EP3549404B1 - Verfahren und system für einen flackerfreien lichtdimmer in einem stromverteilungsnetz - Google Patents

Verfahren und system für einen flackerfreien lichtdimmer in einem stromverteilungsnetz Download PDF

Info

Publication number
EP3549404B1
EP3549404B1 EP17876154.0A EP17876154A EP3549404B1 EP 3549404 B1 EP3549404 B1 EP 3549404B1 EP 17876154 A EP17876154 A EP 17876154A EP 3549404 B1 EP3549404 B1 EP 3549404B1
Authority
EP
European Patent Office
Prior art keywords
lamps
electrical supply
voltage
electrical
light intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17876154.0A
Other languages
English (en)
French (fr)
Other versions
EP3549404A1 (de
EP3549404A4 (de
Inventor
Claude Bouchard
Alexandre Brouillette
Hugo Bayeur
Jacques Godin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technologies Intelia Inc
Original Assignee
Technologies Intelia Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technologies Intelia Inc filed Critical Technologies Intelia Inc
Publication of EP3549404A1 publication Critical patent/EP3549404A1/de
Publication of EP3549404A4 publication Critical patent/EP3549404A4/de
Application granted granted Critical
Publication of EP3549404B1 publication Critical patent/EP3549404B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • H05B45/12Controlling the intensity of the light using optical feedback
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B39/00Circuit arrangements or apparatus for operating incandescent light sources
    • H05B39/04Controlling
    • H05B39/041Controlling the light-intensity of the source
    • H05B39/044Controlling the light-intensity of the source continuously
    • H05B39/048Controlling the light-intensity of the source continuously with reverse phase control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • H05B45/59Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits for reducing or suppressing flicker or glow effects
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/357Driver circuits specially adapted for retrofit LED light sources
    • H05B45/3574Emulating the electrical or functional characteristics of incandescent lamps
    • H05B45/3575Emulating the electrical or functional characteristics of incandescent lamps by means of dummy loads or bleeder circuits, e.g. for dimmers

