EP3548200B1 - Amino acid-containing moulding material mixture for production of mouldings for the foundry industry - Google Patents

Amino acid-containing moulding material mixture for production of mouldings for the foundry industry Download PDF

Info

Publication number
EP3548200B1
EP3548200B1 EP17823037.1A EP17823037A EP3548200B1 EP 3548200 B1 EP3548200 B1 EP 3548200B1 EP 17823037 A EP17823037 A EP 17823037A EP 3548200 B1 EP3548200 B1 EP 3548200B1
Authority
EP
European Patent Office
Prior art keywords
material mixture
formaldehyde
binder system
mold material
furfuryl alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17823037.1A
Other languages
German (de)
French (fr)
Other versions
EP3548200A1 (en
Inventor
Jaime DÍAZ FERNÁNDEZ
Wolfgang Seelbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huettenes Albertus Chemische Werke GmbH
Original Assignee
Huettenes Albertus Chemische Werke GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huettenes Albertus Chemische Werke GmbH filed Critical Huettenes Albertus Chemische Werke GmbH
Priority to PL17823037T priority Critical patent/PL3548200T3/en
Publication of EP3548200A1 publication Critical patent/EP3548200A1/en
Application granted granted Critical
Publication of EP3548200B1 publication Critical patent/EP3548200B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/22Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins
    • B22C1/2233Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • B22C1/224Furan polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/22Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins
    • B22C1/2233Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • B22C1/2246Condensation polymers of aldehydes and ketones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/22Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins
    • B22C1/2233Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • B22C1/2246Condensation polymers of aldehydes and ketones
    • B22C1/2253Condensation polymers of aldehydes and ketones with phenols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings

Definitions

  • the present invention relates to a molding material mixture for the production of moldings for the foundry industry, moldings for the foundry industry, a use of amino acids in a molding material mixture for producing moldings for the foundry industry or for producing moldings for the foundry industry, a method for producing a molding material mixture and a Process for the production of a molded body for the foundry industry.
  • molten materials, ferrous metals or non-ferrous metals are converted into shaped objects with certain workpiece properties.
  • very complicated casting molds for receiving the molten metal have to be produced.
  • the casting molds are divided into lost molds, which are destroyed after each casting, and permanent molds, each of which can be used to produce a large number of castings.
  • the lost molds usually consist of a refractory, pourable molding material that is solidified with the help of a hardenable binder.
  • Molds are negatives that contain the cavity to be poured, which results in the casting to be manufactured.
  • a model of the to finished casting the cavity is formed in the molding material.
  • Inner contours are represented by cores that are formed in a separate core box.
  • Both organic and inorganic binders which can be hardened by cold or hot processes, can be used to produce the casting molds.
  • Cold processes are processes in which curing takes place essentially at room temperature without heating the molding material mixture.
  • the hardening usually takes place through a chemical reaction, which can be triggered, for example, by passing a gaseous catalyst through the molding material mixture to be hardened or by adding a liquid catalyst to the molding material mixture.
  • hot processes the molding material mixture is heated to a sufficiently high temperature after molding, for example to drive off the solvent contained in the binder or to initiate a chemical reaction through which the binder is cured by crosslinking.
  • the production of the casting molds can proceed in such a way that the filler is first mixed with the binder system so that the grains of the refractory filler are coated with a thin film of the binder system.
  • the molding material mixture obtained from filler and binder system can then be introduced into a corresponding mold and, if necessary, compacted in order to achieve sufficient stability of the casting mold.
  • the casting mold is then cured. If the casting mold has at least reached a certain initial strength, it can be removed from the mold.
  • organic binders such as. B. polyurethane, furan resin, phenol or urea-formaldehyde resins are used, in which the curing of the binder takes place by adding a catalyst.
  • Processes in which the molding material mixture is cured by heat or by the subsequent addition of a catalyst have the advantage that the processing of the molding material mixture is not subject to any particular time restrictions.
  • the molding material mixture can initially be produced in larger quantities, which are then processed over a longer period of time, usually several hours.
  • the molding material mixture does not harden until after it has been molded, with the aim being to achieve a rapid reaction.
  • the casting mold can be removed from the mold immediately after it has hardened, so that short cycle times can be achieved.
  • no-bake binders are mostly used in the production of casting molds for large castings, for example engine blocks for marine diesel engines or large machine parts such as the hubs of rotors for wind power plants.
  • the refractory mold base material e.g. sand
  • a catalyst hardener
  • the binder is added and, by mixing, it is evenly distributed over the grains of the refractory mold base material that have already been coated with catalyst.
  • so-called continuous mixers are often used.
  • the resulting molding material mixture can then be shaped into a molded body. Since the binder and catalyst are evenly distributed in the molding material mixture, the curing takes place largely evenly, even with large moldings.
  • the refractory molding base material e.g. sand
  • the hardener can first be mixed with the binder and then the hardener added.
  • partial hardening or crosslinking of the binder can occur due to a partial, local excessively high concentration of the hardener, which would result in an inhomogeneous molding material.
  • the "classic" no-bake binders are often based on furan resins or phenolic resins or furan / phenolic resins. They are often offered as systems (kits), one component comprising a reactive furan resin or phenolic resin or furan / phenolic resin and the other component an acid, the acid acting as a catalyst for curing the reactive resin component.
  • Furan and phenolic resins show very good disintegration properties when cast.
  • the furan or phenolic resin decomposes under the action of heat from the liquid metal and the strength of the casting mold is lost. After casting, cores can therefore be removed from cavities, if necessary after previously shaking the casting.
  • Furfuryl alcohol can react with itself under acid catalysis and form a homopolymer.
  • furfuryl alcohol is generally not used on its own, but other compounds, such as formaldehyde, are added to the furfuryl alcohol and are polymerized into the resin. Further components can be added to the resins, which influence the properties of the resin, for example its elasticity. Melamine and urea can be added, for example, in order to still bind free formaldehyde.
  • Furan no-bake binders are usually produced by first generating precondensates from, for example, urea, formaldehyde and furfuryl alcohol under acidic conditions. These precondensates are then diluted with furfuryl alcohol.
  • urea and formaldehyde can react alone. This creates so-called UF resins ("urea formaldehyde” resins, "aminoplasts”). These are usually then diluted with furfuryl alcohol. Advantages of this production method are a higher flexibility / variability in the product range and lower costs, since the cold mixing processes are involved.
  • Resoles can also be used to produce furan / phenol no-bake binders. Resoles are made by polymerizing mixtures of phenol and formaldehyde. These resoles are then often diluted with a large amount of furfuryl alcohol.
  • Furan no-bake binders are hardened with an acid. This acid catalyzes the crosslinking of the reactive furan resin. It should be noted that the hardening can be controlled via the amount of acid, whereby the amount of acid required to set a hardening time depends on the binder and is influenced by factors such as the pH of the binder and the type of acid.
  • Aromatic sulfonic acids, phosphoric acid, methanesulfonic acid and sulfuric acid are often used as acids. In some special cases, combinations thereof are used, inter alia, in combination with other carboxylic acids. Certain "hardening moderators" can also be added to the furan no-bake binder.
  • Phenolic resins the second large group of acid-catalyzed curable no-bake binders, contain resols as reactive resin components, i.e. phenolic resins that have been produced with a molar excess of formaldehyde. Compared to furan resins, phenolic resins are less reactive and require strong sulfonic acids as catalysts.
  • Molding mixtures based on formaldehyde usually have very good properties.
  • phenol / furan / formaldehyde mixed resins, urea / formaldehyde resins and furan / formaldehyde resins are frequently used in the foundry industry.
  • U.S. 3,644,274 primarily relates to a no-bake process using certain mixtures of acid catalysts for curing furfuryl alcohol-formaldehyde-urea resins.
  • U.S. 3,806,491 relates to binders that can be used in the "no-bake" process.
  • the binders used there include products from the reaction of paraformaldehyde with certain ketones in a basic environment as well as furfuryl alcohol and / or furan resins.
  • U.S. 5,491,180 describes resin binders that are suitable for use in the no-bake process.
  • the binders used there are based on 2,5-bis (hydroxymethyl) furan or methyl or ethyl ethers of 2,5-bis (hydroxymethyl) furan, the binders containing 0.5 to 30% by weight of water and usually a high proportion of furfuryl alcohol.
  • EP 0 540 837 suggests low-emission, cold-curing binders based on furan resins and lignin from the Organosolv process.
  • the furan resins described there contain a high proportion of monomeric furfuryl alcohol.
  • EP 1 531 018 relates to no-bake foundry binder systems made from a furan resin and certain acid hardeners.
  • the binder systems described therein preferably comprise 60 to 80% by weight of furfuryl alcohol.
  • US 2016/0 158 828 A1 describes the production of casting molds using a rapid prototyping process.
  • the molding material mixtures described in the document can contain A) at least one refractory filler and B) a binder system, wherein the binder system can contain i) formaldehyde and ii) a thermoset, a saccharide, a synthetic polymer, a salt, a protein or an inorganic polymer .
  • EP 1 595 618 B1 describes a method for making a ceramic mask shape.
  • a casting slip containing ceramic particles, a binder and a liquefier is used to produce the mold.
  • the liquefier can be amino acids, ammonium polyacrylates or tri-acid carboxyls with alcohol groups.
  • the thermal insulation bodies described in the documents comprise mineral wool and a binder based on a formaldehyde-phenolic resin.
  • U.S. 3,296,666 A describes a method for making casting molds.
  • natural resins, rubber, proteins, carbohydrates or egg white are used as alternative binders to phenol-formaldehyde resins.
  • U.S. 5,320,157 A describes a process for producing a core, the molding material mixture used to produce the core containing gelatin as a binder.
  • DE 23 53 642 A1 discloses a binder based on phenol-formaldehyde condensation products for use in hot-setting molding compounds, in particular in foundry molding compounds by the shell molding process, the phenol-formaldehyde condensation product having an additional content of aminocarboxylic acids or aminosulfonic acids.
  • JP 3175045B discloses a phenol-formaldehyde binder for the shell molding process, the binder containing an amino acid or an alkali metal salt, alkaline earth metal salt, hydrochloride, sulfate, or alkyl ester of an amino acid as a disintegration promoter.
  • GB 1,075,619 A relates to a process for the production of molds and cores and a molding material mixture for this process.
  • the binder system In the production of moldings (such as feeders, foundry molds or cores) for the foundry industry, it is advantageous if the binder system has a high strength after curing. Good strengths are particularly important for the production of complex, thin-walled moldings and their safe handling.
  • the present invention was therefore based on the object of providing a molding material mixture which can be used to produce moldings for the foundry industry and which is distinguished by improved strength.
  • moldings for the foundry industry have an improvement in strength when they are produced from a molding material mixture according to the invention.
  • the addition of an amino acid to a binder system that has formaldehyde, a formaldehyde donor and / or precondensates from formaldehyde surprisingly improved the strength of the molded article produced from it, compared to molded articles made from molding mixtures of the same composition under identical conditions, but without the addition of an amino acid were manufactured.
  • moldings which are produced from a molding material mixture according to the invention are additionally distinguished by a lower content of free formaldehyde.
  • Formaldehyde has a pungent odor and is toxic in high concentrations. It is therefore advantageous if moldings have less free formaldehyde and no formaldehyde is released into the environment. Otherwise, there is a risk that the maximum workplace concentration (MAK) for formaldehyde will be exceeded, particularly when many shaped bodies are stored in a confined space.
  • MAK maximum workplace concentration
  • the emission of formaldehyde from a molding material mixture according to the invention before and during curing can surprisingly also be reduced by adding amino acids.
  • urea In order to reduce the concentration of free formaldehyde in molding mixtures or in moldings produced from the molding mixtures, urea has traditionally been used as a formaldehyde scavenger. Compared to urea, however, amino acids also have the advantage that the nitrogen content in the molding material mixture or in the molded articles produced therefrom can be reduced, since the amino acids according to the invention are more effective formaldehyde scavengers. In addition, when using urea, no significant improvement but rather a reduction in strength can be observed. In addition, when urea is used as a formaldehyde scavenger, it is not uncommon for reaction products to be formed that are not stable when mixed and lead to cloudiness and precipitation.
  • a binder In particular in iron and steel casting, especially in stainless steel casting, the lowest possible total nitrogen content is desirable, since nitrogen can lead to casting defects.
  • a binder For use in cast steel and gray cast iron, a binder should have the lowest possible total nitrogen content, since surface defects, for example so-called "pinholes" (pinholes), occur as casting defects due to a high nitrogen content.
  • the molded bodies for the foundry industry are feeders, foundry molds or cores for the foundry industry.
  • special sand includes natural mineral sands as well as sintered and melted products that are manufactured in granular form or converted into granular form by crushing, grinding and classifying processes, or inorganic mineral sands produced by other physico-chemical processes that are used as basic molding materials with conventional foundry binders for used in the manufacture of feeders, cores and molds.
  • a molding material mixture according to the invention is particularly preferred, the one, at least one of the several or all pourable, refractory fillers being selected from the group consisting of quartz sand, quartz sand, olivine sand, chromium-magnesite granules, aluminum silicates, in particular J-sand and kerphalite, heavy minerals, in particular chromite, zircon sand and R-sand, technical ceramics, in particular Cerabeads, chamotte, M-sand, Alodur, bauxite sand and silicon carbide, sands containing feldspar, andalusite sands, hollow spherical corundum, spheres made from fly ash, rice husk ash, expanded glasses, foam glasses, expanded perlites, core / shell particles, microspheres, fly ash and other special sands.
  • Molding material mixtures are preferred according to the invention, wherein the one, at least one of the several or all of the pourable, refractory fillers have an average particle diameter d50 in the range between 0.001 and 5 mm, preferably in the range from 0.01 to 3 mm, particularly preferably in the range from 0, 02 to 2.0 mm.
  • the mean particle diameter d50 is determined in accordance with DIN 66165-2, F and DIN ISO 3310-1.
  • Molding material mixtures are also preferred according to the invention, the ratio of the total mass of pourable, refractory fillers to the total mass of other constituents of the molding material mixture in the range from 100: 5 to 100: 0.1, preferably from 100: 3 to 100: 0.4, particularly preferred is from 100: 2 to 100: 0.6.
  • Molding material mixtures according to the invention are also preferred, the bulk density of a mixture of all solids in the molding material mixture being 100 g / L or greater, preferably 200 g / L or greater, particularly preferably 1000 g / L or greater.
  • the binder system is mixed with a hardener during the production of the moldings offset, which initiates the hardening of the binder.
  • the hardener is usually acids, preferably at least one organic or inorganic acid, particularly preferably an aromatic sulfonic acid (especially para-toluenesulfonic and / or xylene sulfonic acid), phosphoric acid, methanesulfonic acid, sulfuric acid, one or more carboxylic acids or mixtures thereof.
  • molding material mixtures according to the invention are particularly preferred, the binder system being thermally curable.
  • the binder additionally (a) phenols, in particular phenol, o-cresol, p-cresol, 3,5-xylenol or resorcinol, or precondensates of phenols, especially resols, and (b) furan derivatives and / or Furfuryl alcohol or precondensates from furan derivatives and / or furfuryl alcohol. This creates phenol / furfuryl alcohol / formaldehyde resin-bound molding materials during curing.
  • the binder system can be hardened to a phenol / furfuryl alcohol / formaldehyde resin, particularly preferably to a high-polymer and solid phenol / furfuryl alcohol / formaldehyde resin.
  • these systems are preferably cured by adding a hardener, the hardener being an organic or inorganic acid, particularly preferably an aromatic sulfonic acid (in particular para-toluene or xylene sulfonic acid or mixtures of para-toluene and xylene sulfonic acid), phosphoric acid, methanesulfonic acid, Sulfuric acid, one or more carboxylic acids or mixtures of the acids mentioned above.
  • a hardener being an organic or inorganic acid, particularly preferably an aromatic sulfonic acid (in particular para-toluene or xylene sulfonic acid or mixtures of para-toluene and xylene sulfonic acid), phosphoric acid, methanesulfonic acid, Sulfuric acid, one or more carboxylic acids or mixtures of the acids mentioned above.
  • the binder additionally comprises furan derivatives and / or furfuryl alcohol or precondensates of furan derivatives and / or furfuryl alcohol. This creates furfuryl alcohol / formaldehyde resin-bound molding materials during curing.
  • the binder system can thus be hardened to a furfuryl alcohol / formaldehyde resin, preferably hardenable to a high-polymer and solid furfuryl alcohol / formaldehyde resin.
  • Molding material mixtures according to the invention are particularly preferred, the binder additionally comprising i) urea or urea derivatives or precondensates of urea or urea derivatives and ii) furan derivatives and / or furfuryl alcohol or precondensates of furan derivatives and / or furfuryl alcohol.
  • the binder system can be hardened to a urea / furfuryl alcohol / formaldehyde resin, preferably to a highly polymeric and solid urea / furfuryl alcohol / formaldehyde resin.
  • these systems are preferably cured by heating in the presence of a latent hardener (warm box) or by adding a hardener, the hardener being an organic or inorganic acid, particularly preferably an aromatic sulfonic acid (in particular para-toluene or xylene sulfonic acid or mixtures of para Toluene and xylene sulfonic acid), phosphoric acid, methanesulfonic acid, sulfuric acid, one or more carboxylic acids or mixtures of the aforementioned acids.
  • a latent hardener warm box
  • a hardener being an organic or inorganic acid, particularly preferably an aromatic sulfonic acid (in particular para-toluene or xylene sulfonic acid or mixtures of para Toluene and xylene sulfonic acid), phosphoric acid, methanesulfonic acid, sulfuric acid, one or more carboxylic acids or mixtures of the aforementioned acids.
  • the binder additionally i) urea or urea derivatives or precondensates of urea or urea derivatives, ii) furan derivatives and / or furfuryl alcohol or precondensates of furan derivatives and / or furfuryl alcohol and iii) phenols, in particular phenol, o-cresol, p -Cresol, 3,5-xylenol or resorcinol, or precondensates of phenols, in particular resoles.
  • urea / furfuryl alcohol / phenol / formaldehyde resin-bound molding materials are produced during curing.
  • the binder system can be hardened to a urea / furfuryl alcohol / phenol / formaldehyde resin, preferably to a highly polymeric and solid urea / furfuryl alcohol / phenol / formaldehyde resin.
  • these systems are preferably cured by heating in the presence of a latent hardener (warm box) or by adding a hardener, with the hardener is an organic or inorganic acid, particularly preferably an aromatic sulfonic acid (in particular para-toluene or xylene sulfonic acid or mixtures of para-toluene and xylene sulfonic acid), phosphoric acid, methanesulfonic acid, sulfuric acid, one or more carboxylic acids or mixtures of the aforementioned acids .
  • a latent hardener warm box
  • a hardener is an organic or inorganic acid, particularly preferably an aromatic sulfonic acid (in particular para-toluene or xylene sulfonic acid or mixtures of para-toluene and xylene sulfonic acid), phosphoric acid, methanesulfonic acid, sulfuric acid, one or more carboxylic acids or mixtures of the aforementioned acids
  • the amino acid is selected from the group consisting of glycine, glutamine, alanine, valine and serine.
  • the amino acids glycine, glutamine, alanine, valine and serine in particular have good properties when used in molding material mixtures according to the invention.
  • the strength of the molded bodies produced from the molding material mixtures can be improved particularly well without other properties of the molded bodies produced or of the molding material mixture being impaired.
  • the content of free formaldehyde in the molding material mixture and in the moldings produced from the molding material mixture can be reduced.
  • the amino acids glycine is particularly preferred. Molding material mixtures according to the invention are preferred, the amino acid being an ⁇ -amino acid.
  • a molding material mixture according to the invention is likewise preferred, the proportion of all amino acids in the molding material mixture being 0.005 to 5.0% by weight, preferably 0.01 to 2.0% by weight, particularly preferably 0.03 to 1.0 % By weight, based on the solids content of the entire molding material mixture.
  • molding material mixtures according to the invention have particularly good properties when the proportion of all amino acids in the molding material mixture is in the ranges listed above. If the proportions of amino acids in the molding material mixture are too low, there is the possibility that the strength of the molded bodies produced from the molding material mixtures is not sufficiently improved and / or that the amount of free formaldehyde is not reduced. If the proportions of amino acids are too high, no further improvement in the properties can be observed.
  • a molding material mixture according to the invention is likewise preferred, the molar ratio of all amino acids to available formaldehyde being 4: 1 to 1: 0.5, preferably 3: 1 to 1: 0.9, particularly preferably 2.5: 1 to 1: 1 .
  • molding material mixtures according to the invention have particularly good properties when the molar ratio of all amino acids to available formaldehyde is in the ranges given above.
  • the strength of the moldings produced from the molding mixtures and the proportion of free formaldehyde in the molding mixtures or the moldings produced therefrom show particularly good properties in the specified ranges.
  • a molding material mixture according to the invention is also preferred, the formaldehyde donors and / or precondensates of formaldehyde being selected from the group consisting of paraformaldehyde, hexamethylenetetramine, trioxane, methylolamine and methylolamine derivatives such as trimethylolmelamine or hexamethylolmelamine.
  • the molding material mixture does not contain any proteins or peptides, such as dipeptides, tripeptides, tetrapeptides, pentapeptides or higher-value peptides). It has also been shown that there are advantages if the amino acid used is glycine, glutamine, alanine, valine and / or serine instead of aspartic acid.
  • Another aspect of the present invention relates to moldings for the foundry industry produced using a molding material mixture according to the invention.
  • Another aspect of the present invention relates to the use of amino acids (a) in a molding material mixture for the production of moldings for the foundry industry or (b) for the production of moldings for the foundry industry.
  • Another aspect of the present invention relates to the use of at least one amino acid in a molding material mixture for the foundry industry, the molding material mixture containing formaldehyde or a source of formaldehyde in addition to the amino acid.
  • the amino acid is selected from the group consisting of glycine, glutamine, alanine, valine and serine.
  • Another aspect of the present invention relates to the use of at least one amino acid for the production of moldings with improved strength and / or reduced tendency to casting defects.
  • Another aspect of the present invention relates to the use of molding material mixtures according to the invention for the production of moldings for the foundry industry.
  • the uncured molded body is hardened or allowed to harden by heating.
  • the curing or allowing it to cure takes place by adding a hardener during the production or provision of the molding material mixture according to the invention.
  • the hardener is preferably an organic or inorganic acid, particularly preferably a sulfonic acid (especially para-toluenesulfonic acid), phosphoric acid, methanesulfonic acid, carboxylic acid and / or sulfuric acid or mixtures thereof.
  • Example 1 (according to the invention):
  • the molding material mixture was then introduced by hand into a test bar mold and compacted with a hand plate. Cuboid test bars with the dimensions 220 mm x 22.36 mm x 22.36 mm, so-called Georg Fischer test bars, were produced as test specimens.
  • the respective flexural strength values were determined in accordance with VDG data sheet P 72. To determine the flexural strengths, the test bars were placed in a Georg Fischer strength tester equipped with a three-point bending device (DISA-Industrie AG, Schaffhausen, CH), and the force that led to the breakage of the test bars was measured.
  • the flexural strengths were determined after one hour, after two hours, after four hours and after 24 hours after the manufacture of the (test) moldings to be tested (storage of the cores after removal from the mold in each case at room temperature 18-22 ° C, relative humidity (20-55 ° C) %) measured.
  • the (test) moldings according to the invention produced from the molding material mixture according to the invention show improved flexural strength after 24 hours compared with the (test) moldings produced according to Comparative Examples 1 and 2, without the setting behavior being adversely affected.
  • the content of free formaldehyde in the binder system according to the invention is lower than the content of free formaldehyde in the binder systems according to Comparative Examples 1 and 2.
  • the binder system, the molding material mixture and the (test) moldings were produced analogously to Example 1. However, 5.7 mmol of alanine were used instead of glycine.
  • the binder system After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.08%.
  • the binder system, the molding material mixture and the (test) moldings were produced analogously to Example 1. However, 5.7 mmol of serine were used instead of glycine.
  • the binder system After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.09%.
  • the binder system, the molding material mixture and the (test) moldings were produced analogously to Example 1. However, 5.7 mmol of valine were used instead of glycine.
  • the binder system After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.09%.
  • the binder system, the molding material mixture and the (test) moldings were produced analogously to Example 1. However, 5.7 mmol of urea was used instead of the glycine.
  • the binder system After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.13%.
  • the binder system, the molding material mixture and the (test) moldings were produced analogously to Example 1. However, no glycine was added.
  • the binder system After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.15%.
  • the binder system, the molding material mixture and the (test) moldings were produced analogously to Example 1.
  • 100 g of a commercially available phenol-furan cold resin from the company Wilsontenes-Albertus with the name Kaltharz 7864 furfuryl alcohol: 40%, free phenol: 4% Water content: 2%, free formaldehyde content: 0.125% (corresponds to 4.2 mmol); available from Wilsontenes-Albertus Chemische Werke GmbH), used instead of the phenol-furan cold resin with the designation XA20 used in Example 1.
  • 4.2 mmol of glycine were used.
  • the binder system After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.04%.
  • the (test) moldings according to the invention produced from the molding material mixture according to the invention show improved flexural strength after four hours compared with the (test) moldings produced according to Comparative Examples 3 and 4, without the setting behavior being negatively affected.
  • the content is free Formaldehyde in the binder system according to the invention is lower than the content of free formaldehyde in the binder systems according to Comparative Examples 3 and 4.
  • the binder system, the molding material mixture and the (test) moldings were produced analogously to Example 5. However, 4.2 mmol of alanine were used instead of glycine.
  • the binder system After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.05%.
  • the binder system, the molding material mixture and the (test) moldings were produced analogously to Example 5. However, 4.2 mmol of serine were used instead of glycine.
  • the binder system After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.06%.
  • the binder system, the molding material mixture and the (test) moldings were produced analogously to Example 5. However, 4.2 mmol of valine were used instead of glycine.
  • the binder system After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.05%.
  • the binder system, the molding material mixture and the (test) moldings were produced analogously to Example 5. However, 4.2 mmol of glutamine were used instead of glycine.
  • the binder system After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.03%.
  • the binder system, the molding material mixture and the (test) moldings were produced analogously to Example 5. However, 4.2 mmol of urea were used instead of the glycine.
  • the binder system After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.12%.
  • the binder system, the molding material mixture and the (test) moldings were produced analogously to Example 5. However, no glycine was added.
  • the binder system After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.17%.
  • the binder system, the molding material mixture and the (test) moldings were produced analogously to Example 1.
  • 4.0 mmol of glycine were used.
  • the binder system After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.05%.
  • the (test) moldings according to the invention produced from the molding material mixture according to the invention show in comparison to those produced according to Comparative Examples 5 and 6 (Test) moldings show improved flexural strength after 24 hours without the setting behavior being adversely affected.
  • the content of free formaldehyde in the binder system according to the invention is lower than the content of free formaldehyde in the binder systems according to Comparative Examples 6 and 5.
  • the binder system, the molding material mixture and the (test) moldings were produced analogously to Example 10. However, 4.0 mmol of alanine were used instead of glycine.
  • the binder system After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.05%.
  • the binder system, the molding material mixture and the (test) moldings were produced analogously to Example 10. However, 4.0 mmol of serine were used instead of glycine.
  • the binder system After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.08%.
  • the binder system, the molding material mixture and the (test) moldings were produced analogously to Example 10. However, 4.0 mmol of valine were used instead of glycine.
  • the binder system After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.07%.
  • the binder system, the molding material mixture and the (test) moldings were produced analogously to Example 10. However, 4.0 mmol of glutamine were used instead of glycine.
  • the binder system After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.03%.
  • the binder system, the molding material mixture and the (test) moldings were produced analogously to Example 10. However, 4.0 mmol of urea were used instead of the glycine.
  • the binder system After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.05%.
  • the binder system, the molding material mixture and the (test) moldings were produced analogously to Example 10. However, no glycine was added.
  • the binder system After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.15%.
  • the binder system, the molding material mixture and the (test) moldings were produced analogously to Example 1.
  • 100 g of a commercially available phenol-furan cold resin from Wilsontenes-Albertus with the name Kaltharz 8500 furfuryl alcohol: 57%, free phenol: 1, 1 - 1.8%, water content: 8 - 10%, free formaldehyde content: 0.25% (corresponds to 8.3 mmol); available from Wilsontenes-Albertus Chemische Werke GmbH) instead of the phenol-furan cold resin used in Example 1 with the Designation XA20 used.
  • 8.3 mmol of glycine were used.
  • the binder system After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.04%.
  • the (test) moldings according to the invention produced from the molding material mixture according to the invention show in comparison to those produced according to Comparative Examples 7 and 8 (Test) moldings show improved flexural strength after 24 hours without the setting behavior being adversely affected.
  • the content of free formaldehyde in the binder system according to the invention is lower than the content of free formaldehyde in the binder systems according to Comparative Examples 7 and 8.
  • the binder system, the molding material mixture and the (test) moldings were produced analogously to Example 15. However, 8.3 mmol of alanine were used instead of glycine.
  • the binder system After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.04%.
  • Example 17 (according to the invention):
  • the binder system, the molding material mixture and the (test) moldings were produced analogously to Example 15. However, 8.3 mmol of serine were used instead of glycine.
  • the binder system After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.05%.
  • the binder system, the molding material mixture and the (test) moldings were produced analogously to Example 15. However, 8.3 mmol of valine were used instead of glycine.
  • the binder system After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.07%.
  • the binder system, the molding material mixture and the (test) moldings were produced analogously to Example 15. However, 8.3 mmol of glutamine were used instead of glycine.
  • the binder system After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.06%.
  • the binder system, the molding material mixture and the (test) moldings were produced analogously to Example 15. However, 8.3 mmol of urea were used instead of the glycine.
  • the binder system After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.19%.
  • the binder system, the molding material mixture and the (test) moldings were produced analogously to Example 15. However, no glycine was added.
  • the binder system After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.27%.
  • the binder system, the molding material mixture and the (test) moldings were produced analogously to Example 1.
  • 7.7 mmol of glycine were used.
  • the binder system After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.09%.
  • the (test) moldings according to the invention produced from the molding material mixture according to the invention show in comparison with those produced according to Comparative Example 9 (Test) moldings show improved flexural strength after 24 hours without the setting behavior being adversely affected.
  • the content of free formaldehyde in the binder system according to the invention is lower than the content of free formaldehyde in the binder systems according to Comparative Example 9.
  • the binder system, the molding material mixture and the (test) moldings were produced analogously to Example 20. However, 7.7 mmol of alanine were used instead of glycine.
  • the binder system After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.08%.
  • the binder system, the molding material mixture and the (test) moldings were produced analogously to Example 20. However, 7.7 mmol of serine were used instead of glycine.
  • the binder system After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.09%.
  • the binder system, the molding material mixture and the (test) moldings were produced analogously to Example 20. However, 7.7 mmol of valine were used instead of glycine.
  • the binder system After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.07%.
  • the binder system, the molding material mixture and the (test) moldings were produced analogously to Example 20. However, no glycine was added.
  • the binder system After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.23%.
  • the molding material mixture was then introduced by hand into a test bar mold, compacted with a hand plate and cured at 220.degree. Cuboid test bars with the dimensions 220 mm x 22.36 mm x 22.36 mm, so-called Georg Fischer test bars, were produced as test specimens.
  • test moldings were produced and these were cured at 220 ° C. for 15, 30, 60 or 120 seconds.
  • the hot flexural strength (flexural strength directly after removal of the hot (test) shaped body) and the cold flexural strength (flexural strength of the cooled (test) shaped body after 24 hours) of the produced (test) shaped bodies were determined according to the determination method described in Example 1.
  • the cold flexural strength of the (test) molded body produced is higher than in Comparative Example 11, in which no amino acid was added.
  • the cold bending strength is particularly high for the samples with a short baking time (15 and 30 seconds).
  • the hot bending strengths are not negatively affected.
  • the binder system, the molding material mixture and the (test) moldings were produced analogously to Example 24. However, 8.3 mmol of alanine were used instead of glycine.
  • the binder system After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of less than 0.08%.
  • the cold flexural strength of the (test) molded body produced is higher than in Comparative Example 11, in which no amino acid was added.
  • the cold bending strength is particularly high for the samples with a short baking time (15 and 30 seconds).
  • the hot bending strengths are not negatively affected.
  • the binder system, the molding material mixture and the (test) moldings were produced analogously to Example 24. However, 8.3 mmol of glutamine were used instead of glycine.
  • the binder system After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of less than 0.08%.
  • the cold flexural strength of the (test) molded body produced is higher than in Comparative Example 11, in which no amino acid was added.
  • the cold bending strength is particularly high for the samples with a short baking time (15 and 30 seconds).
  • the hot bending strengths are not negatively affected.
  • the binder system, the molding material mixture and the (test) moldings were produced analogously to Example 24. However, 8.3 mmol of serine were used instead of glycine.
  • the binder system After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of less than 0.08%.
  • the binder system, the molding material mixture and the (test) moldings were produced analogously to Example 24. However, 8.3 mmol of urea was used instead of the glycine.
  • the binder system After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.07%.
  • the binder system, the molding material mixture and the (test) moldings were produced analogously to Example 24. However, no glycine was added.
  • the binder system After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.18%.
  • Table 1 Comparison of the processing time (WT) and curing time (ST) and the flexural strengths of the (test) molded bodies produced in Examples 1 to 23 and Comparative Examples 1 to 9. Flexural strength after xx hours in [N / cm 2 ] example Additive WT [min] ST [min] 1h 2h 4h 24 hours example 1 Glycine 7th 11 250 300 380 460 Example 2 Alanine 9 12th 220 300 360 430 Example 3 Serine 6th 9 210 270 370 430 Example 4 Valine 7th 10 230 300 370 440 Comparative example 1 urea 17th 27 55 165 185 200 Comparative example 2 No additive 9 12th 260 310 350 390 Example 5 Glycine 14th 20th 140 240 360 380 Example 6 Alanine 13th 20th 110 210 300 370 Example 7 Serine 11 18th 170 250 320 380 Example 8 Valine 14th 22nd 130 220 350 360 Example 9 Glutamine 14th 19th 80 200 330 350 Comparative example 3 urea 20th 32 60 140

