EP3550238B1 - Method for liquefaction of gaseous methane by vaporisation of nitrogen, installation for the liquefaction of gaseous methane implementing the method - Google Patents

Method for liquefaction of gaseous methane by vaporisation of nitrogen, installation for the liquefaction of gaseous methane implementing the method Download PDF

Info

Publication number
EP3550238B1
EP3550238B1 EP19305446.7A EP19305446A EP3550238B1 EP 3550238 B1 EP3550238 B1 EP 3550238B1 EP 19305446 A EP19305446 A EP 19305446A EP 3550238 B1 EP3550238 B1 EP 3550238B1
Authority
EP
European Patent Office
Prior art keywords
temperature
flow
methane
gaseous
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19305446.7A
Other languages
German (de)
French (fr)
Other versions
EP3550238A1 (en
Inventor
Guénaël PRINCE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waga Energy SA
Original Assignee
Waga Energy SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waga Energy SA filed Critical Waga Energy SA
Priority to SI201930582T priority Critical patent/SI3550238T1/en
Priority to HRP20230756TT priority patent/HRP20230756T1/en
Publication of EP3550238A1 publication Critical patent/EP3550238A1/en
Application granted granted Critical
Publication of EP3550238B1 publication Critical patent/EP3550238B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

La présente invention a pour objet un procédé de liquéfaction de méthane gazeux par vaporisation d'azote. Elle se rapporte également à une installation de liquéfaction du menthane gazeux mettant en oeuvre le procédé.The subject of the present invention is a process for the liquefaction of gaseous methane by vaporization of nitrogen. It also relates to an installation for the liquefaction of gaseous menthane implementing the process.

Plus précisément, la présente invention concerne un procédé et une installation de liquéfaction d'un débit de méthane gazeux, contenant au moins 80% molaire de méthane issu d'une source de méthane, pour produire un débit de méthane liquide, par un cycle ouvert utilisant un débit d'azote liquide issu d'une source froide d'azote liquide.More specifically, the present invention relates to a process and an installation for the liquefaction of a flow of gaseous methane, containing at least 80% molar methane from a source of methane, to produce a flow of liquid methane, by an open cycle using a flow of liquid nitrogen from a cold source of liquid nitrogen.

La source de méthane peut être par exemple un réseau de transport de gaz naturel, ou un site de production de bio-méthane équipé de méthaniseurs, comme certaines stations d'épuration ou certains centres d'enfouissement de déchets.The source of methane can be, for example, a natural gas transport network, or a bio-methane production site equipped with methanizers, such as certain purification stations or certain waste landfill centres.

Le terme bio-méthane fait référence au méthane composant une fraction des gaz produits par un processus biologique de dégradation de la matière organique en milieu anaérobie.The term bio-methane refers to the methane composing a fraction of the gases produced by a biological process of degradation of organic matter in an anaerobic environment.

L'émergence de nombreux sites de production de méthane, ainsi que leur éloignement des réseaux de transport de gaz naturel, rendent nécessaire le développement de procédés de liquéfaction pour de petits débits de méthane gazeux, dont les coûts d'investissement soient faibles, et qui soient faciles à exploiter.The emergence of many methane production sites, as well as their remoteness from the natural gas transport networks, make it necessary to develop liquefaction processes for small gaseous methane flow rates, whose investment costs are low, and which are easy to operate.

La liquéfaction d'un débit de méthane en utilisant l'enthalpie de vaporisation d'un débit d'azote liquide, c'est-à-dire un procédé de liquéfaction de méthane gazeux par vaporisation d'azote est un procédé bien connu. Cependant, il implique la consommation continue d'azote liquide, lequel est stocké au sein d'une ou plusieurs citernes, ce qui limite la taille de ces installations à des débits de méthane de 10 tonnes par jour environ.The liquefaction of a flow of methane using the enthalpy of vaporization of a flow of liquid nitrogen, that is to say a method of liquefying gaseous methane by vaporization of nitrogen is a well-known method. However, it involves the continuous consumption of liquid nitrogen, which is stored in one or more tanks, which limits the size of these installations to methane flow rates of around 10 tonnes per day.

En effet, au-delà de cette valeur, il est nécessaire de recharger fréquemment les citernes ce qui élève les coûts opératoires de l'installation. Pour des débits de méthane à liquéfier supérieurs à 10 tonnes par jour, il existe des installations de l'art antérieur, dont les coûts d'investissement sont très élevés du fait de la présence de machines tournantes comme des pompes, compresseurs, ou turbines de détente qui participent à la circulation du fluide frigorigène.Indeed, beyond this value, it is necessary to frequently refill the tanks, which increases the operating costs of the installation. For flow rates of methane to be liquefied greater than 10 tons per day, there are installations of the prior art, the investment costs of which are very high due to the presence of rotating machines such as pumps, compressors, or expansion turbines which participate in the circulation of the Refrigerant.

Par conséquent, un premier problème que se propose de résoudre l'invention est celui de mettre au point un procédé et une installation de liquéfaction de méthane par vaporisation d'azote liquide, dont les coûts d'investissement soient faibles, et dont le fonctionnement soit très simple d'usage. En particulier, l'objectif est de mettre au point une installation qui soit dépourvue autant que possible de machines tournantes, avantageusement qui n'en contienne aucune.Consequently, a first problem which the invention proposes to solve is that of developing a process and an installation for the liquefaction of methane by vaporization of liquid nitrogen, the investment costs of which are low, and the operation of which is very easy to use. In particular, the objective is to develop an installation which is devoid as much as possible of rotating machines, advantageously which does not contain any.

Pour résoudre ces problèmes, le document US 6 598 423 B1 décrit un procédé de liquéfaction d'un débit de gaz par vaporisation d'azote liquide. Le débit de gaz circule à travers un unique échangeur à haute pression, dans lequel il est liquéfié au contact d'un débit d'azote liquide, qui se vaporise en récupérant les calories du débit de gaz. Ce procédé permet de produire du gaz liquéfié d'une part, et de remplir des bouteilles d'azote gazeux d'autre part.To solve these problems, the document US 6,598,423 B1 describes a process for the liquefaction of a gas flow by vaporization of liquid nitrogen. The gas flow circulates through a single high-pressure exchanger, in which it is liquefied on contact with a flow of liquid nitrogen, which vaporizes by recovering the calories from the gas flow. This process makes it possible to produce liquefied gas on the one hand, and to fill cylinders with gaseous nitrogen on the other.