Definitions

  • the present invention relates generally to systems and methods for altering and correcting the electrical signal of an alternating voltage which influences the illumination intensity of an electronic lamp such as light emitting diode (LED) lamps with or without regulation circuit.
  • the invention also relates to all other fields of control application where segments of the electric wave coming from the power supply network are withdrawn to control an electrical equipment which regulates a function or a method such as the speed of an electric motor.
  • LED lamp manufacturers For issues of backward compatibility with incandescent bulbs, LED lamp manufacturers generally integrate electronic circuits to determine the conduction angle of the power supply in order to vary the light intensity. Unlike the incandescent bulb, the light intensity of the LED lamp varies greatly with very small variation in the amplitude of the electrical signal, especially near its ignition point. The result is that at low intensity, the slightest disturbance or variation in the electrical signal feeding the LED lamp creates stressful flickering effects for humans and animals.
  • a popular method of varying the light intensity is using the TRIAC control.
  • the flicker of low intensity lamps is often produced by the activation of the trigger of the TRIAC in the area where the amplitude of the electrical signal is below the conduction voltage of the LEDs or when the residual energy accumulated in the various electrical components is restored or superimposed on the mains voltage.
  • This disturbance is further amplified by the length of conductor which distributes the energy to the lamps or when the number of lamps connected to the same source is large.
  • U.S. Patent No. US 2015/181682 A1 discloses a method of maintaining power to the switch controller by draining current from the circuit to supply power to the controller when the switch is open (inactive) and therefore the controller is inactive.
  • US 2012/056553 A1 describes a circuit plugging into a dimmer and being configured to receive a signal from said dimmer.
  • the circuit includes a load and a switch.
  • the circuit also includes a drain circuit which is activated near the zero crossing to give a load to the dimmer and reset a delay circuit of the dimmer.
  • the drain circuit is activated to control the current received by the load.
  • U.S. Patent No. US 2016/081149 A1 describes a control system for a semiconductor lamp connected to a trailing edge cut-off dimmer switch. The system allows cycles of interrupting and conduction of current with the switch while the energy accumulated in a capacitor is at its maximum to increase efficiency. The start of cycles can be determined by a minimum current threshold or even after the zero crossing.
  • the invention is defined by a control method for adjusting the flicker-free light intensity of one or more lamps in accordance with claim 1 and a control system for adjusting the flicker-free light intensity of one or more lamps. or more lamps according to claim 16.
  • Preferred embodiments are defined by the dependent claims.
  • the invention generally consists in providing a signal conditioner capable of filtering, converting, segmenting or generally realizing a waveform from an electrical source into an electrical power signal for an electrical device, such as an LED lamp. , so that the reading of the electrical signal which the device in fact can make it possible to perform a function practically free from variation induced by fluctuations in the source.
  • an active load rapidly absorbing residual power line energy is applied when the conditioner cuts power to the apparatus.
  • the energy dissipated by the active load during the conduction phase is almost zero and is limited to the consumption of electronic components which control this circuit.
  • a method for eliminating flicker from one or more LED lamps on a power distribution network includes synchronizing at zero crossing of the mains supply voltage of electrical distribution, power the LED lamps when the mains voltage is above the switch-on threshold of the lamp LEDs and cut off the power supply to the LED lamps.
  • the method may also include, upon disconnecting the power, draining the residual energy accumulated in the LED lamp.
  • the LED light can also be activated using an electronic switch.
  • the method may also include a step of pre-charging energy into the LED lamp before activating the LED lamp.
  • the method also includes rectifying the power supply to store said energy in capacitors in order to return energy in a controlled fashion to the LED lamps.
  • the restitution of the energy can take the form of a sine wave, a trapezoidal wave and / or a complex cyclic wave varying in time.
  • the method comprises detecting the intensity of the light emitted by the LED lamp and according to the intensity of the light emitted by the LED lamp, monitoring the voltage sent to the LED lamp in order to '' obtain a predetermined and stable light intensity.
  • a system for eliminating flicker from one or more LED lamps on a power distribution network generally includes at least one switch connected to the LED lamp, an active current drain circuit, a controller configured to synchronize to zero crossing of the supply voltage of the electrical distribution network, the controller being configured to close the switch when the mains voltage is above the threshold for switching on the lamp LEDs, open the switch to switch off the LED lamp according to the required intensity and activate the drainage circuit.
  • the controller can also be configured to activate the drain circuit when the switch opens.
  • the system may also include an electrical wave zero crossing detection circuit connected to the controller and / or a feedback circuit for correcting the output signal supplied to the LED lamp.
  • the feedback circuit may include a light intensity detector. This light intensity detector may be an optical detector configured to convert the light emitted by the lamp into an electrical signal proportional to the light intensity.
  • the system also includes a current limiting circuit and / or a power supply rectifier system.
  • the power supply rectifier system may include one or more capacitors configured to store energy and return it in a controlled manner to the LED lamps.
  • the capacitor (s) may be configured to output energy in the form of a sine wave, a trapezoidal wave and / or a time varying complex cyclic wave.
  • the system may include an overload protection circuit, a short circuit protection circuit, and / or a current meter connected to the LED lamp.
  • the system 2 here called the conditioner 2, receives an electric power supply from an alternating source 1.
  • the conditioner applies transformations to the electric wave to restore it to a device 4.
  • the device 4 can be a lamp, a motor. or any other device that converts the electrical signal from its power supply into some function such as light, motive force, movement, etc.
