopardizes the integrity of the electrical circuitry.
  • conventional top-port microphones there is always a risk that an acoustic seal will damage or completely destroy the electrical circuitry if the temperature changes.
  • figure 2 shows an intermediate step during the manufacture of a corresponding microphone.
  • the heterogeneous material HM is still in its original state, ie before thermal activation.
  • the cap KP can be firmly connected to the carrier TR without exerting thermally induced stresses on the electrical circuitry, since the cap KP is not yet connected to the MEMS chip.
  • figure 3 shows on the left a lot of the heterogeneous material HM before activation. On the right is the state after thermal activation has taken place.
  • the increase in volume is based essentially on the thermally induced increase in volume of the second component in the form of the expandable elements E, represented here by balls KG.
  • the matrix material M essentially retains its volume. After the increase in volume of the balls K, the material of the matrix can be stiffened in order to keep the final state, ie the final shape, essentially independent of temperature.
  • figure 4 shows a possible embodiment in which the MEMS structures MS are not as in figure 1 shown facing the carrier TR but facing the cap KP.
  • the volume within the MEMS chip also contributes to the back volume RV, as a result of which the back volume RV is enlarged.
  • a disadvantage of this construction is that additional electrical lines are required from the top of the chip to the carrier. For this purpose, vias DK can be structured in the chip.
  • FIG 4 also shows the possibility of making the microphone connectable to an external circuit environment via external connections EA.
  • the external connections EA can include connection pads on the underside of the carrier and additional bump connections.
  • figure 5 also shows the possibility of providing an evaluation circuit AS in the form of an additional chip.
  • the evaluation circuit can be arranged on the carrier TR.
  • Chip and evaluation circuit AS can be interconnected via vias DK and structured signal conductors in a metallization layer ML.
  • the chip and/or evaluation circuit can also be connected to external contacts on the underside of the carrier via analog vias.
  • FIG 6 shows heat flow curves of different second components.
  • Heat flow curves provide information about exothermic or endothermic processes within a material and show the corresponding temperature dependency.
  • an endothermic process takes place at about 125 °C (lower curve).
  • the middle curve shows a process that takes place between 130 °C and 150 °C.
  • the upper curve shows a transition at around 175 °C.
  • z. B different hydrocarbons with different phase transition temperatures, different temperatures at which the inflation process begins can be selected.
  • figure 7 shows the WSK heat flow curve for a silver-containing conductive adhesive with which the cap can be attached to the carrier. An exothermic reaction takes place in the temperature range around 150 °C, during which the adhesive hardens.
  • transition temperatures of the swelling component (cf. figure 6 ) and the connecting means between cap and carrier (cf. figure 7 ) can be chosen in such a way that the acoustic isolation essentially takes place after the cap has been attached to the carrier and the attachment of the cap to the carrier does not thereby impair the electrical connections.
  • MEMS microphone and the method for producing a MEMS microphone are not limited by the technical features and embodiments shown. Microphones that include additional circuit elements and/or attachment elements and methods that include additional manufacturing steps also fall within the scope of protection defined by the following claims.

Description

Die Erfindung betrifft MEMS-Mikrofone, bei denen elektrische Verbindungen weniger stark mechanischen Belastungen ausgesetzt sind.The invention relates to MEMS microphones in which electrical connections are subjected to less severe mechanical stress.

MEMS-Mikrofone (MEMS = Micro-Electro-Mechanical System) haben mikrostrukturierte Funktionselemente, die in oder an der Oberfläche eines Chips gebildet sein können. Die Funktionselemente können z. B. eine flexible Membran und eine starre Rückplatte umfassen. Eine oder mehrere flexible Membranen bilden eine Elektrode eines Kondensators. Eine oder mehrere steifere Rückplatten bilden die Gegenelektrode. Treffen Schallwellen auf einen solchen Chip, schwingt die Membran und die Kapazität des Kondensators ändert sich fortlaufend aufgrund des unterschiedlichen Abstands der Kondensatorelektroden. Eine Auswertschaltung erstellt aus der zeitlichen Variation der Kapazität ein elektrisches Signal, das dem empfangenen akustischen Signal entspricht.MEMS microphones (MEMS=Micro-Electro-Mechanical System) have microstructured functional elements that can be formed in or on the surface of a chip. The functional elements can, for. B. comprise a flexible membrane and a rigid backplate. One or more flexible membranes form an electrode of a capacitor. One or more stiffer backplates form the counter electrode. When sound waves hit such a chip, the membrane vibrates and the capacitance of the capacitor changes continuously due to the different distance between the capacitor electrodes. An evaluation circuit uses the variation in capacitance over time to create an electrical signal that corresponds to the acoustic signal received.

Damit ein MEMS-Mikrofon gute akustische Eigenschaften hat, sollen die zu empfangenden akustischen Signale die Funktionselemente nur aus einer Seite treffen. In Richtung der akustischen Signalausbreitung gesehen hinter den Funktionselementen sollte deshalb ein Rückvolumen liegen, das akustisch von der Umgebung des Mikrofons isoliert ist.In order for a MEMS microphone to have good acoustic properties, the acoustic signals to be received should only hit the functional elements from one side. Viewed in the direction of the acoustic signal propagation, there should therefore be a rear volume behind the functional elements that is acoustically isolated from the area around the microphone.

Neben dem MEMS-Chips umfassen MEMS-Mikrofone im Allgemeinen weitere Elemente, z. B. einen Träger und eine Abdeckung. Träger, Abdeckung und MEMS-Chip müssen mechanisch verbunden sein. Der MEMS-Chip muss - direkt oder indirekt - mit Außenkontakten des Mikrofons verschaltet sein, damit das Mikrofon mit einer externen Schaltungsumgebung verschaltbar ist. Insbesondere die elektrischen Verbindungsstellen, über die der MEMS-Chip mit seiner Umgebung verschaltet ist, reagieren empfindlich auf mechanische Spannungen.In addition to the MEMS chip, MEMS microphones generally include other elements, e.g. B. a carrier and a cover. Carrier, cover and MEMS chip must be mechanically connected be. The MEMS chip must be connected—directly or indirectly—to external contacts of the microphone so that the microphone can be connected to an external circuit environment. In particular, the electrical connection points that connect the MEMS chip to its environment are sensitive to mechanical stress.

MEMS-Mikrofone können als so genannte Bottom-Port-Mikrofone ausgebildet sein, bei denen eine Schalleintrittsöffnung an derjenigen Seite angeordnet ist, die dem Objekt, an dem das Mikrofon befestigt ist, zugewandt ist. Solche Bottom-Port-Mikrofone können eine schlechtere Signalqualität als so genannte Top-Port-Mikrofone, deren Schalleintrittsöffnung nicht durch das Objekt abgedeckt ist, haben, da bei Top-Port-Mikrofone die Schalleintrittsöffnung auf der dem Objekt abgewandten Seite angeordnet ist. Oft ist die Art des Mikrofons (Top-Port oder Bottom-Port) durch die einbaubedingten Anforderungen vorgegeben. Top-Port-Mikrofone erfordern allerdings üblicherweise einen höheren Konstruktionsaufwand, insbesondere bei der akustischen Abdichtung zwischen Vorvolumen und Rückvolumen.MEMS microphones can be embodied as so-called bottom-port microphones, in which a sound entry opening is arranged on the side that faces the object to which the microphone is attached. Such bottom-port microphones can have a poorer signal quality than so-called top-port microphones, whose sound entry opening is not covered by the object, since the sound entry opening of top-port microphones is located on the side facing away from the object. The type of microphone (top port or bottom port) is often determined by the installation-related requirements. However, top-port microphones usually require a higher design effort, especially with the acoustic seal between the front volume and the rear volume.

