EP3548811A1 - Heissluftpistole - Google Patents

Heissluftpistole

Info

Publication number
EP3548811A1
EP3548811A1 EP17768438.8A EP17768438A EP3548811A1 EP 3548811 A1 EP3548811 A1 EP 3548811A1 EP 17768438 A EP17768438 A EP 17768438A EP 3548811 A1 EP3548811 A1 EP 3548811A1
Authority
EP
European Patent Office
Prior art keywords
temperature
hot air
air
gun according
measuring tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17768438.8A
Other languages
English (en)
French (fr)
Inventor
Mats Holgersson
Arne Edvardsson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isaberg Rapid AB
Original Assignee
Isaberg Rapid AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isaberg Rapid AB filed Critical Isaberg Rapid AB
Publication of EP3548811A1 publication Critical patent/EP3548811A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/04Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • F24H3/0405Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between
    • F24H3/0423Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between hand-held air guns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0003Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiant heat transfer of samples, e.g. emittance meter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/025Interfacing a pyrometer to an external device or network; User interface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0265Handheld, portable
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0808Convex mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0818Waveguides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0893Arrangements to attach devices to a pyrometer, i.e. attaching an optical interface; Spatial relative arrangement of optical elements, e.g. folded beam path

Definitions

  • the invention relates to a hot air gun according to the preamble of claim 1.
  • Hot air guns are used for targeted heating of a workpiece, for example, to deform this or to weld with another workpiece to apply a film on the workpiece or remove it or to dry the workpiece or accelerate chemical processes.
  • the hot air gun has a housing in which a hot air device is arranged, which sucks in ambient air via an air inlet in the housing, these heated and passed through an air duct via an air outlet to the workpiece.
  • Typical hot air temperatures are in the range of some 100 ° C.
  • the actual temperature achieved at the surface of the workpiece is not only dependent on the temperature of the hot air and the air flow, but also to a great extent on the distance between the air outlet and the surface of the workpiece.
  • a user of the hot air gun must therefore develop in practice a good sense of how hot and how strong he adjusts the hot air flow and at what distance from the workpiece he holds the hot air gun, on the one hand to achieve the desired effect and on the other hand, the workpiece with not one high temperature to apply and thereby damage.
  • the radiated from the workpiece infrared radiation is a good measure of its temperature.
  • the invention is based on the idea with the arrangement of a measuring tube in the air duct, at the rear end of the temperature sensor is arranged to judge the latter with high accuracy on the impingement of the hot air jet.
  • the measuring tube is advantageously aligned parallel to a longitudinal direction of the air channel.
  • the measuring tube is arranged at a distance from an inner surface of the housing delimiting the air duct and ideally in the middle in the air duct.
  • an inner circumferential surface of the measuring tube is a reflecting surface, for example a polished metal surface. Reflecting metal surfaces emit only little heat radiation, so that the temperature of the measuring tube has little influence on the measurement result.
  • a reflecting surface for example a polished metal surface. Reflecting metal surfaces emit only little heat radiation, so that the temperature of the measuring tube has little influence on the measurement result.
  • September 14, 2017 tallober Structure is in particular chromium or a chromium-containing metal or a chromium alloy into consideration.
  • the hot air device comprises a heating unit for heating the air and an air flow unit for generating the air flow, wherein the air flow unit is usually designed as a fan.
  • the heating unit is arranged closer to the air outlet than the temperature sensor, so that only unheated ambient air is conducted past it. This avoids unnecessary heating of the temperature sensor.
  • the temperature measuring device has an evaluation unit for determining the deviation of the temperature measured by the temperature sensor from a predefined setpoint temperature, and display means are provided for visually displaying the determined deviation. The user is then directly displayed whether the actual temperature reached corresponds to the desired preset target temperature or whether the heat output and / or the distance of the air outlet from the workpiece must be changed.
  • a selection element for selecting a temperature measured by the temperature sensor can be provided as the predetermined setpoint temperature.
  • the user can then apply the heat gun until he sees that the desired effect, such as peeling off a film, occurs. He then actuates the selection element, so that the temperature measured in this moment by the temperature sensor is selected as the predetermined set temperature.