  • the circuit illustrated in Figure 2 typically operates with an AC alternating voltage where the current flowing through switch 6 is bidirectional.
  • the second circuit shown in Figure 3 has a diode bridge 3a which rectifies the AC voltage of the network into a full-wave waveform where the current flowing through switch 6 is unidirectional.
  • the upstream filtration and protection circuit 5 aims to protect the electronic components against network overvoltages and aims to limit the emissions conducted on the electrical network.
  • a network voltage zero crossing detection circuit 10 enables the main controller 11 to synchronize itself on each start of the network voltage cycle.
  • a brightness setpoint produced by a user interface or by an external electric circuit initiates a sequence of activation of the switch 6 as a function of time in order to allow the control of the intensity of the LED lamps 4.
  • a "snubber” type circuit 8 allows absorb the energy stored in the inductor of the LED lamp network wiring and protect switch 6 against overvoltages.
  • An active “bleeder” type circuit 9 makes it possible to drain or drain the energy of the “snubber” type circuit 8 as well as the residual energy stored in the components of the LED lamp network in order to guarantee a precise and controlled transition from switching off the switch 6.
  • the system can include an overload protection circuit 12 and protection against short-circuits on start-up 13 typically installed using, for example, a current-voltage converter 7.
  • This type circuit 13 generally makes it possible to protect the electronic and electrical components of the control circuit against a current overload and makes it possible to limit the thermal dissipation of the components.
  • the system can also include a detection circuit, here expressed by a light intensity detector 14, generally aimed at allowing feedback aimed at correcting the output signal supplying, in this example, the LED lamps.
  • the Figure 6 illustrates a circuit similar to the main switching circuit of the Figure 5 but having a DC power supply from a rectified full-wave wave.
  • the circuit typically includes a main controller 11 configured to control the activation of switch 5c and / or 6c via a galvanically isolated circuit 5a and MOSFET control circuits 5b and / or 6b.
  • a main controller 11 configured to control the activation of switch 5c and / or 6c via a galvanically isolated circuit 5a and MOSFET control circuits 5b and / or 6b.
  • optical isolators 5a and / or 6a may be used in this circuit.
  • other components such as magnetic, capacitive, “hall effect” or RF isolators could be used.
  • the switch 5c and / or 6c can comprise one or more MOSFETs and / or other components such as bipolar transistors or IGBTs.
  • MOSFETs mounted or connected in parallel is also possible and makes it possible to produce a very low resistance power switch which considerably reduces the losses of electrical power.
  • Such a switching circuit generally aims to reduce the size of the heat sink until it is removed if the equivalent thermal resistance allows it.
  • Circuit 14 is generally composed of an optical detector 11a.
  • the optical detector 11a generally converts the light emitted by the LED lamps into an electrical signal proportional to the light intensity.
  • the electrical signal is then amplified by a transimpedance amplifier 11b to an acceptable level in order to be converted into a digital value by the analog-to-digital converter 11d.
  • a photodiode 11a is used in this embodiment of circuit 14.
  • other optical converters such as a phototransistor, a photoelectric cell or a solar cell could also be used.
  • the analog-to-digital converter 11d could be replaced by an oscillator with its pulse width modulation (PWM) controlled by the output of the amplifier 11b and coupled to a logic input of the main controller 11.
  • PWM pulse width modulation
  • the active “bleeder” 9 generally aims to absorb part of the residual energy restored by the wiring inductance of the LED lamps which is stored in the “snubber” 8 and the residual energy also coming from the other electronic components on it. line. This absorption typically allows a cleaner cut-off of each activation cycle of the switch 6 and generally makes it possible to prevent this energy from being consumed by the lamps.
  • One or more clear cuts during each cycle of the network aims to properly control the LED lamps which have circuits for temporal wavefront detections as control signals in "dimmer" mode.
  • the active “bleeder” circuit 9 typically comprises a resistive load 7d and / or 8d which is switched on in parallel with the LED lamps by means of a switch 7c8c when the switch 6 is open.
  • MOSFETS 7c and / or 8c can be used to activate the resistive load 7d and / or 8d.
  • other components such as bipolar transistors or IGBTs can be used in this circuit 9.
  • the main controller 11 controls the activation of the switch 7c and / or 8c via a circuit with galvanic isolation 7a and / or 8a and MOSFET control circuits 7b and / or 8b.
  • optical isolators 7a and / or 8a can be used in this circuit 9 but other components such as magnetic, capacitive, "hall effect” or RF isolators can be substituted.
  • the Switch 6 and switch 7c and / or 8c activation sequence may be 180 degrees out of phase but may also include a different sequence which allows better control of the LED lamps.
  • a current limiting circuit 12 comprising an integrator generally makes it possible to remove the fuse and to protect the power switches 6 against excessive loads.
  • An embodiment of the current limiting circuit 12 is shown in Figure 9 and can in particular operate in alternating current mode or in direct current mode with a rectified full-wave wave.
  • the measurement of the current in the switch 6 is typically done using a current-voltage converter 7, preferably a low value resistor.
  • the current measurement circuit 7 can also include a current transformer or a “hall effect” sensor.
  • the output of the current converter 7 is generally directed to an amplifier 9b whose output drives a variable current source 9c whose intensity is proportional to the current flowing in the switch 6.
  • a current integrator formed by the current source 9c , the capacitor 9d and the switch 9e make it possible to integrate the waveform of the current flowing in the circuit of the LED lamps.
  • the output of the integrator is compared to a reference voltage using comparator 9f.
  • Exceeding the threshold on comparator 9f will cut off the power supply to the LED lamps using switch 6. This cut is intended to protect the electronic components.
  • the zero crossing of the power supply purges the charge of the capacitor 9d.
  • the current limiting circuit 12 is typically galvanically isolated using a galvanic isolating circuit 9a.
  • circuit 12 may comprise optical isolators (9a) or even other components such as magnetic, capacitive, “hall effect” or RF isolators. Circuit 12 could also include an alarm indicating an overload directed to main controller 11 for processing.