Ein MEMS-Mikrofon mit einer akustischen Abdichtung eines Schallkanals wird in DE 10 2011 087963 A1 gezeigt. Insbesondere zeigt dieses Dokument die Merkmale des einleitenden Teils von Anspruch 1 bzw. 7. Ähnliche Mikrofone sind aus DE 10 2010 026519 A1 und DE 10 2004 011148 B3 bekannt. Mehrkomponenten-Werkstoffe, die als Abdichtung Verwendung finden, oder zumindest als solche geeignet sind, sind aus US 3 615 972 A und DE 10 2011 080142 A1 bekannt.A MEMS microphone with an acoustic seal of a sound channel is used in DE 10 2011 087963 A1 shown. In particular, this document shows the features of the preamble of claims 1 and 7 respectively. Similar microphones are from DE 10 2010 026519 A1 and DE 10 2004 011148 B3 known. Multi-component materials that are used as seals, or are at least suitable as such, are made of U.S. 3,615,972 A and DE 10 2011 080142 A1 known.

Es besteht deshalb der Wunsch nach MEMS-Mikrofonen, die eine gute Signalqualität zur Verfügung stellen, mit möglichst geringem Konstruktionsaufwand herzustellen sind und deren Zuverlässigkeit durch eine reduzierte mechanische Spannung auf elektrische Verbindungen erhöht ist.There is therefore a desire for MEMS microphones that provide good signal quality, can be produced with as little construction effort as possible, and whose reliability is increased by reduced mechanical stress on electrical connections.

Ein solches MEMS-Mikrofon wird im unabhängigen Anspruch 1 angegeben. Ein entsprechendes Verfahren zum Herstellen eines MEMS-Mikrofons wird in Anspruch 7 bereitgestellt. Abhängige Ansprüche geben vorteilhafte Ausgestaltungen des Mikrofons an.Such a MEMS microphone is specified in independent claim 1. A corresponding method for manufacturing a MEMS microphone is provided in claim 7. Dependent claims specify advantageous configurations of the microphone.

Das MEMS-Mikrofon hat einen Träger, eine Kappe auf dem Träger und einen MEMS-Chip. Die Kappe auf dem Träger umschließt einen Hohlraum. Der MEMS-Chip ist im Hohlraum angeordnet. Das MEMS-Mikrofon hat ferner eine Schallöffnung im Träger oder in der Kappe, wobei die Anordnung in der Kappe bevorzugt ist. Ferner hat das Mikrofon ein Rückvolumen und einen Kanal, der die Schallöffnung mit dem MEMS-Chip verbindet. Der Kanal isoliert das Rückvolumen akustisch von der Schallöffnung. Der Kanal - genauer: seine Wand - umfasst ein heterogenes Material. Das heterogene Material besteht aus zumindest zwei unterschiedlichen Komponenten. Die beiden unterschiedlichen Komponenten haben unterschiedliche thermomechanische Eigenschaften.The MEMS microphone has a carrier, a cap on the carrier and a MEMS chip. The cap on the carrier encloses a cavity. The MEMS chip is placed in the cavity. The MEMS microphone also has a sound opening in the carrier or in the cap, with the arrangement in the cap being preferred. Furthermore, the microphone has a back volume and a channel that connects the sound port to the MEMS chip. The duct acoustically isolates the back volume from the sound port. The canal - more precisely: its wall - comprises a heterogeneous material. The heterogeneous material consists of at least two different components. The two different components have different thermomechanical properties.

Es ist möglich, dass die Kappe den Hohlraum vollständig umschließt. Es ist auch möglich, dass die Kappe und der Träger den Hohlraum zusammen umschließen. Insofern umschließt die Kappe den Hohlraum zumindest teilweise.It is possible that the cap completely encloses the cavity. It is also possible that the cap and the carrier together enclose the cavity. In this respect, the cap at least partially encloses the cavity.

Dass der Kanal die Schallöffnung vom Rückvolumen akustisch isoliert, bedeutet, dass akustische Signale, die die Schallöffnung erreichen, davon abgehalten werden, das Rückvolumen direkt, d.h. ohne Passage des MEMS-Chips, zu erreichen. Der Kanal - genauer: seine Seitenwände - stellen eine Barriere für akustische Signale dar.The fact that the channel acoustically isolates the sound port from the back volume means that acoustic signals reaching the sound port are prevented from reaching the back volume directly, i.e. without passing through the MEMS chip. The channel - more precisely: its side walls - represent a barrier for acoustic signals.

Zu den unterschiedlichen thermomechanischen Eigenschaften der beiden Komponenten des Materials des Kanals können unterschiedliche thermisch induzierte Längenänderungen, unterschiedliche thermisch induzierte Änderungen der Viskosität, unterschiedliche thermisch induzierte Änderungen der akustischen Impedanz, unterschiedliche temperaturabhängige Elastizitätsmoduln und unterschiedliche temperaturabhängige Dichten sowie ähnliche Parameter gehören.The different thermomechanical properties of the two components of the material of the channel can include different thermally induced changes in length, different thermally induced changes in viscosity, different thermally induced changes in the acoustic Impedance, different temperature-dependent moduli of elasticity and different temperature-dependent densities and similar parameters include.

Folgendes Problem üblicher MEMS-Mikrofone wurde erkannt: Der MEMS-Chip ist über elektrische Verbindungen mit seiner Umgebung verbunden und verschaltet. Zusätzlich ist der MEMS-Chip so mit einer Schallöffnung verbunden, dass zu empfangende akustische Signale auf die Funktionselemente, aber nicht direkt auf das Rückvolumen treffen sollen. Während des Betriebs, aber insbesondere während der Herstellung eines solchen MEMS-Mikrofon, können Temperaturänderungen auftreten. Im Allgemeinen haben die Materialien des MEMS-Mikrofons unterschiedliche thermische Ausdehnungskoeffizienten. Bei einer Temperaturänderung ändern sich deshalb Abstände, z. B. zwischen MEMS-Chip und Kappe und/oder zwischen MEMS-Chip und Träger. Elektrische Verschaltungen zwischen dem MEMS-Chip und seiner Schaltungsumgebung, z. B. Kontaktpads an der Oberseite des Trägers, können über Bump-Verbindungen hergestellt sein. Das dabei verwendete Lotmaterial und entsprechende Anschlusspads an der Oberseite des Trägers oder an der Oberfläche des MEMS-Chips können bei zu hohen Zugbelastungen abreißen und das Mikrofon damit funktionsunfähig machen. Schon auf niedrigem Niveau bewirken diese Kräfte eine Beeinträchtigung der Bauteil-Charakteristik.The following problem of common MEMS microphones was identified: The MEMS chip is connected to its environment via electrical connections and wired up. In addition, the MEMS chip is connected to a sound opening in such a way that the acoustic signals to be received should hit the functional elements, but not the rear volume directly. Temperature changes can occur during operation, but especially during the manufacture of such a MEMS microphone. In general, MEMS microphone materials have different coefficients of thermal expansion. When the temperature changes, therefore, distances change, e.g. B. between MEMS chip and cap and / or between MEMS chip and carrier. Electrical interconnections between the MEMS chip and its circuit environment, e.g. B. contact pads on the top of the carrier can be made via bump connections. The solder material used and the corresponding connection pads on the top of the carrier or on the surface of the MEMS chip can tear off if the tensile stress is too high, rendering the microphone inoperable. Even at a low level, these forces affect the component characteristics.

