EP3536976B1 - Actuator with accumulator - Google Patents

Actuator with accumulator Download PDF

Info

Publication number
EP3536976B1
EP3536976B1 EP18160844.9A EP18160844A EP3536976B1 EP 3536976 B1 EP3536976 B1 EP 3536976B1 EP 18160844 A EP18160844 A EP 18160844A EP 3536976 B1 EP3536976 B1 EP 3536976B1
Authority
EP
European Patent Office
Prior art keywords
storage
actuator
hydraulic fluid
energy
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18160844.9A
Other languages
German (de)
French (fr)
Other versions
EP3536976A1 (en
Inventor
Georg Bachmaier
Patrick Fröse
Wolfgang Zöls
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metismotion GmbH
Original Assignee
Metismotion GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metismotion GmbH filed Critical Metismotion GmbH
Priority to EP18160844.9A priority Critical patent/EP3536976B1/en
Priority to DK18160844.9T priority patent/DK3536976T3/en
Publication of EP3536976A1 publication Critical patent/EP3536976A1/en
Application granted granted Critical
Publication of EP3536976B1 publication Critical patent/EP3536976B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/027Installations or systems with accumulators having accumulator charging devices
    • F15B1/033Installations or systems with accumulators having accumulator charging devices with electrical control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • F15B15/202Externally-operated valves mounted in or on the actuator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/30Accumulator separating means
    • F15B2201/315Accumulator separating means having flexible separating means
    • F15B2201/3152Accumulator separating means having flexible separating means the flexible separating means being bladders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/30Accumulator separating means
    • F15B2201/315Accumulator separating means having flexible separating means
    • F15B2201/3153Accumulator separating means having flexible separating means the flexible separating means being bellows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/40Constructional details of accumulators not otherwise provided for
    • F15B2201/41Liquid ports
    • F15B2201/411Liquid ports having valve means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/625Accumulators

Definitions

  • the invention relates to a memory actuator and a method for operating a memory actuator.
  • an actuator is understood to be a device or a device that converts electrical signals into mechanical movement or another physical quantity and can thus perform work.
  • actuator concepts such as hydraulic or pneumatic actuators.
  • solid-state actuators and polymer actuators are also so-called solid-state actuators and polymer actuators.
  • One form of a solid-state actuator is the piezo actuator, in which a directional deformation of a piezoelectric material (piezo for short) is used to perform work. If a piezo actuator is combined with a hydraulic system, a so-called piezo hydraulic actuator is obtained. All actuator concepts have in common that when the actuator moves mechanically, it does work. The, in particular mechanical, power provided by the actuator depends essentially on the product of force and speed.
  • This product results in a code number of the actuator that characterizes the respective actuator. If more power is required in an application than the actuator can provide, a larger variant of the actuator is usually used, for example. In the case of piezo actuators, for example, this can be a version with a larger volume, for example the drive. However, simply enlarging the actuator can lead to high costs. In addition, the space required for the corresponding actuator increases, which is undesirable or not feasible in some applications, for example in special medical applications. As an alternative to larger actuator versions, there is also the option of using actuators that have a different actuator concept. However, this is often not possible because of the desired efficiencies and thus Services cannot be realized using an alternative actuator concept either.
  • the U.S. 6,070,408 A discloses a hydraulic device with hydraulic supply means and an accumulator with a pressure piston and means for sensing the accumulator piston position to indicate a load request to a control means to selectively actuate the hydraulic supply device to meet the hydraulic load request and provide a relative pressure pulse-free operation by actuating the hydraulic supply device in response to the position and movement of the accumulator piston.
  • the EP 3 045 737 A1 discloses a hydraulic loading and propulsion system, an aircraft using the same, and corresponding methods for extending and retracting a hydraulic actuator. Furthermore, from the DE 10 2017 205 404 A1 a hydraulic control device is known.
  • the object of the present invention is therefore to create a storage actuator and a method for operating such a storage actuator, the output device of which can be operated with a particularly high output.