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mold Materials And Core Materials (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Description

Die vorliegende Erfindung betrifft eine Formstoffmischung zur Herstellung von Formkörpern für die Gießereiindustrie, Formkörper für die Gießereiindustrie, eine Verwendung von Aminosäuren in einer Formstoffmischung zur Herstellung von Formkörpern für die Gießereiindustrie oder zur Herstellung von Formkörpern für die Gießereiindustrie, ein Verfahren zur Herstellung einer Formstoffmischung und ein Verfahren zur Herstellung eines Formkörpers für die Gießereiindustrie.The present invention relates to a molding material mixture for the production of moldings for the foundry industry, moldings for the foundry industry, a use of amino acids in a molding material mixture for producing moldings for the foundry industry or for producing moldings for the foundry industry, a method for producing a molding material mixture and a Process for the production of a molded body for the foundry industry.

In der Gießereiindustrie werden Schmelzflüssigwerkstoffe, Eisenmetalle bzw. Nichteisenmetalle in geformte Gegenstände mit bestimmten Werkstückeigenschaften überführt. Für die Formgebung der Gussstücke müssen zunächst zum Teil sehr komplizierte Gießformen zur Aufnahme der Metallschmelze hergestellt werden. Die Gießformen werden unterteilt in verlorene Formen, die nach jedem Guss zerstört werden, sowie Dauerformen, mit denen jeweils eine große Anzahl von Gussstücken hergestellt werden kann. Die verlorenen Formen bestehen meist aus einem feuerfesten, schüttfähigen Formstoff, der mit Hilfe eines härtbaren Bindemittels verfestigt wird.In the foundry industry, molten materials, ferrous metals or non-ferrous metals are converted into shaped objects with certain workpiece properties. For the shaping of the cast pieces, first of all, very complicated casting molds for receiving the molten metal have to be produced. The casting molds are divided into lost molds, which are destroyed after each casting, and permanent molds, each of which can be used to produce a large number of castings. The lost molds usually consist of a refractory, pourable molding material that is solidified with the help of a hardenable binder.

Formen sind Negative, die den auszugießenden Hohlraum enthalten, der das zu fertigende Gussstück ergibt. Bei der Herstellung der Form wird mittels eines Modells des zu fertigenden Gussstücks der Hohlraum in den Formstoff geformt. Innenkonturen werden durch Kerne dargestellt, die in einem separaten Kernkasten geformt werden.Molds are negatives that contain the cavity to be poured, which results in the casting to be manufactured. When making the mold, a model of the to finished casting, the cavity is formed in the molding material. Inner contours are represented by cores that are formed in a separate core box.

Zur Herstellung der Gießformen können sowohl organische als auch anorganische Bindemittel eingesetzt werden, deren Aushärtung durch kalte oder heiße Verfahren erfolgen kann. Als kalte Verfahren bezeichnet man dabei Verfahren, bei denen die Aushärtung im Wesentlichen bei Raumtemperatur ohne Erhitzen der Formstoffmischung erfolgt. Die Aushärtung erfolgt dabei meist durch eine chemische Reaktion, die beispielsweise dadurch ausgelöst werden kann, dass ein gasförmiger Katalysator durch die zu härtende Formstoffmischung geleitet wird, oder indem der Formstoffmischung ein flüssiger Katalysator zugesetzt wird. Bei heißen Verfahren wird die Formstoffmischung nach der Formgebung auf eine ausreichend hohe Temperatur erhitzt, um beispielsweise das im Bindemittel enthaltene Lösungsmittel auszutreiben oder um eine chemische Reaktion zu initiieren, durch welche das Bindemittel durch Vernetzen ausgehärtet wird.Both organic and inorganic binders, which can be hardened by cold or hot processes, can be used to produce the casting molds. Cold processes are processes in which curing takes place essentially at room temperature without heating the molding material mixture. The hardening usually takes place through a chemical reaction, which can be triggered, for example, by passing a gaseous catalyst through the molding material mixture to be hardened or by adding a liquid catalyst to the molding material mixture. In hot processes, the molding material mixture is heated to a sufficiently high temperature after molding, for example to drive off the solvent contained in the binder or to initiate a chemical reaction through which the binder is cured by crosslinking.

Die Herstellung der Gießformen kann dabei in der Weise verlaufen, dass der Füllstoff zunächst mit dem Bindemittelsystem vermengt wird, sodass die Körner des feuerfesten Füllstoffs mit einem dünnen Film des Bindemittelsystems überzogen sind. Die aus Füllstoff und Bindemittelsystem erhaltene Formstoffmischung kann dann in eine entsprechende Form eingebracht und gegebenenfalls verdichtet werden, um eine ausreichende Standfestigkeit der Gießform zu erreichen. Anschließend wird die Gießform ausgehärtet. Hat die Gießform zumindest eine gewisse Anfangsfestigkeit erreicht, so kann sie aus der Form entnommen werden.The production of the casting molds can proceed in such a way that the filler is first mixed with the binder system so that the grains of the refractory filler are coated with a thin film of the binder system. The molding material mixture obtained from filler and binder system can then be introduced into a corresponding mold and, if necessary, compacted in order to achieve sufficient stability of the casting mold. The casting mold is then cured. If the casting mold has at least reached a certain initial strength, it can be removed from the mold.

Gegenwärtig werden für die Herstellung von Gießformen vielfach organische Bindemittel, wie z. B. Polyurethan-, Furanharz-, Phenol- oder Harnstoff-Formaldehyd Harze eingesetzt, bei denen die Aushärtung des Bindemittels durch Zugabe eines Katalysators erfolgt.At present, organic binders, such as. B. polyurethane, furan resin, phenol or urea-formaldehyde resins are used, in which the curing of the binder takes place by adding a catalyst.

Verfahren, bei denen die Aushärtung der Formstoffmischung durch Hitze oder durch nachträgliche Zugabe eines Katalysators erfolgt, haben den Vorteil, dass die Verarbeitung der Formstoffmischung keinen besonderen zeitlichen Restriktionen unterliegt. Die Formstoffmischung lässt sich zunächst in größeren Mengen herstellen, die dann innerhalb eines längeren Zeitraums, meist mehreren Stunden, verarbeitet werden. Die Aushärtung der Formstoffmischung erfolgt erst nach der Formgebung, wobei eine rasche Reaktion angestrebt wird. Die Gießform lässt sich nach dem Aushärten unmittelbar aus dem Formwerkzeug entnehmen, sodass kurze Taktzeiten verwirklicht werden können.Processes in which the molding material mixture is cured by heat or by the subsequent addition of a catalyst have the advantage that the processing of the molding material mixture is not subject to any particular time restrictions. The molding material mixture can initially be produced in larger quantities, which are then processed over a longer period of time, usually several hours. The molding material mixture does not harden until after it has been molded, with the aim being to achieve a rapid reaction. The casting mold can be removed from the mold immediately after it has hardened, so that short cycle times can be achieved.