Cependant, cette unité de liquéfaction d'un débit de méthane par vaporisation d'azote liquide présente plusieurs difficultés.However, this unit for liquefying a flow of methane by vaporization of liquid nitrogen presents several difficulties.

Ainsi, le débit de méthane arrivant de la source de méthane gazeux présente, en pratique, une pression supérieure à 1 bar absolu. Dans ces conditions, sa température de liquéfaction minimale est de 11 1,5K. Or l'azote liquide tel que vendu par les fournisseurs est disponible à une unique température de 77K, qui est inférieure à la température du point triple du méthane, qui est de 90,7K.Thus, the flow of methane arriving from the gaseous methane source has, in practice, a pressure greater than 1 bar absolute. Under these conditions, its minimum liquefaction temperature is 11 1.5K. However, liquid nitrogen as sold by suppliers is available at a single temperature of 77K, which is lower than the temperature of the triple point of methane, which is 90.7K.

En condensant au sein d'un échangeur ledit débit de méthane à une température supérieure à 111,5K par un débit d'azote liquide ayant une température de 77K provenant directement de la source d'azote liquide, le méthane risque d'être refroidi en dessous de la température de son point triple. De ce fait, il y aurait production de méthane solide au sein de l'échangeur, obstruant les canalisations de l'échangeur et provoquant ainsi un arrêt de l'unité de liquéfaction par bouchage des conduites.By condensing, within an exchanger, said flow of methane at a temperature greater than 111.5K with a flow of liquid nitrogen having a temperature of 77K coming directly from the source of liquid nitrogen, the methane risks being cooled by below its triple point temperature. As a result, there would be production of solid methane within the exchanger, clogging the pipes of the exchanger and thus causing a stoppage of the liquefaction unit by clogging of the pipes.

D'autre part, dans ces conditions, la différence de température entre les deux débits est d'au moins 34,5K, valeur d'autant plus élevée que la pression du débit de méthane est élevée. Cet écart thermique important induit des contraintes mécaniques fortes sur les pièces de l'échangeur, avec un risque de fragilisation de celui-ci et de casse.On the other hand, under these conditions, the temperature difference between the two flow rates is at least 34.5 K, a value which is all the higher as the pressure of the methane flow rate is high. This significant thermal difference induces strong mechanical stresses on the parts of the exchanger, with a risk of embrittlement of the latter and breakage.

Par conséquent, un second problème que se propose de résoudre l'invention est celui de mettre au point un procédé et une installation de liquéfaction de méthane par vaporisation d'azote liquide, qui n'entraine pas l'obstruction des canalisations et dont la différence de température entre les deux bornes d'entrée et de sortie des échangeurs soit réduite de manière à limiter les contraintes mécaniques.Consequently, a second problem which the invention proposes to solve is that of developing a process and an installation for the liquefaction of methane by vaporization of liquid nitrogen, which does not lead to the obstruction of the pipes and whose difference temperature between the two inlet and outlet terminals of the exchangers is reduced so as to limit the mechanical stresses.

Pour résoudre ce problème, le document EP 1 030 135 A1 décrit un procédé permettant de refroidir un débit de fluide chaud. Le débit de fluide chaud perd ses calories au sein d'un échangeur, lesquelles sont transférées à un débit de fluide intermédiaire. Le débit de fluide intermédiaire forme une boucle fermée, et est refroidi par passage dans un échangeur, dans lequel, en perdant les calories acquises au contact du débit de fluide chaud, le fluide intermédiaire évapore un débit d'azote liquide. La nature du débit de fluide intermédiaire est choisie pour que sa température de vaporisation soit inférieure à la température de refroidissement ou de liquéfaction du débit de fluide chaud à refroidir, et pour que sa température de condensation soit supérieure à la température d'évaporation de l'azote liquide. De ce fait, en utilisant un fluide intermédiaire approprié, ce procédé évite ainsi le gel du débit de fluide chaud, ce dernier n'étant jamais en contact direct avec le débit d'azote liquide.To solve this problem, the document EP 1 030 135 A1 describes a method for cooling a flow of hot fluid. The hot fluid flow loses its calories within an exchanger, which are transferred to an intermediate fluid flow. The intermediate fluid flow forms a closed loop, and is cooled by passing through an exchanger, in which, by losing the calories acquired in contact with the hot fluid flow, the intermediate fluid evaporates a liquid nitrogen flow. The nature of the intermediate fluid flow is chosen so that its vaporization temperature is lower than the cooling or liquefaction temperature of the hot fluid flow to be cooled, and so that its condensation temperature is higher than the evaporation temperature of the 'liquid nitrogen. Therefore, by using an appropriate intermediate fluid, this method thus avoids freezing of the flow of hot fluid, the latter never being in direct contact with the flow of liquid nitrogen.

Néanmoins, ce procédé ne permet pas de résoudre la problématique posée par l'écart de température élevé aux bornes des échangeurs de chaleur. En outre, l'installation requiert la présence d'une pompe permettant de faire circuler le débit de fluide chaud.Nevertheless, this method does not make it possible to solve the problem posed by the high temperature difference at the terminals of the heat exchangers. In addition, the installation requires the presence of a pump making it possible to circulate the flow of hot fluid.