  • a first aspect of the invention relates to a storage actuator for actuating an output device, with the output device, with at least one energy store and with a drive device.
  • energy is in the energy store in at least one first operating state of the storage actuator storable.
  • the storage actuator has at least one second operating state, in which at least part of the energy stored in the energy storage can be provided by the energy storage, whereby the output device can be supplied with the provided energy and can thereby be actuated.
  • the first operating state can be referred to as the memory state.
  • the second operating state can be referred to as the actuating state.
  • the storage actuator according to the invention has the advantage that, due to the at least two operating states and the associated storage of the energy in the first operating state and the subsequent release of the energy in the second operating state, the output device can be operated with a particularly high output.
  • the output device is preferably a mechanical output device.
  • At least one reservoir is provided for providing a hydraulic fluid.
  • the hydraulic fluid can be conveyed into the energy store by means of the drive device, whereby the energy can be stored in the energy store, with the energy store in the second operating state at least part of the hydraulic fluid stored in the energy store and thereby at least part of the hydraulic fluid stored in the energy store Provides energy, whereby the output device can be actuated by means of the hydraulic fluid provided.
  • the components can be a weight that is lifted into a storage position, the kinetic energy being converted into positional energy, that is to say potential energy.
  • the component can have at least one, in particular elastic, deformable element and / or one compressible Include fluid, wherein the element is deformed and / or the fluid is compressed, the hydraulic fluid is introduced into the energy store.
  • the component stores energy which is transmitted by means of the hydraulic fluid.
  • energy is stored by means of the energy store.
  • the energy store can store the energy.
  • the energy can also be converted into pressure and / or deformation energy instead of into position energy, for example by deforming and / or compressing the component.
  • the stored energy can be released again, in particular back into or to the hydraulic fluid.
  • energy in particular in the form of pressure energy
  • the energy store can be filled with energy particularly easily by means of the hydraulic fluid, so that the output device can be operated particularly advantageously with a particularly high output.
  • the storage actuator comprises at least the drive device having a drive actuator for conveying the hydraulic fluid.
  • the storage actuator comprises the energy store for storing hydraulic fluid or energy that can be transmitted by the hydraulic fluid.
  • the, in particular hydraulic, accumulator actuator comprises a chamber with a piston element arranged movably in the chamber, which divides the chamber into a first chamber area, in which the hydraulic fluid can be conveyed by means of the drive device, and a second chamber area. The piston element can be moved from a first position into a second position by means of or by conveying the hydraulic fluid into the first chamber region.
  • the storage actuator comprises at least one resetting device, by means of which the piston element can be moved from the second position into the first position, in which the piston element releases the second flow opening and blocks the first flow opening, so that at least part of the hydraulic fluid introduced into the energy storage device is released from the Energy store can be introduced into the second chamber region via the second through-flow opening.
  • the storage actuator has an output device which can be supplied and thereby driven with at least part of the hydraulic fluid introduced into the second chamber area.
  • the first position in which the piston element can be located can also be referred to as the actuation position and characterizes an actuation phase or the actuation state of the entire storage actuator.
  • the second position can also be referred to as the storage position, in which the storage actuator, in particular its drive device comprising the drive actuator, provides mechanical energy by means of which the hydraulic fluid is supplied to the energy store, so that energy is stored in the energy store by means of the hydraulic fluid. If the piston element is in the storage position, the actuator, in particular the piston element, is in the storage state or the first operating state.
  • a particularly large mechanical output can be provided by the storage actuator.
  • the piston element according to the invention which divides the chamber into a first chamber area and a second chamber area, makes it possible to store a particularly large, predeterminable amount of energy and a corresponding amount in the form of power through the first position and second position that it can occupy on the output device of the storage actuator to provide or to deliver.
  • the storage actuator works in two phases, or it has at least the two mentioned operating states: the storage state, during which the piston element is in the second position or storage position, and the actuation state, during which the piston element is in the first position or actuation position .