Bei der Herstellung von Gießformen für große Gussstücke, beispielsweise Motorblöcke von Schiffsdieseln oder großen Maschinenteilen, wie Naben von Rotoren für Windkraftwerke, werden meist sogenannte "No-Bake-Bindemittel" verwendet. Beim "No-Bake-Verfahren" wird der feuerfeste Formgrundstoff (z.B. Sand) häufig zunächst mit einem Katalysator (Härter) belegt, anschließend das Bindemittel zugegeben und durch Mischen gleichmäßig auf den bereits mit Katalysator beschichteten Körnern des feuerfesten Formgrundstoffs verteilt. Bei diesem Verfahren wird häufig mit sogenannten kontinuierlichen Durchlaufmischern gearbeitet. Die resultierende Formstoffmischung lässt sich dann zu einem Formkörper formen. Da Bindemittel und Katalysator gleichmäßig in der Formstoffmischung verteilt sind, erfolgt auch bei großen Formkörpern die Aushärtung weitgehend gleichmäßig.So-called "no-bake binders" are mostly used in the production of casting molds for large castings, for example engine blocks for marine diesel engines or large machine parts such as the hubs of rotors for wind power plants. In the "no-bake process", the refractory mold base material (e.g. sand) is often first coated with a catalyst (hardener), then the binder is added and, by mixing, it is evenly distributed over the grains of the refractory mold base material that have already been coated with catalyst. In this process, so-called continuous mixers are often used. The resulting molding material mixture can then be shaped into a molded body. Since the binder and catalyst are evenly distributed in the molding material mixture, the curing takes place largely evenly, even with large moldings.

Alternativ kann beim "No-Bake-Verfahren" der feuerfeste Formgrundstoff (z.B. Sand) zunächst mit dem Bindemittel vermischt und anschließend der Härter zugegeben werden. Bei dieser Verfahrensführung kann es, insbesondere bei der Herstellung von Gießformen für große Gussstücke, wegen einer partiellen, lokalen zu hohen Konzentration des Härters zu einer Teilhärtung bzw. Vernetzung des Bindemittels kommen, woraus ein inhomogener Formstoff resultieren würde.Alternatively, with the "no-bake process", the refractory molding base material (e.g. sand) can first be mixed with the binder and then the hardener added. In this process, especially when producing casting molds for large castings, partial hardening or crosslinking of the binder can occur due to a partial, local excessively high concentration of the hardener, which would result in an inhomogeneous molding material.

Die "klassischen" No-Bake-Bindemittel beruhen häufig auf Furanharzen oder Phenolharzen oder Furan- /Phenolharzen. Sie werden oft als Systeme (Kits) angeboten, wobei eine Komponente ein reaktionsfähiges Furanharz bzw. Phenolharz oder Furan/Phenolharz und die andere Komponente eine Säure umfasst, wobei die Säure als Katalysator für die Aushärtung der reaktiven Harzkomponente wirkt.The "classic" no-bake binders are often based on furan resins or phenolic resins or furan / phenolic resins. They are often offered as systems (kits), one component comprising a reactive furan resin or phenolic resin or furan / phenolic resin and the other component an acid, the acid acting as a catalyst for curing the reactive resin component.

Furan- und Phenolharze zeigen beim Guss sehr gute Zerfallseigenschaften. Unter der Hitzeeinwirkung des flüssigen Metalls zersetzt sich das Furan- oder Phenolharz und die Festigkeit der Gießform geht verloren. Nach dem Guss lassen sich daher Kerne, gegebenenfalls nach vorherigem Rütteln des Gussstücks, aus Hohlräumen entfernen.Furan and phenolic resins show very good disintegration properties when cast. The furan or phenolic resin decomposes under the action of heat from the liquid metal and the strength of the casting mold is lost. After casting, cores can therefore be removed from cavities, if necessary after previously shaking the casting.

"Furan-No-Bake-Bindemittel" enthalten reaktive Furanharze, welche regelmäßig als wesentliche Komponente Furfurylalkohol umfassen. Furfurylalkohol kann unter saurer Katalyse mit sich selbst reagieren und ein Homopolymer ausbilden. Für die Herstellung von Furan-No-Bake-Bindemitteln wird im Allgemeinen nicht Furfurylalkohol alleine verwendet, sondern es werden dem Furfurylalkohol weitere Verbindungen, wie Formaldehyd, zugesetzt, die in das Harz einpolymerisiert werden. Den Harzen können noch weitere Komponenten zugegeben werden, welche die Eigenschaften des Harzes beeinflussen, beispielsweise dessen Elastizität. Melamin und Harnstoff kann beispielsweise zugesetzt werden, um noch freies Formaldehyd zu binden."Furan no-bake binders" contain reactive furan resins, which regularly include furfuryl alcohol as an essential component. Furfuryl alcohol can react with itself under acid catalysis and form a homopolymer. For the production of furan no-bake binders, furfuryl alcohol is generally not used on its own, but other compounds, such as formaldehyde, are added to the furfuryl alcohol and are polymerized into the resin. Further components can be added to the resins, which influence the properties of the resin, for example its elasticity. Melamine and urea can be added, for example, in order to still bind free formaldehyde.

Furan-No-Bake-Bindemittel werden meist dargestellt, indem zuerst Vorkondensate aus beispielsweise Harnstoff, Formaldehyd und Furfurylalkohol unter sauren Bedingungen erzeugt werden. Diese Vorkondensate werden danach mit Furfurylalkohol verdünnt.Furan no-bake binders are usually produced by first generating precondensates from, for example, urea, formaldehyde and furfuryl alcohol under acidic conditions. These precondensates are then diluted with furfuryl alcohol.

Ebenso ist es vorstellbar, dass Harnstoff und Formaldehyd alleine zur Reaktion gebracht werden. Dabei entstehen so genannte UF-Harze ("Urea Formaldehyde"-Harze, "Aminoplaste"). Diese werden meist anschließend mit Furfurylalkohol verdünnt. Vorteile dieser Herstellungsweise sind eine höhere Flexibilität / Variabilität in der Produktpalette und geringere Kosten, da es sich um kalte Mischprozesse handelt.It is also conceivable that urea and formaldehyde can react alone. This creates so-called UF resins ("urea formaldehyde" resins, "aminoplasts"). These are usually then diluted with furfuryl alcohol. Advantages of this production method are a higher flexibility / variability in the product range and lower costs, since the cold mixing processes are involved.

Zur Herstellung von Furan-/Phenol-No-Bake-Bindemitteln können auch Resole verwendet werden. Resole werden durch Polymerisation von Gemischen aus Phenol und Formaldehyd hergestellt. Diese Resole werden dann häufig mit einer großen Menge an Furfurylalkohol verdünnt.Resoles can also be used to produce furan / phenol no-bake binders. Resoles are made by polymerizing mixtures of phenol and formaldehyde. These resoles are then often diluted with a large amount of furfuryl alcohol.

Furan-No-Bake-Bindemittel werden mit einer Säure gehärtet. Diese Säure katalysiert die Vernetzung des reaktiven Furanharzes. Zu beachten ist, dass über die Säuremenge die Aushärtung gesteuert werden kann, wobei die zur Einstellung einer Aushärtezeit notwendige Säuremenge Bindemittelabhängig ist und von Faktoren wie zum Beispiel dem pH Wert des Binders und der Art der Säure beeinflusst wird.Furan no-bake binders are hardened with an acid. This acid catalyzes the crosslinking of the reactive furan resin. It should be noted that the hardening can be controlled via the amount of acid, whereby the amount of acid required to set a hardening time depends on the binder and is influenced by factors such as the pH of the binder and the type of acid.

Als Säuren werden häufig aromatische Sulfonsäuren, Phosphorsäure, Methansulfonsäure und Schwefelsäure verwendet. In einigen speziellen Fällen werden Kombinationen hiervon unter anderem auch in Kombination mit weiteren Carbonsäuren verwendet. Ferner können dem Furan-No-Bake-Bindemittel bestimmte "Härtungs-Moderatoren" zugesetzt werden.Aromatic sulfonic acids, phosphoric acid, methanesulfonic acid and sulfuric acid are often used as acids. In some special cases, combinations thereof are used, inter alia, in combination with other carboxylic acids. Certain "hardening moderators" can also be added to the furan no-bake binder.

Phenolharze als zweite große Gruppe säurekatalysiert aushärtbarer No-Bake-Bindemittel enthalten als reaktive Harzkomponente Resole, also Phenolharze, die mit einem molaren Überschuss an Formaldehyd hergestellt wurden. Phenolharze zeigen im Vergleich zu Furanharzen eine geringere Reaktivität und erfordern als Katalysatoren starke Sulfonsäuren.Phenolic resins, the second large group of acid-catalyzed curable no-bake binders, contain resols as reactive resin components, i.e. phenolic resins that have been produced with a molar excess of formaldehyde. Compared to furan resins, phenolic resins are less reactive and require strong sulfonic acids as catalysts.

Seit einiger Zeit werden No-Bake-Bindemittel für die Fertigung von Formen und Kernen für den Groß- und Einzelguss eingesetzt. Diese kalthärtenden Systeme sind meist Reaktionsprodukte aus Formaldehyd mit Furfurylalkohol, Phenol und/oder Harnstoff.For some time now, no-bake binders have been used for the production of molds and cores for large and single castings. These cold-curing systems are mostly reaction products of formaldehyde with furfuryl alcohol, phenol and / or urea.

Formstoffmischungen auf Basis von Formaldehyd weisen üblicherweise sehr gute Eigenschaften auf. Insbesondere Phenol/Furan/Formaldehyd-Mischharze, Harnstoff/Formaldehydharze und Furan/Formaldehydharze werden in der Gießereiindustrie häufig eingesetzt.Molding mixtures based on formaldehyde usually have very good properties. In particular, phenol / furan / formaldehyde mixed resins, urea / formaldehyde resins and furan / formaldehyde resins are frequently used in the foundry industry.

US 3,644,274 betrifft primär ein No-Bake-Verfahren unter Verwendung bestimmter Mischungen von Säurekatalysatoren zu Härtung für Furfurylalkohol-Formaldehyd-Harnstoffharze. U.S. 3,644,274 primarily relates to a no-bake process using certain mixtures of acid catalysts for curing furfuryl alcohol-formaldehyde-urea resins.

US 3,806,491 betrifft Bindemittel, die im "No-Bake"-Verfahren eingesetzt werden können. Die dort eingesetzten Bindemittel umfassen Produkte aus der Umsetzung von Paraformaldehyd mit bestimmten Ketonen im basischen Milieu sowie Furfurylalkohol und/oder Furanharze. U.S. 3,806,491 relates to binders that can be used in the "no-bake" process. The binders used there include products from the reaction of paraformaldehyde with certain ketones in a basic environment as well as furfuryl alcohol and / or furan resins.

US 5,491,180 beschreibt Harz-Bindemittel, die für den Einsatz im No-Bake-Verfahren geeignet sind. Die dort verwendeten Bindemittel basieren auf 2,5-Bis(hydroxymethyl)furan oder Methyl- oder Ethylethern des 2,5-Bis(hydroxymethyl)furans, wobei die Bindemittel 0,5 bis 30 Gew.-% Wasser enthalten und regelmäßig einen hohen Anteil an Furfurylalkohol. U.S. 5,491,180 describes resin binders that are suitable for use in the no-bake process. The binders used there are based on 2,5-bis (hydroxymethyl) furan or methyl or ethyl ethers of 2,5-bis (hydroxymethyl) furan, the binders containing 0.5 to 30% by weight of water and usually a high proportion of furfuryl alcohol.

EP 0 540 837 schlägt emissionsarme, kalthärtende Bindemittel auf der Basis von Furanharzen und Lignin aus dem Organosolv-Verfahren vor. Die dort beschriebenen Furanharze enthalten einen hohen Anteil an monomerem Furfurylalkohol. EP 0 540 837 suggests low-emission, cold-curing binders based on furan resins and lignin from the Organosolv process. The furan resins described there contain a high proportion of monomeric furfuryl alcohol.

DE 198 56 778 beschreibt Kaltharz-Bindemittel, welche durch Reaktion einer Aldehyd-Komponente, einer Keton-Komponente und einer im Wesentlichen aus Furfurylalkohol bestehenden Komponente hergestellt werden. DE 198 56 778 describes cold resin binders which are produced by reacting an aldehyde component, a ketone component and a component consisting essentially of furfuryl alcohol.

EP 1 531 018 betrifft No-Bake Gießereibindemittelsysteme aus einem Furanharz und bestimmten Säurehärtern. Die darin beschriebenen Bindemittelsysteme umfassen vorzugsweise 60 bis 80 Gew.-% an Furfurylalkohol. EP 1 531 018 relates to no-bake foundry binder systems made from a furan resin and certain acid hardeners. The binder systems described therein preferably comprise 60 to 80% by weight of furfuryl alcohol.

US 2016/0 158 828 A1 beschreibt die Herstellung von Gussformen mittels eines Rapid-Prototyping-Verfahrens. Die in dem Dokument beschriebenen Formstoffmischungen können A) zumindest einen feuerfesten Füllstoff sowie B) ein Bindemittelsystem enthalten, wobei das Bindemittelsystem i) Formaldehyd sowie ii) einen Duroplast, ein Saccharid, ein synthetisches Polymer, ein Salz, ein Protein oder ein anorganisches Polymer enthalten kann. US 2016/0 158 828 A1 describes the production of casting molds using a rapid prototyping process. The molding material mixtures described in the document can contain A) at least one refractory filler and B) a binder system, wherein the binder system can contain i) formaldehyde and ii) a thermoset, a saccharide, a synthetic polymer, a salt, a protein or an inorganic polymer .

EP 1 595 618 B1 beschreibt ein Verfahren zur Herstellung einer keramischen Maskenform. Für die Herstellung der Form wird ein Gießschlicker verwendet, der Keramikteilchen, ein Bindemittel und einen Verflüssiger enthält. Bei dem Verflüssiger kann es sich um Aminosäuren, Ammoniumpolyacrylate oder dreisäurige Carboxyle mit Alkoholgruppen handeln. EP 1 595 618 B1 describes a method for making a ceramic mask shape. A casting slip containing ceramic particles, a binder and a liquefier is used to produce the mold. The liquefier can be amino acids, ammonium polyacrylates or tri-acid carboxyls with alcohol groups.

DE 600 05 574 T2 betrifft ein Verfahren zur Herstellung von Wärmedämmkörpern. Die in dem Dokumente beschriebenen Wärmedämmkörper umfassen Mineralwolle und ein Bindemittel auf der Basis eines Formaldehyd-Phenolharzes. DE 600 05 574 T2 relates to a method for the production of thermal insulation bodies. The thermal insulation bodies described in the documents comprise mineral wool and a binder based on a formaldehyde-phenolic resin.

US 3 296 666 A beschreibt ein Verfahren zur Herstellung von Gießformen. In dem Dokument werden synthetische Harzmaterialien, natürliche Harze, Gummi, Proteine, Kohlenhydrate oder Eiklar als alternative Binder zu Phenol-Formaldehyd-Harzen eingesetzt. U.S. 3,296,666 A describes a method for making casting molds. In the document synthetic resin materials, natural resins, rubber, proteins, carbohydrates or egg white are used as alternative binders to phenol-formaldehyde resins.

US 5 320 157 A beschreibt ein Verfahren zur Herstellung eines Kernes, wobei die zur Herstellung des Kernes eingesetzte Formstoffmischung Gelatine als Bindemittel enthält. U.S. 5,320,157 A describes a process for producing a core, the molding material mixture used to produce the core containing gelatin as a binder.

DE 23 53 642 A1 offenbart ein Bindemittel auf Basis von Phenol-Pormaldehyd-Kondensationsprodukten zur Verwendung in heißhartenden Formmassen, insbesondere in Gießerei-Formmassen nach dem Maskenformverfahren, wobei das Phenol-Formaldehyd-Kondensationsprodukt einen zusätzlichen Gehalt an Aminocarbonsäuren oder Aminosulfonsäuren aufweist. DE 23 53 642 A1 discloses a binder based on phenol-formaldehyde condensation products for use in hot-setting molding compounds, in particular in foundry molding compounds by the shell molding process, the phenol-formaldehyde condensation product having an additional content of aminocarboxylic acids or aminosulfonic acids.

JP 3175045B offenbart ein Phenol-Formaldehyd-Bindemittel für das Maskenformverfahren, wobei das Bindemittel als Zerfallsförderer eine Aminosäure oder ein Alkalimetallsalz, Erdalkalimetallsalz, Hydrochlorid, Sulfat, oder Alkylester einer Aminosäure enthält. JP 3175045B discloses a phenol-formaldehyde binder for the shell molding process, the binder containing an amino acid or an alkali metal salt, alkaline earth metal salt, hydrochloride, sulfate, or alkyl ester of an amino acid as a disintegration promoter.

GB 1,075,619 A betrifft ein Verfahren zur Herstellung von Formen und Kernen und eine Formstoffmischung für dieses Verfahren. GB 1,075,619 A relates to a process for the production of molds and cores and a molding material mixture for this process.

Bei der Herstellung von Formkörpern (wie Speisern, Gießereiformen oder Kernen) für die Gießereiindustrie ist es vorteilhaft, wenn das Bindemittelsystem nach dem Aushärten eine hohe Festigkeit aufweist. Gute Festigkeiten sind besonders wichtig für die Produktion komplizierter, dünnwandiger Formkörper und deren sichere Handhabung.In the production of moldings (such as feeders, foundry molds or cores) for the foundry industry, it is advantageous if the binder system has a high strength after curing. Good strengths are particularly important for the production of complex, thin-walled moldings and their safe handling.

Der vorliegenden Erfindung lag daher die Aufgabe zu Grunde, eine Formstoffmischung zur Verfügung zu stellen, welche zur Herstellung von Formkörpern für die Gießereiindustrie eingesetzt werden kann und die sich durch eine verbesserte Festigkeit auszeichnen.The present invention was therefore based on the object of providing a molding material mixture which can be used to produce moldings for the foundry industry and which is distinguished by improved strength.

Diese Aufgabe wurde erfindungsgemäß gelöst durch eine Formstoffmischung zur Herstellung von Formkörpern für die Gießereiindustrie umfassend

  1. A) einen oder mehrere schüttfähige, feuerfeste Füllstoffe, und
  2. B) ein Bindemittelsystem, umfassend
    1. i) Formaldehyd, einen Formaldehydspender und/oder Vorkondensate aus Formaldehyd, wobei das Bindemittel zusätzlich Furanderivate und/oder Furfurylalkohol oder Vorkondensate aus Furanderivaten und/oder Furfurylalkohol umfasst,
      und
    2. ii) eine Aminosäure ausgewählt aus der Gruppe bestehend aus Glycin, Glutamin, Alanin, Valin und Serin.
According to the invention, this object was achieved by a molding material mixture for the production of moldings for the foundry industry
  1. A) one or more pourable, refractory fillers, and
  2. B) comprising a binder system
    1. i) formaldehyde, a formaldehyde donor and / or precondensates made from formaldehyde, the binder additionally comprising furan derivatives and / or furfuryl alcohol or precondensates made from furan derivatives and / or furfuryl alcohol,
      and
    2. ii) an amino acid selected from the group consisting of glycine, glutamine, alanine, valine and serine.

Es hat sich überraschenderweise gezeigt, dass Formkörpern für die Gießereiindustrie eine Verbesserung der Festigkeit aufweisen, wenn sie aus einer erfindungsgemäßen Formstoffmischung hergestellt werden. Der Zusatz einer Aminosäure zu einem Bindemittelsystem, das Formaldehyd, einen Formaldehydspender und/oder Vorkondensate aus Formaldehyd aufweist, verbesserte dabei überraschenderweise die Festigkeit des daraus hergestellten Formkörpers, im Vergleich zu Formkörpern, die unter identischen Bedingungen aus Formstoffmischungen gleicher Zusammensetzung allerdings ohne den Zusatz einer Aminosäure hergestellt wurden.It has surprisingly been found that moldings for the foundry industry have an improvement in strength when they are produced from a molding material mixture according to the invention. The addition of an amino acid to a binder system that has formaldehyde, a formaldehyde donor and / or precondensates from formaldehyde, surprisingly improved the strength of the molded article produced from it, compared to molded articles made from molding mixtures of the same composition under identical conditions, but without the addition of an amino acid were manufactured.

Es hat sich überraschenderweise auch gezeigt, dass Formkörper, die aus einer erfindungsgemäßen Formstoffmischung hergestellt werden, sich zusätzlich durch einen geringeren Gehalt an freiem Formaldehyd auszeichnen. Formaldehyd weist einen stechenden Geruch auf und wirkt in hohen Konzentrationen giftig. Es ist daher vorteilhaft, wenn Formkörper weniger freien Formaldehyd aufweisen und kein Formaldehyd an die Umgebung abgeben wird. Insbesondere bei der Lagerung von vielen Formkörpern auf engem Raum besteht ansonsten die Gefahr, dass die Maximale Arbeitsplatz-Konzentration (MAK) für Formaldehyd überschritten wird. Auch die Emission von Formaldehyd aus einer erfindungsgemäßen Formstoffmischung vor und während des Aushärtens kann überraschenderweise durch den Zusatz von Aminosäuren reduziert werden.Surprisingly, it has also been found that moldings which are produced from a molding material mixture according to the invention are additionally distinguished by a lower content of free formaldehyde. Formaldehyde has a pungent odor and is toxic in high concentrations. It is therefore advantageous if moldings have less free formaldehyde and no formaldehyde is released into the environment. Otherwise, there is a risk that the maximum workplace concentration (MAK) for formaldehyde will be exceeded, particularly when many shaped bodies are stored in a confined space. The emission of formaldehyde from a molding material mixture according to the invention before and during curing can surprisingly also be reduced by adding amino acids.