  • a protection circuit against short-circuits on start-up 13 generally makes it possible to avoid an overload on the electrical and electronic components in the event of incorrect connection by the user.
  • a preferred embodiment of a protection circuit 13 is illustrated at Figure 10 and operates, in particular, in alternating current or direct current mode with a rectified full-wave wave.
  • the measurement of the current in the switch 6 is typically done using a current-voltage converter 7, preferably a low value resistor. Without being limited thereto, the current measuring circuit 7 can also include a current transformer or a “hall” sensor. effect ”.
  • the output of the current converter 7 is generally directed to an amplifier 10b followed by a comparator 10c and a D flip-flop 10d.
  • the maximum intensity of the current flowing in the switch 6 is typically limited by the opening of the switch 6 when there is an overshoot on each half-cycle of the mains voltage in alternating mode or on each half-cycle of the rectified mains voltage in full-wave mode.
  • the zero crossing of the power supply resets the D flip-flop 10d to zero.
  • the short-circuit protection circuit 13 is generally galvanically isolated by means of an optical isolator circuit 10a.
  • optical isolators 10a are used in this circuit.
  • other components such as magnetic, capacitive, “hall effect” or RF isolators can be used.
  • An alarm indicating a short circuit on start-up can be directed to the main controller 11 for processing.
  • the detection of the zero crossing of the power supply 10 is carried out with a level detector having a clear and precise discrimination of the network voltage.
  • An embodiment of the zero crossing detection circuit 10 is shown in Figure 4 .
  • the supply voltage of the AC network charges a capacitor 4c to a limit voltage determined by the clipping circuit 4b.
  • the comparator 4d is activated when the network voltage generally falls below the threshold determined by the reference voltage accumulated in the capacitor 4c. Without limitation, the output of comparator 4d can activate the LED of galvanic isolator 4a which transmits the zero crossing signal to the main controller 11.
  • circuit 10 may also include an optical isolator. In other embodiments, circuit 10 could include other components such as magnetic, capacitive, “hall effect” or RF isolators.
  • the activation of the switches 6 can be out of phase by a few microseconds in order to aim to reduce the instantaneous energy demand coming from the electrical network and thus reduce the drop in supply voltage which can influence the behavior of the load 4.
  • configurations eliminate flicker from LED lamps due to fluctuations in the power grid supply by rectifying the power supply for storage in capacitor banks for storage. returned in a controlled manner to the lamps.
  • the electrical restitution can then take different forms including, for example, a constant voltage, a sinusoidal form of which the peak amplitude and the frequency are controlled, a trapezoidal modulation which allows a better constant of the intensity than the sinusoidal form while maintaining slow transitions which reduce conducted emissions and electromagnetic radiation.
  • the proposed restitution circuit consists of an ON / OFF modulator whose useful cycle (PWM) varies in time all along the cyclic period. This waveform is then filtered using a passive or active low-pass filter in order to retain the DC component. The variation of the duty cycle modulates the amplitude of the DC component to form a complex cyclic wave which is transmitted to the circuit of the LED lamps.
  • PWM useful cycle
  • control method generally aims to offer several advantages including, among others, in many cases, better functional stability at low current of the device 4 and a lower current draw than in the central band mode ( Figure 14 ) and "leading-edge" ( Figure 13 ).
  • the control method generally consists in positioning the moment of activation of the electronic switch 6 when the alternating voltage reaches a predetermined amplitude in the modus operandi of the apparatus.
  • the quantity of energy transmitted to the device 4 is generally determined by the duration of the activation of the electronic switch 6.
  • the progressive increase in energy is typically transferred to the device and in the following manner: at the minimum value, the electronic switch is activated for example at N2 and deactivation at N3. Then gradually, from N2 to N4, from N2 to N5, until the conduction window reaches N2 to N8. After that, the increase continues by increasing the conduction period from N1 to N8. Energy transmission is total when conduction is from (N0) to N8.
  • the regression of the transmitted energy is done inversely to the progression either: (N0) to N8, N1 to N8, N2 to N8, N2 to N7, N2 to N6, up to the minimum conduction time of N2 to N3.
  • the time interval between N0, N1, N2 ... N8 is indicative only and is adapted depending on the target device.
  • the control algorithm may allow multiple cycles to switch each segment within the LED conduction zone.
  • activation can first be done at P1 when the network voltage exceeds the predetermined threshold of the first series of LEDs. The intensity is then gradually increased by delaying the first cut P2.
  • a second pulse centered on the full voltage of the line is activated. Eventually, the second pulse merges with the first when P2 and P3 meet. Finally, P1 and P4 move towards their respective zero crossing P5 to obtain a full wave.
  • the control algorithm may allow a gradual charging of the input capacitive reactance of the lamp using a rising rising edge that limits the inrush of the load current during the voltage rise time.
  • the first cycle is activated first in D1 when the network voltage crosses zero and ends in D2 below the LED activation threshold.
  • the time interval between D1 and D2 is dedicated to the charging of the capacitive reactance of the lamp, in this interval, the light intensity of the lamp is zero.
  • a second conduction cycle is triggered when the mains voltage is higher than the conduction voltage of the LEDs, this cycle allows the activation of the LED segment of the lamp.
  • the firing point of the LED segment is located at D3 and its intensity is controlled by the duration of the cycle starting at D3 and ending at D4.
  • the increase in light intensity is generally done gradually by increasing the duration of the conduction of the second cycle until reaching point D5.
  • the activation of the load cycle of the capacitive reactance is preferably made at the zero crossing D1 of the network voltage but can also be activated at any time in the interval D1 to D2.
  • the method makes it possible to achieve, without being limited thereto, all of the shapes presented using preprogrammed modes in order to produce the waveform adapted to the circuit of the lamp and to the topology of the installation.
  • the method makes it possible to define any particular waveform made up from the voltage of the electric mains.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Claims (25)