Der Kanal ist so geformt und das heterogene Material mit seinen zwei unterschiedlichen Komponenten mit unterschiedlichen thermischen Eigenschaften ist so gewählt, dass durch Temperaturänderungen induzierte mechanische Spannungen auf die elektrische Verschaltung des Chips verringert sind.The channel is shaped and the heterogeneous material with its two different components with different thermal properties is chosen in such a way that mechanical stresses induced by temperature changes on the electrical circuitry of the chip are reduced.

Gleichzeitig ermöglicht das angegebene Material des Kanals eine gute akustische Abdichtung zwischen Schallöffnung und Rückvolumen.At the same time, the specified material of the duct enables a good acoustic seal between the sound opening and the rear volume.

Die akustische Abdichtung zwischen Schallöffnung und Rückvolumen sollte gerade nicht dadurch erfolgen, dass ein elastisches oder kompressibles Element zwischen Kappe und MEMS-Chip unter Vorspannung angeordnet ist. Dies würde eine temperaturabhängige Kraft auf den MEMS-Chip ausüben. Außerdem könnten Lot-Bumps, mit denen der MEMS-Chip montiert sein kann, beim Aufschmelzen in einem Lötprozess durch diese Kraft deformiert werden, wobei gleichzeitig die Vorspannung abgebaut würde und die Abdichtung entfiele.The acoustic sealing between the sound opening and the rear volume should not be achieved by arranging an elastic or compressible element between the cap and the MEMS chip under pretension. This would exert a temperature dependent force on the MEMS chip. In addition, solder bumps, with which the MEMS chip can be mounted, could be deformed by this force when they are melted in a soldering process, with the prestress being reduced at the same time and the sealing being eliminated.

Vielmehr sollte die Dichtung durch Verkleben mit Kappe und MEMS-Chip hergestellt werden. Dennoch unvermeidliche Kräfte Aufgrund von Temperaturänderungen werden durch einen sehr niedrigen E-Modul des heterogenen Dichtmaterials gering gehalten. Der E-Modul kann dabei kleiner als 100 MPa, vorzugsweise kleiner als 10 MPa, sein. Geeignete Dichtmittel sind auch gelartige Dichtmittel wie viskoelastische Fluide.Rather, the seal should be made by gluing the cap and MEMS chip. Nevertheless, unavoidable forces due to temperature changes are kept low by a very low modulus of elasticity of the heterogeneous sealing material. The modulus of elasticity can be less than 100 MPa, preferably less than 10 MPa. Suitable sealants are also gel-like sealants such as viscoelastic fluids.

Es ist entsprechend möglich, dass der MEMS-Chip über eine elektrisch leitende Verbindung mit dem Träger oder der Kappe verschaltet und mechanisch verbunden ist. Ferner ist der MEMS-Chip zwischen dem Kanal und dem Träger angeordnet.Accordingly, it is possible for the MEMS chip to be connected and mechanically connected to the carrier or the cap via an electrically conductive connection. Furthermore, the MEMS chip is arranged between the channel and the carrier.

In beiden Fällen haben thermisch induzierte Längenänderungen des Kanals, der elektrisch leitenden Verbindung und der Dicke des Chips sowie des Abstands zwischen Träger und Oberseite die Kappe die Folge, dass die mechanische Belastung auf die elektrische Verbindung steigen würde, wenn der Kanal konventionelle Materialien umfassen würde.In both cases, thermally induced changes in length of the channel, the electrically conductive connection and the thickness of the chip as well as the distance between the carrier and the top of the cap mean that the mechanical stress on the electrical connection would increase if the channel were to comprise conventional materials.

Ensprechend der Erfindung umfasst das heterogene Material des Kanals eine erste Komponente als Matrix und eine zweite Komponente mit in der Matrix eingebetteten Elementen.According to the invention, the heterogeneous material of the channel comprises a first component as a matrix and a second component with elements embedded in the matrix.

Durch eine heterogene Zusammensetzung des Materials des Kanals können Kanäle mit neuen thermomechanischen Eigenschaften erhalten werden. Das Matrixmaterial der ersten Komponente kann eine erste temperaturabhängige Viskosität und eine erste temperaturabhängige Dichte aufweisen. Die Elemente des zweiten Materials können entsprechend unterschiedliche zweite temperaturabhängige Viskositäten oder Steifigkeiten und eine zweite temperaturabhängige Dichte aufweisen. Das Mengenverhältnis dieser beiden Komponenten im heterogenen Material bestimmt dann die resultierenden thermomechanischen Eigenschaften, z. B. die temperaturabhängige Viskosität oder die temperaturabhängige Dichte des Wandmaterials des akustischen Kanals.Through a heterogeneous composition of the material of the duct, ducts with new thermomechanical properties can be obtained. The matrix material of the first component can have a first temperature-dependent viscosity and a first temperature-dependent density. The elements of the second material can correspondingly have different second temperature-dependent viscosities or stiffnesses and a second temperature-dependent density. The ratio of these two components in the heterogeneous material then determines the resulting thermomechanical properties, e.g. B. the temperature-dependent viscosity or the temperature-dependent density of the wall material of the acoustic channel.

Es ist insbesondere möglich, dass die unterschiedlichen thermomechanischen Eigenschaften der ersten und der zweiten Komponente ein unterschiedliches thermisches Ausdehnungsverhalten beinhalten. Die erste Komponente und die zweite Komponente können sich entsprechend in ihrem thermischen Ausdehnungsverhalten unterscheiden. Temperaturinduzierte Änderungen können dabei Änderungen entlang der vertikalen Richtung senkrecht zur Oberfläche des Trägers oder horizontale Längenänderungen parallel zur Oberseite des Trägers sein. Es ist auch möglich, dass die temperaturabhängige Änderung des Volumens der verschiedenen Komponenten unterschiedlich ist.In particular, it is possible that the different thermomechanical properties of the first and the second component include a different thermal expansion behavior. The first component and the second component can differ accordingly in their thermal expansion behavior. Temperature-induced changes can be changes along the vertical direction perpendicular to the surface of the carrier or horizontal changes in length parallel to the top of the carrier. It is also possible that the temperature-dependent change in volume of the various components is different.

Die erste Komponente umfasst ein thermoplastisches Material, ein Elastomer und/oder ein SilicongelThe first component comprises a thermoplastic material, an elastomer and/or a silicone gel

Die zweite Komponente umfasst Polymerkugeln. Kugeln können vor einer Wärmebehandlung mit einem Kohlenwasserstoff gefüllt sein. In einem expandierten Zustand können die Kugeln eine Schale aus Polymer haben und im Inneren hohl sein.The second component includes polymer beads. Spheres may be filled with a hydrocarbon prior to heat treatment. In an expanded state, the spheres may have a polymer shell and be hollow on the inside.

Der Kohlenwasserstoff in den Polymerkugeln kann einen Phasenübergang, z. B. einen Siedepunkt, aufweisen, der in einem bevorzugten Temperaturbereich liegt. Die Kugeln haben dabei eine Schale aus Polymer, deren Steifigkeit so gering ist, dass bei Temperaturänderungen Volumenänderungen des Kohlenwasserstoffs an die Umgebung der Polymerkugeln, d. h. an das Matrix-Material der ersten Komponente, weitergegeben wird.The hydrocarbon in the polymer beads can undergo a phase transition, e.g. B. a boiling point, which is in a preferred temperature range. The spheres have a shell made of polymer, the rigidity of which is so low that changes in the volume of the hydrocarbon in the environment of the polymer spheres, i. H. to the matrix material of the first component.