Um den Gehalt an freiem Formaldehyd in Formstoffmischungen oder in aus den Formstoffmischungen hergestellten Formkörpern zu reduzieren, bestünde natürlich auch die Möglichkeit dem Bindemittelsystem weniger Formaldehyd, Formaldehydspender und/oder Vorkondensate aus Formaldehyd zuzusetzen. Allerdings würde dies zu einer signifikanten Verschlechterung der Eigenschaften (insbesondere der Festigkeit) der aus den Formstoffmischungen hergestellten Formkörper führen.In order to reduce the content of free formaldehyde in molding mixtures or in moldings produced from the molding mixtures, it would of course also be possible to add less formaldehyde, formaldehyde donors and / or precondensates from formaldehyde to the binder system. However, this would lead to a significant deterioration in the properties (in particular the strength) of the molded bodies produced from the molding material mixtures.

Um die Konzentration an freiem Formaldehyd in Formstoffmischungen oder in aus den Formstoffmischungen hergestellten Formkörpern zu reduzieren, wurde bisher üblicherweise Harnstoff als Formaldehydfänger verwendet. Im Vergleich zu Harnstoff haben Aminosäuren jedoch zusätzlich den Vorteil, dass der Stickstoffgehalt in der Formstoffmischung oder in den daraus hergestellten Formkörpern reduziert werden kann, da die erfindungsgemäßen Aminosäuren die effektiveren Formaldehydfänger sind. Zudem ist bei der Verwendung von Harnstoff keine signifikante Verbesserung sondern eher eine Herabsetzung der Festigkeit zu beobachten. Zudem entstehen bei der Verwendung von Harnstoff als Formaldehydfänger nicht selten Reaktionsprodukte, die in Mischung nicht stabil sind und zu Eintrübungen und Niederschlägen führen.In order to reduce the concentration of free formaldehyde in molding mixtures or in moldings produced from the molding mixtures, urea has traditionally been used as a formaldehyde scavenger. Compared to urea, however, amino acids also have the advantage that the nitrogen content in the molding material mixture or in the molded articles produced therefrom can be reduced, since the amino acids according to the invention are more effective formaldehyde scavengers. In addition, when using urea, no significant improvement but rather a reduction in strength can be observed. In addition, when urea is used as a formaldehyde scavenger, it is not uncommon for reaction products to be formed that are not stable when mixed and lead to cloudiness and precipitation.

Insbesondere im Eisen- und Stahlguss, dabei vor allem im Edelstahlguss, ist ein möglichst niedriger Gesamtgehalt an Stickstoff erwünscht, da Stickstoff zu Gussfehlern führen kann. Für den Einsatz im Bereich des Stahlgusses und auch des Graugusses sollte ein Bindemittel einen möglichst geringen Gesamtgehalt an Stickstoff aufweisen, da durch einen hohen Stickstoffgehalt Oberflächenfehler, beispielsweise sogenannte "Pinholes" (Nadelstichporen), als Gussfehler auftreten.In particular in iron and steel casting, especially in stainless steel casting, the lowest possible total nitrogen content is desirable, since nitrogen can lead to casting defects. For use in cast steel and gray cast iron, a binder should have the lowest possible total nitrogen content, since surface defects, for example so-called "pinholes" (pinholes), occur as casting defects due to a high nitrogen content.

Erfindungsgemäß bevorzugt handelt es sich bei den Formkörpern für die Gießereiindustrie um Speiser, Gießereiformen oder Kerne für die Gießereiindustrie.According to the invention, the molded bodies for the foundry industry are feeders, foundry molds or cores for the foundry industry.

Als schüttfähiger, feuerfester Füllstoffe können alle üblicherweise für die Herstellung von Formkörpern (insbesondere Speisern, Gießereiformen und Kernen) für die Gießereiindustrie eingesetzten körnigen Füllstoffe verwendet werden, z.B. Quarzsand und Spezialsande. Der Begriff Spezialsand umfasst natürliche Mineralsande sowie Sinter- und Schmelzprodukte, die in körniger Form hergestellt bzw. durch Brech-, Mahl- und Klassiervorgänge in körnige Form überführt werden, bzw. durch andere physikalischchemische Vorgänge entstandene anorganische Mineralsande, die als Formgrundstoffe mit gießereiüblichen Bindemitteln für die Fertigung von Speisern, Kernen und Formen verwendet werden.All granular fillers commonly used for the production of moldings (in particular feeders, foundry molds and cores) for the foundry industry, e.g. quartz sand and special sands, can be used as pourable, refractory fillers. The term special sand includes natural mineral sands as well as sintered and melted products that are manufactured in granular form or converted into granular form by crushing, grinding and classifying processes, or inorganic mineral sands produced by other physico-chemical processes that are used as basic molding materials with conventional foundry binders for used in the manufacture of feeders, cores and molds.

Gemäß einer bevorzugten Ausgestaltung der vorliegenden Erfindung ist eine erfindungsgemäße Formstoffmischung besonders bevorzugt, wobei der eine, zumindest einer der mehreren oder sämtliche schüttfähige, feuerfeste Füllstoffe ausgewählt sind aus der Gruppe bestehend aus Quarzsand, Quarzgutsand, Olivinsand, Chrom-Magnesit-Granulat, Aluminiumsilikate, insbesondere J-Sand und Kerphalite, Schwermineralien, insbesondere Chromit, Zirkonsand und R-Sand, technische Keramik, insbesondere Cerabeads, Schamotte, M-Sand, Alodur, Bauxitsand und Siliciumcarbid, feldspathaltige Sande, Andalusitsande, Hohlkugelkorund, Spheres aus Flugaschen, Reisschalenaschen, Blähgläser, Schaumgläser, geblähte Perlite, Kern-Hülle-Partikel, Mikrohohlkugeln, Flugaschen und weitere Spezialsande.According to a preferred embodiment of the present invention, a molding material mixture according to the invention is particularly preferred, the one, at least one of the several or all pourable, refractory fillers being selected from the group consisting of quartz sand, quartz sand, olivine sand, chromium-magnesite granules, aluminum silicates, in particular J-sand and kerphalite, heavy minerals, in particular chromite, zircon sand and R-sand, technical ceramics, in particular Cerabeads, chamotte, M-sand, Alodur, bauxite sand and silicon carbide, sands containing feldspar, andalusite sands, hollow spherical corundum, spheres made from fly ash, rice husk ash, expanded glasses, foam glasses, expanded perlites, core / shell particles, microspheres, fly ash and other special sands.

Erfindungsgemäß bevorzugt sind Formstoffmischungen, wobei der eine, zumindest einer der mehreren oder sämtliche schüttfähige, feuerfeste Füllstoffe einen mittleren Partikeldurchmesser d50 im Bereich zwischen 0,001 und 5 mm, vorzugsweise im Bereich von 0,01 bis 3 mm aufweisen, besonders bevorzugt im Bereich von 0,02 bis 2,0 mm aufweisen. Der mittleren Partikeldurchmesser d50 wird nach DIN 66165-2, F und DIN ISO 3310-1 bestimmt.Molding material mixtures are preferred according to the invention, wherein the one, at least one of the several or all of the pourable, refractory fillers have an average particle diameter d50 in the range between 0.001 and 5 mm, preferably in the range from 0.01 to 3 mm, particularly preferably in the range from 0, 02 to 2.0 mm. The mean particle diameter d50 is determined in accordance with DIN 66165-2, F and DIN ISO 3310-1.

Ebenfalls erfindungsgemäß bevorzugt sind Formstoffmischungen, wobei das Verhältnis der Gesamtmasse an schüttfähiger, feuerfester Füllstoffe zu der Gesamtmasse sonstiger Bestandteile der Formstoffmischung im Bereich von 100 : 5 bis 100 : 0,1, bevorzugt von 100 : 3 bis 100 : 0,4, besonders bevorzugt von 100 : 2 bis 100 : 0,6 liegt.Molding material mixtures are also preferred according to the invention, the ratio of the total mass of pourable, refractory fillers to the total mass of other constituents of the molding material mixture in the range from 100: 5 to 100: 0.1, preferably from 100: 3 to 100: 0.4, particularly preferred is from 100: 2 to 100: 0.6.

Ebenfalls bevorzugt sind erfindungsgemäße Formstoffmischungen, wobei die Schüttdichte einer Mischung sämtlicher Feststoffe der Formstoffmischung 100 g/L oder größer ist, vorzugsweise 200 g/L oder größer ist, besonders bevorzugt 1000 g/L oder größer ist.Molding material mixtures according to the invention are also preferred, the bulk density of a mixture of all solids in the molding material mixture being 100 g / L or greater, preferably 200 g / L or greater, particularly preferably 1000 g / L or greater.

Erfindungsgemäß bevorzugt sind Formstoffmischungen, wobei das Bindemittelsystem zusätzlich umfasst:

  • (a) Phenole, insbesondere Phenol, o-Kresol, p-Kresol, 3,5-Xylenol oder Resorcin, oder Vorkondensate aus Phenolen, insbesondere Resole,
    und/oder
  • (c) Harnstoff oder Harnstoffderivate oder Vorkondensate aus Harnstoff oder Harnstoffderivaten.
Molding material mixtures are preferred according to the invention, the binder system additionally comprising:
  • (a) Phenols, especially phenol, o-cresol, p-cresol, 3,5-xylenol or resorcinol, or precondensates of phenols, especially resoles,
    and or
  • (c) Urea or urea derivatives or precondensates from urea or urea derivatives.

In einer bevorzugten Ausgestaltung der vorliegenden erfindungsgemäßen Formstoffmischung wird das Bindemittelsystem bei der Herstellung der Formkörper mit einem Härter versetzt, der die Aushärtung des Bindemittels initiiert. Bei dem Härter handelt es sich üblicherweise um Säuren, vorzugsweise um zumindest eine organische oder anorganische Säure, besonders bevorzugt eine aromatische Sulfonsäure (insbesondere para-Toluolsulfon- und/oder Xylolsulfonsäure), Phosphorsäure, Methansulfonsäure, Schwefelsäure, eine oder mehrere Carbonsäuren oder Mischungen daraus.In a preferred embodiment of the present molding material mixture according to the invention, the binder system is mixed with a hardener during the production of the moldings offset, which initiates the hardening of the binder. The hardener is usually acids, preferably at least one organic or inorganic acid, particularly preferably an aromatic sulfonic acid (especially para-toluenesulfonic and / or xylene sulfonic acid), phosphoric acid, methanesulfonic acid, sulfuric acid, one or more carboxylic acids or mixtures thereof.

In einer alternativen bevorzugten Ausgestaltung sind erfindungsgemäße Formstoffmischungen besonders bevorzugt, wobei das Bindemittelsystem thermisch härtbar ist.In an alternative preferred embodiment, molding material mixtures according to the invention are particularly preferred, the binder system being thermally curable.

Besonders bevorzugt sind erfindungsgemäße Formstoffmischungen, wobei das Bindemittel zusätzlich (a) Phenole, insbesondere Phenol, o-Kresol, p-Kresol, 3,5-Xylenol oder Resorcin, oder Vorkondensate aus Phenolen, insbesondere Resole, und (b) Furanderivate und/oder Furfurylalkohol oder Vorkondensate aus Furanderivaten und/oder Furfurylalkohol umfasst. Hierdurch entstehen während des Härtens Phenol/Furfurylalkohol/Formaldehydharz-gebundene Formstoffe. Es ist somit erfindungsgemäß bevorzugt, wenn das Bindemittelsystem zu einem Phenol/Furfurylalkohol/Formaldehydharz aushärtbar ist, besonders bevorzugt zu einem hochpolymeren und festen Phenol/Furfurylalkohol/Formaldehydharz aushärtbar ist. Erfindungsgemäß bevorzugt erfolgt die Aushärtung dieser Systeme durch Zugabe eines Härters, wobei der Härter eine organische oder anorganische Säure ist, besonders bevorzugt eine aromatische Sulfonsäure (insbesondere para-Toluol- oder Xylolsulfonsäure oder Mischungen aus para-Toluol- und Xylolsulfonsäure), Phosphorsäure, Methansulfonsäure, Schwefelsäure, eine oder mehrere Carbonsäuren oder Mischungen aus den voran genannten Säuren ist.Molding material mixtures according to the invention are particularly preferred, the binder additionally (a) phenols, in particular phenol, o-cresol, p-cresol, 3,5-xylenol or resorcinol, or precondensates of phenols, especially resols, and (b) furan derivatives and / or Furfuryl alcohol or precondensates from furan derivatives and / or furfuryl alcohol. This creates phenol / furfuryl alcohol / formaldehyde resin-bound molding materials during curing. It is therefore preferred according to the invention if the binder system can be hardened to a phenol / furfuryl alcohol / formaldehyde resin, particularly preferably to a high-polymer and solid phenol / furfuryl alcohol / formaldehyde resin. According to the invention, these systems are preferably cured by adding a hardener, the hardener being an organic or inorganic acid, particularly preferably an aromatic sulfonic acid (in particular para-toluene or xylene sulfonic acid or mixtures of para-toluene and xylene sulfonic acid), phosphoric acid, methanesulfonic acid, Sulfuric acid, one or more carboxylic acids or mixtures of the acids mentioned above.

In erfindungsgemäßen Formstoffmischungen umfasst das Bindemittel zusätzlich Furanderivate und/oder Furfurylalkohol oder Vorkondensate aus Furanderivaten und/oder Furfurylalkohol. Hierdurch entstehen während des Härtens Furfurylalkohol/Formaldehydharzgebundenen Formstoffe. Das Bindemittelsystem ist somit zu einem Furfurylalkohol/Formaldehydharz aushärtbar, vorzugsweise zu einem hochpolymeren und festen Furfurylalkohol/Formaldehydharz aushärtbar.In molding material mixtures according to the invention, the binder additionally comprises furan derivatives and / or furfuryl alcohol or precondensates of furan derivatives and / or furfuryl alcohol. This creates furfuryl alcohol / formaldehyde resin-bound molding materials during curing. The binder system can thus be hardened to a furfuryl alcohol / formaldehyde resin, preferably hardenable to a high-polymer and solid furfuryl alcohol / formaldehyde resin.

Besonders bevorzugt sind erfindungsgemäße Formstoffmischungen, wobei das Bindemittel zusätzlich i) Harnstoff oder Harnstoffderivate oder Vorkondensate aus Harnstoff oder Harnstoffderivaten und ii) Furanderivate und/oder Furfurylalkohol oder Vorkondensate aus Furanderivaten und/oder Furfurylalkohol umfasst. Hierdurch entstehen während des Härtens Harnstoff/Furfurylalkohol/Formaldehydharz-gebundenen Formstoffe. Es ist somit erfindungsgemäß bevorzugt, wenn das Bindemittelsystem zu einem Harnstoff/Furfurylalkohol/Formaldehydharz aushärtbar ist, vorzugsweise zu einem hochpolymeren und festen Harnstoff/Furfurylalkohol/Formaldehydharz aushärtbar ist. Erfindungsgemäß bevorzugt erfolgt die Aushärtung dieser Systeme durch Erhitzen in Anwesenheit eines latenten Härters (Warmbox) oder durch Zugabe eines Härters, wobei der Härter eine organische oder anorganische Säure, besonders bevorzugt eine aromatische Sulfonsäure (insbesondere para-Toluol- oder Xylolsulfonsäure oder Mischungen aus para-Toluol- und Xylolsulfonsäure), Phosphorsäure, Methansulfonsäure, Schwefelsäure, eine oder mehrere Carbonsäuren oder Mischungen aus den voran genannten Säuren ist.Molding material mixtures according to the invention are particularly preferred, the binder additionally comprising i) urea or urea derivatives or precondensates of urea or urea derivatives and ii) furan derivatives and / or furfuryl alcohol or precondensates of furan derivatives and / or furfuryl alcohol. This results in molded materials bound with urea / furfuryl alcohol / formaldehyde resin during hardening. It is therefore preferred according to the invention if the binder system can be hardened to a urea / furfuryl alcohol / formaldehyde resin, preferably to a highly polymeric and solid urea / furfuryl alcohol / formaldehyde resin. According to the invention, these systems are preferably cured by heating in the presence of a latent hardener (warm box) or by adding a hardener, the hardener being an organic or inorganic acid, particularly preferably an aromatic sulfonic acid (in particular para-toluene or xylene sulfonic acid or mixtures of para Toluene and xylene sulfonic acid), phosphoric acid, methanesulfonic acid, sulfuric acid, one or more carboxylic acids or mixtures of the aforementioned acids.

Besonders bevorzugt sind erfindungsgemäße Formstoffmischungen, wobei das Bindemittel zusätzlich i) Harnstoff oder Harnstoffderivate oder Vorkondensate aus Harnstoff oder Harnstoffderivaten, ii) Furanderivate und/oder Furfurylalkohol oder Vorkondensate aus Furanderivaten und/oder Furfurylalkohol und iii) Phenole, insbesondere Phenol, o-Kresol, p-Kresol, 3,5-Xylenol oder Resorcin, oder Vorkondensate aus Phenolen, insbesondere Resole umfasst. Hierdurch entstehen während des Härtens Harnstoff/Furfurylalkohol/Phenol/Formaldehydharz-gebundenen Formstoffe. Es ist somit erfindungsgemäß bevorzugt, wenn das Bindemittelsystem zu einem Harnstoff/Furfurylalkohol/Phenol/Formaldehydharz aushärtbar ist, vorzugsweise zu einem hochpolymeren und festen Harnstoff/Furfurylalkohol/Phenol/Formaldehydharz aushärtbar ist. Erfindungsgemäß bevorzugt erfolgt die Aushärtung dieser Systeme durch Erhitzen in Anwesenheit eines latenten Härters (Warmbox) oder durch Zugabe eines Härters, wobei der Härter eine organische oder anorganische Säure, besonders bevorzugt eine aromatische Sulfonsäure (insbesondere para-Toluol- oder Xylolsulfonsäure oder Mischungen aus para-Toluol- und Xylolsulfonsäure), Phosphorsäure, Methansulfonsäure, Schwefelsäure, eine oder mehrere Carbonsäuren oder Mischungen aus den voran genannten Säuren ist.Molding material mixtures according to the invention are particularly preferred, the binder additionally i) urea or urea derivatives or precondensates of urea or urea derivatives, ii) furan derivatives and / or furfuryl alcohol or precondensates of furan derivatives and / or furfuryl alcohol and iii) phenols, in particular phenol, o-cresol, p -Cresol, 3,5-xylenol or resorcinol, or precondensates of phenols, in particular resoles. As a result, urea / furfuryl alcohol / phenol / formaldehyde resin-bound molding materials are produced during curing. It is therefore preferred according to the invention if the binder system can be hardened to a urea / furfuryl alcohol / phenol / formaldehyde resin, preferably to a highly polymeric and solid urea / furfuryl alcohol / phenol / formaldehyde resin. According to the invention, these systems are preferably cured by heating in the presence of a latent hardener (warm box) or by adding a hardener, with the hardener is an organic or inorganic acid, particularly preferably an aromatic sulfonic acid (in particular para-toluene or xylene sulfonic acid or mixtures of para-toluene and xylene sulfonic acid), phosphoric acid, methanesulfonic acid, sulfuric acid, one or more carboxylic acids or mixtures of the aforementioned acids .

Erfindungsgemäß bevorzugt sind daher Formstoffmischungen, wobei das Bindemittelsystem aushärtbar ist zu einem

  1. i) Phenol/Furfurylalkohol/Formaldehydharz,
  2. ii) Furfurylalkohol/Formaldehydharz,
  3. iii) Harnstoff/Furfurylalkohol/Formaldehydharz
    oder
  4. iv) Harnstoff/Furfurylalkohol/Phenol/Formaldehydharz
Molding material mixtures are therefore preferred according to the invention, the binder system being curable into one
  1. i) phenol / furfuryl alcohol / formaldehyde resin,
  2. ii) furfuryl alcohol / formaldehyde resin,
  3. iii) urea / furfuryl alcohol / formaldehyde resin
    or
  4. iv) urea / furfuryl alcohol / phenol / formaldehyde resin

In erfindungsgemäßen Formstoffmischungen ist die Aminosäure ausgewählt ausgewählt aus der Gruppe bestehend aus Glycin, Glutamin, Alanin, Valin und Serin.In molding mixtures according to the invention, the amino acid is selected from the group consisting of glycine, glutamine, alanine, valine and serine.