  1. Ein Steuerungsverfahren, das die flackerfreie Anpassung der Lichtstärke einer oder mehrerer Lampen (4) ermöglicht, wobei die Lampe oder Lampen (4) durch ein Wechselstromnetz (1) versorgt werden, wobei jede der Lampen (4) eine oder mehrere Leuchtdioden LED und ein Gerät (2) enthält, mit dem die Lichtstärke der LED entsprechend der Versorgung variiert werden kann, dadurch gekennzeichnet, dass das Verfahren die Ausführung einer Sequenz bei jedem Wechsel der Versorgung enthält, wobei die Sequenz beinhaltet:
    eine ein- oder mehrfache Unterbrechung pro Zyklus der Versorgung der Lampe oder Lampen (4);
    eine ein- oder mehrfache Aktivierung pro Zyklus der Versorgung der Lampe oder Lampen (4), wobei die Dauer der Aktivierung ein leitender Zeitraum ist;
    ein Anlegen einer Ladung, konfiguriert zur Absorption der Restenergie, die auf die Versorgung der Lampe oder Lampen (4) angelegt wird, nach einer oder mehrerer Versorgungsunterbrechungen.
  2. Steuerungsverfahren nach Anspruch 1, wobei die Sequenz auch einen Schritt der Vorab-Energieladung in die Lampe oder Lampen (4) enthält, bevor die Lampe oder Lampen (4) aktiviert werden.
  3. Steuerungsverfahren nach Anspruch 1, wobei die Sequenz es auch umfasst, die Absorption der Restenergie entsprechend der oder den Versorgungsunterbrechungen zu verzögern.
  4. Steuerungsverfahren nach einem der Ansprüche 1 bis 3, wobei das Verfahren es auch umfasst:
    Energie aus der Versorgung zu speichern;
    die gespeicherte Energie an die Lampe oder Lampen (4) abzugeben.
  5. Steuerungsverfahren nach Anspruch 4, wobei die Rückführung der Energie die Form einer sinusförmigen Welle hat.
  6. Steuerungsverfahren nach Anspruch 4, wobei die Rückführung der Energie die Form einer trapezförmigen Welle hat.
  7. Steuerungsverfahren nach Anspruch 4, wobei die Rückführung der Energie die Form einer komplexen zyklischen Welle hat, die zeitlich schwankt.
  8. Steuerungsverfahren nach einem der Ansprüche 1 bis 7, wobei das Verfahren auch umfasst:
    eine Messung der Lichtstärke in der Umgebung;
    entsprechend der gemessenen Umgebungslichtstärke, Steuerung der Versorgung der Lampe oder Lampen (4), um eine vorher festgelegte Lichtstärke zu erhalten.
  9. Steuerungsverfahren nach einem der Ansprüche 1 bis 8, wobei die Sequenz beinhaltet, bei jedem Wechsel der Versorgung, beginnend wenn die Spannung der Versorgung null ist
    die Versorgung der Lampe oder Lampen (4) zu aktivieren, um den leitenden Zeitraum auf einen Spitzenwert der Spannung des Stromnetzes zu zentrieren, wobei der leitende Zeitraum von der gewünschten Lichtstärke abhängt.
  10. Steuerungsverfahren nach einem der Ansprüche 1 bis 8, wobei die Sequenz beinhaltet, bei jedem Wechsel der Versorgung, beginnend wenn die Spannung der Versorgung null ist:
    die Versorgung der Lampe oder Lampen (4) zu unterbrechen, bis die Spannung des elektrischen Netzes eine Spannung erreicht, die mindestens gleich einem Mindestgrenzwert zur Aktivierung der Lampen (4) ist;
    Aktivierung der Versorgung, bis der leitende Zeitraum ein Erreichen der gewünschten Lichtstärke erlaubt.
  11. Steuerungsverfahren nach Anspruch 10, für den Fall, dass die Aktivierung der Versorgung es dem leitenden Zeitraum nicht erlaubt, die gewünschte Lichtstärke vor dem Ende eines Zyklus zu erreichen, enthält die Sequenz eine Aktivierung der Versorgung, bevor die Versorgungsspannung mindestens gleich dem Mindestgrenzwert zur Aktivierung der Lampe oder Lampen (4) bis zum Ende des Zyklus ist.
  12. Steuerungsverfahren nach einem der Ansprüche 1 bis 8, wobei die Sequenz, bei jedem Wechsel der Versorgung, beginnend wenn die Spannung der Versorgung null ist, beinhaltet:
    die wiederholte Aktivierung, dann Unterbrechung der Versorgung der Lampe oder Lampen (4) zur Unterteilung des Wechsels der Versorgungsspannung der Lampe oder Lampen (4) in mehrere leitende Zeiträume und nicht leitende Zeiträume, entsprechend einem Verhältnis, bei diesem Verhältnis handelt es sich um die leitende Zeit, dividiert durch die nicht leitende Zeit, die Multiplikation des Verhältnisses mit der Versorgungspannung definiert dabei eine Zwischenspannung, um eine gewünschte Lichtstärke zu erreichen.
  13. Steuerungsverfahren nach einem der Ansprüche 1 bis 8, wobei die Sequenz, bei jedem Wechsel der Versorgung, beginnend, wenn die Spannung der Versorgung null ist, beinhaltet:
    die Versorgung der Lampe oder Lampen (4) zu aktivieren, bis sich die Spannung des Wechsels gerade unter einem Mindestaktivierungsgrenzwert der Lampe oder Lampen (4) befindet;
    momentan die Versorgung der Lampe oder Lampen (4) zu unterbrechen, bis zu dem Moment, in dem die Spannung des Stromnetzes den Aktivierungsgrenzwert der Lampe oder Lampen (4) übersteigt;