  • the storage actuator according to the invention is particularly suitable for applications in which a trigger time of the storage actuator plays a secondary role, but in which a particularly high output with as constant a force and speed as possible over the entire actuation phase is desired on the output device.
  • the period during which the actuation takes place that is to say the duration of the actuation phase, is the actuation time, that is to say the time during which a position or movement takes place on the output device.
  • the trigger time is the time that elapses from the first actuation of the drive actuator or its switching on until the actuation begins.
  • the start of the actuation is the start of a movement on the output device.
  • the in particular mechanical energy provided by the drive device or the at least one drive actuator for example in the form of hydraulic energy, is stored in the in particular hydraulic energy store.
  • the hydraulic fluid is conveyed or moved into the first chamber area of the chamber by means of the drive actuator.
  • the piston element If the piston element is initially in the first position and the hydraulic fluid is conveyed to or into the first chamber area by means of the drive actuator, the piston element is thereby moved from the first position into the second position.
  • the piston element provides the first through-flow opening, which extends from the first chamber area at least indirectly to that for storage the hydraulic fluid formed energy storage leads freely.
  • the hydraulic fluid can flow from the first chamber area into the energy store.
  • the hydraulic fluid or the energy contained in the hydraulic fluid can thus be stored in the energy store, in particular by introducing the hydraulic fluid into the energy store.
  • the energy contained in the hydraulic fluid is generated, in particular, by applying a pressure to the hydraulic fluid, by means of which, in particular, mechanical work, in particular on the output device, can be brought about or performed.
  • the piston element can move from the second position to the first position can be moved. In the second position, the second through-flow opening is released and the first through-flow opening is blocked. By blocking the first through-flow opening, no hydraulic fluid can flow or flow back from the energy store into the first chamber area.
  • the hydraulic fluid can now flow from the energy store into the second chamber region through the released second through-flow opening, or the hydraulic fluid can be introduced or conveyed into it.
  • the hydraulic fluid introduced or conveyed into the second chamber area via the second through-flow opening or a part of this hydraulic fluid can be conveyed or conveyed further into the output device.
  • the output device can be supplied with at least part of the hydraulic fluid and can be driven by it, so that the storage actuator on the output device and thus can perform mechanical work on its output.
  • the storage actuator is particularly suitable for applications in which the tripping time plays a secondary role. Therefore, the storage phase or the storage state is not time-critical, whereby it can be guaranteed to a particularly large extent that the energy store can be filled with sufficient energy to provide the required power for the actuation state or the actuation itself.
  • the storage actuator according to the invention can provide a particularly large power or a comparatively small drive actuator can experience a particularly large increase in power, which in alternative actuator concepts would be associated with particularly high costs and / or can lead to a particularly large amount of installation space.
  • the memory actuator according to the invention can be designed such that it has a particularly high force density, which can represent a boundary condition for operating the memory actuator. The required power density cannot be provided by alternative actuator concepts either.
  • the force density can be selected particularly advantageously through the energy store of the storage actuator according to the invention.
  • the force density can be understood as the ratio of the volume of the output device that can be filled with hydraulic fluid in relation to the entire volume of the storage actuator, that is, a total of all components that can be filled with hydraulic fluid, such as the chamber and the energy store.
  • the storage unit of the actuator is implemented or designed in such a way that the power stored in it in the form of energy, in particular due to the storage position of the piston element, is not released during the storage of the energy provided by the drive device.
  • the energy store is sufficiently filled with hydraulic fluid, so that, for example, a predeterminable or desired and thus sufficient amount of energy is stored in the energy store, which is sufficient, for example, to actuate the output device, then, for example, the delivery of the hydraulic fluid to the or ended in the first chamber area.
  • the piston element releases, in particular automatically, the energy stored in the energy store, in particular in that the piston element is moved from the second position into the first position by means of the resetting device. The energy is thus released passively, that is to say without further action, for example by a user and / or the drive device of the storage actuator.