Eigene Untersuchungen haben gezeigt, dass insbesondere die Aminosäuren Glycin, Glutamin, Alanin, Valin und Serin gute Eigenschaften bei der Verwendung in erfindungsgemäßen Formstoffmischungen aufweisen. Durch den Zusatz dieser Aminosäuren lässt sich die Festigkeit der aus den Formstoffmischungen hergestellten Formkörper besonders gut verbessern, ohne dass andere Eigenschaften der hergestellten Formkörper oder der Formstoffmischung verschlechtert werden. Zudem lässt sich der Gehalt an freiem Formaldehyd in der Formstoffmischung und in den aus der Formstoffmischung hergestellten Formkörpern reduzieren. Von den Aminosäuren ist Glycin besonders bevorzugt. Bevorzugt sind erfindungsgemäße Formstoffmischungen, wobei die Aminosäure eine α-Aminosäure ist.Our own studies have shown that the amino acids glycine, glutamine, alanine, valine and serine in particular have good properties when used in molding material mixtures according to the invention. By adding these amino acids, the strength of the molded bodies produced from the molding material mixtures can be improved particularly well without other properties of the molded bodies produced or of the molding material mixture being impaired. In addition, the content of free formaldehyde in the molding material mixture and in the moldings produced from the molding material mixture can be reduced. Of the amino acids, glycine is particularly preferred. Molding material mixtures according to the invention are preferred, the amino acid being an α-amino acid.

Ebenfalls bevorzugt ist eine erfindungsgemäße Formstoffmischung, wobei der Anteil an sämtlichen Aminosäuren in der Formstoffmischung 0,005 bis 5,0 Gew.-% beträgt, vorzugsweise 0,01 bis 2,0 Gew.-% beträgt, besonders bevorzugt 0,03 bis 1,0 Gew.-% beträgt, bezogen auf den Feststoffanteil der gesamten Formstoffmischung.A molding material mixture according to the invention is likewise preferred, the proportion of all amino acids in the molding material mixture being 0.005 to 5.0% by weight, preferably 0.01 to 2.0% by weight, particularly preferably 0.03 to 1.0 % By weight, based on the solids content of the entire molding material mixture.

Es hat sich in eigenen Untersuchungen gezeigt, dass erfindungsgemäße Formstoffmischungen besonders gute Eigenschaften aufweisen, wenn der Anteil an sämtlichen Aminosäuren in der Formstoffmischung in den oben aufgeführten Bereichen liegt. Bei zu geringen Anteilen an Aminosäuren in der Formstoffmischung besteht die Möglichkeit, dass die Festigkeit der aus den Formstoffmischungen hergestellten Formkörper nicht ausreichend verbessert wird und/oder dass die Menge an freiem Formaldehyd nicht reduziert wird. Bei zu hohen Anteilen an Aminosäuren ist keine weitere Verbesserung der Eigenschaften zu beobachten.It has been shown in our own investigations that molding material mixtures according to the invention have particularly good properties when the proportion of all amino acids in the molding material mixture is in the ranges listed above. If the proportions of amino acids in the molding material mixture are too low, there is the possibility that the strength of the molded bodies produced from the molding material mixtures is not sufficiently improved and / or that the amount of free formaldehyde is not reduced. If the proportions of amino acids are too high, no further improvement in the properties can be observed.

Ebenfalls bevorzugt ist eine erfindungsgemäße Formstoffmischung, wobei das Molverhältnis aus sämtlichen Aminosäuren zu verfügbarem Formaldehyd 4 : 1 bis 1 : 0,5 beträgt, vorzugsweise 3 : 1 bis 1 : 0,9, besonders bevorzugt 2,5 : 1 bis 1 : 1 beträgt.A molding material mixture according to the invention is likewise preferred, the molar ratio of all amino acids to available formaldehyde being 4: 1 to 1: 0.5, preferably 3: 1 to 1: 0.9, particularly preferably 2.5: 1 to 1: 1 .

In eigenen Untersuchungen hat sich gezeigt, dass erfindungsgemäße Formstoffmischungen besonders gute Eigenschaften aufweisen, wenn das Molverhältnis aus sämtlichen Aminosäuren zu verfügbarem Formaldehyd in den oben angegebenen Bereichen liegt. Insbesondere die Festigkeit der aus den Formstoffmischungen hergestellten Formkörper und der Anteil an freiem Formaldehyd in den Formstoffmischungen bzw. den daraus hergestellten Formkörpern zeigen in den angegebenen Bereichen besonders gute Eigenschaften.Our own studies have shown that molding material mixtures according to the invention have particularly good properties when the molar ratio of all amino acids to available formaldehyde is in the ranges given above. In particular, the strength of the moldings produced from the molding mixtures and the proportion of free formaldehyde in the molding mixtures or the moldings produced therefrom show particularly good properties in the specified ranges.

Ebenfalls bevorzugt ist eine erfindungsgemäße Formstoffmischung, wobei die Formaldehydspender und/oder Vorkondensate aus Formaldehyd ausgewählt sind aus der Gruppe bestehend aus Paraformaldehyd, Hexamethylentetramin, Trioxan, Methylolamin und Methylolaminderivaten wie Trimethylolmelamin oder Hexamethylolmelamin.A molding material mixture according to the invention is also preferred, the formaldehyde donors and / or precondensates of formaldehyde being selected from the group consisting of paraformaldehyde, hexamethylenetetramine, trioxane, methylolamine and methylolamine derivatives such as trimethylolmelamine or hexamethylolmelamine.

In einer bevorzugten Ausgestaltung der vorliegenden Erfindung, enthält die Formstoffmischung keine Proteine oder Peptide, wie beispielsweise Dipeptide, Tripeptide, Tetrapeptide, Pentapeptide oder höherwertige Peptide). Es hat sich ebenfalls gezeigt, dass es Vorteile hat, wenn als Aminosäure nicht Asparginsäure, sondern Glycin, Glutamin, Alanin, Valin und/oder Serin, eingesetzt wird.In a preferred embodiment of the present invention, the molding material mixture does not contain any proteins or peptides, such as dipeptides, tripeptides, tetrapeptides, pentapeptides or higher-value peptides). It has also been shown that there are advantages if the amino acid used is glycine, glutamine, alanine, valine and / or serine instead of aspartic acid.

Ein weiterer Aspekt der vorliegenden Erfindung betrifft Formkörper für die Gießereiindustrie hergestellt unter Verwendung einer erfindungsgemäßen Formstoffmischung.Another aspect of the present invention relates to moldings for the foundry industry produced using a molding material mixture according to the invention.

Ebenfalls bevorzugt ist ein erfindungsgemäßer Formkörper, wobei der eine oder die mehreren schüttfähigen, feuerfesten Füllstoffe mit einem gehärteten Bindemittel gebunden sind und das gehärtete Bindemittel ein

  1. i) Phenol/Furfurylalkohol/Formaldehydharz,
  2. ii) Furfurylalkohol/Formaldehydharz,
  3. iii) Harnstoff/Furfurylalkohol/Formaldehydharz
    oder
  4. iv) Harnstoff/Furfurylalkohol/Phenol/Formaldehydharz ist.
A shaped body according to the invention is likewise preferred, the one or more pourable, refractory fillers being bound with a hardened binder and the hardened binder
  1. i) phenol / furfuryl alcohol / formaldehyde resin,
  2. ii) furfuryl alcohol / formaldehyde resin,
  3. iii) urea / furfuryl alcohol / formaldehyde resin
    or
  4. iv) urea / furfuryl alcohol / phenol / formaldehyde resin.

Bevorzugt ist ein erfindungsgemäßer Formkörper, wobei der Formkörper ausgebildet wird durch Härten des Bindemittelsystems, wobei eine chemische Reaktion stattfindet zwischen Formaldehyd und/oder einem Vorkondensat aus Formaldehyd und

  • b) Furanderivaten und/oder Furfurylalkohol oder Vorkondensaten aus Furanderivaten und/oder Furfurylalkohol
    und gegebenenfalls
  • (a) Phenolen, insbesondere Phenol, o-Kresol, p-Kresol, 3,5-Xylenol oder Resorcin, oder Vorkondensaten aus Phenolen, insbesondere Resole,
    und/oder
  • (c) Harnstoff oder Harnstoffderivaten oder Vorkondensate aus Harnstoff oder Harnstoffderivaten .
A shaped body according to the invention is preferred, the shaped body being formed by curing the binder system, a chemical reaction taking place between formaldehyde and / or a precondensate of formaldehyde and
  • b) furan derivatives and / or furfuryl alcohol or precondensates from furan derivatives and / or furfuryl alcohol
    and if necessary
  • (a) Phenols, in particular phenol, o-cresol, p-cresol, 3,5-xylenol or resorcinol, or precondensates of phenols, especially resoles,
    and or
  • (c) Urea or urea derivatives or precondensates from urea or urea derivatives.

Ein weiterer Aspekt der vorliegenden Erfindung betrifft die Verwendung von Aminosäuren (a) in einer Formstoffmischung zur Herstellung von Formkörpern für die Gießereiindustrie oder (b) zur Herstellung von Formkörpern für die Gießereiindustrie.Another aspect of the present invention relates to the use of amino acids (a) in a molding material mixture for the production of moldings for the foundry industry or (b) for the production of moldings for the foundry industry.

Ein weiterer Aspekt der vorliegenden Erfindung betrifft die Verwendung zumindest einer Aminosäure in einer Formstoffmischung für die Gießereiindustrie, wobei die Formstoffmischung neben der Aminosäure Formaldehyd oder eine Formaldehydquelle enthält. Hierbei ist die Aminosäure ausgewählt aus der Gruppe bestehend aus Glycin, Glutamin, Alanin, Valin und Serin.Another aspect of the present invention relates to the use of at least one amino acid in a molding material mixture for the foundry industry, the molding material mixture containing formaldehyde or a source of formaldehyde in addition to the amino acid. The amino acid is selected from the group consisting of glycine, glutamine, alanine, valine and serine.

Ein weiterer Aspekt der vorliegenden Erfindung betrifft die Verwendung zumindest einer Aminosäure zur Herstellung von Formkörpern mit verbesserter Festigkeit und/oder verringerter Neigung zu Gussfehlern.Another aspect of the present invention relates to the use of at least one amino acid for the production of moldings with improved strength and / or reduced tendency to casting defects.

Ein weiterer Aspekt der vorliegenden Erfindung betrifft die Verwendung von erfindungsgemäßen Formstoffmischungen zur Herstellung von Formkörpern für die Gießereiindustrie.Another aspect of the present invention relates to the use of molding material mixtures according to the invention for the production of moldings for the foundry industry.

Ein weiterer Aspekt im Zusammenhang mit der vorliegenden Erfindung betrifft ein Verfahren zur Herstellung einer erfindungsgemäßen Formstoffmischung, umfassend die folgenden Schritte:

  1. a) Herstellen oder Bereitstellen von einem oder mehreren schüttfähigen, feuerfesten Füllstoffen,
  2. b) Herstellen oder Bereitstellen eines Bindemittelsystems, umfassend
    1. i) Formaldehyd, einen Formaldehydspender und/oder Vorkondensate aus Formaldehyd, wobei das Bindemittel zusätzlich Furanderivate und/oder Furfurylalkohol oder Vorkondensate aus Furanderivaten und/oder Furfurylalkohol umfasst,
      und
    2. ii) eine Aminosäure ausgewählt aus der Gruppe bestehend aus Glycin, Glutamin, Alanin, Valin und Serin,
      und
  3. c) Vermischen aller Komponenten.
Another aspect in connection with the present invention relates to a method for producing a molding material mixture according to the invention, comprising the following steps:
  1. a) Production or provision of one or more pourable, refractory fillers,
  2. b) producing or providing a binder system, comprising
    1. i) formaldehyde, a formaldehyde donor and / or precondensates made from formaldehyde, the binder additionally comprising furan derivatives and / or furfuryl alcohol or precondensates made from furan derivatives and / or furfuryl alcohol,
      and
    2. ii) an amino acid selected from the group consisting of glycine, glutamine, alanine, valine and serine,
      and
  3. c) Mixing all components.

Ein weiterer Aspekt im Zusammenhang mit der vorliegenden Erfindung betrifft ein Verfahren zur Herstellung eines Formkörpers für die Gießereiindustrie umfassend die folgenden Schritte:

  1. i) Herstellen oder Bereitstellen einer erfindungsgemäßen Formstoffmischung, vorzugsweise mittels eines erfindungsgemäßen Verfahrens zur einer erfindungsgemäßen Formstoffmischung,
  2. ii) Formen der Formstoffmischung zu einem ungehärteten Formkörper
    und
  3. iii) Aushärten oder Aushärtenlassen des ungehärteten Formkörpers, sodass ein Formkörper für die Gießereiindustrie resultiert.
Another aspect in connection with the present invention relates to a method for producing a molded body for the foundry industry, comprising the following steps:
  1. i) producing or providing a molding material mixture according to the invention, preferably by means of a method according to the invention for a molding material mixture according to the invention,
  2. ii) Shaping the molding material mixture into an uncured molded body
    and
  3. iii) curing or allowing the uncured molded body to harden, so that a molded body for the foundry industry results.

In einer bevorzugten Ausgestaltung des erfindungsgemäßen Verfahrens zur Herstellung eines Formkörpers für die Gießereiindustrie erfolgt das Aushärten oder das Aushärtenlassen des ungehärteten Formkörpers durch Erhitzen.In a preferred embodiment of the method according to the invention for producing a molded body for the foundry industry, the uncured molded body is hardened or allowed to harden by heating.

In einer alternativen bevorzugten Ausgestaltung des erfindungsgemäßen Verfahrens zur Herstellung eines Formkörpers für die Gießereiindustrie erfolgt das Aushärten oder das Aushärtenlassen durch Zugeben eines Härters während des Herstellens oder Bereitstellens der erfindungsgemäßen Formstoffmischung. Bei dem Härter handelt es vorzugsweise um eine organische oder anorganische Säure, besonders bevorzugt um eine Sulfonsäure (insbesondere para-Toluolsulfonsäure), Phosphorsäure, Methansulfonsäure, Carbonsäure und/oder Schwefelsäure oder um Mischungen daraus.In an alternative preferred embodiment of the method according to the invention for producing a molded body for the foundry industry, the curing or allowing it to cure takes place by adding a hardener during the production or provision of the molding material mixture according to the invention. The hardener is preferably an organic or inorganic acid, particularly preferably a sulfonic acid (especially para-toluenesulfonic acid), phosphoric acid, methanesulfonic acid, carboxylic acid and / or sulfuric acid or mixtures thereof.

Ein weiterer Aspekt im Zusammenhang mit der vorliegenden Erfindung betrifft ein Kit zur Herstellung einer erfindungsgemäßen Formstoffmischung und/oder zur Herstellung eines erfindungsgemäßen Formkörpers für die Gießereiindustrie, vorzugsweise zur Herstellung von Speisern, Gießereiformen oder Kernen für die Gießereiindustrie, umfassend

  1. I) ein Bindemittelsystem wie weiter oben für eine erfindungsgemäße Formstoffmischung definiert,
  2. II) einen Härter, vorzugsweise eine organische oder anorganische Säure, besonders bevorzugt eine aromatische Sulfonsäure (insbesondere para-Toluolsulfonsäure), Phosphorsäure, Carbonsäure, Methansulfonsäure und/oder Schwefelsäure oder Mischungen daraus
    und
  3. III) optional einen oder mehrere schüttfähige, feuerfeste Füllstoffe.
Another aspect in connection with the present invention relates to a kit for producing a molding material mixture according to the invention and / or for producing a molding according to the invention for the foundry industry, preferably for the production of feeders, foundry molds or cores for the foundry industry
  1. I) a binder system as defined above for a molding material mixture according to the invention,
  2. II) a hardener, preferably an organic or inorganic acid, particularly preferably an aromatic sulfonic acid (especially para-toluenesulfonic acid), phosphoric acid, carboxylic acid, methanesulfonic acid and / or sulfuric acid or mixtures thereof
    and
  3. III) optionally one or more pourable, refractory fillers.

Im Rahmen der vorliegenden Erfindung werden vorzugsweise mehrere der vorstehend als bevorzugt bezeichneten Aspekte gleichzeitig verwirklicht; insbesondere bevorzugt sind die sich aus den beigefügten Ansprüchen ergebenden Kombinationen solcher Aspekte und der entsprechenden Merkmale.Within the scope of the present invention, several of the aspects identified above as preferred are preferably implemented simultaneously; The combinations of such aspects and the corresponding features resulting from the appended claims are particularly preferred.

Im Folgenden wird die vorliegende Erfindung anhand ausgewählter Beispiele näher erläutert.The present invention is explained in more detail below on the basis of selected examples.

Beispiele:Examples: Beispiel 1 (erfindungsgemäß):Example 1 (according to the invention): Herstellung eines Bindemittelsystems:Production of a binder system:

Zu 100 g eines handelsüblichen Phenol-Furankaltharzes der Firma Hüttenes-Albertus mit der Bezeichnung XA20 (Furfurylalkohol: 78 %, freies Phenol: 4,5 %, Wassergehalt: 2 %, freier Formaldehyd Gehalt: 0,171 % (entsprechend 5,7 mmol); erhältlich von Hüttenes-Albertus Chemische Werke GmbH) wurde bei einer Temperatur von 40 °C 0,43 g Glycin (5,7 mmol) gegeben und für 60 Minuten gerührt. Nach dem Abkühlen des Bindemittelsystems auf Raumtemperatur (18 - 22 °C) wies das Bindemittelsystem einen Gehalt an freiem Formaldehyd von 0,09 % auf.To 100 g of a commercially available phenol-furan cold resin from Hüttenes-Albertus with the designation XA20 (furfuryl alcohol: 78%, free phenol: 4.5%, water content: 2%, free formaldehyde content: 0.171% (corresponding to 5.7 mmol); available from Hüttenes-Albertus Chemische Werke GmbH), 0.43 g of glycine (5.7 mmol) was added at a temperature of 40 ° C. and the mixture was stirred for 60 minutes. After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.09%.

Herstellung einer Formstoffmischunq:Production of a molding material mix:

Bei Raumtemperatur (18 - 22 °C) und einer relativen Luftfeuchtigkeit (RLF) von 40 - 55 % wurden 100 Gewichtsteile Quarzsand H32 (Quarzwerke Frechen) in einen Labormischer (BOSCH) gegeben, mit 0,5 Gewichtsteilen Härter (Aktivator 100 SR; para-Toluolsulfonsäure 65 %, <0,5 % H2SO4) versetzt und für 30 Sekunden gemischt. Anschließend wurde 1,0 Gewichtsteil des hergestellten Bindemittelsystems zugegeben und für weitere 45 Sekunden gemischt. Die Temperatur der hergestellten Formstoffmischung betrug 18 - 22 °C.At room temperature (18-22 ° C) and a relative humidity (RH) of 40-55%, 100 parts by weight of quartz sand H32 (Quarzwerke Frechen) were added to a laboratory mixer (BOSCH), with 0.5 parts by weight of hardener (Aktivator 100 SR; para -Toluenesulfonic acid 65%, <0.5% H 2 SO 4 ) and mixed for 30 seconds. Then 1.0 part by weight of the binder system prepared was added and mixed for a further 45 seconds. The temperature of the molding material mixture produced was 18-22 ° C.

Herstellung von (Prüf-)Formkörpern:Production of (test) moldings:

Anschließend wurde die Formstoffmischung von Hand in eine Prüfriegelform eingebracht und mit einer Handplatte verdichtet. Als Prüfkörper wurden quaderförmige Prüfriegel mit den Abmessungen 220 mm x 22,36 mm x 22,36 mm, sogenannte Georg-Fischer-Prüfriegel, hergestellt.The molding material mixture was then introduced by hand into a test bar mold and compacted with a hand plate. Cuboid test bars with the dimensions 220 mm x 22.36 mm x 22.36 mm, so-called Georg Fischer test bars, were produced as test specimens.

Ermittlung der Verarbeitungs- (WT) und Aushärtezeit (ST):Determination of the processing (WT) and curing time (ST):

Zur Ermittlung der Verarbeitungs- (WT) und Aushärtezeit (ST) der Formstoffmischung wurde anhand eines Georg-Fischer-Prüfriegels mit dem Prüfstift gemäß VDG-Merkblatt P 72 das Abbindeverhalten beobachtet.To determine the processing (WT) and curing time (ST) of the molding material mixture, the setting behavior was observed using a Georg Fischer test bar with the test pin in accordance with VDG leaflet P 72.