Es ist ferner möglich, dass das heterogene Material ein nicht lineares thermisches Ausdehnungsverhalten aufweist.It is also possible that the heterogeneous material has a non-linear thermal expansion behavior.

Insbesondere die zweite Komponente kann ein nicht lineares thermisches Ausdehnungsverhalten aufweisen.In particular, the second component can have a non-linear thermal expansion behavior.

Die zweite Komponente kann ein nicht reversibles thermisches Ausdehnungsverhalten haben. Wenn sich Hohlkugel aufblähen, sinkt die Wandstärke so stark, dass kaum noch eine Rückstellkraft verbleibt. Die Expansion kann deshalb mit einem stabilen neuen, permanenten Zustand abschließen.The second component can have a non-reversible thermal expansion behavior. When hollow spheres inflate, the wall thickness drops so much that there is hardly any restoring force left. The expansion can therefore conclude with a stable new, permanent state.

Das heterogene Material als Ganzes kann ein nicht reversibles thermisches Ausdehnungsverhalten haben.The heterogeneous material as a whole can have non-reversible thermal expansion behavior.

Das heterogene Material kann sich bei einer Temperaturänderung, insbesondere bei einer Temperaturerhöhung, wie folgt verhalten: Das Matrix-Material der ersten Komponente hat eine gewisse Viskosität und lässt sich relativ leicht verformen.The heterogeneous material can behave as follows when the temperature changes, in particular when the temperature increases: The matrix material of the first component has a certain viscosity and can be deformed relatively easily.

Bei einer Temperaturerhöhung dehnt sich die Füllung der Elemente der zweiten Komponente aus. Im Fall von Polymerkugeln als zweite Komponente steigt deren Volumen relativ stark an. Das heterogene Material, bei dem die Elemente vorzugsweise möglichst gleichmäßig in der Matrix verteilt sind, wird aufgebläht.When the temperature increases, the filling of the elements of the second component expands. In the case of polymer balls as the second component, their volume increases relatively sharply. The heterogeneous material, in which the elements are preferably distributed as evenly as possible in the matrix, is inflated.

Es ist möglich, dass im Bereich einer charakteristischen Temperatur ein Phasenübergang der Füllung der Elemente stattfindet. Innerhalb eines relativ schmalen Temperaturintervalls findet eine große Volumenzunahme statt.It is possible that in the range of a characteristic temperature, a phase transition of the filling of the elements takes place. A large increase in volume takes place within a relatively narrow temperature range.

Bei Temperaturen oberhalb dieses Phasenübergangs setzt eine Umwandlung des Materials der ersten Komponente ein. Die Viskosität des Matrix-Materials nimmt ab. Das heterogene Material verfestigt sich bei vergrößertem Volumen. Sollte die Temperatur wieder sinken, so behält das heterogene Material im Wesentlichen sein Volumen und seine Form.At temperatures above this phase transition, a transformation of the material of the first component begins. The viscosity of the matrix material decreases. The heterogeneous material solidifies as the volume increases. Should the temperature drop again, the heterogeneous material essentially retains its volume and shape.

Die Verwendung eines solchen Materials löst eine Vielzahl intrinsischer Spannungsprobleme bei der Herstellung. So kann eine Temperaturbehandlung notwendig sein, um die Kappe mit dem Träger zu verbinden, z. B. zu verkleben. Ein Reflow-Prozess stellt die elektrische und mechanische Verbindung des Chips und seiner Schaltungsumgebung her. Die kritischen Temperaturen des heterogenen Materials, z. B. die Phasenübergangstemperatur und die Verfestigungstemperatur, können so gewählt sein, dass die mechanische Belastung auf die elektrischen Verschaltungen trotz deutlich unterschiedlicher Temperaturen minimiert ist. So ist es möglich, dass ein Silber umfassendes Verbindungsmaterial, das die Kappe mit dem Träger verbindet, oder ein Kleber, der die Kappe mit dem Träger verbindet, eine ausreichend feste Verbindung zwischen Kappe und Träger ab einer Temperatur T1 ermöglicht. Entsprechend kann für das Material der ersten Komponente ein Material gewählt werden, dass oberhalb einer weiteren Temperatur T2 anfängt sich zu versteifen, während die Elemente der zweiten Komponente bei einer Temperatur T3 expandieren. Dabei gilt: T 1 < T 2 ;

Figure imgb0001
T 1 < T 3 ;
Figure imgb0002
T 3 T 1 50 K;
Figure imgb0003
100 ° C T 1 , T 2 , T 3 , 220 ° C
Figure imgb0004
The use of such a material solves a variety of intrinsic stress problems in manufacturing. A temperature treatment may be necessary to bond the cap to the carrier, e.g. B. to glue. A reflow process establishes the electrical and mechanical connection between the chip and its circuitry. The critical temperatures of the heterogeneous material, e.g. B. the phase transition temperature and the solidification temperature can be selected so that the mechanical stress on the electrical interconnections is minimized despite significantly different temperatures. So it is possible that a silver comprehensive connecting material that connects the cap to the carrier, or an adhesive that connects the cap to the carrier, a sufficiently strong connection between the cap and Carrier from a temperature T 1 allows. Correspondingly, a material can be selected for the material of the first component that begins to stiffen above a further temperature T 2 , while the elements of the second component expand at a temperature T 3 . The following applies: T 1 < T 2 ;
Figure imgb0001
T 1 < T 3 ;
Figure imgb0002
T 3 T 1 50 K;
Figure imgb0003
100 ° C T 1 , T 2 , T 3 , 220 ° C
Figure imgb0004

So kann zuerst die Kappe fest mit dem Träger verbunden werden. Anschließend wird der Kanal durch Aufschäumen des heterogenen Materials zwischen Chip und Kappe oder zwischen Chip und Träger gebildet. Das heterogene Material kann dazu vor dem Aufsetzen der Kappe in einem Rohzustand vor der Volumenexpansion in einer geschlossenen Kurve um die Funktionselemente auf dem Chip oder um die Schallöffnung auf Trägersubstrat oder Kappe aufgebracht worden sein.In this way, the cap can first be firmly connected to the carrier. The channel is then formed by foaming the heterogeneous material between chip and cap or between chip and carrier. For this purpose, the heterogeneous material can have been applied in a raw state before the volume expansion in a closed curve around the functional elements on the chip or around the sound opening on the carrier substrate or cap before the cap is put on.

Das Matrixmaterial weist vorzugsweise noch Reaktivität bzw. Klebrigkeit auf, wenn die Blähfront die gegenüberliegende Oberfläche erreicht. So wird eine gute Abdichtung erzielt.The matrix material preferably still has reactivity or stickiness when the swelling front reaches the opposite surface. This will ensure a good seal.

Durch das Aufschäumen sind die Dichte und die Steifigkeit des Materials des akustischen Kanals so gering, dass auf die elektrische Verschaltung weitergegebene mechanische Zug- oder Druckspannung kritische Werte nicht überschreitet.Due to the foaming, the density and the rigidity of the material of the acoustic channel are so low that the mechanical tensile or compressive stress passed on to the electrical wiring does not exceed critical values.