    Aktivierung der Versorgung der Lampe oder Lampen (4) während einer Wechseldauer, die der gewünschten durchschnittlichen Lichtstärke entspricht.
  14. Steuerungsverfahren nach einem der Ansprüche 1 bis 8, wobei jede Lampe (4) mehrere Segmente einer oder mehrerer LED enthält, dabei wird jedes Segment bei einem Spannungsgrenzwert aktiviert, die Sequenz beinhaltet, bei jedem Wechsel der Versorgung, beginnend wenn die Spannung der Versorgung null ist:
    eine Unterbrechung der Versorgung bis die Spannung des Wechsels den Aktivierungsgrenzwert eines ersten LED-Segmentes übersteigt;
    Aktivierung der Versorgung der Lampe oder Lampen (4) während einer Wechseldauer, bis die gewünschte Stärke erreicht ist;
    Wiederholung der beiden vorangehenden Schritte für alle anderen Segmente der Lampe oder Lampen (4).
  15. Steuerungsverfahren nach einem der Ansprüche 1 bis 14, wobei das Verfahren beinhaltet, bei jedem Wechsel der Versorgung, beginnend, wenn die Spannung der Versorgung null ist, die Aktivierung oder Aktivierungen der Versorgung der Lampen (4) zu verschieben, bezogen auf eine momentane Energieanforderung von einem anderen elektrischen Bauteil, das sich im Stromnetz befindet.
  16. Steuerungssystem (2), mit dem die Lichtstärke einer oder mehrerer Lampen (4) flackerfrei angepasst werden kann, wobei die Lampe oder Lampen (4) über ein Stromnetz mit Wechselstrom (1) versorgt werden, wobei jede der Lampen (4) eine oder mehrere Leuchtdioden LED und ein Gerät enthält, mit dem die Lichtstärke der LED in Abhängigkeit vom Versorgungsniveau variieren kann, dadurch gekennzeichnet, dass das System (2) : enthält:
    mindestens einen Schalter (6, 9e), der mit der oder den Lampen (4) verbunden ist;
    einen aktiven Drainagestromkreis (9) des Stroms, verbunden mit der oder den Lampen (4), mit einer Ladung (7d, 8d), wobei die Ladung (7d, 8d) es ermöglicht, die Restenergie zu absorbieren, die in der Versorgung der Lampe oder Lampen (4), in der Folge von einmaligem oder mehrmaligem Öffnen des Schalters (6, 9e); vorhanden ist
    ein Steuergerät (11), konfiguriert zur Ausführung:
    des Schließens des Schalters (6, 9e) ein- oder mehrfach pro Versorgungzyklus der Lampe oder Lampen (4);
    Öffnen des Schalters (6, 9e) ein- oder mehrfach pro Versorgungzyklus der Lampe oder Lampen (4);
    Aktivierung des Drainagestromkreises (9) in Folge einer oder mehrerer Öffnungen des Schalters (6, 9e).
  17. System (2) nach Anspruch 16, wobei das Schließen des Schalters (6, 9e) ausgeführt wird, wenn die Versorgungsspannung höher liegt als der Anschaltgrenzwert der Lampe oder Lampen.
  18. System (2) nach einem der Ansprüche 16 oder 17, das Öffnen des Schalters (6, 9e) wird ausgeführt, wenn die Lichtstärke eine gewünschte Lichtstärke erreicht.
  19. System (2) nach einem der Ansprüche 16 bis 18, wobei das System (2) auch einen Rückführkreis (14) enthält, mit dem die Versorgung der Lampe oder Lampen (4) ab der Messung der Lichtstärke korrigiert werden kann.
  20. System (2) nach Anspruch 19, wobei der Rückführkreis (14) auch einen Lichtstärkedetektor (14) enthält, konfiguriert zur Umwandlung des von der Lampe oder den Lampen (4) ausgestrahlte Licht in einen Wert proportional zur Lichtstärke.
  21. System (2) nach einem der Ansprüche 16 bis 20, wobei das System (2) auch einen Strombegrenzerschaltkreis (12) enthält, wobei der Strombegrenzerschaltkreis (12) dazu konfiguriert ist, die elektrische Leistung der Versorgung der Lampe oder Lampen (4) zu messen und den oder die Schalter (6, 9e) zu öffnen, wenn die gemessene elektrische Schaltung die elektrische Kapazität des Systems (2) überschreitet.
  22. System (2) nach Anspruch 16 bis 21, wobei das System (2) einen oder mehrere Kondensatoren (4c, 9d), konfiguriert zur Speicherung von Energie und zur kontrollierten Abgabe an die Lampen (4), enthält.
  23. System (2) nach Anspruch 22, wobei das System (2) die in dem oder den Kondensatoren (4c, 9d) gespeicherte Energie in Form einer sinusförmigen Welle abgibt.
  24. System (2) nach Anspruch 22, wobei das System (2) die in dem oder den Kondensatoren (4c, 9d) gespeicherte Energie in Form einer trapezförmigen Welle abgibt.
  25. System (2) nach Anspruch 22, wobei das System (2) die in dem oder den Kondensatoren (4c, 9d) gespeicherte Energie in Form einer komplexen zyklischen, zeitlich schwankenden Welle abgibt.
EP17876154.0A 2016-11-30 2017-11-30 Verfahren und system für einen flackerfreien lichtdimmer in einem stromverteilungsnetz Active EP3549404B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA2950054A CA2950054A1 (fr) 2016-11-30 2016-11-30 Methode et systeme pour gradateur de lumiere sans scintillement sur un reseau d'alimentation alternatif
PCT/CA2017/051444 WO2018098583A1 (fr) 2016-11-30 2017-11-30 Méthode et système pour gradateur de lumière sans scintillement sur un réseau de distribution électrique