  • the display means then help the user to keep this temperature approximately constant.
  • An automatic temperature control by means of a control device is possible. Parameters such as air flow and heat output for controlling the temperature are set automatically.
  • the predetermined setpoint temperature can be entered by means of an input unit, for example as a value in ° C.
  • Fig. 1 is a hot air gun in perspective view
  • the hot air gun 10 shown in the drawing has a housing 12 with a handle 14.
  • the housing 12 also has in its rear region an air inlet 16, which is partially on the visible in Fig. 1 right side, partially symmetrical thereto on the left side, and an air outlet 18 at its front end.
  • an air duct 20 in which a hot air device 22 is arranged, which serves to suck in ambient air through the air inlet 16, to heat them and then the hot air through the air outlet 18 to a workpiece to be heated to blow.
  • the heating air device 22 accordingly has a fan 24 and a heating unit 26.
  • the fan 24 serves to generate the air flow in the air duct 20, while the heating unit 26 serves to heat the air flowing past it.
  • a measuring tube 28 is arranged, whose front end 30 is open to the air outlet 18 and is arranged at a distance from the air outlet 18, so that it is located in the air duct 20.
  • an infrared temperature sensor or pyrometer 34 is disposed at the rear end, which is part of a arranged on a printed circuit board 32 temperature measuring device 36.
  • the inner circumferential surface 38 of the measuring tube 28 consists of a polished layer of chromium or chromium-containing metal and is thus mirrored.
  • the measuring tube 28 is arranged centrally in the air channel 20, so that its central longitudinal axis coincides with the central longitudinal axis of the air channel 20.
  • the temperature sensor 34 arranged centrally at the rear end 32 of the measuring tube 28 can only or predominantly receive radiation from a surface to be heated by the hot air, as illustrated by the detection region 42 shown by way of example in the drawing.
  • the temperature measuring device 36 also has an evaluation unit which determines the difference between the temperature measured by the temperature sensor 34 and a predetermined desired temperature.
  • the setpoint temperature is predetermined by the user, for example, when he sees when he sees that the desired effect is set on the workpiece, presses a selection element in the form of a pushbutton 44.
  • a push button 44 is disposed on each side of the housing 12.
  • the hot air gun 10 has display means for displaying the measured temperature.
  • a lighting unit 46 arranged on the printed circuit board 32, which illustrates for the user the deviation between the temperature measured by the temperature sensor 34 and the setpoint temperature: If the measured temperature lies within a tolerance range around the predetermined temperature, the lighting unit 46 directs a green light beam on the workpiece while emitting a red light beam when the measured temperature is too high or a blue light beam when the measured temperature is too low. Furthermore, the display means on a display 48, which displays the temperature, for example in ° C. In addition, an automatic control of the temperature by means of a control device to which the measured temperature is transmitted. This measures the temperature in the air flow and regulates the heat supply and the speed of the air flow as a function of the air temperature, the temperature measured on the workpiece and the setpoint temperature. In addition, the temperature of the measuring tube 28 can be measured, and the proportion of the infrared radiation emitted by the measuring tube 28 can be subtracted from the radiation detected by the temperature sensor 34.
  • the invention relates to a hot air gun 10 having a housing 12 opening into an air outlet 18 air duct 20 housing 12 with a arranged in the housing 12 hot air device 22 for generating a hot air flow and for supplying the hot air flow through the air duct 20 via the air outlet 18th to a workpiece and to a temperature measuring device 36 having a temperature sensor 34 for non-contact measurement of a surface temperature of the workpiece.
  • September 14, 2017 measure is provided that in the air duct 20, a measuring tube 28 is arranged, the front end 30 is open and the air outlet 18 faces and in which at its rear end 32 of the temperature sensor 34 is arranged.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Coating Apparatus (AREA)
  • Radiation Pyrometers (AREA)

Abstract

Die Erfindung betrifft eine Heißluftpistole (10) mit einem einen in einen Luftauslass (18) mündenden Luftkanal (20) aufweisenden Gehäuse (12), mit einer im Gehäuse (12) angeordneten Heißlufteinrichtung (22) zur Erzeugung eines Heißluftstroms und zur Zuleitung des Heißluftstroms durch den Luftkanal (20) über den Luftauslass (18) zu einem Werkstück und mit einer Temperaturmesseinrichtung (36) mit einem Temperatursensor (34) zum berührungslosen Messen einer Oberflächentemperatur des Werkstücks. Erfindungsgemäß ist vorgesehen, dass im Luftkanal (20) ein Messrohr (28) angeordnet ist, dessen vorderes Ende (30) offen ist und dem Luftauslass (18) zugewandt ist und in dem an seinem hinteren Ende (32) der Temperatursensor (34) angeordnet ist.