Umfasst die erste Komponente ein Elastomer oder ein Silikongel, so ist deren Viskosität anfangs vorzugsweise sehr gering, um ein leichtes Aufbringen, z. B. durch Aufbringen mittels Dispensnadeln mit einem Innendurchmesser zwischen 0,09 mm und 0,11 mm zu vereinfachen. Ab einer Übergangstemperatur können sich Bestandteile der ersten Komponente vernetzen, sodass die Viskosität dann einen hinreichend großen Wert annimmt, wenn das heterogene Material die gewünschte Form, insbesondere die gewünschte Höhe, angenommen hat und die akustische Abdichtung über einen breiten Temperaturbereich ohne kritische Spannungen auf die elektrische Verschaltung erreicht wird.If the first component comprises an elastomer or a silicone gel, its viscosity is initially preferably very low in order to ensure easy application, e.g. B. by applying using dispensing needles with an inner diameter between 0.09 mm and 0.11 mm. From a transition temperature Components of the first component can crosslink so that the viscosity then assumes a sufficiently high value when the heterogeneous material has assumed the desired shape, in particular the desired height, and the acoustic seal is achieved over a wide temperature range without critical stresses on the electrical circuitry .

Der Träger kann ein Leiterplattenmaterial, z. B. PCB, oder ein keramisches Material umfassen. Der Träger kann dabei aus einer oder mehreren Lagen bestehen. Der Träger kann dielektrische Lagen und dazwischen angeordnete Metallisierungslagen umfassen. In den Metallisierungslagen können Signalleiter und/oder Schaltungselemente, z. B. induktive Elemente oder kapazitive Elemente, ausgebildet sein. Kontaktflächen an der Oberseite oder an der Unterseite des Trägers und im Inneren des Trägers strukturierte Metallisierungen können über Durchkontaktierungen verschaltet sein.The carrier can be a printed circuit board material, e.g. B. PCB, or a ceramic material. The carrier can consist of one or more layers. The carrier can comprise dielectric layers and metallization layers arranged in between. Signal conductors and/or circuit elements, e.g. B. inductive elements or capacitive elements. Contact areas on the upper side or on the underside of the carrier and metallization structured inside the carrier can be interconnected via vias.

Die Kappe kann aus einem Metall bestehen oder zumindest eine metallische Schicht zur Abschirmung umfassen.The cap can consist of a metal or at least include a metallic layer for shielding.

Insbesondere wenn die Schallöffnung in der Kappe oberhalb des Trägers strukturiert ist und der Kanal zwischen dem oberen Segment der Kappe und dem MEMS-Chip angeordnet ist, wird ein Top-Port-Mikrofon mit guten akustischen Eigenschaften erhalten, bei dem die mechanische Belastung auf die elektrische Verschaltung minimiert und dadurch die Wahrscheinlichkeit eines Defekts beim Herstellen vermindert und die Lebensdauer während des Betriebs erhöht ist.In particular, if the sound opening in the cap is structured above the carrier and the channel is arranged between the upper segment of the cap and the MEMS chip, a top-port microphone with good acoustic properties is obtained, in which the mechanical stress on the electrical Interconnection is minimized, thereby reducing the probability of a defect during manufacture and increasing the service life during operation.

Die angegebenen Materialien für das Ausbilden des Kanals kommen im Wesentlichen ohne Lösungsmittel aus, sodass eine Kontamination vermieden wird.The materials specified for forming the channel essentially do without solvents, so that contamination is avoided.

Die beiden Komponenten des heterogenen Materials können so aufeinander abgestimmt sein, dass bereits während der Volumenzunahme eine leichte Verfestigung der ersten Komponente beginnt, welche die Expansion der zweiten Komponente jedoch nicht nennenswert beeinträchtigt.The two components of the heterogeneous material can be matched to one another in such a way that a slight solidification of the first component begins even as the volume increases, but this does not appreciably impair the expansion of the second component.

Die derart ausgehärtete akustische Dichtmasse behält eine gewisse Elastizität (E ≥ 100 MPa, vorzugsweise E ≤ 10 MPa) und kann Temperaturschwankungen aufnehmen. Aufgrund der geringen Dichte wird akustische Energie aufgenommen und nicht transmittiert.The acoustic sealing compound cured in this way retains a certain elasticity (E≧100 MPa, preferably E≦10 MPa) and can absorb temperature fluctuations. Due to the low density, acoustic energy is absorbed and not transmitted.

Die mechanische Kraft, die das aufgeblähte heterogene Material auf Kappe und MEMS-Chip ausübt, ist äußerst gering und u. a. über den Expansionsgrad steuerbar. Der Schubmodul des heterogenen Materials kann kleiner als 1,5 MPa gewählt sein.The mechanical force that the bloated heterogeneous material exerts on the cap and MEMS chip is extremely low and e.g. controllable via the degree of expansion. The shear modulus of the heterogeneous material can be selected to be less than 1.5 MPa.

Die Expansionsrate des heterogenen Materials kann drei oder mehr betragen, wobei die Expansionsrate das Verhältnis der Volumina im aufgeblähten Zustand und im aufgetragenen Zustand ist.The rate of expansion of the heterogeneous material can be three or more, where the rate of expansion is the ratio of the volumes in the inflated state and in the applied state.

Bei Wärme expandierende Elemente für die zweite Komponente sind z. B. aus dem Patent US 3,615,972 bekannt. Geeignete Kugeln sind z. B. die Mikrosphären, die unter dem Markennamen Expancel® vertrieben werden.Heat-expanding elements for the second component are e.g. B. from the U.S. Patent 3,615,972 known. Suitable balls are z. B. the microspheres sold under the brand name Expancel ® .

Entsprechend der Erfindung weist das Matrixmaterial einen thermischen Härtemechanismus auf, der über derjenigen Temperatur aktiviert wird, bei der das Aufblähen der zweiten Komponente einsetzt.According to the invention, the matrix material has a thermal setting mechanism which is activated above the temperature at which the expansion of the second component begins.

Ein Verfahren zum Herstellen eines entsprechenden MEMS-Mikrofons beinhaltet deswegen das Aufbringen des heterogenen Materials ringförmig auf den MEMS-Chip, den Träger und/oder an die Unterseite der Kappe. Anschließend, z. B. nach Zusammenbau von Träger, MEMS-Chip und Kappe, wird das Material durch Erwärmen zur finalen akustischen Abdichtung aufgebläht. Idealerweise erfolgt das derartige Ausbilden des Kanals, nachdem die Kappe fest mit dem Träger verbunden ist.A method for producing a corresponding MEMS microphone therefore includes applying the heterogeneous material in a ring shape to the MEMS chip, the carrier and/or to the underside of the cap. Afterwards, e.g. B. after assembling the carrier, MEMS chip and cap, the material is inflated by heating to form the final acoustic seal. Ideally, such channeling occurs after the cap is secured to the carrier.

Es ist dabei möglich, dass das Verbindungsmaterial zwischen Kappe und Träger bei einer Temperatur verfestigt wird, die unter der für das Aufblähen des heterogenen Materials benötigten Temperatur liegt.It is possible that the connecting material between cap and carrier is solidified at a temperature that is below the temperature required for the expansion of the heterogeneous material.

Es ist möglich, dass als Verbindungsmaterial zwischen Kappe und Träger ein Leitklebstoff verwendet wird.It is possible for a conductive adhesive to be used as the connecting material between the cap and the carrier.

Nachfolgend werden zentrale Aspekte des MEMS-Mikrofons und Details von Ausführungsbeispielen anhand der schematischen Figuren erläutert.Central aspects of the MEMS microphone and details of exemplary embodiments are explained below with reference to the schematic figures.