Dans le document EP 3 026 379 A1 , on fait passer le débit de méthane gazeux dans un pré-refroidisseur jusqu'à atteindre son point de rosée, puis dans un échangeur dans lequel il sera liquéfié. L'échangeur et le pré-refroidisseur sont alimentés par un même circuit d'azote gazeux en boucle ouverte, permettant de refroidir puis de liquéfier le débit de méthane gazeux par deux échanges gaz / gaz. Ce procédé propose donc une solution pour éviter la solidification du débit à liquéfier, via le contrôle de la température de condensation dudit débit par ajout d'azote liquide. Il présente toutefois l'inconvénient de nécessiter l'emploi d'au moins une machine tournante, en l'espèce une pompe cryogénique ou un compresseur cryogénique. Ces équipements sont très onéreux, et ont des intervalles de maintenance réduits. Ainsi, ils ne répondent ni à l'impératif de simplicité d'opération, ni à celui d'avoir de faibles coûts d'investissement et d'exploitation de l'installation. D'autre part, l'énergie transmise à la machine tournante est intégralement transférée au débit d'azote gazeux, ce qui a pour effet de diminuer l'efficacité du procédé, car une consommation supplémentaire de froid est requise pour équilibrer cet apport d'énergie, en diminuant la température dudit débit. Enfin, l'utilisation d'azote gazeux comme fluide frigorigène pour la liquéfaction du fluide implique une surface d'échange particulièrement élevée au sein des éléments d'échange thermique que sont le pré-refroidisseur, le refroidisseur et l'échangeur, car les coefficients d'échange en phase gazeuse sont plus faibles que les coefficients d'échange pour des fluides en phase liquide ou diphasiques. Cela implique donc l'utilisation d'échangeurs de grandes dimensions, alourdissant le coût total de l'installation.In the document EP 3 026 379 A1 , the gaseous methane flow is passed through a pre-cooler until it reaches its dew point, then through an exchanger in which it will be liquefied. The exchanger and the pre-cooler are supplied by the same open-loop gaseous nitrogen circuit, allowing the gaseous methane flow to be cooled and then liquefied by two gas/gas exchanges. This process therefore offers a solution to avoid the solidification of the stream to be liquefied, by controlling the condensation temperature of said stream by adding liquid nitrogen. However, it has the disadvantage of requiring the use of at least one rotating machine, in this case a cryogenic pump or a cryogenic compressor. This equipment is very expensive, and has reduced maintenance intervals. Thus, they meet neither the requirement of simplicity of operation, nor that of having low investment and operating costs for the installation. On the other hand, the energy transmitted to the rotating machine is entirely transferred to the flow of gaseous nitrogen, which has the effect of reducing the efficiency of the process, because an additional consumption of cold is required to balance this contribution of energy, by decreasing the temperature of said flow. Finally, the use of gaseous nitrogen as refrigerant for the liquefaction of the fluid implies a particularly high exchange surface within the heat exchange elements that are the pre-cooler, the cooler and the exchanger, because the coefficients exchange coefficients in the gaseous phase are lower than the exchange coefficients for fluids in the liquid phase or two-phase. This therefore implies the use of large exchangers, increasing the total cost of the installation.

Un procédé de liquéfaction de méthane selon le préambule de la revendication 1 est connu du document DE-A-10 2010 044869 .A method for liquefying methane according to the preamble of claim 1 is known from document DE-A-10 2010 044869 .

Le but de la présente invention est de pallier aux inconvénients précités.The object of the present invention is to overcome the aforementioned drawbacks.

Pour ce faire, le déposant a mis au point un procédé de liquéfaction d'un débit gazeux ne nécessitant pas de machine tournante, et comportant deux échangeurs successifs, combinés à un ballon séparateur de phase, minimisant les écarts de température aux bornes de ces échangeurs, réduisant ainsi le risque de casse mécanique ; et d'autre part évitant le risque de solidification du débit gazeux à liquéfier, en assurant une température de l'azote circulant dans les échangeurs toujours supérieure à la température du point triple du débit gazeux à liquéfier.To do this, the applicant has developed a process for liquefying a gas flow that does not require a rotating machine, and comprising two successive exchangers, combined with a phase separator balloon, minimizing the temperature differences at the terminals of these exchangers. , thus reducing the risk of mechanical breakage; and on the other hand avoiding the risk of solidification of the gas flow to be liquefied, by ensuring that the temperature of the nitrogen circulating in the exchangers is always higher than the temperature of the triple point of the gas flow to be liquefied.

Plus précisément, l'invention a pour objet un procédé de liquéfaction d'un débit gazeux, notamment un débit de méthane gazeux, dans lequel :

  • on fournit une source de méthane gazeux, produisant un débit de méthane gazeux à une température T1 et à une pression P1,
  • on fournit une source d'azote liquide, produisant un débit d'azote liquide, de pression P2 et dont la température T2 est inférieure à la température du point triple du méthane,
  • au sein d'un premier échangeur, on refroidit, à contre-courant, le débit de méthane gazeux de température T1 jusqu'à une température T3 correspondant à celle de son point de rosée par échange de chaleur avec un débit d'azote gazeux de température T4 provenant d'un ballon séparateur de phase,
  • on transfère le débit de méthane gazeux de température T3 dans un second échangeur à contre-courant,
  • on transfère le débit d'azote liquide de température T2 depuis la source d'azote liquide jusqu'au ballon séparateur de phase,
  • on applique dans le ballon séparateur de phases une température T4 supérieure à la température du point triple du méthane et une pression P4 de telle sorte que soient présentes au sein dudit ballon une phase liquide de température T4 produisant un débit d'azote liquide, et une phase vapeur de température T4 produisant un débit d'azote gazeux,
  • dans le second échangeur, on liquéfie le débit de méthane gazeux de température T3 en produisant un débit de méthane liquide de température T5, par vaporisation du débit d'azote liquide de température T4 en produisant un débit d'azote vaporisé de température T4,
  • on transfère le débit d'azote vaporisé de température T4 dans le ballon séparateur.
More specifically, the subject of the invention is a process for the liquefaction of a gaseous flow, in particular a gaseous methane flow, in which:
  • a source of gaseous methane is provided, producing a flow of gaseous methane at a temperature T1 and at a pressure P1,
  • a source of liquid nitrogen is supplied, producing a flow of liquid nitrogen, of pressure P2 and whose temperature T2 is lower than the temperature of the triple point of methane,
  • within a first exchanger, the flow of methane gas at temperature T1 is cooled, counter-current, to a temperature T3 corresponding to that of its dew point by heat exchange with a flow of nitrogen gas of temperature T4 from a phase separator flask,
  • the flow of gaseous methane at temperature T3 is transferred into a second counter-current exchanger,
  • the flow of liquid nitrogen at temperature T2 is transferred from the source of liquid nitrogen to the phase separator drum,
  • a temperature T4 higher than the temperature of the triple point of methane and a pressure P4 are applied in the phase separator flask such that a liquid phase of temperature T4 is present within said flask producing a flow of liquid nitrogen, and a vapor phase at temperature T4 producing a flow of gaseous nitrogen,
  • in the second exchanger, the flow of gaseous methane at temperature T3 is liquefied by producing a flow of liquid methane at temperature T5, by vaporization of the flow of liquid nitrogen at temperature T4 by producing a flow of vaporized nitrogen at temperature T4,
  • the flow of vaporized nitrogen at temperature T4 is transferred to the separator flask.