Publications (3)

Publication Number Publication Date
EP3549404A1 EP3549404A1 (de) 2019-10-09
EP3549404A4 EP3549404A4 (de) 2020-05-27
EP3549404B1 true EP3549404B1 (de) 2021-08-18

Family

ID=62239842

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17876154.0A Active EP3549404B1 (de) 2016-11-30 2017-11-30 Verfahren und system für einen flackerfreien lichtdimmer in einem stromverteilungsnetz

Country Status (4)

Country Link
US (1) US11723125B2 (de)
EP (1) EP3549404B1 (de)
CA (3) CA2950054A1 (de)
WO (1) WO2018098583A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110086083B (zh) * 2019-04-09 2020-11-03 苏州佳世达光电有限公司 投影机的功率控制电路
CN111385940B (zh) * 2020-05-04 2024-07-02 上海欧切斯实业有限公司 0-10v反向调光led驱动电路
TWI814339B (zh) * 2022-04-13 2023-09-01 台達電子工業股份有限公司 照明裝置
CN116951341A (zh) 2022-04-13 2023-10-27 台达电子工业股份有限公司 照明装置

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7187140B2 (en) * 2003-12-16 2007-03-06 Microsemi Corporation Lamp current control using profile synthesizer
EP1803331B1 (de) 2004-10-12 2012-12-12 Koninklijke Philips Electronics N.V. Verfahren und system zur rückkopplung und regelung einer beleuchtungseinrichtung
EP2257124B1 (de) * 2009-05-29 2018-01-24 Silergy Corp. Schaltung zur Ankopplung einer Niedrigstromlichtschaltung an einem Dimmer
ES2664198T3 (es) 2010-03-18 2018-04-18 Philips Lighting Holding B.V. Método y aparato para aumentar el rango de atenuación de dispositivos de iluminación de estado sólido
US9544962B2 (en) * 2011-08-01 2017-01-10 Philips Lighting Holding B.V. Driver device and driving method for driving an LED unit
JP2013186944A (ja) * 2012-03-05 2013-09-19 Toshiba Lighting & Technology Corp 照明用電源及び照明器具
US9210744B2 (en) * 2012-04-18 2015-12-08 Power Integrations, Inc. Bleeder circuit for use in a power supply
US9000683B2 (en) * 2013-02-26 2015-04-07 Power Integrations, Inc. Bleeder circuit having current sense with edge detection
JP6008277B2 (ja) * 2012-07-11 2016-10-19 パナソニックIpマネジメント株式会社 固体光源点灯装置、照明器具、照明システム
JP6271540B2 (ja) * 2012-07-20 2018-01-31 フィリップス ライティング ホールディング ビー ヴィ 照光制御システムでのニュートラルを有さないコントローラ用のバイパス回路
US9706623B2 (en) * 2012-08-24 2017-07-11 Abl Ip Holding Llc Learning capable control of chaotic lighting
CN102946674B (zh) * 2012-11-20 2014-06-18 矽力杰半导体技术(杭州)有限公司 一种具有无损泄放电路的可控硅调光电路及其方法
US9392675B2 (en) * 2013-03-14 2016-07-12 Lutron Electronics Co., Inc. Digital load control system providing power and communication via existing power wiring
US20140265898A1 (en) * 2013-03-15 2014-09-18 Power Integrations, Inc. Lossless preload for led driver with extended dimming
US9408261B2 (en) * 2013-05-07 2016-08-02 Power Integrations, Inc. Dimmer detector for bleeder circuit activation
CN105493633B (zh) * 2013-05-10 2018-07-10 上海新进半导体制造有限公司 用于具有triac调光器的led灯的电源
US9543845B2 (en) * 2013-10-15 2017-01-10 Power Integrations, Inc. Generating a control signal based on leading edge dimming detection for maintaining input current of a power converter
JP6195199B2 (ja) * 2014-04-03 2017-09-13 パナソニックIpマネジメント株式会社 調光装置
US9629207B2 (en) 2014-09-15 2017-04-18 Dialog Semiconductor Inc. Solid state lamp control
US9332614B2 (en) * 2014-09-29 2016-05-03 Power Integrations, Inc. LED driver circuit with open load detection
US9572224B2 (en) * 2014-11-07 2017-02-14 Power Integrations, Inc. Bleeder protection using thermal foldback
US9392658B2 (en) * 2014-12-09 2016-07-12 Acuity Brands Lighting, Inc. Skip-phase wireless dimmer for solid-state lighting
US9883560B2 (en) * 2015-09-25 2018-01-30 Osram Sylvania Inc. Controller for a phase cut dimmable LED driver
US9907132B2 (en) * 2015-10-29 2018-02-27 Abl Ip Holding Llc Lighting control system for independent adjustment of color and intensity
US10531531B2 (en) * 2016-01-06 2020-01-07 Dialog Semiconductor Inc. Digital dimming solution for LED applications including a phase-cut dimmer
US9655178B1 (en) * 2016-02-03 2017-05-16 Ketra, Inc. Device and method for removing transient and drift from an AC main supplied to a DC-controlled LED load
US20190132921A1 (en) * 2017-10-31 2019-05-02 Fulham Company Limited Led dimming using switch mode power supply control loop parameter modification

