EP3537084B1 - Segmentierte rippen für einen gegossenen wärmetauscher - Google Patents

Segmentierte rippen für einen gegossenen wärmetauscher Download PDF

Info

Publication number
EP3537084B1
EP3537084B1 EP19161406.4A EP19161406A EP3537084B1 EP 3537084 B1 EP3537084 B1 EP 3537084B1 EP 19161406 A EP19161406 A EP 19161406A EP 3537084 B1 EP3537084 B1 EP 3537084B1
Authority
EP
European Patent Office
Prior art keywords
row
fin
portions
plate
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19161406.4A
Other languages
English (en)
French (fr)
Other versions
EP3537084A3 (de
EP3537084A2 (de
Inventor
Michael A. Disori
William P. STILLMAN
Adam J. DIENER
Alexander BROULIDAKIS
David J. Hyland
Jeremy STYBORSKI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RTX Corp
Original Assignee
Raytheon Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raytheon Technologies Corp filed Critical Raytheon Technologies Corp
Publication of EP3537084A2 publication Critical patent/EP3537084A2/de
Publication of EP3537084A3 publication Critical patent/EP3537084A3/de
Application granted granted Critical
Publication of EP3537084B1 publication Critical patent/EP3537084B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • F28F3/027Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements with openings, e.g. louvered corrugated fins; Assemblies of corrugated strips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/26Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being integral with the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/04Assemblies of fins having different features, e.g. with different fin densities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/14Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes molded