Selon l'invention, on transfère puis on stocke le débit de méthane liquide de température T5 dans un réservoir de stockage, contenant une phase de méthane liquide et une phase de méthane gazeux ; ladite phase de méthane gazeux s'échappant dudit réservoir de stockage en formant un débit de fuite de méthane.According to the invention, the flow of liquid methane at temperature T5 is transferred and then stored in a storage tank, containing a phase of liquid methane and a phase of gaseous methane; said gaseous methane phase escaping from said storage tank forming a methane leak flow.

Dans un mode de réalisation préféré :

  • la pression P1 est d'au moins 1 bar absolu, avantageusement égale à 1,5 bar absolu,
  • la température T1 est comprise entre 270K et 320K, avantageusement égale à 300K,
  • la pression P2 est d'au moins 6 bar absolu, avantageusement égale à 10 bar absolu,
  • la température T2 est comprise entre 75K et 85K, avantageusement égale à 77K,
  • la température T3 est comprise entre 110K et 130K, avantageusement égale à 116.6K,
  • la pression P4 est comprise entre 4 et 6 bars absolus, avantageusement égale à 5 bar absolu,
  • la température T4 est comprise entre une valeur strictement supérieure à 90,7 K et 100K, avantageusement égale à 94K,
  • la température T5 est comprise entre 110K et 120K, avantageusement égale à 115K.
In a preferred embodiment:
  • the pressure P1 is at least 1 bar absolute, advantageously equal to 1.5 bar absolute,
  • the temperature T1 is between 270K and 320K, advantageously equal to 300K,
  • the pressure P2 is at least 6 bar absolute, advantageously equal to 10 bar absolute,
  • the temperature T2 is between 75K and 85K, advantageously equal to 77K,
  • the temperature T3 is between 110K and 130K, advantageously equal to 116.6K,
  • the pressure P4 is between 4 and 6 bar absolute, advantageously equal to 5 bar absolute,
  • the temperature T4 is between a value strictly greater than 90.7 K and 100K, advantageously equal to 94K,
  • the temperature T5 is between 110K and 120K, advantageously equal to 115K.

Le Demandeur a mis en évidence que l'utilisation d'un ballon séparateur de phases permettait avantageusement d'augmenter la température du débit d'azote liquide, de T2 à T4, permettant d'éviter le gel du débit de méthane liquide et le bouchage du second échangeur et d'éviter des écarts thermiques importants aux bornes des premier et deuxième échangeurs.The Applicant has demonstrated that the use of a phase separator drum advantageously made it possible to increase the temperature of the liquid nitrogen flow, from T2 to T4, making it possible to avoid freezing of the liquid methane flow and clogging of the second exchanger and to avoid significant thermal differences at the terminals of the first and second exchangers.

En effet, le procédé n'implique jamais d'échange direct entre le débit d'azote liquide à la température T2 et le débit de méthane gazeux. De ce fait, les premier et second échangeurs sont sujets à des gradients thermiques moins importants, ce qui a pour effet de limiter les contraintes mécaniques auxquelles ils sont exposés, et d'augmenter la durée de vie de ces éléments.Indeed, the method never involves direct exchange between the flow of liquid nitrogen at the temperature T2 and the flow of gaseous methane. Therefore, the first and second exchangers are subject to less significant thermal gradients, which has the effect of limiting the mechanical stresses to which they are exposed, and of increasing the life of these elements.

Par ailleurs, le ballon séparateur de phases permet également de créer une circulation de l'azote à travers les différents organes, du type thermosiphon, évitant ainsi l'utilisation de machine tournante.Furthermore, the phase separator flask also makes it possible to create a circulation of nitrogen through the various members, of the thermosiphon type, thus avoiding the use of a rotating machine.

Comme dit précédemment, la pression P4 et la température T4 présentes dans le ballon séparateur de phases permettent la coexistence d'azote au sein de ce ballon sous la forme de deux phases, la phase liquide et la phase vapeur, ledit ballon permettant de séparer par gravité ces deux phases. La phase liquide présente dans le ballon séparateur de phases est à l'origine du débit d'azote liquide de température T4. Ce débit sort du ballon séparateur par gravité.As said previously, the pressure P4 and the temperature T4 present in the phase separator flask allow the coexistence of nitrogen within this flask in the form of two phases, the liquid phase and the vapor phase, said flask making it possible to separate by seriousness of these two phases. The liquid phase present in the phase separator flask is at the origin of the flow of liquid nitrogen at temperature T4. This flow exits the separator balloon by gravity.

Par contact avec le débit de méthane gazeux de température T3, le débit d'azote liquide de température T4 reçoit des calories du débit de méthane gazeux, produisant une vaporisation partielle de ce débit d'azote liquide pour former le débit d'azote vaporisé. En changeant partiellement d'état, le débit d'azote vaporisé conserve la température du débit d'azote de température T4.By contact with the flow of gaseous methane at temperature T3, the flow of liquid nitrogen at temperature T4 receives calories from the flow of gaseous methane, producing a partial vaporization of this flow of liquid nitrogen to form the flow of vaporized nitrogen. By partially changing state, the flow of vaporized nitrogen maintains the temperature of the flow of nitrogen at temperature T4.

Le second échangeur et le ballon séparateur de phases étant en équilibre de niveau, le débit d'azote vaporisé va naturellement rejoindre le ballon séparateur de phases, et ainsi créer une circulation de type thermosiphon permettant le brassage du volume d'azote présent dans le ballon séparateur de phases. Cela assure un mélange satisfaisant du débit d'azote liquide de température T2 introduit dans le ballon, avec l'azote sous forme liquide et vapeur déjà présent dans ledit ballon, à la température T4.The second exchanger and the phase separator tank being in level balance, the flow of vaporized nitrogen will naturally join the phase separator tank, and thus create a thermosiphon-type circulation allowing the mixing of the volume of nitrogen present in the tank. phase separator. This ensures satisfactory mixing of the flow of liquid nitrogen at temperature T2 introduced into the balloon, with the nitrogen in liquid and vapor form already present in said balloon, at temperature T4.

L'azote de température T2 nouvellement introduit dans le ballon se met instantanément à la température T4 du fait du mélange, et de l'apport constant de chaleur par le débit d'azote vaporisé provenant du second échangeur. Il n'y a donc plus de risque d'envoyer de l'azote liquide trop froid dans le second échangeur, écartant ainsi le risque de gel du débit gazeux à liquéfier.The nitrogen of temperature T2 newly introduced into the ball instantaneously goes to the temperature T4 due to the mixing, and the constant supply of heat by the flow of vaporized nitrogen coming from the second exchanger. There is therefore no longer any risk of sending too cold liquid nitrogen into the second exchanger, thus eliminating the risk of freezing of the gas flow to be liquefied.