Description

Isaberq Rapid AB, Box 1 15, 33027 Hestra, Schweden Heißluftpistole
Die Erfindung betrifft eine Heißluftpistole gemäß Oberbegriff des Anspruchs 1 .
Heißluftpistolen dienen der gezielten Erwärmung eines Werkstücks, beispielsweise um dieses zu verformen oder mit einem anderen Werkstück zu verschweißen, um eine Folie auf das Werkstück aufzubringen oder von ihm zu entfernen oder das Werkstück zu trocknen oder chemische Prozesse zu beschleunigen. Die Heißluftpistole weist ein Gehäuse auf, in dem eine Heißlufteinrichtung angeordnet ist, die über einen Lufteinlass im Gehäuse Umgebungsluft ansaugt, diese erwärmt und durch einen Luftkanal über einen Luftauslass auf das Werkstück leitet. Typische Heißlufttemperaturen liegen im Bereich einiger 100° C. Dabei ist die tatsächlich an der Oberfläche des Werkstücks erzielte Temperatur nicht nur von der Temperatur der Heißluft und der Luftdurchflußmenge abhängig, sondern auch in hohem Maße vom Abstand zwischen dem Luftauslass und der Oberfläche des Werkstücks. Ein Benutzer der Heißluftpistole muss daher in der Praxis ein gutes Gefühl dafür entwickeln, wie heiß und wie stark er den Heißluftstrom einstellt und in welcher Entfernung vom Werkstück er die Heißluftpistole hält, um einerseits den gewünschten Effekt zu erzielen und andererseits das Werkstück nicht mit einer zu hohen Temperatur zu beaufschlagen und dadurch zu beschädigen. Hier wurde bereits versucht, Abhilfe zu schaffen, indem außen auf das Gehäuse eine Temperaturmesseinrichtung aufgesetzt wird, wie beispielsweise ein Infrarot- Sensor bzw. Pyrometer. Die vom Werkstück abgestrahlte Infrarot-Strahlung ist ein gutes Maß für seine Temperatur. Bei solchen Heißluftpistolen, wie sie beispielsweise aus der DE 20 2012 102 739 U1 bekannt sind, besteht jedoch die Schwie-
P 60263/PCT
14. September 2017 rigkeit, die Temperatur genau am Ort des Auftreffens des Luftstrahls zu messen. Hierfür muss der Sensor genau auf die Stelle gerichtet werden, an der auch der Luftstrahl auftrifft, was wiederum eine aufwendige Handhabung nach sich zieht. Eine genaue Messung an der Auftreffstelle ist nur möglich, wenn die Heißluftpistole in einer bestimmten Entfernung zum Werkstück gehalten wird, da der Sensor bezüglich des Luftkanals fest justiert ist.
Es ist daher Aufgabe der Erfindung, eine Heißluftpistole der eingangs genannten Art derart weiterzubilden, dass das zu erhitzende Werkstück präziser mit der gewünschten Temperatur beaufschlagt werden kann.
Diese Aufgabe wird erfindungsgemäß durch eine Heißluftpistole mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der abhängigen Ansprüche.
Der Erfindung liegt der Gedanke zugrunde, mit der Anordnung eines Messrohrs im Luftkanal, an dessen hinterem Ende der Temperatursensor angeordnet ist, letzteren mit hoher Genauigkeit auf die Auftrefffläche des Heißluftstrahls zu richten. Je länger das Messrohr und je kürzer die Entfernung zwischen dem Luftaus- lass und der Oberfläche des Werkstücks ist, desto genauer kann der Temperatursensor die tatsächliche Temperatur der Oberfläche anhand der von ihr abgestrahlten und empfangenen Strahlung messen, da er dann keine Strahlung oder nur Strahlung mit geringer Intensität von nicht erwärmten Oberflächenbereichen empfängt. Zu diesem Zweck ist das Messrohr vorteilhaft parallel zu einer Längsrichtung des Luftkanals ausgerichtet. Insbesondere ist es vorteilhaft, wenn das Messrohr im Abstand zu einer den Luftkanal begrenzenden Innenfläche des Gehäuses und idealerweise mittig im Luftkanal angeordnet ist.