Also Published As

Publication number Publication date
CA3114573A1 (fr) 2018-06-07
CA2950054A1 (fr) 2018-05-30
WO2018098583A1 (fr) 2018-06-07
EP3549404A1 (de) 2019-10-09
EP3549404A4 (de) 2020-05-27
US20200008278A1 (en) 2020-01-02
US11723125B2 (en) 2023-08-08
CA3045546A1 (fr) 2018-06-07
CA3045546C (fr) 2021-05-11

Similar Documents

Publication Publication Date Title
EP3549404B1 (de) Verfahren und system für einen flackerfreien lichtdimmer in einem stromverteilungsnetz
RU2606387C2 (ru) Блок управления мощностью и способ управления электрической мощностью, выдаваемой на нагрузку, в частности в блок светоизлучающих диодов и блок управления напряжением, для управления выходным напряжением блока преобразователя
RU2638958C2 (ru) Схемное устройство и сид лампа, содержащая это схемное устройство
RU2665463C2 (ru) Устройство возбуждения и способ возбуждения для возбуждения нагрузки, в частности блока сид, содержащего один или более сид
US8988002B2 (en) Lighting power supply device and method for controlling holding current
TWI489911B (zh) 可全相位啟動三極交流開關之主動洩流電路及使用該主動洩流電路之發光元件電源供應電路與三極交流開關控制方法
US9451663B2 (en) Apparatus for driving light emitting diode
EP2878171B1 (de) Aktiver wärmeschutz für schalter
US8872444B2 (en) Lighting device for solid-state light source and illumination apparatus including same
US20190208597A1 (en) Apparatus, dimmable light emitting diode drive circuit and control method
US20140346959A1 (en) Circuit Arrangement and Method for Operating an LED Chain on AC Voltage
TW201524261A (zh) 電容降壓式發光二極體驅動器及其電容降壓式發光二極體驅動方法
CN103975650A (zh) Led调光器兼容性的系统和方法
WO2015161091A1 (en) Systems and methods for minimizing power dissipation in a low-power lamp coupled to a trailing-edge dimmer
CN106714411B (zh) 开关调光电路
RU2697830C2 (ru) Схема драйвера и способ возбуждения
WO2019238707A1 (fr) Convertisseur ac-dc
CN106162990A (zh) Led照明装置及其工作方法
KR101512089B1 (ko) 전력변환장치용 출력전류 제어회로
KR101752444B1 (ko) 교류 발광 장치를 위한 조광 장치
JP2011113958A (ja) 容量性リアクタンス素子と突入電流防止回路を組み合わせた高効率な交流led点灯回路
US20240032175A1 (en) Method and system for reducing flickering-of lamps powered by an electricity distribution network
EP2704303B1 (de) Kondensatorladeschaltung fuer Phasenanschnittsteuerung
JP2019207833A (ja) 照明用電源装置
WO2016008141A1 (en) Adaptive power balancing in led lamps

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190628

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602017044487

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H05B0033080000

Ipc: G01J0001440000

A4 Supplementary search report drawn up and despatched

Effective date: 20200424

RIC1 Information provided on ipc code assigned before grant

Ipc: H05B 45/315 20200101ALI20200420BHEP

Ipc: H05B 45/50 20200101ALI20200420BHEP

Ipc: H05B 45/12 20200101ALI20200420BHEP

Ipc: G01J 1/44 20060101AFI20200420BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210316

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017044487

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

Ref country code: AT

Ref legal event code: REF

Ref document number: 1422048

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210915

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210818

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1422048

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211118

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211220

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017044487

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602017044487

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20220519

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818