Enfin, la phase vapeur contenue dans le ballon séparateur de phase, alimentée par la fraction d'azote gazeux présente dans le débit d'azote vaporisé, est vidangée en continu sous la forme d'un débit d'azote gazeux de température T4, afin de maintenir une pression P4 constante dans ledit ballon. Ce débit d'azote gazeux est ensuite dirigé dans le premier échangeur, où il capte des calories du débit de méthane gazeux de température T1, afin que ce dernier atteigne son point de rosée de température T3.Finally, the vapor phase contained in the phase separator drum, fed by the fraction of gaseous nitrogen present in the flow of vaporized nitrogen, is continuously drained in the form of a flow of gaseous nitrogen at temperature T4, in order to to maintain a constant pressure P4 in said balloon. This gaseous nitrogen flow is then directed into the first exchanger, where it captures calories from the gaseous methane flow of temperature T1, so that the latter reaches its dew point of temperature T3.

Dans un mode de réalisation particulier, on contrôle la température T4 en régulant la pression P4 régnant au sein du ballon séparateur de phases. En pratique, on utilise ensemble un régulateur de type PIC et une vanne limitant le débit d'azote gazeux.In a particular embodiment, the temperature T4 is controlled by regulating the pressure P4 prevailing within the phase separator flask. In practice, a PIC-type regulator and a valve limiting the gaseous nitrogen flow are used together.

Selon une autre caractéristique pour maintenir l'équilibre de niveau entre le second échangeur et le ballon séparateur de phase, on maintient le volume de la phase d'azote liquide de température T4 contenue dans le ballon séparateur de phases en régulant le débit d'azote liquide de température T2 et de pression P2 entrant dans ledit ballon.According to another feature to maintain the level balance between the second exchanger and the phase separator drum, the volume of the liquid nitrogen phase at temperature T4 contained in the phase separator drum is maintained by regulating the nitrogen flow liquid of temperature T2 and pressure P2 entering said balloon.

Selon l'invention, on transfère puis on stocke le débit de méthane liquide de température T5 dans un réservoir de stockage, contenant une phase de méthane liquide et une phase de méthane gazeux ; ladite phase de méthane gazeux s'échappant dudit réservoir de stockage en formant un débit de fuite de méthane.According to the invention, the flow of liquid methane at temperature T5 is transferred and then stored in a storage tank, containing a phase of liquid methane and a phase of gaseous methane; said gaseous methane phase escaping from said storage tank forming a methane leak flow.

Toujours selon l'invention, le débit de fuite de méthane de température T5 est dirigé dans le premier échangeur, à contre-courant du débit de méthane gazeux de température T1, et à co-courant du débit d'azote gazeux de température T4, contribuant ainsi à refroidir ledit débit de méthane gazeux.Still according to the invention, the leak rate of methane at temperature T5 is directed into the first exchanger, countercurrent to the flow rate of gaseous methane at temperature T1, and co-current to the flow rate of gaseous nitrogen at temperature T4, thus helping to cool said flow of methane gas.

Dans l'hypothèse où le méthane à liquéfier n'est pas suffisamment pur, on réduit la teneur en impuretés du débit de méthane gazeux entre la source de méthane gazeux et le premier échangeur.In the event that the methane to be liquefied is not sufficiently pure, the content of impurities in the flow of gaseous methane between the source of gaseous methane and the first exchanger is reduced.

Pour ce faire, on purifie le méthane gazeux par passage dudit méthane dans au moins un adsorbeur, l'adsorbeur étant de préférence régénéré au moyen du débit d'azote gazeux provenant du premier échangeur.To do this, the gaseous methane is purified by passing said methane through at least one adsorber, the adsorber preferably being regenerated by means of the gaseous nitrogen flow coming from the first exchanger.

L'invention a également pour objet une installation selon la revendication 6 mettant en oeuvre le procédé ci-avant décrit.The invention also relates to an installation according to claim 6 implementing the method described above.

L'invention et les avantages qui en découlent ressortiront bien de l'exemple suivant, à appui de la figure annexée.The invention and the resulting advantages will clearly emerge from the following example, based on the appended figure.

La figure 1 est une représentation schématique d'une installation selon l'invention.There figure 1 is a schematic representation of an installation according to the invention.

On dispose d'un débit de méthane gazeux (1), provenant d'une source de méthane gazeux, à une pression P1 égale à 1,5 bar absolu, et à une température T1 égale à 300K.There is a flow of gaseous methane (1), coming from a source of gaseous methane, at a pressure P1 equal to 1.5 bar absolute, and at a temperature T1 equal to 300K.

On dispose également d'une source d'azote liquide stockée dans un réservoir (22) fournissant un débit d'azote liquide (10, 12) de pression P2 égale à 10 bars absolu, et de température T2 égale à 77K.There is also a source of liquid nitrogen stored in a reservoir (22) supplying a flow of liquid nitrogen (10, 12) with a pressure P2 equal to 10 bars absolute, and a temperature T2 equal to 77K.

Le débit de méthane gazeux (1) de température T1 est introduit dans un premier échangeur (2), où il est refroidi à contre-courant d'un débit d'azote gazeux (16) de température T4, jusqu'à atteindre une température T3, correspondant à la température de son point de rosée.The flow of gaseous methane (1) at temperature T1 is introduced into a first exchanger (2), where it is cooled against the current of a flow of gaseous nitrogen (16) at temperature T4, until it reaches a temperature T3, corresponding to its dew point temperature.

Dans cet exemple, la température T3 est égale à 116.6K, et la température T4 est égale à 94K, correspondant à une pression P4 de 5 bar absolu.In this example, the temperature T3 is equal to 116.6K, and the temperature T4 is equal to 94K, corresponding to a pressure P4 of 5 bar absolute.