  • the storage actuator according to the invention can deliver particularly constant output parameters, in particular in terms of force and / or speed, during the actuation phase, in particular when a certain amount of energy is already contained in the energy storage device before the storage state preceding the actuation phase. That is, the storage actuator is filled with hydraulic fluid or with a corresponding amount of hydraulic fluid, so that during the storage process only enough volume of the hydraulic fluid has to be pumped into the energy store to ensure a required stroke ⁇ S of the output or the output device.
  • the amount of hydraulic fluid required or the volume of hydraulic fluid required ⁇ V depends on the Product of ⁇ S and an output cross section A of the output device.
  • the energy can advantageously be stored and only released when a sufficient amount is available. Another advantage is that the energy is released automatically and without a separate triggering unit, ie in a passive manner.
  • the actual drive actuator can provide little actual power to the drive device, which means that costs can be kept particularly low.
  • installation space can be saved by the storage actuator according to the invention.
  • a particularly high, realizable energy density can be generated with the storage actuator and this can be integrated particularly advantageously in possible application scenarios.
  • the storage actuator can be designed to be able to provide a particularly high mechanical power.
  • the drive actuator is designed as a solid-state actuator, in particular as a piezo actuator, and / or a polymer actuator.
  • the actuator concept of the drive device can be selected from a large number of actuator concepts.
  • Solid body and polymer actuators often have in common that they have a travel path or travel path which is particularly short, which means that certain applications cannot be implemented with these actuator concepts.
  • the travel range is limited by the maximum deformability of the piezo.
  • a piezo actuator can, for example, provide a particularly high force density for this purpose.
  • the storage actuator according to the invention can advantageously enlarge an application range of, for example, solid-state actuators, such as the piezo actuator.
  • a combination of force density and power can be designed particularly advantageously.
  • the memory actuator according to the invention can thus in particular be designed as a piezo-hydraulic storage actuator.
  • the storage actuator has a check valve which is arranged in the first throughflow opening and which blocks in the direction of the first chamber region.
  • the drive device has a drive chamber that can be supplied with the hydraulic fluid and a drive piston element that partially delimits the drive chamber and that can be driven by the drive actuator, by means of which the hydraulic fluid from the drive chamber into the first chamber area and via the first chamber area and the first flow opening is to be promoted in the energy store.
  • the drive piston element is driven by means of the drive actuator and thereby moved, at least part of the hydraulic fluid initially received in the drive chamber is conveyed out of the drive chamber by means of the drive piston element.
  • the drive device has a hydraulic cylinder which is at least partially formed by the drive chamber and the drive piston element and which functions as a so-called working cylinder.
  • the energy from the hydraulic fluid is converted into an effective force that is particularly easy to control or handle implemented, by means of which the energy store can be particularly advantageously filled with energy or hydraulic fluid.
  • the energy store can be particularly advantageously filled with energy or hydraulic fluid.
  • the drive piston element executes strokes caused by the drive actuator to convey the hydraulic fluid at a frequency of less than 10,000 Hertz, in particular less than 1000 Hertz.
  • This low frequency for a drive actuator, in particular designed as a piezo actuator enables, for example, particularly energy-efficient and low-wear operation of the piezo actuator and thus of the entire, in particular piezo-hydraulic, storage actuator.
  • the output device has an output chamber into which the hydraulic fluid can be introduced, and an output piston element which partially delimits the output chamber and which has an output surface that can be acted upon by the hydraulic fluid introduced into the output chamber.
  • the output piston element can be driven by subjecting the output surface of the output piston element to the hydraulic fluid introduced into the output chamber.
  • the output piston element and the output chamber at least partially form a hydraulic cylinder which particularly advantageously converts or uses the hydraulic fluid stored in the energy store to operate the actuator, whereby, for example, a desired output speed and / or a desired output force are provided by the storage actuator in a particularly advantageous manner can.