Es zeigen:

Fig. 1:
eine mögliche relative Anordnung von Kappe, MEMS-Chip, Träger und Kanal,
Fig. 2:
das Material des Kanals vor der thermischen Aktivierung,
Fig. 3:
die Wirkung des Aufblähens der Elemente der zweiten Komponente,
Fig. 4:
die Ausrichtung der Funktionselemente zur Schallöffnung,
Fig. 5:
eine mögliche Anordnung einer Auswertschaltung,
Fig. 6:
Wärmestromkurven für verschiedene zweite Komponenten mit unterschiedlicher Übergangstemperatur,
Fig. 7:
eine Wärmestromkurve eines Silberleitklebers.
Show it:
Figure 1:
a possible relative arrangement of cap, MEMS chip, carrier and channel,
Figure 2:
the material of the channel before thermal activation,
Figure 3:
the effect of inflating the elements of the second component,
Figure 4:
the alignment of the functional elements to the sound opening,
Figure 5:
a possible arrangement of an evaluation circuit,
Figure 6:
Heat flow curves for different second components with different transition temperatures,
Figure 7:
a heat flow curve of a silver conductive adhesive.

Figur 1 zeigt eine mögliche Anordnung der Elemente eines MEMS-Mikrofons MM, bei dem eine Kappe KP auf einem Träger TR angeordnet ist und zusammen mit dem Träger TR einen Hohlraum einschließt. Ein vorzugsweise großer Bereich des Hohlraums bildet das Rückvolumen RV, das in Schallrichtung gesehen hinter den Funktionselementen, hier MEMS-Strukturen MS am MEMS-Chip MC angeordnet ist. Akustische Signale können das Mikrofon MM über eine Schallöffnung SO erreichen. Die MEMS-Strukturen MS beinhalten eine steife Rückplatte und eine flexible Membran. Diese beiden Elemente bilden die Elektroden eines Kondensators, dessen Kapazität mit der Frequenz der empfangenen akustischen Signale variiert. Die Schalleintrittsöffnung SO und das Rückvolumen RV sind durch eine akustische Abdichtung AI in Form des Kanals K gebildet. Der Kanal K umfasst dabei das aufgeblähte heterogene Material HM. Figur 1 zeigt die Darstellung eines Schnitts durch ein Mikrofon MM. figure 1 shows a possible arrangement of the elements of a MEMS microphone MM, in which a cap KP is arranged on a carrier TR and encloses a cavity together with the carrier TR. A preferably large area of the cavity forms the rear volume RV, which is arranged behind the functional elements, here MEMS structures MS on the MEMS chip MC, as viewed in the direction of sound. Acoustic signals can reach the microphone MM via a sound opening SO. The MEMS structures MS include a rigid backplate and a flexible membrane. These two elements form the electrodes of a capacitor whose capacitance varies with the frequency of the acoustic signals received. The sound entry opening SO and the rear volume RV are formed by an acoustic seal AI in the form of the channel K. The channel K includes the expanded heterogeneous material HM. figure 1 shows the representation of a section through a microphone MM.

Der Kanal K umschließt die Schallöffnung SO entlang einer geschlossenen Kurve. Wäre das Rückvolumen RV akustisch an die Schallöffnung SO gekoppelt, wäre das Mikrofon MM akustisch kurzgeschlossen und praktisch kein Signal vorhanden. Durch eine zum Rückvolumen RV gerichtete Auslenkung der Membran der MEMS-Strukturen MS wird das Rückvolumen RV verdichtet und eine Rückstellkraft auf die Membran ist erhöht. Um eine möglichst gute Signalqualität zu erhalten, ist deshalb ein möglichst großes Rückvolumen RV vorteilhaft.The channel K encloses the sound opening SO along a closed curve. If the rear volume RV were acoustically coupled to the sound opening SO, the microphone MM would be acoustically short-circuited and practically no signal would be present. Due to a deflection of the membrane of the MEMS structures MS directed towards the rear volume RV, the rear volume RV is compressed and a restoring force on the membrane is increased. In order to obtain the best possible signal quality, a rear volume RV that is as large as possible is therefore advantageous.

Der MEMS-Chip MC ist über Bump-Verbindungen BU mit dem Träger TR verbunden und verschaltet. Thermische Expansion gefährdet die Integrität der elektrischen Verschaltung. Bei konventionellen Top-Port-Mikrofonen besteht deshalb stets die Gefahr, dass eine akustische Abdichtung bei Temperaturänderung die elektrische Verschaltung schädigt oder komplett zerstört.The MEMS chip MC is connected and interconnected to the carrier TR via bump connections BU. Thermal expansion jeopardizes the integrity of the electrical circuitry. With conventional top-port microphones, there is always a risk that an acoustic seal will damage or completely destroy the electrical circuitry if the temperature changes.

Figur 2 zeigt einen Zwischenschritt während der Herstellung eines entsprechenden Mikrofons. Dabei ist das heterogene Material HM noch in seinem ursprünglichen Zustand, d. h. vor der thermischen Aktivierung. In diesem Zustand kann die Kappe KP fest mit dem Träger TR verbunden werden, ohne thermisch induzierte Spannungen auf die elektrische Verschaltung auszuüben, da die Kappe KP noch nicht mit dem MEMS-Chip verbunden ist. figure 2 shows an intermediate step during the manufacture of a corresponding microphone. The heterogeneous material HM is still in its original state, ie before thermal activation. In this state, the cap KP can be firmly connected to the carrier TR without exerting thermally induced stresses on the electrical circuitry, since the cap KP is not yet connected to the MEMS chip.

Figur 3 zeigt links eine Menge des heterogenen Materials HM vor der Aktivierung. Auf der rechten Seite ist der Zustand nach der thermischen Aktivierung erfolgt. Die Volumenzunahme beruht im Wesentlichen auf der thermisch induzierten Volumenzunahme der zweiten Komponente in Form der blähbaren Elemente E, hier durch Kugeln KG dargestellt. Das Matrix-Material M behält im Wesentlichen sein Volumen. Nach der Volumenzunahme der Kugeln K kann das Material der Matrix versteift werden, um den finalen Zustand, d. h. die finale Form, im Wesentlichen temperaturunabhängig zu behalten. figure 3 shows on the left a lot of the heterogeneous material HM before activation. On the right is the state after thermal activation has taken place. The increase in volume is based essentially on the thermally induced increase in volume of the second component in the form of the expandable elements E, represented here by balls KG. The matrix material M essentially retains its volume. After the increase in volume of the balls K, the material of the matrix can be stiffened in order to keep the final state, ie the final shape, essentially independent of temperature.

Figur 4 zeigt eine mögliche Ausführungsform, bei der die MEMS-Strukturen MS nicht wie in Figur 1 gezeigt dem Träger TR zugewandt, sondern der Kappe KP zugewandt sind. Dadurch trägt das Volumen innerhalb des MEMS-Chips auch zum Rückvolumen RV bei, wodurch das Rückvolumen RV vergrößert ist. Ein Nachteil dieser Konstruktion besteht darin, dass zusätzliche elektrische Leitungen von der Oberseite des Chips zum Träger notwendig sind. Dazu können im Chip Durchkontaktierungen DK strukturiert sein. figure 4 shows a possible embodiment in which the MEMS structures MS are not as in figure 1 shown facing the carrier TR but facing the cap KP. As a result, the volume within the MEMS chip also contributes to the back volume RV, as a result of which the back volume RV is enlarged. A disadvantage of this construction is that additional electrical lines are required from the top of the chip to the carrier. For this purpose, vias DK can be structured in the chip.