Le débit de méthane gazeux (3) sort de ce premier échangeur (2) à sa température de rosée T3, et est dirigé dans un second échangeur (4). Dans ce second échangeur (4), on liquéfie majoritairement le débit de méthane gazeux (3) de température T3 en produisant un débit de méthane liquide (5) de température T5, par vaporisation d'un débit d'azote liquide (14) de température T4 provenant d'un ballon séparateur (13) en produisant un débit d'azote vaporisé (15) de température T4.The flow of gaseous methane (3) leaves this first exchanger (2) at its dew temperature T3, and is directed into a second exchanger (4). In this second exchanger (4), the flow of gaseous methane (3) of temperature T3 is mainly liquefied by producing a flow of liquid methane (5) of temperature T5, by vaporization of a flow of liquid nitrogen (14) of temperature T4 coming from a separating drum (13) by producing a flow of vaporized nitrogen (15) of temperature T4.

Ce débit de méthane liquide (5) est ensuite dirigé et introduit dans le réservoir de stockage (6). Les évaporations de ce réservoir de stockage (6), autrement appelées « Boil Off Gas », ainsi que la fraction gazeuse résiduelle présente dans le débit de méthane liquide (5), s'échappent du réservoir de stockage (6) en formant un débit de fuite de méthane (8).This flow of liquid methane (5) is then directed and introduced into the storage tank (6). The evaporations of this storage tank (6), otherwise called "Boil Off Gas”, as well as the residual gaseous fraction present in the flow of liquid methane (5), escape from the storage tank (6) forming a leak flow of methane (8).

Ce débit de fuite de méthane (8) est dirigé et introduit à contre-courant dans l'échangeur (2), afin de récupérer l'enthalpie froide de ce fluide pour refroidir le débit de méthane gazeux (3), concomitamment avec le débit d'azote gazeux (16).This methane leak flow (8) is directed and introduced against the current into the exchanger (2), in order to recover the cold enthalpy of this fluid to cool the gaseous methane flow (3), concomitantly with the flow nitrogen gas (16).

La température T5 est avantageusement de 115K.The temperature T5 is advantageously 115K.

Le débit d'azote liquide (10, 12) de température T2 et de pression P2 issu de la source d'azote liquide est introduit dans le ballon séparateur de phase (13) au sein duquel règne la température T4 et la pression P4. La température T4 dépend directement de la pression P4. Ces conditions de pression et de température induisent la présence de deux phases au sein dudit ballon séparateur (13) : une phase liquide produisant le débit d'azote liquide (14) de température T4, et une phase vapeur produisant le débit d'azote gazeux (16) de température T4.The flow of liquid nitrogen (10, 12) of temperature T2 and pressure P2 from the source of liquid nitrogen is introduced into the phase separator drum (13) within which the temperature T4 and the pressure P4 prevail. The temperature T4 directly depends on the pressure P4. These pressure and temperature conditions induce the presence of two phases within said separating drum (13): a liquid phase producing the flow of liquid nitrogen (14) at temperature T4, and a vapor phase producing the flow of gaseous nitrogen (16) temperature T4.

Le volume de la phase liquide du ballon séparateur (13) est maintenu constant en agissant sur une vanne (11) limitant le débit d'azote liquide (10) pour former le débit d'azote liquide (12), selon la consigne envoyée par un régulateur de niveau LIC (20) installé sur ledit ballon séparateur (13).The volume of the liquid phase of the separator drum (13) is kept constant by acting on a valve (11) limiting the flow of liquid nitrogen (10) to form the flow of liquid nitrogen (12), according to the instruction sent by an LIC level regulator (20) installed on said separator tank (13).

Le débit d'azote liquide (12) de température T2 se mélange dans le ballon séparateur (13) avec le débit d'azote vaporisé (15), et par bilan enthalpique, la température de mélange obtenue est de 94K.The flow of liquid nitrogen (12) of temperature T2 mixes in the separating drum (13) with the flow of vaporized nitrogen (15), and by enthalpy balance, the mixing temperature obtained is 94K.

Le débit d'azote liquide (14) de température T4 sort gravitairement du ballon séparateur (13) et est introduit dans le second échangeur (4), dans lequel il absorbe de la chaleur du débit de méthane gazeux de température T3.The flow of liquid nitrogen (14) at temperature T4 leaves the separator tank (13) by gravity and is introduced into the second exchanger (4), in which it absorbs heat from the flow of gaseous methane at temperature T3.

Ce faisant, il se vaporise partiellement et perd de la densité en formant le débit d'azote vaporisé (15), composé d'azote liquide et d'azote partiellement vaporisé, à la même température T4, ce qui lui permet de s'échapper de l'échangeur. Le débit d'azote vaporisé (15) est ensuite introduit dans le ballon séparateur (13). La fraction d'azote gazeux contenue dans le débit d'azote vaporisé (15) alimente la phase vapeur contenue dans le ballon séparateur (13) tout en gardant sa température T4.In doing so, it partially vaporizes and loses density forming the vaporized nitrogen flow (15), composed of liquid nitrogen and partially vaporized nitrogen, at the same temperature T4, which allows it to escape of the exchanger. The flow of vaporized nitrogen (15) is then introduced into the separator drum (13). The fraction of nitrogen gas contained in the flow of vaporized nitrogen (15) feeds the vapor phase contained in the separator drum (13) while maintaining its temperature T4.

Afin de maintenir une pression P4 constante dans le ballon séparateur (13), le débit d'azote gazeux (16) de température T4 est évacué du ballon séparateur (13), pour être introduit dans l'échangeur (2), où il échangera de la chaleur sensible avec le débit de méthane gazeux (1).In order to maintain a constant pressure P4 in the separator drum (13), the gaseous nitrogen flow (16) of temperature T4 is evacuated from the separator drum (13), to be introduced into the exchanger (2), where it will exchange sensible heat with the flow of methane gas (1).

Le débit de méthane gazeux (17) sortant de l'échangeur (2) est utilisé pour réguler la pression au sein du ballon séparateur (13) au moyen d'un régulateur de pression PIC (21) agissant sur une vanne (18) placée sur la conduite dans laquelle circule ledit débit de méthane gazeux (17).The gaseous methane flow (17) leaving the exchanger (2) is used to regulate the pressure within the separator tank (13) by means of a PIC pressure regulator (21) acting on a valve (18) placed on the pipe in which said flow of gaseous methane (17) circulates.