Definitions

  • a plate fin heat exchanger includes adjacent flow paths that transfer heat from a hot flow to a cooling flow.
  • the flow paths are defined by a combination of plates and fins that are arranged to transfer heat from one flow to another flow.
  • the plates and fins are created from sheet metal material brazed together to define the different flow paths.
  • Thermal gradients present in the sheet material create stresses that can be very high in certain locations. The stresses are typically largest in one corner where the hot side flow first meets the coldest portion of the cooling flow. In an opposite corner where the coldest hot side flow meets the hottest cold side flow the temperature difference is much less resulting in unbalanced stresses across the heat exchanger structure. Increasing temperatures and pressures can result in stresses on the structure that can exceed material and assembly capabilities.
  • Turbine engine manufactures utilize heat exchangers throughout the engine to cool and condition airflow for cooling and other operational needs. Improvements to turbine engines have enabled increases in operational temperatures and pressures. The increases in temperatures and pressures improve engine efficiency but also increase demands on all engine components including heat exchangers.
  • Turbine engine manufacturers continue to seek further improvements to engine performance including improvements to thermal, transfer and propulsive efficiencies.
  • a prior art heat exchanger having the features of the preamble of claim 1 is provided in US 3,692,105 A .
  • a prior art cast plate for a heat exchanger having the features of the preamble of claim 10 is disclosed in US 2013/152392 A1 .
  • a heat exchanger is provided as set forth in claim 1.
  • the internal passages extend substantially parallel to the leading and trailing edges.
  • the fin portion rows extend perpendicularly to the direction of the internal passages, from the leading edge to the trailing edge.
  • the plurality of fin portion rows includes a last row spaced furthest from the inlet that includes a continuous fin portion extending uninterrupted from the leading edge to the trailing edge.
  • a first group of discrete fin portions in the first row includes a first common length in a direction between the leading edge and the trailing edge.
  • second group of discrete fin portions are included in the second row.
  • the second group of discrete fin portions includes a second common length that is larger than the first common length.
  • a third row is spaced further from the inlet than the first row and the second row.
  • the third row includes a third group of discrete fin portion.
  • the third group of discrete fin portions includes a third common length that is larger than either of the first common length and second common length.
  • the plurality of fin portion rows includes additional rows including groups of discrete fin portions disposed between the first row and a last row furthest from the inlet.
  • the plate portion includes a plurality of plate portions with corresponding pluralities of internal passages.
  • the plurality of plate portions includes flow channels for cooling air flow with the plurality of fin portion rows extending into each of the flow channels.
  • each of the top surface and the bottom surface include the plurality of fin portion rows.
  • the plate portion and the fin portion rows include a single unitary cast item.
  • a cast plate for a heat exchanger is provided as recited in claim 10.
  • the plate portion includes a plurality of plate portions with corresponding pluralities of internal passages.
  • the plurality of plate portions include flow channels for cooling air flow between at least some of the plate portions and the plurality of fin portion rows extend into each of the flow channels.
  • the plurality of fin portion rows includes additional rows comprised of groups of discrete fin portions disposed between the first row and a last row furthest from the inlet.
  • each of the groups of discrete fin portions includes discrete fin portions of a common length and the common length for each of the groups of discrete fin portions increases with an increasing distance from the inlet.
  • the plurality of fin portion rows includes a last row spaced furthest from the inlet that includes a continuous fin portion extending uninterrupted from the leading edge to the trailing edge.
  • each of the plurality of fin portions includes tapered longitudinal ends.
  • the plate portion includes a plurality of plate portion defining flow channels between spaced apart plate portions and forming a second core to define a plurality of fin portions within the flow channels.
  • the mold cavity includes features for defining fin portions on a top surface of a top one of the plurality of plate portions and on a bottom surface of the plurality of plate portions and the second core includes features for defining the fin portions within the flow channels between intermediate ones of the plurality of plate portions.
  • the second core and the mold cavity define the plurality of fin portion rows to include additional rows comprised of groups of discrete fin portions disposed between the first row and a last row.