Es wird bevorzugt, dass eine innere Mantelfläche des Messrohrs eine spiegelnde Fläche ist, beispielsweise eine polierte Metalloberfläche. Spiegelnde Metalloberflächen emittieren nur wenig Wärmestrahlung, so dass die Temperatur des Messrohrs wenig Einfluss auf das Messergebnis hat. Als Material für die polierte Me-
P 60263/PCT
14. September 2017 talloberfläche kommt insbesondere Chrom oder ein chromhaltiges Metall bzw. eine Chromlegierung in Betracht.
Typischerweise weist die Heißlufteinrichtung eine Heizeinheit zum Beheizen der Luft und eine Luftstromeinheit zum Erzeugen des Luftstroms auf, wobei die Luftstromeinheit meist als Ventilator ausgebildet ist. Vorzugsweise ist die Heizeinheit näher am Luftauslass angeordnet als der Temperatursensor, so dass an diesem lediglich unbeheizte Umgebungsluft vorbeigeleitet wird. Damit wird ein unnötiges Aufheizen des Temperatursensors vermieden.
Zweckmäßig weist die Temperaturmesseinrichtung eine Auswerteeinheit zur Ermittlung der Abweichung der vom Temperatursensor gemessenen Temperatur von einer vorgegebenen Solltemperatur auf und es sind Anzeigemittel zur visuellen Darstellung der ermittelten Abweichung vorgesehen. Dem Benutzer wird dann direkt angezeigt, ob die tatsächlich erreichte Temperatur der gewünschten vorgegebenen Solltemperatur entspricht oder ob die Heizleistung und/oder der Abstand des Luftauslasses vom Werkstück geändert werden muss. Zudem kann ein Auswahlelement zum Auswählen einer vom Temperatursensor gemessenen Temperatur als vorgegebene Solltemperatur vorgesehen sein. Der Benutzer kann dann die Heißluftpistole anwenden, bis er sieht, dass der gewünschte Effekt, beispielsweise das Ablösen einer Folie, eintritt. Sodann betätigt er das Auswahlelement, so dass die in diesem Moment vom Temperatursensor gemessene Temperatur als vorgegebene Solltemperatur ausgewählt wird. Die Anzeigemittel helfen dem Benutzer dann, diese Temperatur ungefähr konstant zu halten. Auch eine automatische Temperaturregelung mittels einer Regeleinrichtung ist möglich. Dabei werden Parameter wie Luftstrom und Heizleistung zur Regelung der Temperatur automatisch eingestellt. Die vorgegebene Solltemperatur kann mittels einer Eingabeeinheit eingegeben werden, beispielsweise als Wert in ° C.
Im Folgenden wird die Erfindung anhand eines in der Zeichnung schematisch dargestellten Ausführungsbeispiels näher erläutert. Es zeigen
Fig. 1 eine Heißluftpistole in perspektivischer Ansicht und
P 60263/PCT
14. September 2017 Fig. 2 die Heißluftpistole gemäß Fig. 1 im Längsschnitt.
Die in der Zeichnung dargestellte Heißluftpistole 10 weist ein Gehäuse 12 mit einem Handgriff 14 auf. Das Gehäuse 12 weist zudem in seinem hinteren Bereich einen Lufteinlass 16 auf, der sich teilweise auf der in Fig. 1 sichtbaren rechten Seite, teilweise symmetrisch hierzu auf der linken Seite befindet, sowie einen Luftauslass 18 an seinem vorderen Ende. Zwischen dem Lufteinlass 16 und dem Luftauslass 18 erstreckt sich ein Luftkanal 20, in dem eine Heißlufteinrichtung 22 angeordnet ist, die dazu dient, Umgebungsluft über den Lufteinlass 16 anzusaugen, sie zu erhitzen und die heiße Luft dann durch den Luftauslass 18 auf ein zu erhitzendes Werkstück zu blasen. Die Heizlufteinrichtung 22 weist demgemäß einen Ventilator 24 und eine Heizeinheit 26 auf. Der Ventilator 24 dient der Erzeugung des Luftstroms im Luftkanal 20, während die Heizeinheit 26 der Erwärmung der an ihr vorbeiströmenden Luft dient.