Ermittlung des Biegefestigkeitswertes:Determination of the flexural strength value:

Die jeweiligen Biegefestigkeitswerte wurden gemäß VDG-Merkblatt P 72 ermittelt. Zur Bestimmung der Biegefestigkeiten wurden die Prüfriegel in ein Georg-Fischer-Festigkeitsprüfgerät, ausgerüstet mit einer Drei-Punkt-Biegevorrichtung (DISA-Industrie AG, Schaffhausen, CH), eingelegt und die Kraft gemessen, welche zum Bruch der Prüfriegel führte.The respective flexural strength values were determined in accordance with VDG data sheet P 72. To determine the flexural strengths, the test bars were placed in a Georg Fischer strength tester equipped with a three-point bending device (DISA-Industrie AG, Schaffhausen, CH), and the force that led to the breakage of the test bars was measured.

Die Biegefestigkeiten wurden nach einer Stunde, nach zwei Stunden, nach vier Stunden und nach 24 Stunden nach der Herstellung der zu prüfenden (Prüf-)Formkörper (Lagerung der Kerne nach Entformen jeweils bei Raumtemperatur 18-22 °C, relative Luftfeuchtigkeit (20-55 %) gemessen.The flexural strengths were determined after one hour, after two hours, after four hours and after 24 hours after the manufacture of the (test) moldings to be tested (storage of the cores after removal from the mold in each case at room temperature 18-22 ° C, relative humidity (20-55 ° C) %) measured.

Die ermittelten Werte sind in Tabelle 1 zusammengefasst.The values determined are summarized in Table 1.

Die aus der erfindungsgemäßen Formstoffmischung hergestellten erfindungsgemäßen (Prüf-) Formkörper zeigen gegenüber den gemäß Vergleichsbeispielen 1 und 2 hergestellten (Prüf-) Formkörpern nach 24 Stunden eine verbesserte Biegefestigkeit auf, ohne dass das Abbindeverhalten negativ beeinflusst wird. Zusätzlich ist der Gehalt an freiem Formaldehyd in dem erfindungsgemäßen Bindemittelsystem geringer als der Gehalt an freiem Formaldehyd in den Bindemittelsystemen gemäß Vergleichsbeispielen 1 und 2.The (test) moldings according to the invention produced from the molding material mixture according to the invention show improved flexural strength after 24 hours compared with the (test) moldings produced according to Comparative Examples 1 and 2, without the setting behavior being adversely affected. In addition, the content of free formaldehyde in the binder system according to the invention is lower than the content of free formaldehyde in the binder systems according to Comparative Examples 1 and 2.

Beispiel 2 (erfindungsgemäß):Example 2 (according to the invention):

Die Herstellung des Bindemittelsystems, der Formstoffmischung und der (Prüf-) Formkörper erfolgte analog zu Beispiel 1. Allerdings wurden 5,7 mmol Alanin statt Glycin eingesetzt.The binder system, the molding material mixture and the (test) moldings were produced analogously to Example 1. However, 5.7 mmol of alanine were used instead of glycine.

Nach dem Abkühlen des Bindemittelsystems auf Raumtemperatur (18 - 22 °C) wies das Bindemittelsystem einen Gehalt an freiem Formaldehyd von 0,08 % auf.After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.08%.

Beispiel 3 (erfindungsgemäß):Example 3 (according to the invention):

Die Herstellung des Bindemittelsystems, der Formstoffmischung und der (Prüf-) Formkörper erfolgte analog zu Beispiel 1. Allerdings wurden 5,7 mmol Serin statt Glycin eingesetzt.The binder system, the molding material mixture and the (test) moldings were produced analogously to Example 1. However, 5.7 mmol of serine were used instead of glycine.

Nach dem Abkühlen des Bindemittelsystems auf Raumtemperatur (18 - 22 °C) wies das Bindemittelsystem einen Gehalt an freiem Formaldehyd von 0,09 % auf.After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.09%.

Beispiel 4 (erfindungsgemäß):Example 4 (according to the invention):

Die Herstellung des Bindemittelsystems, der Formstoffmischung und der (Prüf-) Formkörper erfolgte analog zu Beispiel 1. Allerdings wurden 5,7 mmol Valin statt Glycin eingesetzt.The binder system, the molding material mixture and the (test) moldings were produced analogously to Example 1. However, 5.7 mmol of valine were used instead of glycine.

Nach dem Abkühlen des Bindemittelsystems auf Raumtemperatur (18 - 22 °C) wies das Bindemittelsystem einen Gehalt an freiem Formaldehyd von 0,09 % auf.After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.09%.

Vergleichsbeispiel 1 (nicht erfindungsgemäß):Comparative example 1 (not according to the invention):

Die Herstellung des Bindemittelsystems, der Formstoffmischung und der (Prüf-)Formkörper erfolgte analog zu Beispiel 1. Allerdings wurde 5,7 mmol Harnstoff statt des Glycins verwendet.The binder system, the molding material mixture and the (test) moldings were produced analogously to Example 1. However, 5.7 mmol of urea was used instead of the glycine.

Nach dem Abkühlen des Bindemittelsystems auf Raumtemperatur (18 - 22 °C) wies das Bindemittelsystem einen Gehalt an freiem Formaldehyd von 0,13 % auf.After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.13%.

Vergleichsbeispiel 2 (nicht erfindungsgemäß):Comparative example 2 (not according to the invention):

Die Herstellung des Bindemittelsystems, der Formstoffmischung und der (Prüf-) Formkörper erfolgte analog zu Beispiel 1. Allerdings wurde kein Glycin hinzugegeben.The binder system, the molding material mixture and the (test) moldings were produced analogously to Example 1. However, no glycine was added.

Nach dem Abkühlen des Bindemittelsystems auf Raumtemperatur (18 - 22 °C) wies das Bindemittelsystem einen Gehalt an freiem Formaldehyd von 0,15 % auf.After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.15%.

Beispiel 5 (erfindungsgemäß):Example 5 (according to the invention):

Die Herstellung des Bindemittelsystems, der Formstoffmischung und der (Prüf-) Formkörper erfolgte analog zu Beispiel 1. Allerdings wurden 100 g eines handelsüblichen Phenol-Furankaltharzes der Firma Hüttenes-Albertus mit der Bezeichnung Kaltharz 7864 (Furfurylalkohol: 40 %, freies Phenol: 4 %, Wassergehalt: 2 %, freier Formaldehyd Gehalt: 0,125 % (entspricht 4,2 mmol); erhältlich von Hüttenes-Albertus Chemische Werke GmbH), statt des in Beispiel 1 eingesetzten Phenol-Furankaltharzes mit der Bezeichnung XA20 verwendet. Allerdings wurden 4,2 mmol Glycin eingesetzt.The binder system, the molding material mixture and the (test) moldings were produced analogously to Example 1. However, 100 g of a commercially available phenol-furan cold resin from the company Hüttenes-Albertus with the name Kaltharz 7864 (furfuryl alcohol: 40%, free phenol: 4% Water content: 2%, free formaldehyde content: 0.125% (corresponds to 4.2 mmol); available from Hüttenes-Albertus Chemische Werke GmbH), used instead of the phenol-furan cold resin with the designation XA20 used in Example 1. However, 4.2 mmol of glycine were used.

Nach dem Abkühlen des Bindemittelsystems auf Raumtemperatur (18 - 22 °C) wies das Bindemittelsystem einen Gehalt an freiem Formaldehyd von 0,04 % auf.After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.04%.

Die ermittelten Werte sind in Tabelle 1 zusammengefasst.The values determined are summarized in Table 1.

Die aus der erfindungsgemäßen Formstoffmischung hergestellten erfindungsgemäßen (Prüf-) Formkörper zeigen gegenüber den gemäß Vergleichsbeispielen 3 und 4 hergestellten (Prüf-) Formkörpern nach vier Stunden eine verbesserte Biegefestigkeit auf, ohne dass das Abbindeverhalten negativ beeinflusst wird. Zusätzlich ist der Gehalt an freiem Formaldehyd in dem erfindungsgemäßen Bindemittelsystem geringer als der Gehalt an freiem Formaldehyd in den Bindemittelsystemen gemäß Vergleichsbeispielen 3 und 4.The (test) moldings according to the invention produced from the molding material mixture according to the invention show improved flexural strength after four hours compared with the (test) moldings produced according to Comparative Examples 3 and 4, without the setting behavior being negatively affected. In addition, the content is free Formaldehyde in the binder system according to the invention is lower than the content of free formaldehyde in the binder systems according to Comparative Examples 3 and 4.

Beispiel 6 (erfindungsgemäß):Example 6 (according to the invention):

Die Herstellung des Bindemittelsystems, der Formstoffmischung und der (Prüf-) Formkörper erfolgte analog zu Beispiel 5. Allerdings wurden 4,2 mmol Alanin statt Glycin eingesetzt.The binder system, the molding material mixture and the (test) moldings were produced analogously to Example 5. However, 4.2 mmol of alanine were used instead of glycine.

Nach dem Abkühlen des Bindemittelsystems auf Raumtemperatur (18 - 22 °C) wies das Bindemittelsystem einen Gehalt an freiem Formaldehyd von 0,05 % auf.After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.05%.

Beispiel 7 (erfindungsgemäß):Example 7 (according to the invention):

Die Herstellung des Bindemittelsystems, der Formstoffmischung und der (Prüf-) Formkörper erfolgte analog zu Beispiel 5. Allerdings wurden 4,2 mmol Serin statt Glycin eingesetzt.The binder system, the molding material mixture and the (test) moldings were produced analogously to Example 5. However, 4.2 mmol of serine were used instead of glycine.

Nach dem Abkühlen des Bindemittelsystems auf Raumtemperatur (18 - 22 °C) wies das Bindemittelsystem einen Gehalt an freiem Formaldehyd von 0,06 % auf.After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.06%.

Beispiel 8 (erfindungsgemäß):Example 8 (according to the invention):

Die Herstellung des Bindemittelsystems, der Formstoffmischung und der (Prüf-) Formkörper erfolgte analog zu Beispiel 5. Allerdings wurden 4,2 mmol Valin statt Glycin eingesetzt.The binder system, the molding material mixture and the (test) moldings were produced analogously to Example 5. However, 4.2 mmol of valine were used instead of glycine.

Nach dem Abkühlen des Bindemittelsystems auf Raumtemperatur (18 - 22 °C) wies das Bindemittelsystem einen Gehalt an freiem Formaldehyd von 0,05 % auf.After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.05%.

Beispiel 9 (erfindungsgemäß):Example 9 (according to the invention):

Die Herstellung des Bindemittelsystems, der Formstoffmischung und der (Prüf-) Formkörper erfolgte analog zu Beispiel 5. Allerdings wurden 4,2 mmol Glutamin statt Glycin eingesetzt.The binder system, the molding material mixture and the (test) moldings were produced analogously to Example 5. However, 4.2 mmol of glutamine were used instead of glycine.

Nach dem Abkühlen des Bindemittelsystems auf Raumtemperatur (18 - 22 °C) wies das Bindemittelsystem einen Gehalt an freiem Formaldehyd von 0,03 % auf.After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.03%.

Vergleichsbeispiel 3 (nicht erfindungsgemäß):Comparative example 3 (not according to the invention):

Die Herstellung des Bindemittelsystems, der Formstoffmischung und der (Prüf-) Formkörper erfolgte analog zu Beispiel 5. Allerdings wurden 4,2 mmol Harnstoff statt des Glycins verwendet.The binder system, the molding material mixture and the (test) moldings were produced analogously to Example 5. However, 4.2 mmol of urea were used instead of the glycine.

Nach dem Abkühlen des Bindemittelsystems auf Raumtemperatur (18 - 22 °C) wies das Bindemittelsystem einen Gehalt an freiem Formaldehyd von 0,12 % auf.After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.12%.

Vergleichsbeispiel 4 (nicht erfindungsgemäß):Comparative example 4 (not according to the invention):

Die Herstellung des Bindemittelsystems, der Formstoffmischung und der (Prüf-) Formkörper erfolgte analog zu Beispiel 5. Allerdings wurde kein Glycin hinzugegeben.The binder system, the molding material mixture and the (test) moldings were produced analogously to Example 5. However, no glycine was added.

Nach dem Abkühlen des Bindemittelsystems auf Raumtemperatur (18 - 22 °C) wies das Bindemittelsystem einen Gehalt an freiem Formaldehyd von 0,17 % auf.After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.17%.

Beispiel 10 (erfindungsgemäß):Example 10 (according to the invention):

Die Herstellung des Bindemittelsystems, der Formstoffmischung und der (Prüf-) Formkörper erfolgte analog zu Beispiel 1. Allerdings wurden 100 g eines handelsüblichen Phenol-Furankaltharzes der Firma Hüttenes-Albertus mit der Bezeichnung Kaltharz 8117 (Furfurylalkohol: 50 %, freies Phenol: 3 - 4 %, Wassergehalt: 2 %, freier Formaldehyd Gehalt: 0,120 % (entspricht 4 mmol); erhältlich von Hüttenes-Albertus Chemische Werke GmbH) statt des in Beispiel 1 eingesetzten Phenol-Furankaltharzes mit der Bezeichnung XA20 verwendet. Allerdings wurden 4,0 mmol Glycin eingesetzt.The binder system, the molding material mixture and the (test) moldings were produced analogously to Example 1. However, 100 g of a commercially available phenol-furan cold resin from the Hüttenes-Albertus company with the designation Kaltharz 8117 (furfuryl alcohol: 50%, free phenol: 3 - 4%, water content: 2%, free formaldehyde content: 0.120% (corresponds to 4 mmol); available from Hüttenes-Albertus Chemische Werke GmbH) instead of the phenol-furan cold resin with the designation XA20 used in Example 1. However, 4.0 mmol of glycine were used.

Nach dem Abkühlen des Bindemittelsystems auf Raumtemperatur (18 - 22 °C) wies das Bindemittelsystem einen Gehalt an freiem Formaldehyd von 0,05 % auf.After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.05%.

Die ermittelten Werte sind in Tabelle 1 zusammengefasst.The values determined are summarized in Table 1.

Die aus der erfindungsgemäßen Formstoffmischung hergestellten erfindungsgemäßen (Prüf-) Formkörper zeigen gegenüber den gemäß Vergleichsbeispielen 5 und 6 hergestellten (Prüf-) Formkörpern nach 24 Stunden eine verbesserte Biegefestigkeit auf, ohne dass das Abbindeverhalten negativ beeinflusst wird. Zusätzlich ist der Gehalt an freiem Formaldehyd in dem erfindungsgemäßen Bindemittelsystem geringer als der Gehalt an freiem Formaldehyd in den Bindemittelsystemen gemäß Vergleichsbeispielen 6 und 5.The (test) moldings according to the invention produced from the molding material mixture according to the invention show in comparison to those produced according to Comparative Examples 5 and 6 (Test) moldings show improved flexural strength after 24 hours without the setting behavior being adversely affected. In addition, the content of free formaldehyde in the binder system according to the invention is lower than the content of free formaldehyde in the binder systems according to Comparative Examples 6 and 5.

Beispiel 11 (erfindungsgemäß):Example 11 (according to the invention):

Die Herstellung des Bindemittelsystems, der Formstoffmischung und der (Prüf-) Formkörper erfolgte analog zu Beispiel 10. Allerdings wurden 4,0 mmol Alanin statt Glycin eingesetzt.The binder system, the molding material mixture and the (test) moldings were produced analogously to Example 10. However, 4.0 mmol of alanine were used instead of glycine.

Nach dem Abkühlen des Bindemittelsystems auf Raumtemperatur (18 - 22 °C) wies das Bindemittelsystem einen Gehalt an freiem Formaldehyd von 0,05 % auf.After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.05%.

Beispiel 12 (erfindungsgemäß):Example 12 (according to the invention):

Die Herstellung des Bindemittelsystems, der Formstoffmischung und der (Prüf-) Formkörper erfolgte analog zu Beispiel 10. Allerdings wurden 4,0 mmol Serin statt Glycin eingesetzt.The binder system, the molding material mixture and the (test) moldings were produced analogously to Example 10. However, 4.0 mmol of serine were used instead of glycine.

Nach dem Abkühlen des Bindemittelsystems auf Raumtemperatur (18 - 22 °C) wies das Bindemittelsystem einen Gehalt an freiem Formaldehyd von 0,08 % auf.After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.08%.

Beispiel 13 (erfindungsgemäß):Example 13 (according to the invention):

Die Herstellung des Bindemittelsystems, der Formstoffmischung und der (Prüf-) Formkörper erfolgte analog zu Beispiel 10. Allerdings wurden 4,0 mmol Valin statt Glycin eingesetzt.The binder system, the molding material mixture and the (test) moldings were produced analogously to Example 10. However, 4.0 mmol of valine were used instead of glycine.

Nach dem Abkühlen des Bindemittelsystems auf Raumtemperatur (18 - 22 °C) wies das Bindemittelsystem einen Gehalt an freiem Formaldehyd von 0,07 % auf.After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.07%.

Beispiel 14 (erfindungsgemäß):Example 14 (according to the invention):

Die Herstellung des Bindemittelsystems, der Formstoffmischung und der (Prüf-) Formkörper erfolgte analog zu Beispiel 10. Allerdings wurden 4,0 mmol Glutamin statt Glycin eingesetzt.The binder system, the molding material mixture and the (test) moldings were produced analogously to Example 10. However, 4.0 mmol of glutamine were used instead of glycine.

Nach dem Abkühlen des Bindemittelsystems auf Raumtemperatur (18 - 22 °C) wies das Bindemittelsystem einen Gehalt an freiem Formaldehyd von 0,03 % auf.After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.03%.

Vergleichsbeispiel 5 (nicht erfindungsgemäß):Comparative example 5 (not according to the invention):

Die Herstellung des Bindemittelsystems, der Formstoffmischung und der (Prüf-) Formkörper erfolgte analog zu Beispiel 10. Allerdings wurden 4,0 mmol Harnstoff statt des Glycins verwendet.The binder system, the molding material mixture and the (test) moldings were produced analogously to Example 10. However, 4.0 mmol of urea were used instead of the glycine.

Nach dem Abkühlen des Bindemittelsystems auf Raumtemperatur (18 - 22 °C) wies das Bindemittelsystem einen Gehalt an freiem Formaldehyd von 0,05 % auf.After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.05%.

Vergleichsbeispiel 6 (nicht erfindungsgemäß):Comparative example 6 (not according to the invention):

Die Herstellung des Bindemittelsystems, der Formstoffmischung und der (Prüf-) Formkörper erfolgte analog zu Beispiel 10. Allerdings wurde kein Glycin hinzugegeben.The binder system, the molding material mixture and the (test) moldings were produced analogously to Example 10. However, no glycine was added.

Nach dem Abkühlen des Bindemittelsystems auf Raumtemperatur (18 - 22 °C) wies das Bindemittelsystem einen Gehalt an freiem Formaldehyd von 0,15 % auf.After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.15%.

Beispiel 15 (erfindungsgemäß):Example 15 (according to the invention):

Die Herstellung des Bindemittelsystems, der Formstoffmischung und der (Prüf-) Formkörper erfolgte analog zu Beispiel 1. Allerdings wurden 100 g eines handelsüblichen Phenol-Furankaltharzes der Firma Hüttenes-Albertus mit der Bezeichnung Kaltharz 8500 (Furfurylalkohol: 57 %, freies Phenol: 1,1 - 1,8 %, Wassergehalt: 8 - 10 %, freier Formaldehyd Gehalt: 0,25 % (entspricht 8,3 mmol); erhältlich von Hüttenes-Albertus Chemische Werke GmbH) statt des in Beispiel 1 eingesetzten Phenol-Furankaltharzes mit der Bezeichnung XA20 verwendet. Allerdings wurden 8,3 mmol Glycin eingesetzt.The binder system, the molding material mixture and the (test) moldings were produced analogously to Example 1. However, 100 g of a commercially available phenol-furan cold resin from Hüttenes-Albertus with the name Kaltharz 8500 (furfuryl alcohol: 57%, free phenol: 1, 1 - 1.8%, water content: 8 - 10%, free formaldehyde content: 0.25% (corresponds to 8.3 mmol); available from Hüttenes-Albertus Chemische Werke GmbH) instead of the phenol-furan cold resin used in Example 1 with the Designation XA20 used. However, 8.3 mmol of glycine were used.

Nach dem Abkühlen des Bindemittelsystems auf Raumtemperatur (18 - 22 °C) wies das Bindemittelsystem einen Gehalt an freiem Formaldehyd von 0,04 % auf.After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.04%.

Die ermittelten Werte sind in Tabelle 1 zusammengefasst.The values determined are summarized in Table 1.