  • the second core and the mold cavity define the plurality of fin portion rows to include a last row spaced furthest from the inlet that includes a continuous fin portion extending uninterrupted from the leading edge to the trailing edge.
  • a heat exchanger 10 includes an inlet manifold 12 and an outlet manifold 14 disposed on either side of a plate assembly 22.
  • the plate assembly 22 is a single cast unitary part that includes plate portions 24 that define a plurality of internal passages 34 between inlets 36 and outlets 38. Fin portions 40 are disposed on each of the plate portions 24 and provide increased surface area for heat transfer between transverse flows 16, 20.
  • the incoming flow 16 is directed through the inlet manifold 12 and enters the plate assembly 22 through inlets 36 and flows through the internal passages 34.
  • a cooling airflow 20 flows over the external surfaces of the plate assembly 22 to remove heat from the heated airflow 16.
  • a cooled exhaust flow 18 exits through the outlet manifold 14.
  • the plate assembly 22 includes a leading edge 30 where the cooling airflow 20 initially flows over surfaces of the plate portions 24 and through the plurality of fin portions 40 before being exhausted out past a trailing edge 32.
  • Heat exchanges encounter extremes in temperature differentials between the incoming hot airflow 16 and the cooling airflow 20.
  • the thermal differentials vary throughout different regions of the plate assembly 22 such that heat exchanges typically encounter extreme stresses and strain due to the extreme thermal gradients.
  • the example plate assembly 22 includes features for reducing the thermal gradients based on the temperature of the incoming flow 16 and the cooling airflow 20. Specific features of the plate assembly 22 tailor the thermal differences to reduce the thermal gradients and includes structures that reduce stresses caused by extreme differences in temperature.
  • the example plate assembly 22 includes a plurality of plate portions 24 and a plurality of fin portions 40.
  • the fin portions 40 are disposed on both a top surface 26 and a bottom surface 28 of each plate portion 24.
  • the fin portions 40 are arranged in a plurality of rows 42 that extend perpendicular to the direction of the plurality of internal passages 34. Each of the plurality of rows 42 extend from the leading edge 30 to the trailing edge 32.
  • the greatest temperature differential in the plate assembly 22 during operation is at the inlet 36 where the incoming hot flow is at its greatest temperature before it has expelled heat into the plate assembly 22. Moreover, the cooling airflow 20 is at its lowest temperature at the leading edge 30 prior to absorbing any heat from the surface of the plate assembly 22.
  • the plurality of rows 42 includes features that tailor heat transfer to the extremes of the incoming flows 16, 20 to reduce extremes in thermal gradients.
  • the example plate assembly 22 includes a first row 48 including a first group of discrete fin portions 46 that are aligned from the leading edge 30 to the trailing edge 32.
  • Each of the plurality of discrete fin portions 46 are individual separate segments that are spaced apart longitudinally between the leading edge 30 and the trailing edge 32.
  • the segmented fin portions 46 reduces a heat transfer surface area over which the cooling airflow 20 flows near the inlet 36.
  • the reduced heat transfer surface area results in a reduction in heat transfer and a reduction in the differences in thermal gradient of the surface of the plate portions 24 relative to the temperature of air flowing through the passages 34 near the inlets 36.
  • a second row 50 from the inlet 36 includes a second group of discrete fin portions 56 that are spaced apart longitudinally between the leading edge and the trailing edge 32.
  • a third row 52 from the inlet 36 includes a third group of discrete fin portions 58 that are spaced apart longitudinally between the leading edge 30 and the trailing edge 32.
  • the plate assembly 22 includes three rows of segmented discrete fin portions and the remaining rows 42 of fin portions 40 up to the last row 54 furthest from the inlet 36 are continuous fins 60 that extend uninterrupted between the leading edge 30 and the trailing edge 32.
  • the first row 48 includes the plurality of the discrete fin portions 46 that each have a common width 66. Each of the fin portions 46 are also spaced a common distance 68.
  • the width 66 and distance 68 tailor the available heat transfer surface area provided by the first row 48 nearest the inlet 36 to minimize heat transfer into the cooling flow 20. Minimizing heat transfer nearest the inlet 36 locally reduces the thermal gradient within the plate assembly 22.
  • the width 66 and distance of the discrete fin portions 46 in the first row 48 is tailored to provide a heat transfer surface area determined to provide an acceptable thermal gradient based on expected temperatures of hot flow 16 and cooling flow 20.
  • the second row 50 includes the second group of discrete fin portions 56 that each have a second common width 70 and a second spacing 72 there between.
  • the second row 50 includes an increased surface area as compared to the first row 48 that is tailored to maintain an acceptable thermal gradient in the plate assembly 22 within the region of the second row 50.