Im Luftkanal 20 ist ein Messrohr 28 angeordnet, dessen vorderes Ende 30 zum Luftauslass 18 offen ist und im Abstand zum Luftauslass 18 angeordnet ist, so dass es sich im Luftkanal 20 befindet. Im Messrohr 28 ist am hinteren Ende ein Infrarot-Temperatursensor bzw. Pyrometer 34 angeordnet, der Teil einer auf einer Leiterplatte 32 angeordneten Temperaturmesseinrichtung 36 ist. Die innere Mantelfläche 38 des Messrohrs 28 besteht aus einer polierten Schicht aus Chrom o- der chromhaltigem Metall und ist dadurch verspiegelt. Das Messrohr 28 ist mittig im Luftkanal 20 angeordnet, so dass seine Mittellängsachse mit der Mittellängsachse des Luftkanals 20 zusammenfällt. Es ist somit rings über seinen gesamten Umfang im selben Abstand von einer den Luftkanal 20 begrenzenden Innenfläche 40 des Gehäuses 12 angeordnet. Durch diese Maßnahmen wird erreicht, dass der mittig am hinteren Ende 32 des Messrohrs 28 angeordnete Temperatursensor 34 nur oder überwiegend Strahlung von einer durch die Heißluft beaufschlagten Oberfläche eines zu erhitzenden Werkstücks empfangen kann, wie durch den beispielhaft in der Zeichnung dargestellten Erfassungsbereich 42 veranschaulicht.
P 60263/PCT
14. September 2017 Die Temperaturmesseinnchtung 36 weist zudem eine Auswerteeinheit auf, die die Differenz zwischen der vom Temperatursensor 34 gemessenen Temperatur und einer vorgegebenen Solltemperatur ermittelt. Die Solltemperatur wird vom Benutzer vorgegeben, indem dieser beispielsweise dann, wenn er sieht, dass sich am Werkstück der gewünschte Effekt einstellt, ein Auswahlelement in Form eines Druckknopfs 44 drückt. Beim hier gezeigten Ausführungsbeispiel ist auf jeder Seite des Gehäuses 12 ein Druckknopf 44 angeordnet. Zudem weist die Heißluftpistole 10 Anzeigemittel für die Anzeige der gemessenen Temperatur auf. Diese weisen eine auf der Leiterplatte 32 angeordnete Beleuchtungseinheit 46 auf, die für den Benutzer die Abweichung zwischen der vom Temperatursensor 34 gemessenen Temperatur und der Solltemperatur veranschaulicht: Liegt die gemessene Temperatur in einem Toleranzbereich um die vorgegebene Temperatur, so richtet die Beleuchtungseinheit 46 einen grünen Lichtstrahl auf das Werkstück, während sie einen roten Lichtstrahl aussendet, wenn die gemessene Temperatur zu hoch ist bzw. einen blauen Lichtstrahl, wenn die gemessene Temperatur zu niedrig ist. Des weiteren weisen die Anzeigemittel ein Display 48 auf, das die Temperatur beispielsweise in ° C anzeigt. Zudem kann eine automatische Regelung der Temperatur mittels einer Regeleinrichtung erfolgen, an die die gemessene Temperatur übermittelt wird. Diese misst die Temperatur im Luftstrom und regelt die Wärmezufuhr und die Geschwindigkeit des Luftstroms in Abhängigkeit von der Lufttemperatur, der am Werkstück gemessenen Temperatur und der Solltemperatur. Zudem kann die Temperatur des Messrohrs 28 gemessen werden, und es kann der Anteil der vom Messrohr 28 emittierten Infrarot-Strahlung von der vom Temperatursensor 34 ermittelten Strahlung abgezogen werden.
Zusammenfassend ist folgendes festzuhalten: Die Erfindung betrifft eine Heißluftpistole 10 mit einem einen in einen Luftauslass 18 mündenden Luftkanal 20 aufweisenden Gehäuse 12, mit einer im Gehäuse 12 angeordneten Heißlufteinrichtung 22 zur Erzeugung eines Heißluftstroms und zur Zuleitung des Heißluftstroms durch den Luftkanal 20 über den Luftauslass 18 zu einem Werkstück und mit einer Temperaturmesseinrichtung 36 mit einem Temperatursensor 34 zum berührungslosen Messen einer Oberflächentemperatur des Werkstücks. Erfindungsge-
P 60263/PCT
14. September 2017 maß ist vorgesehen, dass im Luftkanal 20 ein Messrohr 28 angeordnet ist, dessen vorderes Ende 30 offen ist und dem Luftauslass 18 zugewandt ist und in dem an seinem hinteren Ende 32 der Temperatursensor 34 angeordnet ist.
P 60263/PCT
14. September 2017