Die aus der erfindungsgemäßen Formstoffmischung hergestellten erfindungsgemäßen (Prüf-) Formkörper zeigen gegenüber den gemäß Vergleichsbeispielen 7 und 8 hergestellten (Prüf-) Formkörpern nach 24 Stunden eine verbesserte Biegefestigkeit auf, ohne dass das Abbindeverhalten negativ beeinflusst wird. Zusätzlich ist der Gehalt an freiem Formaldehyd in dem erfindungsgemäßen Bindemittelsystem geringer als der Gehalt an freiem Formaldehyd in den Bindemittelsystemen gemäß Vergleichsbeispielen 7 und 8.The (test) moldings according to the invention produced from the molding material mixture according to the invention show in comparison to those produced according to Comparative Examples 7 and 8 (Test) moldings show improved flexural strength after 24 hours without the setting behavior being adversely affected. In addition, the content of free formaldehyde in the binder system according to the invention is lower than the content of free formaldehyde in the binder systems according to Comparative Examples 7 and 8.

Beispiel 16 (erfindungsgemäß):Example 16 (according to the invention):

Die Herstellung des Bindemittelsystems, der Formstoffmischung und der (Prüf-) Formkörper erfolgte analog zu Beispiel 15. Allerdings wurden 8,3 mmol Alanin statt Glycin eingesetzt.The binder system, the molding material mixture and the (test) moldings were produced analogously to Example 15. However, 8.3 mmol of alanine were used instead of glycine.

Nach dem Abkühlen des Bindemittelsystems auf Raumtemperatur (18 - 22 °C) wies das Bindemittelsystem einen Gehalt an freiem Formaldehyd von 0,04 % auf.After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.04%.

Beispiel 17 (erfindungsgemäß):Example 17 (according to the invention):

Die Herstellung des Bindemittelsystems, der Formstoffmischung und der (Prüf-) Formkörper erfolgte analog zu Beispiel 15. Allerdings wurden 8,3 mmol Serin statt Glycin eingesetzt.The binder system, the molding material mixture and the (test) moldings were produced analogously to Example 15. However, 8.3 mmol of serine were used instead of glycine.

Nach dem Abkühlen des Bindemittelsystems auf Raumtemperatur (18 - 22 °C) wies das Bindemittelsystem einen Gehalt an freiem Formaldehyd von 0,05 % auf.After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.05%.

Beispiel 18 (erfindungsgemäß):Example 18 (according to the invention):

Die Herstellung des Bindemittelsystems, der Formstoffmischung und der (Prüf-) Formkörper erfolgte analog zu Beispiel 15. Allerdings wurden 8,3 mmol Valin statt Glycin eingesetzt.The binder system, the molding material mixture and the (test) moldings were produced analogously to Example 15. However, 8.3 mmol of valine were used instead of glycine.

Nach dem Abkühlen des Bindemittelsystems auf Raumtemperatur (18 - 22 °C) wies das Bindemittelsystem einen Gehalt an freiem Formaldehyd von 0,07 % auf.After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.07%.

Beispiel 19 (erfindungsgemäß):Example 19 (according to the invention):

Die Herstellung des Bindemittelsystems, der Formstoffmischung und der (Prüf-) Formkörper erfolgte analog zu Beispiel 15. Allerdings wurden 8,3 mmol Glutamin statt Glycin eingesetzt.The binder system, the molding material mixture and the (test) moldings were produced analogously to Example 15. However, 8.3 mmol of glutamine were used instead of glycine.

Nach dem Abkühlen des Bindemittelsystems auf Raumtemperatur (18 - 22 °C) wies das Bindemittelsystem einen Gehalt an freiem Formaldehyd von 0,06 % auf.After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.06%.

Vergleichsbeispiel 7 (nicht erfindungsgemäß):Comparative example 7 (not according to the invention):

Die Herstellung des Bindemittelsystems, der Formstoffmischung und der (Prüf-) Formkörper erfolgte analog zu Beispiel 15. Allerdings wurden 8,3 mmol Harnstoff statt des Glycins verwendet.The binder system, the molding material mixture and the (test) moldings were produced analogously to Example 15. However, 8.3 mmol of urea were used instead of the glycine.

Nach dem Abkühlen des Bindemittelsystems auf Raumtemperatur (18 - 22 °C) wies das Bindemittelsystem einen Gehalt an freiem Formaldehyd von 0,19 % auf.After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.19%.

Vergleichsbeispiel 8 (nicht erfindungsgemäß):Comparative example 8 (not according to the invention):

Die Herstellung des Bindemittelsystems, der Formstoffmischung und der (Prüf-) Formkörper erfolgte analog zu Beispiel 15. Allerdings wurde kein Glycin hinzugegeben.The binder system, the molding material mixture and the (test) moldings were produced analogously to Example 15. However, no glycine was added.

Nach dem Abkühlen des Bindemittelsystems auf Raumtemperatur (18 - 22 °C) wies das Bindemittelsystem einen Gehalt an freiem Formaldehyd von 0,27 % auf.After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.27%.

Beispiel 20 (erfindungsgemäß):Example 20 (according to the invention):

Die Herstellung des Bindemittelsystems, der Formstoffmischung und der (Prüf-) Formkörper erfolgte analog zu Beispiel 1. Allerdings wurden 100 g eines handelsüblichen Furankaltharzes der Firma Hüttenes-Albertus mit der Bezeichnung Kaltharz TDE 20 (Furfurylalkohol: 70 %, Wassergehalt: 5 - 7 %, freier Formaldehyd Gehalt: 0,23 % (entspricht 7,7 mmol); erhältlich von Hüttenes-Albertus Chemische Werke GmbH) statt des in Beispiel 1 eingesetzten Phenol-Furankaltharzes mit der Bezeichnung XA20 verwendet. Allerdings wurden 7,7 mmol Glycin eingesetzt.The binder system, the molding material mixture and the (test) moldings were produced analogously to Example 1. However, 100 g of a commercially available furan cold resin from the company Hüttenes-Albertus with the name Kaltharz TDE 20 (furfuryl alcohol: 70%, water content: 5 - 7% , Free formaldehyde content: 0.23% (corresponds to 7.7 mmol); available from Hüttenes-Albertus Chemische Werke GmbH) instead of the phenol-furan cold resin with the designation XA20 used in Example 1. However, 7.7 mmol of glycine were used.

Nach dem Abkühlen des Bindemittelsystems auf Raumtemperatur (18 - 22 °C) wies das Bindemittelsystem einen Gehalt an freiem Formaldehyd von 0,09 % auf.After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.09%.

Die ermittelten Werte sind in Tabelle 1 zusammengefasst.The values determined are summarized in Table 1.

Die aus der erfindungsgemäßen Formstoffmischung hergestellten erfindungsgemäßen (Prüf-) Formkörper zeigen gegenüber den gemäß Vergleichsbeispiel 9 hergestellten (Prüf-) Formkörpern nach 24 Stunden eine verbesserte Biegefestigkeit auf, ohne dass das Abbindeverhalten negativ beeinflusst wird. Zusätzlich ist der Gehalt an freiem Formaldehyd in dem erfindungsgemäßen Bindemittelsystem geringer als der Gehalt an freiem Formaldehyd in den Bindemittelsystemen gemäß Vergleichsbeispiel 9.The (test) moldings according to the invention produced from the molding material mixture according to the invention show in comparison with those produced according to Comparative Example 9 (Test) moldings show improved flexural strength after 24 hours without the setting behavior being adversely affected. In addition, the content of free formaldehyde in the binder system according to the invention is lower than the content of free formaldehyde in the binder systems according to Comparative Example 9.

Beispiel 21 (erfindungsgemäß):Example 21 (according to the invention):

Die Herstellung des Bindemittelsystems, der Formstoffmischung und der (Prüf-) Formkörper erfolgte analog zu Beispiel 20. Allerdings wurden 7,7 mmol Alanin statt Glycin eingesetzt.The binder system, the molding material mixture and the (test) moldings were produced analogously to Example 20. However, 7.7 mmol of alanine were used instead of glycine.

Nach dem Abkühlen des Bindemittelsystems auf Raumtemperatur (18 - 22 °C) wies das Bindemittelsystem einen Gehalt an freiem Formaldehyd von 0,08 % auf.After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.08%.

Beispiel 22 (erfindungsgemäß):Example 22 (according to the invention):

Die Herstellung des Bindemittelsystems, der Formstoffmischung und der (Prüf-) Formkörper erfolgte analog zu Beispiel 20. Allerdings wurden 7,7 mmol Serin statt Glycin eingesetzt.The binder system, the molding material mixture and the (test) moldings were produced analogously to Example 20. However, 7.7 mmol of serine were used instead of glycine.

Nach dem Abkühlen des Bindemittelsystems auf Raumtemperatur (18 - 22 °C) wies das Bindemittelsystem einen Gehalt an freiem Formaldehyd von 0,09 % auf.After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.09%.

Beispiel 23 (erfindungsgemäß):Example 23 (according to the invention):

Die Herstellung des Bindemittelsystems, der Formstoffmischung und der (Prüf-) Formkörper erfolgte analog zu Beispiel 20. Allerdings wurden 7,7 mmol Valin statt Glycin eingesetzt.The binder system, the molding material mixture and the (test) moldings were produced analogously to Example 20. However, 7.7 mmol of valine were used instead of glycine.

Nach dem Abkühlen des Bindemittelsystems auf Raumtemperatur (18 - 22 °C) wies das Bindemittelsystem einen Gehalt an freiem Formaldehyd von 0,07 % auf.After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.07%.

Vergleichsbeispiel 9 (nicht erfindungsgemäß):Comparative example 9 (not according to the invention):

Die Herstellung des Bindemittelsystems, der Formstoffmischung und der (Prüf-) Formkörper erfolgte analog zu Beispiel 20. Allerdings wurde kein Glycin hinzugegeben.The binder system, the molding material mixture and the (test) moldings were produced analogously to Example 20. However, no glycine was added.

Nach dem Abkühlen des Bindemittelsystems auf Raumtemperatur (18 - 22 °C) wies das Bindemittelsystem einen Gehalt an freiem Formaldehyd von 0,23 % auf.After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.23%.

Beispiel 24 (erfindungsgemäß):Example 24 (according to the invention): Herstellung eines Bindemittelsystems:Production of a binder system:

Zu 100 g eines handelsüblichen Phenol-Furan-Warmbox-Harzes der Firma Hüttenes-Albertus mit der Bezeichnung "Furesan 7682" (Furfurylalkohol: 57 %, freies Phenol: 1,0 - 1,6 %, Wassergehalt: 8 - 10 %, freier Formaldehyd-Gehalt: 0,25 % (entspricht 8,3 mmol); erhältlich von Hüttenes-Albertus Chemische Werke GmbH) wurden bei einer Temperatur von 40 °C 0,62 g Glycin (8,3 mmol) gegeben und für 60 Minuten gerührt. Nach dem Abkühlen des Bindemittelsystems auf Raumtemperatur (18 - 22 °C) wies das Bindemittelsystem einen Gehalt an freiem Formaldehyd von 0,07 % auf.For 100 g of a commercially available phenol furan warm box resin from Hüttenes-Albertus with the designation "Furesan 7682" (furfuryl alcohol: 57%, free phenol: 1.0-1.6%, water content: 8-10%, free Formaldehyde content: 0.25% (corresponds to 8.3 mmol); available from Hüttenes-Albertus Chemische Werke GmbH), 0.62 g of glycine (8.3 mmol) were added at a temperature of 40 ° C. and the mixture was stirred for 60 minutes . After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.07%.

Herstellung einer Formstoffmischung:Production of a molding material mixture:

Bei Raumtemperatur (18-22 °C) und einer rel. Lufttemperatur (40-55%) werden in einen Labormischer (BOSCH) 100 GT Quarzsand H32 gegeben, mit 0,3% Härter (Furedur 2) versetzt und 15 sec vermischt. Im Anschluss wird das Sand/Härter-Gemisch mit 1,5 GT Harz versehen und weitere 150 sec gemischt. Die Temperatur der hergestellten Formstoffmischung beträgt 18-22 °C.At room temperature (18-22 ° C) and a rel. Air temperature (40-55%) are placed in a laboratory mixer (BOSCH) 100 GT quartz sand H32, mixed with 0.3% hardener (Furedur 2) and mixed for 15 seconds. The sand / hardener mixture is then provided with 1.5 parts by weight of resin and mixed for a further 150 seconds. The temperature of the molding material mixture produced is 18-22 ° C.

Herstellung von (Prüf-) Formkörpern:Production of (test) moldings:

Anschließend wurde die Formstoffmischung von Hand in eine Prüfriegelform eingebracht, mit einer Handplatte verdichtet und bei 220°C gehärtet. Als Prüfkörper wurden quaderförmige Prüfriegel mit den Abmessungen 220 mm x 22,36 mm x 22,36 mm, sogenannte Georg-Fischer-Prüfriegel, hergestellt.The molding material mixture was then introduced by hand into a test bar mold, compacted with a hand plate and cured at 220.degree. Cuboid test bars with the dimensions 220 mm x 22.36 mm x 22.36 mm, so-called Georg Fischer test bars, were produced as test specimens.

Es wurden verschiedene Prüfformkörper hergestellt, wobei diese 15, 30, 60 oder 120 sec bei 220 °C gehärtet wurden.Various test moldings were produced and these were cured at 220 ° C. for 15, 30, 60 or 120 seconds.

Von den hergestellten (Prüf-) Formkörpern wurden die Heißbiegefestigkeit (Biegefestigkeit direkt nach dem Entformen des heißen (Prüf-) Formkörpers) und die Kaltbiegefestigkeit (Biegefestigkeit des erkalteten (Prüf-) Formkörpers nach 24 Stunden) gemäß der in Beispiel 1 beschriebenen Bestimmungsmethode bestimmt.The hot flexural strength (flexural strength directly after removal of the hot (test) shaped body) and the cold flexural strength (flexural strength of the cooled (test) shaped body after 24 hours) of the produced (test) shaped bodies were determined according to the determination method described in Example 1.

Die Ergebnisse sind in Tabelle 2 zusammengefasst.The results are summarized in Table 2.

Die Kaltbiegefestigkeit des hergestellten (Prüf-) Formkörpers ist höher als bei Vergleichsbeispiel 11, in dem keine Aminosäure zugesetzt wurde. Bei den Proben mit einer kurzen Backzeit (15 und 30 Sekunden) ist die Kaltbiegefestigkeit besonders hoch. Die Heißbiegefestigkeiten werden nicht negativ beeinflusst.The cold flexural strength of the (test) molded body produced is higher than in Comparative Example 11, in which no amino acid was added. The cold bending strength is particularly high for the samples with a short baking time (15 and 30 seconds). The hot bending strengths are not negatively affected.

Diese Ergebnisse sind besonders überraschend, da bei Phenol-Furan-Warmbox-Harzen bisher angenommen wurde, dass hohe Biegefestigkeiten (insbesondere bei kurzen Backzeiten) nur mit einem hohen Gehalt an freiem Formaldehyd erreicht werden können.These results are particularly surprising, since with phenol-furan warm box resins it was previously assumed that high flexural strengths (especially with short baking times) can only be achieved with a high content of free formaldehyde.

Beispiel 25 (erfindungsgemäß):Example 25 (according to the invention):

Die Herstellung des Bindemittelsystems, der Formstoffmischung und der (Prüf-) Formkörper erfolgte analog zu Beispiel 24. Allerdings wurden 8.3 mmol Alanin statt Glycin eingesetzt.The binder system, the molding material mixture and the (test) moldings were produced analogously to Example 24. However, 8.3 mmol of alanine were used instead of glycine.

Nach dem Abkühlen des Bindemittelsystems auf Raumtemperatur (18 - 22 °C) wies das Bindemittelsystem einen Gehalt an freiem Formaldehyd von unter 0,08 % auf.After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of less than 0.08%.

Die Ergebnisse sind in Tabelle 2 zusammengefasst.The results are summarized in Table 2.

Die Kaltbiegefestigkeit des hergestellten (Prüf-) Formkörpers ist höher als bei Vergleichsbeispiel 11, in dem keine Aminosäure zugesetzt wurde. Bei den Proben mit einer kurzen Backzeit (15 und 30 Sekunden) ist die Kaltbiegefestigkeit besonders hoch. Die Heißbiegefestigkeiten werden nicht negativ beeinflusst.The cold flexural strength of the (test) molded body produced is higher than in Comparative Example 11, in which no amino acid was added. The cold bending strength is particularly high for the samples with a short baking time (15 and 30 seconds). The hot bending strengths are not negatively affected.

Diese Ergebnisse sind besonders überraschend, da bei Phenol-Furan-Warmbox-Harzen bisher angenommen wurde, dass hohe Biegefestigkeiten (insbesondere bei kurzen Backzeiten) nur mit einem hohen Gehalt an freiem Formaldehyd erreicht werden können.These results are particularly surprising, since with phenol-furan warm box resins it was previously assumed that high flexural strengths (especially with short baking times) can only be achieved with a high content of free formaldehyde.

Beispiel 26 (erfindungsgemäß):Example 26 (according to the invention):

Die Herstellung des Bindemittelsystems, der Formstoffmischung und der (Prüf-) Formkörper erfolgte analog zu Beispiel 24. Allerdings wurden 8,3 mmol Glutamin statt Glycin eingesetzt.The binder system, the molding material mixture and the (test) moldings were produced analogously to Example 24. However, 8.3 mmol of glutamine were used instead of glycine.

Nach dem Abkühlen des Bindemittelsystems auf Raumtemperatur (18 - 22 °C) wies das Bindemittelsystem einen Gehalt an freiem Formaldehyd von unter 0,08 % auf.After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of less than 0.08%.

Die Ergebnisse sind in Tabelle 2 zusammengefasst.The results are summarized in Table 2.

Die Kaltbiegefestigkeit des hergestellten (Prüf-) Formkörpers ist höher als bei Vergleichsbeispiel 11, in dem keine Aminosäure zugesetzt wurde. Bei den Proben mit einer kurzen Backzeit (15 und 30 Sekunden) ist die Kaltbiegefestigkeit besonders hoch. Die Heißbiegefestigkeiten werden nicht negativ beeinflusst.The cold flexural strength of the (test) molded body produced is higher than in Comparative Example 11, in which no amino acid was added. The cold bending strength is particularly high for the samples with a short baking time (15 and 30 seconds). The hot bending strengths are not negatively affected.

Diese Ergebnisse sind besonders überraschend, da bei Phenol-Furan-Warmbox-Harzen bisher angenommen wurde, dass hohe Biegefestigkeiten (insbesondere bei kurzen Backzeiten) nur mit einem hohen Gehalt an freiem Formaldehyd erreicht werden können.These results are particularly surprising, since with phenol-furan warm box resins it was previously assumed that high flexural strengths (especially with short baking times) can only be achieved with a high content of free formaldehyde.

Beispiel 27 (erfindungsgemäß):Example 27 (according to the invention):

Die Herstellung des Bindemittelsystems, der Formstoffmischung und der (Prüf-) Formkörper erfolgte analog zu Beispiel 24. Allerdings wurden 8,3 mmol Serin statt Glycin eingesetzt.The binder system, the molding material mixture and the (test) moldings were produced analogously to Example 24. However, 8.3 mmol of serine were used instead of glycine.

Nach dem Abkühlen des Bindemittelsystems auf Raumtemperatur (18 - 22 °C) wies das Bindemittelsystem einen Gehalt an freiem Formaldehyd von unter 0,08 % auf.After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of less than 0.08%.

Vergleichsbeispiel 10 (nicht erfindungsgemäß):Comparative example 10 (not according to the invention):

Die Herstellung des Bindemittelsystems, der Formstoffmischung und der (Prüf-) Formkörper erfolgte analog zu Beispiel 24. Allerdings wurde 8,3 mmol Harnstoff statt des Glycins verwendet.The binder system, the molding material mixture and the (test) moldings were produced analogously to Example 24. However, 8.3 mmol of urea was used instead of the glycine.

Nach dem Abkühlen des Bindemittelsystems auf Raumtemperatur (18 - 22 °C) wies das Bindemittelsystem einen Gehalt an freiem Formaldehyd von 0,07 % auf.After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.07%.

Vergleichsbeispiel 11 (nicht erfindungsgemäß):Comparative example 11 (not according to the invention):

Die Herstellung des Bindemittelsystems, der Formstoffmischung und der (Prüf-) Formkörper erfolgte analog zu Beispiel 24. Allerdings wurde kein Glycin hinzugegeben.The binder system, the molding material mixture and the (test) moldings were produced analogously to Example 24. However, no glycine was added.