  • the third row 52 of discrete fin portions 58 that have a third common width 74 that are spaced apart a third distance 76.
  • the width 74 and spacing 76 provides another increase in heat transfer surface area compared to each of the first row 48 and the second row 50.
  • a region 64 schematically shown in Figure 3 of the plate assembly 22 is at corner where the inlet 36 and the leading edge 30 meet.
  • the hot flow 16 is at its greatest temperature and the cooling flow 20 is at its coolest temperature.
  • the resulting interface between the two flows generates the highest thermal gradient within the plate assembly 22.
  • the cooling airflow heats up in a direction indicated by arrow 90 and the hot airflow 16 cools down as it proceeds away from the inlet 36 in a direction indicated by arrow 92.
  • the surface area provided by the rows 48, 50 and 52 of discrete fin portions 46, 56 and 58 accommodate the differences in temperatures within the region 64 to reduce stresses and strains on the plate assembly 22 by reducing the differences in thermal gradient encountered by the material comprising the plate assembly 22.
  • the different fin portions are provided relative to a high stress region such as the region 64 or a joint between the plate assembly and one of the inlet manifold 12 and the outlet manifold 14.
  • the asymmetric orientation of fin portions provide benefits within a region disposed within a distance about 10% of the total length of the plate assembly. In another example the distance is within a region about 7% of the total length of the plate assembly.
  • the asymmetric application of heat transfer augmentation features such as the discrete fin portions lower the amount of augmentation feature density by approximately 15%. Additionally, an increase in density up to 200% of the nominal on the external or internal core or joint features.
  • the example plate assembly is a quad plate assembly 22 and includes four plate portions 24, each including a top surface 26 and a bottom surface 28 and a fin portions extending therefrom.
  • Each of the plate portions 24 include the first row 48, second row 50 and third row 52 on both the top surface 26 and the bottom surface 28.
  • the stacked plate portions 24 form flow channels 62 there through within which the fin portions extend.
  • Each of the fin portions are arranged such that they alternate and intermesh to define the flow channels 62 to provide the desired cooling airflow proximate the internal passages 34 within each of the plate portions 24.
  • the plate assembly 22 includes an upper plate 80, a lower plate 82 and intermediate plates 84.
  • the upper and lower plates 80, 82 define the top and bottom surfaces of the plate assembly 22.
  • the intermediate plate portions 24 define the flow channel 62 and include intermeshing fin portions that extend from each corresponding plate portion 24.
  • Each of the plate portions 24 includes a common housing 86 disposed on an inlet side and a common outlet housing 88 that is integrated between the four plate portions 24.
  • the example plate assembly 22 is a single unitary cast structure that includes common features utilized to define desired thermal gradients throughout the heat exchanger to reduce stresses and strains.
  • FIG. 5 another example plate assembly embodiment 100 is shown and includes a single plate portion 24 including fin portions disposed on the top and bottom surfaces 26, 28.
  • the example plate assembly 100 includes the first, second and third rows 48, 50 and 52 with corresponding groups of discrete fin portions 46, 56, 58. It should be understood that although a single plate 100 is shown and a plate assembly 22 with four plate portions 24 is shown in the previous figures by way of example, other numbers of plate portions 24 could be utilized and stacked to create a single unitary plate assembly with discrete fin portions provided to tailor thermal gradients within the structure during operation.
  • the example plate assembly is formed as a single cast item and formed utilizing a casting method schematically indicated at 115.
  • a first core 102 is used to define the internal passages through each of the corresponding plate portions 24.
  • a second core 104 is utilized to define the flow channel 62 between the plate portions 24.
  • the first core 102 and a second core 104 are formed using materials known and understood by those in the casting art.
  • the cores 102 and 104 are placed within a mold 106 and a cast material 108 is injected into the mold 106 and cured.
  • the cores 102 and 104 remain within the mold 106 and form the internal passages and the fins within the flow channel 62.
  • the internal features of the cavity provided by the mold 106 define the fin portions of the top plate and bottom plate that provide the desired fin configuration of the discrete fin portions 46, 48, 58 to tailor the thermal gradient through the heat exchanger.
  • the cast part is removed from the mold 106, the cores 102 and 104 are removed using known techniques and the completed heat exchanger is ready for assembly and use.
  • the example heat exchanger plate assemblies provide a single cast unitary part that includes segmented fins to tailor thermal gradients in the heat exchanger to provide strain relief and improve operational life.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Claims (15)