Claims

Ansprüche
Heißluftpistole mit einem einen in einen Luftauslass (18) mündenden Luftkanal (20) aufweisenden Gehäuse (12), mit einer im Gehäuse (12) angeordneten Heißlufteinrichtung (22) zur Erzeugung eines Heißluftstroms und zur Zuleitung des Heißluftstroms durch den Luftkanal (20) über den Luftauslass (18) zu einem Werkstück und mit einer Temperaturmesseinrichtung (36) mit einem Temperatursensor (34) zum berührungslosen Messen einer Oberflächentemperatur des Werkstücks, dadurch gekennzeichnet, dass im Luftkanal (20) ein Messrohr (28) angeordnet ist, dessen vorderes Ende (30) offen ist und dem Luftauslass (18) zugewandt ist und in dem an seinem hinteren Ende (32) der Temperatursensor (34) angeordnet ist.
Heißluftpistole nach Anspruch 1 , dadurch gekennzeichnet, dass das Messrohr (28) parallel zu einer Längsrichtung des Luftkanals (20) ausgerichtet ist.
Heißluftpistole nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Messrohr (28) im Abstand zu einer den Luftkanal (20) begrenzenden Innenfläche (40) des Gehäuses (12) angeordnet ist.
Heißluftpistole nach Anspruch 3, dadurch gekennzeichnet, dass das Messrohr (28) mittig im Luftkanal (20) angeordnet ist.
P 60263/PCT
14. September 2017
5. Heißluftpistole nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass eine innere Mantelfläche (38) des Messrohrs (28) eine spiegelnde Fläche ist.
6. Heißluftpistole nach Anspruch 5, dadurch gekennzeichnet, dass die spiegelnde Fläche eine polierte Metalloberfläche, insbesondere aus Chrom oder einem chromhaltigen Metall, aufweist.
7. Heißluftpistole nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Heißlufteinrichtung (22) eine Heizeinheit (26) zum Beheizen der Luft und eine Luftstromeinheit (24) zum Erzeugen des Luftstroms aufweist und dass die Heizeinheit (26) näher am Luftauslass (18) angeordnet ist als der Temperatursensor (34).
8. Heißluftpistole nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Temperaturmesseinrichtung (36) eine Auswerteeinheit zur Ermittlung der Abweichung der vom Temperatursensor (34) gemessenen Temperatur von einer vorgegebenen Solltemperatur aufweist und dass Anzeigemittel (46, 48) zur visuellen Darstellung der ermittelten Abweichung vorgesehen sind.
9. Heißluftpistole nach Anspruch 8, gekennzeichnet durch ein Auswahlelement (44) zum Auswählen einer vom Temperatursensor (34) gemessenen Temperatur als vorgegebene Solltemperatur.
10. Heißluftpistole nach Anspruch 8 oder 9, gekennzeichnet durch eine Regeleinrichtung zum automatischen Einregeln der gemessenen Temperatur auf die vorgegebene Solltemperatur.
P 60263/PCT
14. September 2017
EP17768438.8A 2016-12-02 2017-09-14 Heissluftpistole Withdrawn EP3548811A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016014334.7A DE102016014334A1 (de) 2016-12-02 2016-12-02 Heißluftpistole
PCT/EP2017/073166 WO2018099622A1 (de) 2016-12-02 2017-09-14 Heissluftpistole

Publications (1)

Publication Number Publication Date
EP3548811A1 true EP3548811A1 (de) 2019-10-09

Family

ID=59895308

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17768438.8A Withdrawn EP3548811A1 (de) 2016-12-02 2017-09-14 Heissluftpistole

Country Status (4)

Country Link
EP (1) EP3548811A1 (de)
CN (1) CN109952475A (de)
DE (1) DE102016014334A1 (de)
WO (1) WO2018099622A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107655206B (zh) * 2017-08-21 2020-09-15 浙江普莱得电器有限公司 一种可检测温度的热风枪
GB2614275A (en) * 2021-12-23 2023-07-05 Dyson Technology Ltd Haircare appliance