Nach dem Abkühlen des Bindemittelsystems auf Raumtemperatur (18 - 22 °C) wies das Bindemittelsystem einen Gehalt an freiem Formaldehyd von 0,18 % auf.After the binder system had cooled to room temperature (18-22 ° C.), the binder system had a free formaldehyde content of 0.18%.

Ergebnisse:Results:

Tabelle 1: Vergleich der Verarbeitungs- (WT) und Aushärtezeit (ST) sowie der Biegefestigkeiten der in den Beispielen 1 bis 23 und den Vergleichsbeispielen 1 bis 9 hergestellten (Prüf-) Formkörper.Table 1: Comparison of the processing time (WT) and curing time (ST) and the flexural strengths of the (test) molded bodies produced in Examples 1 to 23 and Comparative Examples 1 to 9. Biegefestigkeiten nach xx Stunden in [N/cm2]Flexural strength after xx hours in [N / cm 2 ] Beispielexample AdditivAdditive WT [min]WT [min] ST [min]ST [min] 1h1h 2h2h 4h4h 24h24 hours Beispiel 1example 1 GlycinGlycine 77th 1111 250250 300300 380380 460460 Beispiel 2Example 2 AlaninAlanine 99 1212th 220220 300300 360360 430430 Beispiel 3Example 3 SerinSerine 66th 99 210210 270270 370370 430430 Beispiel 4Example 4 ValinValine 77th 1010 230230 300300 370370 440440 Vergleichsbeispiel 1Comparative example 1 Harnstoffurea 1717th 2727 5555 165165 185185 200200 Vergleichsbeispiel 2Comparative example 2 Kein AdditivNo additive 99 1212th 260260 310310 350350 390390 Beispiel 5Example 5 GlycinGlycine 1414th 2020th 140140 240240 360360 380380 Beispiel 6Example 6 AlaninAlanine 1313th 2020th 110110 210210 300300 370370 Beispiel 7Example 7 SerinSerine 1111 1818th 170170 250250 320320 380380 Beispiel 8Example 8 ValinValine 1414th 2222nd 130130 220220 350350 360360 Beispiel 9Example 9 GlutaminGlutamine 1414th 1919th 8080 200200 330330 350350 Vergleichsbeispiel 3Comparative example 3 Harnstoffurea 2020th 3232 6060 140140 230230 290290 Vergleichsbeispiel 4Comparative example 4 Kein AdditivNo additive 1212th 1717th 150150 240240 290290 340340 Beispiel 10Example 10 GlycinGlycine 1313th 1919th 170170 310310 370370 390390 Beispiel 11Example 11 AlaninAlanine 1111 1717th 170170 300300 360360 390390 Beispiel 12Example 12 SerinSerine 1010 1717th 190190 310310 370370 380380 Beispiel 13Example 13 ValinValine 99 1616 220220 330330 360360 400400 Beispiel 14Example 14 GlutaminGlutamine 1111 1616 160160 390390 360360 390390 Vergleichsbeispiel 5Comparative example 5 Harnstoffurea 1818th 2828 4545 175175 205205 256256 Vergleichsbeispiel 6Comparative example 6 Kein AdditivNo additive 1111 1818th 130130 240240 340340 350350 Beispiel 15Example 15 GlycinGlycine 77th 1010 210210 320320 400400 480480 Beispiel 16Example 16 AlaninAlanine 99 1313th 180180 310310 390390 450450 Beispiel 17Example 17 SerinSerine 66th 99 180180 310310 390390 430430 Beispiel 18Example 18 ValinValine 66th 1010 200200 320320 400400 440440 Beispiel 19Example 19 GlutaminGlutamine 66th 99 190190 310310 360360 450450 Vergleichsbeispiel 7Comparative example 7 Harnstoffurea 99 1414th 125125 295295 340340 370370 Vergleichsbeispiel 8Comparative example 8 Kein AdditivNo additive 55 99 230230 280280 350350 400400 Beispiel 20Example 20 GlycinGlycine 1515th 1919th 160160 260260 370370 440440 Beispiel 21Example 21 AlaninAlanine 1414th 1818th 140140 210210 360360 440440 Beispiel 22Example 22 SerinSerine 1212th 1818th 170170 220220 400400 430430 Beispiel 23Example 23 ValinValine 1212th 1818th 120120 250250 360360 420420 Vergleichsbeispiel 9Comparative example 9 Kein AdditivNo additive 1212th 1818th 120120 250250 340340 400400 Tabelle 2: Vergleich der Heißbiegefestigkeiten und Kaltbiegefestigkeiten der in den Beispielen 24 bis 26 und in Vergleichsbeispiel 11 hergestellten (Prüf-) Formkörper.Table 2: Comparison of the hot flexural strengths and cold flexural strengths of the (test) molded bodies produced in Examples 24 to 26 and in Comparative Example 11. Heißbiegefestigkeiten in [N/cm2] - geprüft sofort nach Herstellung nach ... Sekunden Backzeit bei 220 °CHot bending strengths in [N / cm 2 ] - tested immediately after production after ... seconds of baking time at 220 ° C Kaltbiegefestigkeiten [N/cm2] - geprüft nach dem Erkalten der Kerne nach ... Sekunden Backzeit bei 220 °CCold bending strengths [N / cm 2 ] - tested after the kernels have cooled down after ... seconds of baking time at 220 ° C 15"15 " 30"30 " 60"60 " 120"120 " 15"15 " 30"30 " 60"60 " 120"120 " Vergleichsbeispiel 11Comparative Example 11 210210 225225 235235 220220 680680 660660 600600 530530 Beispiel 24Example 24 215215 220220 240240 230230 740740 710710 630630 580580 Beispiel 25Example 25 230230 240240 280280 220220 770770 760760 610610 570570 Beispiel 26Example 26 200200 220220 270270 220220 780780 740740 610610 550550

Claims (14)

  1. Mold material mixture for producing moldings for the foundry industry, preferably for producing foundry molds, cores or feeders for the foundry industry, which comprises
    A) one or more pourable, refractory fillers,
    B) a binder system comprising
    i) formaldehyde, a formaldehyde donor and/or precondensates of formaldehyde, wherein the binder additionally comprises furan derivatives and/or furfuryl alcohol or precondensates of furan derivatives and/or furfuryl alcohol,
    and
    ii) an amino acid selected from the group consisting of glycine, glutamine, alanine, valine and serine.
  2. Mold material mixture according to Claim 1, wherein the amino acid is glycine.
  3. Mold material mixture according to any of the preceding claims, wherein the one, at least one of the several or all pourable, refractory fillers are selected from the group consisting of silica sand, fused silica sand, olivine sand, chrome-magnesite granules, aluminum silicates, in particular J-sand, heavy minerals, in particular chromite, zircon sand and R-sand, industrial ceramics, in particular chamotte, M-sand, bauxite sand and silicon carbide, feldspar-containing sands, andalusite sands, hollow α-alumina spheres, spheres composed of fly ashes, rice hull ashes, expanded glasses, foamed glasses, expanded perlites, core-shell particles, fly ashes.
  4. Mold material mixture according to any of the preceding claims, wherein the one, at least one of the several or all pourable, refractory fillers have an average particle diameter d50 in the range from 0.001 to 5 mm, preferably in the range from 0.01 to 3 mm, particularly preferably in the range from 0.02 to 2.0 mm and wherein the average particle diameter d50 is determined in accordance with DIN 66165-2, F and DIN ISO 3310-1.
  5. Mold material mixture according to any of the preceding claims, wherein the ratio of the total mass of pourable, refractory fillers to the total mass of other constituents of the mold material mixture is in the range from 100:5 to 100:0.1, preferably from 100:3 to 100:0.4, particularly preferably from 100:2 to 100:0.6.
  6. Mold material mixture according to any of the preceding claims, wherein the binder system additionally comprises:
    a) phenols, in particular phenol, o-cresol, p-cresol, 3,5-xylenol or resorcinol, or precondensates of phenols, in particular resols,
    and/or
    c) urea or urea derivatives or precondensates of urea or urea derivatives.
  7. Mold material mixture according to any of the preceding claims, wherein the binder system is curable to give a
    i) phenol/furfuryl alcohol/formaldehyde resin,
    ii) furfuryl alcohol/formaldehyde resin,
    iii) urea/furfuryl alcohol/formaldehyde resin
    or
    iv) urea/furfuryl alcohol/phenol/formaldehyde resin.
  8. Mold material mixture according to any of the preceding claims, wherein the proportion of all amino acids in the mold material mixture is from 0.005 to 2% by weight, preferably from 0.01 to 1% by weight, particularly preferably from 0.03 to 0.5% by weight, based on the solids content of the total mold material mixture.
  9. Mold material mixture according to any of the preceding claims, wherein the molar ratio of all amino acids to available formaldehyde is from 4:1 to 1:0.5, preferably from 3:1 to 1:0.9, particularly preferably from 2.5:1 to 1:1.
  10. Molding for the foundry industry produced using a mold material mixture as defined in any of Claims 1 to 9.
  11. Use of at least one amino acid selected from the group consisting of glycine, glutamine, alanine, valine and serine in a mold material mixture for the foundry industry, wherein the mold material mixture contains, in addition to the amino acid, a binder system, comprising formaldehyde, a formaldehyde donor and/or precondensates of formaldehyde, wherein the binder additionally comprises furan derivatives and/or furfuryl alcohol or precondensates of furan derivatives and/or furfuryl alcohol.
  12. Process for producing a mold material mixture according to any of Claims 1 to 9, which comprises the following steps:
    a) production or provision of one or more pourable, refractory fillers,
    b) production or provision of a binder system comprising
    i) formaldehyde, a formaldehyde donor and/or precondensates of formaldehyde, wherein the binder additionally comprises furan derivatives and/or furfuryl alcohol or precondensates of furan derivatives and/or furfuryl alcohol,
    and
    ii) an amino acid selected from the group consisting of glycine, glutamine, alanine, valine and serine,
    and
    c) mixing of all components.
  13. Process for producing a molding for the foundry industry, which comprises the following steps:
    i) production or provision of a mold material mixture according to any of Claims 1 to 9,
    ii) shaping of the mold material mixture to give an uncured molding
    and
    iii) curing the uncured molding or allowing the latter to cure, so that a molding for the foundry industry results.
  14. Kit for producing a mold material mixture according to any of Claims 1 to 9 and/or for producing a molding according to Claim 10, which comprises
    I) a binder system as defined in any of Claims 1 to 9,
    and
    II) a hardener, preferably an organic or inorganic acid, particularly preferably a sulfonic acid (in particular para-toluenesulfonic acid), phosphoric acid, carboxylic acid, methanesulfonic acid and/or sulfuric acid or mixtures thereof
    and
    III) optionally one or more pourable, refractory fillers as defined in any of Claims 1 and 3 to 5.
EP17823037.1A 2016-11-29 2017-11-28 Amino acid-containing moulding material mixture for production of mouldings for the foundry industry Active EP3548200B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL17823037T PL3548200T3 (en) 2016-11-29 2017-11-28 Amino acid-containing moulding material mixture for production of mouldings for the foundry industry

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016123051.0A DE102016123051A1 (en) 2016-11-29 2016-11-29 Amino acid-containing molding material mixture for the production of moldings for the foundry industry
PCT/EP2017/080602 WO2018099887A1 (en) 2016-11-29 2017-11-28 Amino acid-containing moulding material mixture for production of mouldings for the foundry industry

Publications (2)

Publication Number Publication Date
EP3548200A1 EP3548200A1 (en) 2019-10-09
EP3548200B1 true EP3548200B1 (en) 2021-06-09

Family

ID=60915468

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17823037.1A Active EP3548200B1 (en) 2016-11-29 2017-11-28 Amino acid-containing moulding material mixture for production of mouldings for the foundry industry

Country Status (12)

Country Link
US (1) US11338356B2 (en)
EP (1) EP3548200B1 (en)
JP (1) JP7069200B2 (en)
KR (1) KR102421482B1 (en)
CN (1) CN110049835A (en)
BR (1) BR112019010872B1 (en)
DE (1) DE102016123051A1 (en)
EA (1) EA038564B1 (en)
ES (1) ES2874780T3 (en)
MX (1) MX2019006187A (en)
PL (1) PL3548200T3 (en)
WO (1) WO2018099887A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018118291A1 (en) * 2018-07-27 2020-01-30 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Sizing composition to reduce formaldehyde emissions
DE102019106021A1 (en) 2019-03-08 2020-09-10 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Formaldehyde scavenger for binder systems
CN111545738B (en) * 2020-05-18 2021-08-27 西峡龙成冶金材料有限公司 Drainage sand and preparation method and application thereof
EP4281595A1 (en) * 2021-01-22 2023-11-29 Oerlikon Metco AG, Wohlen Transplanted thermal barrier coating system
RU210048U1 (en) * 2021-12-07 2022-03-25 Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) Casting shape

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1387255A (en) * 1963-12-18 1965-01-29 Applic Ind Soc Et Process for manufacturing cores and elements of foundry molds and sand-based mixture for its implementation
US3296666A (en) * 1965-08-23 1967-01-10 Howmet Corp Method of preparing an investment mold for use in precision casting
JPS4814288B1 (en) 1969-07-23 1973-05-07
US3644274A (en) 1969-12-22 1972-02-22 Cpc International Inc Furan no-bake foundry binders
US3725333A (en) * 1970-04-20 1973-04-03 Borden Inc Method for producing foundry molds and foundry molding compositions
US3806491A (en) 1972-11-17 1974-04-23 Ashland Oil Inc Foundry binder composition comprising a ketone-aldehyde product
DE2353642A1 (en) * 1973-10-26 1975-05-07 Huettenes Albertus Binding agent for heat-hardenable moulding compsns - contg phenol-formaldehyde prods and amino acids
DE59204253D1 (en) 1991-11-07 1995-12-14 Ruetgerswerke Ag Lignin modified binders.
CN1088494A (en) * 1992-12-25 1994-06-29 机械电子工业部沈阳铸造研究所 Nitrogen binder for mould core making by hot core box and technology in the no phenol
US5320157A (en) * 1993-01-28 1994-06-14 General Motors Corporation Expendable core for casting processes
US5491180A (en) 1994-08-17 1996-02-13 Kao Corporation Binder composition for mold making, binder/curing agent composition for mold making, sand composition for mold making, and process of making mold
GB9523581D0 (en) 1995-11-17 1996-01-17 British Textile Tech Cross-linking
JP3175045B2 (en) * 1996-12-27 2001-06-11 群栄化学工業株式会社 Resin composition for shell mold and resin coated sand for shell mold
DE19856778A1 (en) 1997-12-03 1999-06-10 Huettenes Albertus Binder for casting molds and cores
US5941180A (en) 1998-04-01 1999-08-24 Becker; Robert D. Calculator mount
FR2788514B1 (en) * 1999-01-19 2002-04-12 Saint Gobain Isover INSULATION PRODUCT, ESPECIALLY THERMAL AND MANUFACTURING METHOD THEREOF
FR2790303B1 (en) * 1999-02-26 2001-05-04 Hutchinson SEALING DEVICE FOR SEALED CONNECTION BETWEEN A RIGID TUBE AND A FEMALE CONNECTING ELEMENT IN A FLUID TRANSFER CIRCUIT, AND CONNECTION PROVIDED WITH SUCH A DEVICE
US6391942B1 (en) * 2000-04-27 2002-05-21 Ashland Inc. Furan no-bake foundry binders and their use
JP2001347339A (en) 2000-06-08 2001-12-18 Gun Ei Chem Ind Co Ltd Binder composition for mold and material for mold
JP4395626B2 (en) 2002-10-04 2010-01-13 マイクロシリトロン株式会社 Non-heat-curable binder and method for producing molded body using the same
ITMI20032217A1 (en) 2003-11-14 2005-05-15 Cavenaghi Spa BINDER SYSTEM FOR LOW DEVELOPMENTAL OF AROMATIC HYDROCARBONS
FR2870148B1 (en) * 2004-05-12 2006-07-07 Snecma Moteurs Sa LOST WAX FOUNDRY PROCESS WITH CONTACT LAYER
CN101475676B (en) * 2009-01-20 2011-06-29 江苏工业学院 Preparation of urea-formaldehyde resin for environment-friendly artificial board
GB201016565D0 (en) 2010-10-01 2010-11-17 Dynea Oy Low free formaldehyde resins for abrasive products
PL3495073T3 (en) * 2010-12-16 2020-11-30 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Low emission cold curing binders for foundry industry
JP6576244B2 (en) * 2013-08-30 2019-09-18 旭有機材株式会社 Molding method of laminated mold
CN105081198A (en) * 2015-08-14 2015-11-25 郭伟 Modified furan resin sand with sodium bentonite for casting steel and preparation method of modified furan resin sand
CN105414449A (en) * 2015-11-23 2016-03-23 合肥李诺新材料贸易有限公司 Heat resistant modified alkaline phenolic resin self-hardening sand for pump valve castings and preparation method of heat resistant modified alkaline phenolic resin self-hardening sand
CN106040960B (en) * 2016-08-17 2018-06-01 张静 A kind of preparation method of heat resisting film-coating sand

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
MX2019006187A (en) 2019-07-10
BR112019010872B1 (en) 2023-01-10
EA038564B1 (en) 2021-09-15
EP3548200A1 (en) 2019-10-09
DE102016123051A1 (en) 2018-05-30
EA201991323A1 (en) 2019-10-31
KR20190090828A (en) 2019-08-02
BR112019010872A2 (en) 2019-10-01
PL3548200T3 (en) 2021-11-22
US11338356B2 (en) 2022-05-24
WO2018099887A1 (en) 2018-06-07
KR102421482B1 (en) 2022-07-15
ES2874780T3 (en) 2021-11-05
JP7069200B2 (en) 2022-05-17
US20190283116A1 (en) 2019-09-19
CN110049835A (en) 2019-07-23
JP2019535537A (en) 2019-12-12

Similar Documents

Publication Publication Date Title
EP3548200B1 (en) Amino acid-containing moulding material mixture for production of mouldings for the foundry industry
EP2296836B1 (en) Catalysts comprising methane sulfonic acid for the acid hardening method
DE69019050T2 (en) Phenolic resin compositions.
DE10256953A1 (en) Thermosetting binder based on polyurethane
DE1508607A1 (en) Molding and core sand binders for metal casting
US10137494B2 (en) Method for obtaining a foundry body from a granular mixture comprising a modified polycondensed resin and a formaldehyde scavenger
DE3020089C2 (en) Molding compounds for foundry cores and molds and their use
DE2235668C3 (en) Catalyst for a foundry binder
DE69012939T2 (en) Process for improving the flowability of a sand coated with alkaline phenolic resin.
EP1682291B1 (en) Filler-containing aerogels
US3118850A (en) Self-settable sand-phenolic resin composition containing 2, 5-dimethylpiperazine andmolded article made therefrom
JP2000225437A (en) Manufacture of mold
DD262867A5 (en) CALH-ACTIVE MOLD BINDER AND ITS USE
WO2023217325A1 (en) Process for layer-by-layer building of built articles with a viscosity-modified binder
CA1191993A (en) Furan resin binder for molding and core sands
DE2604492A1 (en) Acid hardening binder for foundry mould materials - contg. a proportion of polyvinyl alkyl ether
DE2936954C2 (en)
PH26464A (en) Method to improve flowability of resin coated sand
JPH06297072A (en) Binder composition for production of casting mold, sand composition for production of casting mold and production of casting mold
JP3457188B2 (en) Hardener composition for mold production
AT356894B (en) METHOD FOR PRODUCING MODIFIED FURFURYL ALCOHOL FORMALDEHYDE RESINS
DE2428547A1 (en) Phenol-formaldehyde novolak binder for foundry sand - contg. urea cpd for increased build up and cure rates of moulds and cores
AT314201B (en) Molding compound based on phenolic resin
DE19914586A1 (en) Binder mixture for production of foundry cores contains a polymeric resin with oxirane and-or phenoxy-acryloyl end groups and a radical or condensation crosslinker such as dibenzoyl peroxide or cyanoguanidine
DD297826A5 (en) PHENOLIC COMPOSITIONS

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190701

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200420

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B22C 1/22 20060101AFI20201209BHEP

INTG Intention to grant announced

Effective date: 20210113

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1400047

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017010637

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210909

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2874780

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20211105

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210909

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211011

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20211117

Year of fee payment: 5

Ref country code: SE

Payment date: 20211123

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20211119

Year of fee payment: 5

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017010637

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

26N No opposition filed

Effective date: 20220310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20171128

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230926

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1400047

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221128

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231215

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221128

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231121

Year of fee payment: 7

Ref country code: IT

Payment date: 20231130

Year of fee payment: 7

Ref country code: FR

Payment date: 20231123

Year of fee payment: 7

Ref country code: DE

Payment date: 20231205

Year of fee payment: 7

Ref country code: CZ

Payment date: 20231116

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221128