  1. Wärmetauscher (10), umfassend:
    einen Plattenabschnitt (24), der eine obere Fläche (26), untere Fläche (28), eine Vorderkante (30), eine Hinterkante (32) und eine Vielzahl von inneren Kanälen (34), die sich zwischen einem Einlass (36) und einem Auslass (38) erstrecken, beinhaltet; und
    eine Vielzahl von Rippenabschnittreihen (42), wobei eine erste Reihe (48) aus der Vielzahl von Rippenabschnittreihen (42) mindestens zwei getrennte Rippenabschnitte (46) umfasst,
    dadurch gekennzeichnet, dass
    eine zweite Reihe (50, 52, 54) aus der Vielzahl von Rippenabschnittreihen (42) weniger Rippenabschnitte (56, 58, 40) als die erste Reihe (48) umfasst, wobei die erste Reihe (48) näher am Einlass (36) als die zweite Reihe (50, 52, 54) ist.
  2. Wärmetauscher nach Anspruch 1, wobei die Vielzahl von Rippenabschnittreihen (42) eine letzte Reihe (54) beinhaltet, die am weitesten vom Einlass (36) beabstandet ist und die einen durchgehenden Rippenabschnitt (60) beinhaltet, der sich ununterbrochen von der Vorderkante (30) zur Hinterkante (32) erstreckt.
  3. Wärmetauscher nach Anspruch 1 oder 2, wobei eine erste Gruppe von getrennten Rippenabschnitten (46) in der ersten Reihe (48) eine erste gemeinsame Länge (66) in einer Richtung zwischen der Vorderkante (30) und der Hinterkante (32) beinhaltet.
  4. Wärmetauscher nach Anspruch 3, eine zweite Gruppe von getrennten Rippenabschnitten (56) in der zweiten Reihe (50) beinhaltend, wobei die zweite Gruppe von getrennten Rippenabschnitten (56) eine zweite gemeinsame Länge (70) beinhaltet, die größer als die erste gemeinsame Länge (66) ist.
  5. Wärmetauscher nach Anspruch 4, eine dritte Reihe (52) beinhaltend, die weiter vom Einlass (36) als die erste Reihe (48) und die zweite Reihe (50) beabstandet ist, wobei die dritte Reihe (52) eine dritte Gruppe von getrennten Rippenabschnitten (58) beinhaltet, wobei die dritte Gruppe von getrennten Rippenabschnitten (58) eine dritte gemeinsame Länge (74) beinhaltet, die größer als jede aus der ersten gemeinsamen Länge (66) und der zweiten gemeinsamen Länge (70) ist.
  6. Wärmetauscher nach einem der vorstehenden Ansprüche, wobei die Vielzahl von Rippenabschnittreihen (42) zusätzliche Reihen (50, 52, 54) beinhaltet, die Gruppen von getrennten Rippenabschnitten (56, 58) beinhalten, die zwischen der ersten Reihe (48) und einer letzten Reihe (54), die vom Einlass (36) am weitesten weg ist, angeordnet sind.
  7. Wärmetauscher nach einem der vorstehenden Ansprüche, wobei der Plattenabschnitt (24) eine Vielzahl von Plattenabschnitten (24) mit entsprechenden Vielzahlen von inneren Kanälen (34) umfasst, wobei die Vielzahl von Plattenabschnitten (24) Strömungskanäle (62) für einen Kühlluftstrom (20) beinhaltet, wobei sich die Vielzahl von Rippenabschnittreihen (42) in jeden der Strömungskanäle (62) erstrecken.
  8. Wärmetauscher nach einem der vorstehenden Ansprüche, wobei jede aus der oberen Fläche (26) und der unteren Fläche (28) die Vielzahl von Rippenabschnittreihen (42) beinhaltet.
  9. Wärmetauscher nach einem der vorstehenden Ansprüche, wobei der Plattenabschnitt (24) und die Rippenabschnittreihen (42) ein einzelnes einheitliches Gussteil umfassen.
  10. Gegossene Platte (22) für einen Wärmetauscher (10), umfassend:
    einen Plattenabschnitt (24), der eine obere Fläche (26), untere Fläche (28), eine Vorderkante (30), eine Hinterkante (32) und eine Vielzahl von inneren Kanälen (34), die sich zwischen einem Einlass (36) und einem Auslass (38) erstrecken, beinhaltet; und
    eine Vielzahl von Rippenabschnittreihen (42), wobei eine erste Reihe (48) aus der Vielzahl von Rippenabschnittreihen (42) mindestens zwei getrennte Rippenabschnitte (46) umfasst, wobei der Plattenabschnitt (24) und die Vielzahl von Rippenabschnittreihen (42) ein einzelnes, einheitliches ununterbrochenes Gussteil umfassen,
    dadurch gekennzeichnet, dass:
    eine zweite Reihe (50, 52, 54) aus der Vielzahl von Rippenabschnittreihen (42) weniger Rippenabschnitte (56, 58, 40) als die erste Reihe (48) umfasst, wobei die erste Reihe (48) näher am Einlass (36) als die zweite Reihe (50, 52, 54) ist.