L'invention et les avantages qui en découlent ressortent bien de la description qui précède. On note en particulier l'absence de machines tournantes qui fait de l'installation une installation à coût réduit. En outre, la présence de deux échangeurs successifs, combinés à un ballon séparateur de phase, permet de minimiser les écarts de température aux bornes de ces échangeurs, réduisant ainsi le risque de casse mécanique. D'autre part, il n'y a plus de risque de solidification du débit gazeux à liquéfier, du fait qu'on assure une température de l'azote circulant dans les échangeurs toujours supérieure à la température du point triple du débit gazeux à liquéfier.The invention and the advantages resulting therefrom clearly emerge from the foregoing description. We note in particular the absence of rotating machines which makes the installation a low-cost installation. In addition, the presence of two successive exchangers, combined with a phase separator tank, makes it possible to minimize the temperature differences at the terminals of these exchangers, thus reducing the risk of mechanical breakage. On the other hand, there is no longer any risk of solidification of the gas flow to be liquefied, because the temperature of the nitrogen circulating in the exchangers is always higher than the temperature of the triple point of the gas flow to be liquefied. .

Claims (6)

  1. A method for liquefying gaseous methane, in which:
    - a source of gaseous methane is provided, producing a flow of gaseous methane 5 at a temperature T1 and at a pressure P1,
    - a source of liquid nitrogen is provided, producing a flow of liquid nitrogen at a pressure P2 and at a temperature T2 which is lower than the temperature of the triple point of methane,
    - in a first exchanger, the flow of gaseous methane 10 at temperature T1 is cooled, as a counter-current, to a temperature T3 corresponding to that of its dew point by the exchange of heat with a flow of gaseous nitrogen at temperature T4 originating from a phase separator drum,
    - the flow of gaseous methane at temperature T3 is transferred into a second counter-current exchanger,
    - the flow of liquid nitrogen at temperature T2 is transferred from the source of liquid nitrogen to the phase separator drum,
    - a temperature T4 which is higher than the temperature of the triple point of methane and a pressure P4 are applied in the phase separator drum in such a manner that a liquid phase at temperature T4 producing a flow of liquid nitrogen and a vapour phase at temperature T4 producing a flow of gaseous nitrogen are present inside said drum,
    - in the second exchanger, the flow of gaseous methane at temperature T3 is liquefied, thereby producing a flow of liquid methane at temperature T5 by vaporization of the flow of liquid nitrogen at temperature T4, thereby producing a flow of vaporized nitrogen at temperature T4,
    - the flow of vaporized nitrogen at temperature T4 is transferred into the separator drum,
    - the flow of liquid methane at temperature T5 is transferred to and then stored in a storage tank containing a liquid methane phase and a gaseous methane phase; said gaseous methane phase escaping from said storage tank, thereby forming a methane leakage flow, characterized in that
    - the methane leakage flow at temperature T5 is directed into the first exchanger as a counter-current to the flow of gaseous methane at temperature T1, and as a co-current with the flow of gaseous nitrogen at temperature T4, thereby contributing to cooling said flow of gaseous methane.
  2. The method as claimed in claim 1, characterized in that the temperature T4 is maintained inside the phase separator drum by regulating the pressure P4 inside said drum.
  3. The method as claimed in claim 1 or claim 2, characterized in that the volume of the liquid nitrogen phase at temperature T4 is maintained inside the phase separator drum by regulating the flow of liquid nitrogen at temperature T2 and pressure P2 entering said drum.
  4. The method as claimed in one of claims 1 to 3, characterized in that the impurities content of the flow of gaseous methane between the source of gaseous methane and the first exchanger is reduced.
  5. The method as claimed in one of claims 1 to 4, characterized in that:
    - the pressure P1 is at least 1 bar absolute, advantageously equal to 1.5 bar absolute,
    - the temperature T1 is in the range 270K to 320K, advantageously equal to 300K,
    - the pressure P2 is at least 6 bar absolute, advantageously equal to 10 bar absolute,
    - the temperature T2 is in the range 75K to 85K, advantageously equal to 77K,
    - the temperature T3 is in the range 110K to 130K, advantageously equal to 116.6K,
    - the pressure P4 is in the range 4 to 6 bar absolute, advantageously equal to 5 bar absolute,
    - the temperature T4 is in the range from a value strictly greater than 90.7K to 100K, advantageously equal to 94K,
    - the temperature T5 is in the range 110K to 120K, advantageously equal to 115K.
  6. A facility implementing the method as claimed in claims 1 to 5 for the production of liquid methane and comprising:
    - a source of gaseous methane at temperature T1 and pressure P1;
    - a source of liquid nitrogen (22) at a temperature T2 and pressure P2;
    - a phase separator drum (13) connected to the source of liquid nitrogen (22) at temperature T2 and pressure P2;
    - a storage tank (6) connected to the liquid methane outlet of a second exchanger (4) and containing a liquid methane phase and a gaseous methane phase; said gaseous methane phase escaping from said storage tank, thereby forming a methane leakage flow;
    - a first exchanger (2) in which the flow of gaseous methane (1) at temperature T1 and at pressure P1 circulate as a counter-current to a flow of gaseous nitrogen (16) at temperature T4 originating from the separator drum (13) and as a counter-current to the methane leakage flow at temperature T5;
    - the second counter-current exchanger (4) into which the flow of gaseous methane (3) enters at temperature T3 and into which the flow of liquid nitrogen (14) at temperature T4 originating from the separator drum (13) enters, and from which the flow of liquid methane (5) leaves at temperature T5 and the flow of vaporized nitrogen (15) leaves at temperature T4;
    - a valve (18) positioned downstream of the first exchanger (2) in the direction of circulation of the flow of gaseous nitrogen (16, 17) in a manner such as to regulate the pressure P4 inside the phase separator drum (13);
    - a valve (11) positioned downstream of the source of liquid nitrogen (22) in the direction of circulation of the flow of liquid nitrogen (10, 12) at temperature T2, in a manner such as to regulate the volume of the liquid phase inside the phase separator drum (13).
EP19305446.7A 2018-04-05 2019-04-05 Method for liquefaction of gaseous methane by vaporisation of nitrogen, installation for the liquefaction of gaseous methane implementing the method Active EP3550238B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI201930582T SI3550238T1 (en) 2018-04-05 2019-04-05 Method for liquefaction of gaseous methane by vaporisation of nitrogen, installation for the liquefaction of gaseous methane implementing the method
HRP20230756TT HRP20230756T1 (en) 2018-04-05 2019-04-05 Method for liquefaction of gaseous methane by vaporisation of nitrogen, installation for the liquefaction of gaseous methane implementing the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1852962A FR3079923B1 (en) 2018-04-05 2018-04-05 PROCESS FOR LIQUEFACTION OF METHANE GAS BY VAPORIZATION OF NITROGEN, PLANT FOR LIQUEFACTION OF METHANE GAS USING THE PROCESS