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69514702T2 (de) * 1994-03-16 2000-07-27 Philips Electronique Lab Erhitzer mit erzwungener Luftströmung mit Infrarot-Aufnehmer
JP3805039B2 (ja) * 1996-11-14 2006-08-02 シチズン時計株式会社 放射体温計
US20080144696A1 (en) * 2006-12-13 2008-06-19 Diversified Dynamics Corporation Heat gun with infrared surface thermometer
US20080181590A1 (en) * 2007-01-30 2008-07-31 Master Appliance Corp. Heating device and method
DE202012102739U1 (de) 2012-06-15 2013-09-17 Steinel Gmbh Messeinrichtung, deren Verwendung sowie Heißluftgebläse mit Messeinrichtung
CN103406630A (zh) * 2013-07-15 2013-11-27 吴江市同心电子科技有限公司 一种电烙铁
US20150125798A1 (en) * 2013-11-06 2015-05-07 Michael S. Swanick Adapter to Use Heat Gun to Start Pellet Burner
CN104534649A (zh) * 2014-12-31 2015-04-22 西安泰力松新材料股份有限公司 一种热风枪及热风枪系统

Also Published As

Publication number Publication date
CN109952475A (zh) 2019-06-28
WO2018099622A1 (de) 2018-06-07
DE102016014334A1 (de) 2018-06-07

Similar Documents

Publication Publication Date Title
EP2674735B1 (de) Messeinrichtung sowie Heißluftgebläse mit der Messeinrichtung
DE2834618A1 (de) Anordnung und verfahren zum messen der oberflaechentemperatur eines heissen gegenstands in einem ofen
DE102007035609B4 (de) Verfahren zur optischen Kontrolle des Verlaufs von einem auf einer Oberfläche eines Körpers erfolgenden physikalischen und/oder chemischen Prozesses
DE2515807C3 (de)
EP3548811A1 (de) Heissluftpistole
DE1953835A1 (de) Vorrichtung fuer die Kryochirurgie
EP1500920B1 (de) Kalibrierung von Temperatursensoren von Bewitterungsgeräten durch kontaktlose Temperaturmessung
DE102013109887A1 (de) Handgerät und Verfahren zur Plasmabehandlung
DE2515807B2 (de) Verfahren zum kalzinieren von feuchtem erdoelkoks
DE2627254C3 (de) Verfahren zur Messung oder Regelung der Temperatur eines Graphitrohres
EP2262590A1 (de) Lackieranlage mit einer messzelle zur schichtdickenmessung
DE102017205208A1 (de) Vorrichtung und Verfahren zum Beschichten eines Werkstücks
DE102010005042B3 (de) IR-Temperaturmesseinrichtung und Verfahren zur Bestimmung der tatsächlichen Lage eines Messflecks einer IR-Temperaturmesseinrichtung
DE19639993C2 (de) Vorrichtung zum berührungslosen, selektiven Ein- oder Auslöten von Bauelementen
DE102014008472A1 (de) Verfahren zum Nachverbrennen der Abluft einer Trocknungsanlage, insbesondere einer Kraftfahrzeug-Trocknungsanlage, sowie Vorrichtung zum Nachverbrennen der Abluft einer Trocknungsanlage
EP2817121A1 (de) VERFAHREN UND VORRICHTUNG ZUM ÜBERWACHEN DES SCHUTZGASES BEI EINEM SCHWEIßPROZESS
EP3042743A1 (de) Verfahren zur bearbeitung von werkstücken, insbesondere kantenbändern, und vorrichtung zur durchführung des verfahrens
US20190152159A1 (en) Upconversion In Fiber Or Dummy Part For Simultaneous Laser Plastics Welding
DE202015101107U1 (de) Vorrichtung zur Messung der Sprühcharakteristik einer oder mehrerer Sprühdüsen
EP2573481A2 (de) Pyrometrische Messeinrichtung, deren Verwendung sowie Heißluftgebläse mit pyrometrischer Messeinrichtung
EP1584893A1 (de) Verfahren zur Ermittlung und Korrektur bzw. Regelung des Verlaufs eines laserlichtstrahls in einem Hohlkörper
DE10051169B4 (de) Handgeführte Bestrahlungseinrichtung und thermisches Bearbeitungsverfahren
DE102008048262B4 (de) Verfahren und Vorrichtung zur Bestimmung des Einschmelzgrads einer thermisch gespritzten Oberfläche sowie Verfahren und Vorrichtung zum automatischen Einschmelzen einer thermisch gespritzten Oberfläche
DE202018103693U1 (de) Infrarotthermometer
DE10309855B3 (de) Prüfkörper, Verwendung des Prüfkörpers und Polymerisationsgerät

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190320

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200909

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210120