Figur 4 zeigt ferner die Möglichkeit, das Mikrofon über externe Anschlüsse EA mit einer externen Schaltungsumgebung verschaltbar zu machen. Die externen Anschlüsse EA können Anschlusspads an der Unterseite des Trägers und zusätzliche Bump-Verbindungen umfassen. figure 4 also shows the possibility of making the microphone connectable to an external circuit environment via external connections EA. The external connections EA can include connection pads on the underside of the carrier and additional bump connections.

Figur 5 zeigt ferner die Möglichkeit, eine Auswertschaltung AS in Form eines zusätzlichen Chips vorzusehen. Die Auswertschaltung kann dabei auf dem Träger TR angeordnet sein. Über Durchkontaktierungen DK und strukturierte Signalleiter in einer Metallisierungslage ML können Chip und Auswertschaltung AS verschaltet sein. Über analoge Durchkontaktierungen können Chip und/oder Auswertschaltung auch mit externen Kontakten an der Unterseite des Trägers verschaltet sein. figure 5 also shows the possibility of providing an evaluation circuit AS in the form of an additional chip. The evaluation circuit can be arranged on the carrier TR. Chip and evaluation circuit AS can be interconnected via vias DK and structured signal conductors in a metallization layer ML. The chip and/or evaluation circuit can also be connected to external contacts on the underside of the carrier via analog vias.

Figur 6 zeigt Wärmestromkurven unterschiedlicher zweiter Komponenten. Wärmestromkurven geben dabei Aufschluss über exotherme oder endotherme Prozesse innerhalb eines Materials und zeigen die entsprechende Temperaturabhängigkeit. In einer möglichen Version für das Material der zweiten Komponente findet ein endothermer Prozess bei etwa 125 °C (untere Kurve) statt. Die mittlere Kurve zeigt einen Prozess, der zwischen 130 °C und 150 °C stattfindet. Die obere Kurve zeigt einen Übergang bei etwa 175 °C. figure 6 shows heat flow curves of different second components. Heat flow curves provide information about exothermic or endothermic processes within a material and show the corresponding temperature dependency. In a possible version for the material of the second component, an endothermic process takes place at about 125 °C (lower curve). The middle curve shows a process that takes place between 130 °C and 150 °C. The upper curve shows a transition at around 175 °C.

Je nachdem, welche Materialien für die zweite Komponente gewählt werden, z. B. unterschiedliche Kohlenwasserstoffe mit unterschiedlichen Phasenübergangstemperaturen, können unterschiedliche Temperaturen, bei denen der Blähvorgang einsetzt, ausgewählt werden.Depending on which materials are chosen for the second component, z. B. different hydrocarbons with different phase transition temperatures, different temperatures at which the inflation process begins can be selected.

Figur 7 zeigt die Wärmestromkurve WSK für einen silberhaltigen Leitkleber, mit dem die Kappe auf dem Träger befestigt werden kann. In dem Temperaturbereich um etwa 150 °C findet eine exotherme Reaktion statt, bei der sich der Kleber verfestigt. figure 7 shows the WSK heat flow curve for a silver-containing conductive adhesive with which the cap can be attached to the carrier. An exothermic reaction takes place in the temperature range around 150 °C, during which the adhesive hardens.

Die Übergangstemperaturen der Bläh-Komponente (vgl. Figur 6) und des Verbindungsmittels zwischen Kappe und Träger (vgl. Figur 7) können so gewählt werden, dass die akustische Isolation im Wesentlichen nach der Befestigung der Kappe auf dem Träger stattfindet und das Befestigen der Kappe auf dem Träger die elektrischen Verbindungen damit nicht beeinträchtigt.The transition temperatures of the swelling component (cf. figure 6 ) and the connecting means between cap and carrier (cf. figure 7 ) can be chosen in such a way that the acoustic isolation essentially takes place after the cap has been attached to the carrier and the attachment of the cap to the carrier does not thereby impair the electrical connections.

Das MEMS-Mikrofon und das Verfahren zur Herstellung eines MEMS-Mikrofons sind durch die gezeigten technischen Merkmale und Ausführungsformen nicht beschränkt. Mikrofone, die zusätzliche Schaltungselemente und/oder Befestigungselemente umfassen, und Verfahren, die zusätzliche Herstellungsschritte umfassen, fallen ebenso unter den durch die folgenden Ansprüche definierten Schutzbereich.The MEMS microphone and the method for producing a MEMS microphone are not limited by the technical features and embodiments shown. Microphones that include additional circuit elements and/or attachment elements and methods that include additional manufacturing steps also fall within the scope of protection defined by the following claims.

BezugszeichenlisteReference List

AI:AI:
akustische Isolationacoustic isolation
AS:AS:
Auswertschaltungevaluation circuit
BU:BU:
Bump-Verbindungbump connection
DK:DK:
Durchkontaktierungvia
DM:DM:
dielektrisches Material einer dielektrischen Lagedielectric material of a dielectric layer
E:E:
in der Matrix eingebettete Elemente der zweiten Komponenteelements of the second component embedded in the matrix
EA:EA:
externe Anschlüsseexternal connections
HM:HM:
heterogenes Materialheterogeneous material
K:K:
Kanalchannel
KP:CP:
Kappecap
KG:KG:
Kugel, eine mögliche Form der eingebetteten ElementeSphere, a possible shape of the embedded elements
M:M:
Matrix der ersten KomponenteMatrix of the first component
MC:MC:
MEMS-ChipMEMS chip
ML:ML:
Metallisierungslagemetallization layer
MM:MM:
MEMS-MikrofonMEMS microphone
MS:MS:
MEMS-StrukturenMEMS structures
RV:RV:
Rückvolumenback volume
SO:SO:
Schallöffnungsound port
TR:TR:
Trägercarrier
VM:VM:
Verbindungsmaterial zwischen Kappe und TrägerConnection material between cap and strap
WSK:value chain:
Wärmestromkurveheat flow curve

Claims (9)