Publications (2)

Publication Number Publication Date
EP3550238A1 EP3550238A1 (en) 2019-10-09
EP3550238B1 true EP3550238B1 (en) 2023-07-12

Family

ID=62528679

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19305446.7A Active EP3550238B1 (en) 2018-04-05 2019-04-05 Method for liquefaction of gaseous methane by vaporisation of nitrogen, installation for the liquefaction of gaseous methane implementing the method

Country Status (8)

Country Link
EP (1) EP3550238B1 (en)
ES (1) ES2952245T3 (en)
FR (1) FR3079923B1 (en)
HR (1) HRP20230756T1 (en)
HU (1) HUE062874T2 (en)
PL (1) PL3550238T3 (en)
PT (1) PT3550238T (en)
SI (1) SI3550238T1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11873460B2 (en) * 2022-05-17 2024-01-16 Simak Behramand Apparatus, compositions, and methods for making solid methane gas

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3792590A (en) * 1970-12-21 1974-02-19 Airco Inc Liquefaction of natural gas
DE2354726A1 (en) * 1973-11-02 1975-05-07 Messer Griesheim Gmbh Liquefaction and conditioning of methane liquid nitrogen - for transport or storage in small amounts
US5390499A (en) * 1993-10-27 1995-02-21 Liquid Carbonic Corporation Process to increase natural gas methane content
EP1030135B1 (en) 1999-02-20 2002-09-11 Lauda Dr. R. Wobser GmbH & Co. KG Process for controled cooling by evaporating liquid nitrogen
US6598423B1 (en) 2002-01-22 2003-07-29 Chart Inc. Sacrificial cryogen gas liquefaction system
DE102010044869A1 (en) * 2010-09-09 2012-03-15 Linde Aktiengesellschaft Liquefied Natural gas
US20160003527A1 (en) * 2014-07-07 2016-01-07 Cosmodyne, LLC System and method for liquefying natural gas employing turbo expander
EP3026379A1 (en) 2014-11-25 2016-06-01 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method and device for completely condensing a process gas by cryocondensation

Also Published As

Publication number Publication date
PT3550238T (en) 2023-07-19
SI3550238T1 (en) 2023-10-30
FR3079923A1 (en) 2019-10-11
HUE062874T2 (en) 2023-12-28
EP3550238A1 (en) 2019-10-09
HRP20230756T1 (en) 2023-11-10
FR3079923B1 (en) 2020-05-29
PL3550238T3 (en) 2023-08-28
ES2952245T3 (en) 2023-10-30

Similar Documents

Publication Publication Date Title
EP0676373B1 (en) Process and installation for the production of carbon monoxide
EP2724099B1 (en) Method for liquefying natural gas with a mixture of coolant gas
EP2875294A2 (en) Method for liquefying a natural gas, including a phase change
EA033615B1 (en) Integrated fuel regasification and power production cycle
CA2744450A1 (en) Method for producing a stream of subcooled liquefied natural gas using a natural gas feedstream, and associated facility
FR2641065A1 (en)
FR2977015A1 (en) METHOD FOR LIQUEFACTING NATURAL GAS WITH TRIPLE FIRM CIRCUIT OF REFRIGERATING GAS
FR2851330A1 (en) PROCESS AND PLANT FOR THE PRODUCTION IN A GASEOUS AND HIGH PRESSURE FORM OF AT LEAST ONE SELECTED FLUID AMONG OXYGEN, ARGON AND NITROGEN BY CRYOGENIC AIR DISTILLATION
EP0718576B1 (en) Process for separating a gaseous mixture by cryogenic distillation
EP3550238B1 (en) Method for liquefaction of gaseous methane by vaporisation of nitrogen, installation for the liquefaction of gaseous methane implementing the method
WO2014128408A2 (en) Station for reducing gas pressure and liquefying gas
EP1102953B1 (en) Installation producing low voltage electricity integrated in a unit separating gas from air
CN1821352A (en) Light hydrocarbon separating method for liquefied natural gas with peak regulating function
WO2013014349A1 (en) Process and apparatus for cooling and compressing a wet gas rich in carbon dioxide
CN206449953U (en) Carbon dioxide purification process cold energy reclamation device
EP2417411B1 (en) Refrigeration process and system for recovering cold from methane by refrigerants
WO2017009341A1 (en) Process for expansion and storage of a flow of liquefied natural gas from a natural gas liquefaction plant, and associated plant
FR3052241A1 (en) PROCESS FOR PURIFYING NATURAL GAS AND LIQUEFACTING CARBON DIOXIDE
FR2967485A1 (en) Installation for purifying gaseous flow containing carbon dioxide, comprises a first unit to compress the gaseous flow, a heat exchanger to cool compressed gaseous flow, a distillation column to separate carbon dioxide, and separator pots
FR2988166A1 (en) METHOD AND APPARATUS FOR CONDENSING CARBON DIOXIDE RICH CARBON DIOXIDE FLOW RATE
FR2943125A1 (en) Liquefied natural gas producing method, involves providing natural gas, recovering part of heat from fumes produced by gas turbine, and producing vapor for vapor turbine by using recovered part of heat
FR2858830A1 (en) Increasing capacity and efficiency of gas installations which include at least one gas turbine comprises cooling air entering turbine
EP2652291B1 (en) Method and system for integrated compressing air and production of a carbon dioxide rich fluid
EP4348138A1 (en) Method and plant for hydrogen liquefaction
FR2777641A1 (en) Air distillation process to produce argon

Legal Events

Date Code Title Description
REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20230756T

Country of ref document: HR

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200409

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230202

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: WAGA ENERGY

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3550238

Country of ref document: PT

Date of ref document: 20230719

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20230713

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019032487

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20230712

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 41999

Country of ref document: SK

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2952245

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20231030

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20230401150

Country of ref document: GR

Effective date: 20231010

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20230756

Country of ref document: HR

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E062874

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231112

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20240319

Year of fee payment: 6

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20230756

Country of ref document: HR

Payment date: 20240320

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20240320

Year of fee payment: 6

Ref country code: NL

Payment date: 20240325

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20240319

Year of fee payment: 6

Ref country code: PT

Payment date: 20240318

Year of fee payment: 6

Ref country code: SK

Payment date: 20240320

Year of fee payment: 6