  11. Gegossene Platte für einen Wärmetauscher nach Anspruch 10, wobei der Plattenabschnitt (24) eine Vielzahl von Plattenabschnitten (24) mit entsprechenden Vielzahlen von inneren Kanälen (34) umfasst, wobei die Vielzahl von Plattenabschnitten (24) Strömungskanäle (62) für einen Kühlluftstrom (20) zwischen mindestens einigen aus den Plattenabschnitten (24) und der Vielzahl von Rippenabschnittreihen (42) beinhaltet, die sich in jeden der Strömungskanäle (62) erstrecken, und/oder die Vielzahl von Rippenabschnittreihen (42) eine letzte Reihe (54) beinhaltet, die am weitesten vom Einlass (36) beabstandet ist und die einen durchgehenden Rippenabschnitt (60) beinhaltet, der sich ununterbrochen von der Vorderkante (30) zur Hinterkante (32) erstreckt.
  12. Gegossene Platte für einen Wärmetauscher nach Anspruch 10 oder 11, wobei die Vielzahl von Rippenabschnittreihen (42) zusätzliche Reihen (50, 52, 54) beinhaltet, die aus Gruppen von getrennten Rippenabschnitten (56, 58) bestehen, die zwischen der ersten Reihe (48) und einer letzten Reihe (54), die vom Einlass (36) am weitesten weg ist, angeordnet sind, und, optional, jede der Gruppen von getrennten Rippenabschnitten (56, 58) getrennte Rippenabschnitte (56, 58) einer gemeinsamen Länge (70, 74) beinhaltet und die gemeinsame Länge (70, 74) für jede der Gruppen getrennter Rippenabschnitte (56, 58) mit einem zunehmenden Abstand vom Einlass (36) zunimmt.
  13. Gegossene Platte für einen Wärmetauscher nach Anspruch 10, 11 oder 12, wobei jeder Rippenabschnitt (40, 42, 56, 58) sich verjüngende Längsenden beinhaltet.
  14. Verfahren zum Aufbauen eines Wärmetauschers (10), umfassend:
    Herstellen eines ersten Kerns (102), der eine Vielzahl von inneren Kanälen (34) durch einen Plattenabschnitt (24) definiert;
    Einsetzen des Kerns (102) innerhalb eines Hohlraums einer Form (106), die Außenflächen des Plattenabschnitts (24) definiert, so dass er eine obere Fläche (26), untere Fläche (28), eine Vorderkante (30), eine Hinterkante (32) und eine Vielzahl von Rippenabschnittreihen (42) beinhaltet, wobei eine erste Reihe (48) mindestens zwei getrennte Rippenabschnitte (46) umfasst, wobei eine zweite Reihe (50, 52, 54) aus der Vielzahl von Rippenabschnittreihen (42) weniger Rippenabschnitte (56, 58, 40) als die erste Reihe (48) umfasst, wobei die erste Reihe (48) näher am Einlass (36) als die zweite Reihe (50, 52, 54) ist;
    Einleiten von Gussmaterial (108) in die Form (106), um eine einzelne einheitliche Wärmetauscherplatte (100) ohne eine Verbindungsstelle zwischen dem Plattenabschnitt (24) und der Vielzahl von Rippenabschnittreihen (42) zu bilden; und
    Entnehmen der Wärmetauscherplatte (100) aus der Form (106) und Entnehmen des Kerns (102) aus dem Plattenabschnitt (24).
  15. Verfahren nach Anspruch 14, wobei der Plattenabschnitt (24) eine Vielzahl von Plattenabschnitten (24) umfasst, die Strömungskanäle (62) zwischen beabstandeten Plattenabschnitten (24) definieren, und ferner das Herstellen eines zweiten Kerns (104) umfassend, um eine Vielzahl von Rippenabschnitten (40, 46, 56, 58) innerhalb der Strömungskanäle (62) zu definieren, und, optional, wobei der Formhohlraum Merkmale zum Definieren von Rippenabschnitten (40) an einer oberen Fläche (26) eines obersten aus der Vielzahl von Plattenabschnitten (24) und an einer unteren Fläche (28) der Vielzahl von Plattenabschnitten (24) beinhaltet und der zweite Kern (104) Merkmale zum Definieren der Rippenabschnitte (40, 46, 56, 58) innerhalb der Strömungskanäle (62) zwischen dazwischenliegenden aus der Vielzahl von Plattenabschnitten (24) beinhaltet, und/oder wobei der zweite Kern (104) und der Formhohlraum die Vielzahl von Rippenabschnittreihen (42) definieren, so dass sie zusätzliche Reihen beinhalten, die aus Gruppen getrennter Rippenabschnitte (56, 58) bestehen, die zwischen der ersten Reihe (48) und einer letzten Reihe (54) angeordnet sind, und/oder wobei der zweite Kern (104) und der Formhohlraum die Vielzahl von Rippenabschnittreihen (42) definieren, so dass sie eine letzte Reihe (54) beinhalten, die am weitesten vom Einlass (36) beabstandet ist und die einen durchgehenden Rippenabschnitt (60) beinhaltet, der sich ununterbrochen von der Vorderkante (30) zur Hinterkante (32) erstreckt.
EP19161406.4A 2018-03-07 2019-03-07 Segmentierte rippen für einen gegossenen wärmetauscher Active EP3537084B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15/914,089 US20190277580A1 (en) 2018-03-07 2018-03-07 Segmented fins for a cast heat exchanger