  1. MEMS microphone (MM), comprising
    - a carrier (TR),
    - a cap (KP) on the carrier (TR), which at least partially encloses a cavity,
    - a MEMS chip (MC) in the cavity,
    - a sound opening (SO) in the cap (KP),
    - a rear volume (RV),
    - a channel (K), which connects the sound opening (SO) to the MEMS chip (MC) and acoustically insulates it from the rear volume (RV),
    wherein
    - the channel (K) comprises a heterogeneous material (HM), which consists of at least two different components with different thermomechanical properties, characterized in that
    - the heterogeneous material (HM) comprises a first component as matrix (M) and a second component with elements (KG) embedded in the matrix,
    - the first component comprises a thermoplastic material, an elastomer and/or a silicone gel,
    - the second component comprises polymer beads (KG),
    - the matrix material (M) has a thermal hardening mechanism which is activated above that temperature at which the expansion of the second component is activated.
  2. MEMS microphone according to the preceding claim, wherein
    - the MEMS chip (MC) is interconnected and mechanically connected to the carrier (TR) via an electrically conductive connection (BU), and
    - the MEMS chip (MC) is arranged between the channel (K) and the carrier (TR).
  3. MEMS microphone according to either of the preceding claims, wherein the different thermomechanical properties of the first and the second component entail a different thermal expansion behaviour.
  4. MEMS microphone according to one of the preceding claims, wherein the heterogeneous material has a nonlinear thermal expansion behaviour.
  5. MEMS microphone according to the preceding claim, wherein the second component has a nonlinear thermal expansion behaviour.
  6. MEMS microphone according to the preceding claim, wherein the heterogeneous material has a non-reversible thermal expansion behaviour.
  7. Method for producing a MEMS microphone (MM), wherein the microphone comprises:
    - a carrier (TR),
    - a cap (KP) on the carrier (TR), which at least partially encloses a cavity,
    - a MEMS chip (MC) in the cavity,
    - a sound opening (SO) in the cap (KP),
    - a rear volume (RV),
    - a channel (K), which connects the sound opening (SO) to the MEMS chip (MC) and acoustically insulates it from the rear volume (RV),
    wherein
    - the channel (K) comprises a heterogeneous material (HM), which consists of at least two different components with different thermomechanical properties, characterized in that
    - the heterogeneous material (HM) comprises a first component as matrix (M) and a second component with elements (KG) embedded in the matrix,
    - the first component comprises a thermoplastic material, an elastomer and/or a silicone gel,
    - the second component comprises polymer beads (KG),
    - the matrix material (M) has a thermal hardening mechanism which is activated above that temperature at which the expansion of the second component is activated, and
    wherein
    - the heterogeneous material (HM) is applied in a ring around the MEMS chip (MC) and/or to the bottom side of the cap (KP), and
    - the material (HM) is expanded by heating to form an acoustic seal after the carrier (TR), MEMS chip (MC) and cap (KP) have been assembled.
  8. Method according to the preceding claim, wherein a connecting material (VM) between the cap (KR) and carrier (TR) is solidified at a temperature which is below the temperature required for expansion of the heterogeneous material (HM).
  9. Method according to the preceding claim, wherein a conductive adhesive is used as connecting material (VM) between the cap (KP) and carrier (TR).
EP17804880.7A 2016-12-12 2017-11-24 Top-port mems microphone with reduced mechanical loads as well as a manufacturing process Active EP3552403B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016124057.5A DE102016124057A1 (en) 2016-12-12 2016-12-12 MEMS microphone with top sound opening and reduced mechanical stress and manufacturing process
PCT/EP2017/080348 WO2018108482A1 (en) 2016-12-12 2017-11-24 Mems microphone having a sound opening disposed at the top and reduced mechanical loads, and method for the production thereof

Publications (2)

Publication Number Publication Date
EP3552403A1 EP3552403A1 (en) 2019-10-16
EP3552403B1 true EP3552403B1 (en) 2023-04-26

Family

ID=60480306

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17804880.7A Active EP3552403B1 (en) 2016-12-12 2017-11-24 Top-port mems microphone with reduced mechanical loads as well as a manufacturing process

Country Status (3)

Country Link
EP (1) EP3552403B1 (en)
DE (1) DE102016124057A1 (en)
WO (1) WO2018108482A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3615972A (en) * 1967-04-28 1971-10-26 Dow Chemical Co Expansible thermoplastic polymer particles containing volatile fluid foaming agent and method of foaming the same
DE102011087963A1 (en) * 2010-12-14 2012-06-14 Robert Bosch Gmbh Microphone package, has housing cover connected with housing bottom by connection material that has low hardening temperature and/or requires short time for curing than another connection material connecting cover with microphone chip
DE102011080142A1 (en) * 2011-07-29 2013-01-31 Endress + Hauser Gmbh + Co. Kg Composite material, shaped article, electronic device with a shaped article, and method for the production of a shaped article
EP3329690A1 (en) * 2015-07-31 2018-06-06 Epcos AG Top port microphone and method for the production of same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004011148B3 (en) * 2004-03-08 2005-11-10 Infineon Technologies Ag Microphone esp. semiconductor capacitor microphone for use in mobile telephones and the like having space between chip and substrate in pressure communication with space between chip and cover
DE102006046292B9 (en) * 2006-09-29 2014-04-30 Epcos Ag Component with MEMS microphone and method of manufacture
DE102010026519B4 (en) * 2010-07-08 2016-03-10 Epcos Ag Case with MEMS microphone, electrical device with housing with MEMS microphone and method of manufacture
GB2538177B (en) * 2014-06-10 2017-09-13 Cirrus Logic Int Semiconductor Ltd Packaging for MEMS transducers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3615972A (en) * 1967-04-28 1971-10-26 Dow Chemical Co Expansible thermoplastic polymer particles containing volatile fluid foaming agent and method of foaming the same
DE102011087963A1 (en) * 2010-12-14 2012-06-14 Robert Bosch Gmbh Microphone package, has housing cover connected with housing bottom by connection material that has low hardening temperature and/or requires short time for curing than another connection material connecting cover with microphone chip
DE102011080142A1 (en) * 2011-07-29 2013-01-31 Endress + Hauser Gmbh + Co. Kg Composite material, shaped article, electronic device with a shaped article, and method for the production of a shaped article
EP3329690A1 (en) * 2015-07-31 2018-06-06 Epcos AG Top port microphone and method for the production of same

Also Published As

Publication number Publication date
WO2018108482A1 (en) 2018-06-21
DE102016124057A1 (en) 2018-06-14
EP3552403A1 (en) 2019-10-16

Similar Documents

Publication Publication Date Title
EP1050078B1 (en) Microsystem and method for the production thereof
DE10310617B4 (en) Electronic component with cavity and a method for producing the same
DE10228509B4 (en) Lotstruktur for electrical and / or mechanical contacting and device and method for their preparation
DE102011086764A1 (en) MEMS chip package and method of making a MEMS chip package
DE102006055576A1 (en) Method for manufacturing a stretchable circuit carrier and expandable circuit carrier
DE102011006341A1 (en) Method for manufacturing a wiring sub-assembly with embedded semiconductor chip
DE102011121899A1 (en) Shell structure and manufacturing method for a shell structure of an electronic device
DE102011003195B4 (en) Component and method for manufacturing a component
WO2005102910A1 (en) Encapsulated electrical component and production method
DE19522338B4 (en) Chip carrier assembly with a via
DE60225508T2 (en) PCB AND METHOD FOR THE PRODUCTION THEREOF
DE102014106503B4 (en) Method of making a microphone
DE102006036728A1 (en) Semiconductor chips contacting method for e.g. printed circuit board layer, involves applying conductive bumps on contact areas, where bumps penetrate one layer formed during connection of metal layer with surface of board layer
EP3329690B1 (en) Microphone with top-port and methode of manucaturing
EP3552403B1 (en) Top-port mems microphone with reduced mechanical loads as well as a manufacturing process
DE102013100339A1 (en) Electronic component and a method for producing an electronic component
DE102019130209A1 (en) Electronic device and method of making an electronic device
EP1786034B1 (en) Power semiconductor module
DE102019201492A1 (en) SENSOR FOR A PHYSICAL SIZE AND SEMICONDUCTOR DEVICE
DE102008017871B4 (en) Pressure sensor module and method for its production
DE102017106055B4 (en) Carrier substrate for stress-sensitive component and method of production
DE10246101A1 (en) Method for producing a housing for a chip with a micromechanical structure
DE102008043735A1 (en) Arrangement of at least two wafers with a bond connection and method for producing such an arrangement
WO2006111349A1 (en) Metal foam sandwich structures and method for shaping the same
EP0852774A1 (en) Chip module

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190412

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210316

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221125

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017014663

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1563701

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230706

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230828

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230826

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017014663

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231123

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426