Publications (3)

Publication Number Publication Date
EP3537084A2 EP3537084A2 (de) 2019-09-11
EP3537084A3 EP3537084A3 (de) 2019-12-18
EP3537084B1 true EP3537084B1 (de) 2021-05-12

Family

ID=65724314

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19161406.4A Active EP3537084B1 (de) 2018-03-07 2019-03-07 Segmentierte rippen für einen gegossenen wärmetauscher

Country Status (2)

Country Link
US (1) US20190277580A1 (de)
EP (1) EP3537084B1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11808529B2 (en) 2018-03-23 2023-11-07 Rtx Corporation Cast plate heat exchanger and method of making using directional solidification
US11391523B2 (en) * 2018-03-23 2022-07-19 Raytheon Technologies Corporation Asymmetric application of cooling features for a cast plate heat exchanger
US11940232B2 (en) * 2021-04-06 2024-03-26 General Electric Company Heat exchangers including partial height fins having at least partially free terminal edges

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3692105A (en) * 1970-09-02 1972-09-19 Peerless Of America Heat exchangers
EP0132237A3 (de) * 1983-06-30 1986-02-05 Renato Ferroni Wärmeaustauschelement zwischen Fluiden und aus diesem hergestellter Radiator
JPS60242919A (ja) * 1984-05-17 1985-12-02 Mitsubishi Heavy Ind Ltd 針状フイン付熱交換管の製造方法
US9238284B2 (en) * 2011-12-20 2016-01-19 Unison Industries, Llc Methods for forming a heat exchanger and portions thereof
US9599410B2 (en) * 2012-07-27 2017-03-21 General Electric Company Plate-like air-cooled engine surface cooler with fluid channel and varying fin geometry
US20140027097A1 (en) * 2012-07-30 2014-01-30 Ian Alexandre Araujo De Barros Heat Exchanger for an Intercooler and Water Extraction Apparatus
US8936067B2 (en) * 2012-10-23 2015-01-20 Siemens Aktiengesellschaft Casting core for a cooling arrangement for a gas turbine component

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20190277580A1 (en) 2019-09-12
EP3537084A3 (de) 2019-12-18
EP3537084A2 (de) 2019-09-11

Similar Documents

Publication Publication Date Title
EP3553447B1 (de) Wärmeverstärkungsmerkmale in einem gegossenen wärmetauscher
EP3499170B1 (de) Wärmetauschereinlauf
EP3537083A1 (de) Lamellenwärmetauscher mit hochtemperaturplatte
EP3537084B1 (de) Segmentierte rippen für einen gegossenen wärmetauscher
EP3553446B1 (de) Geformte vorderkante eines gussplatten-rippenwärmetauschers
US20190170445A1 (en) High temperature plate fin heat exchanger
US8167537B1 (en) Air cooled turbine airfoil with sequential impingement cooling
US10024182B2 (en) Cooled composite sheets for a gas turbine
US11079181B2 (en) Cast plate heat exchanger with tapered walls
EP3537085A1 (de) Verbundener plattenstapel in gegossenem plattenlamellenwärmetauscher
US11808529B2 (en) Cast plate heat exchanger and method of making using directional solidification
CN109790754B (zh) 包括冷却回路的涡轮叶片
US11781819B2 (en) Stackable core system for producing cast plate heat exchanger
EP3889533B1 (de) Mischen zwischen den strömungskanälen eines gussplattenwärmetauschers
EP3553449B1 (de) Asymmetrische anwendung von kühlmerkmalen für einen gussplattenwärmetauscher
EP3043138B1 (de) Wärmetauscher mit wellenförmiger rippenstruktur.
EP3553448B1 (de) Sekundär angewendetes kaltseitenfeatures für gegossenen wärmetauscher

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F28D 1/053 20060101AFI20191108BHEP

Ipc: F28F 1/02 20060101ALI20191108BHEP

Ipc: F28F 1/26 20060101ALI20191108BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200618

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201125

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RAYTHEON TECHNOLOGIES CORPORATION

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019004526

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1392454

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210615

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1392454

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210512

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210812

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210813

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210912

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210812

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210913

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602019004526

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210912

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220307

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220307

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230222

Year of fee payment: 5

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240220

Year of fee payment: 6

Ref country code: GB

Payment date: 20240221

Year of fee payment: 6