  • the output piston element has a hydraulically effective output surface which can be acted upon by the hydraulic fluid introduced into the output chamber.
  • the driven piston element can be driven and thus moved, in particular in a translatory manner. Due to the described design of the output device, for example, a particularly large amount of power can be made available at the output or the output piston element.
  • the restoring device has at least one spring which is tensioned more strongly in the second position than in the first position and thereby provides a spring force or restoring force at least in the second position, by means of which the piston element moves from the second position, the storage position , is movable into the first position, the actuating position.
  • the piston element is acted upon with hydraulic fluid in the first chamber part in such a way that the spring is tensioned in such a way, especially when the storage position is reached, that a restoring force prevails in the spring, which is particularly passive, i.e.
  • the piston element is moved into the actuating position, so that the second throughflow opening is opened, through which the hydraulic fluid can flow into the output device via the second chamber region.
  • the energy store is designed as a bellows pressure accumulator which has at least one storage chamber and at least one bellows arranged in the storage chamber, which can be elastically compressed by introducing the hydraulic fluid into the storage chamber.
  • the bellows By introducing hydraulic fluid into the energy store by means of the drive device, the bellows is compressed, in particular elastically, whereby energy can be stored in the memory.
  • the bellows compressed in the storage state relaxes so that the energy of the bellows is transferred to the hydraulic fluid in order to drive the output device.
  • the energy store which is thus designed as a so-called gas pressure store, can, for example, have an inner and an outer bellows, each of which is in particular at least partially formed from metal. Furthermore, the bellows can have a stop, in particular a mechanical stop, by means of which it is prevented that energy is already given off during the storage state.
  • a bellows pressure accumulator as an energy store, the storage actuator according to the invention can be designed, for example, to be particularly compact and / or particularly inexpensive.
  • Other types of hydraulic and / or gas pressure accumulators can additionally or alternatively be used as energy stores.
  • a second check valve is provided, via which the hydraulic fluid can be introduced from the drive device into the first chamber area.
  • a backflow of hydraulic fluid into the drive device can be prevented in a particularly advantageous manner by the second check valve, as a result of which the energy store can be charged particularly efficiently.
  • hydraulic fluid can additionally be introduced into the energy store instead of flowing back into the drive device.
  • a third check valve is provided, via which the output device can be supplied with the hydraulic fluid from the second chamber area.
  • a backflow of the hydraulic fluid from the output device, in particular from the output chamber, into the second chamber area is prevented or kept particularly low, which means that the output device can be actuated particularly efficiently and, when changing from the actuation position to the storage position, for example, prevents or prevents the output piston element from moving back can be kept particularly low.
  • the energy store can be at least predominantly, in particular completely, filled with the hydraulic fluid within a maximum of 10 seconds, in particular within a maximum of one second, during which the piston element is continuously in the second position or the storage position. That is, the energy store can be charged with the energy at least predominantly, in particular completely, during the storage state, in particular within a maximum of one second, in order to be able to operate the output device with the required power during the following actuation state.
  • a time interval that occurs between the switching on of the drive actuator for storing the energy and the actual switchover of the storage actuator to the actuation state can be understood as a so-called trigger time. This means that the trigger time of the memory actuator according to the invention is less than ten or one second and is therefore particularly short, which results in a particularly wide range of applications for using the memory actuator according to the invention.
  • a second aspect of the invention relates to a method for actuating an output device by means of a storage actuator, in which, in a first operating state of the storage actuator, at least one energy storage device is by means of a drive device of the storage actuator is supplied with energy, whereby the energy is stored in the energy store, wherein in a second operating state of the storage actuator the energy store provides at least part of the energy stored in the energy store, whereby the output device is supplied with the energy provided and thereby by means of the energy provided is operated.
  • the method according to the invention can advantageously be carried out in such a way that the stored energy is automatically released.
  • the energy can be held available or stored, that is to say a storage state or the storage state can be locked until, for example, the energy is released manually.
  • the energy can be stored up to a certain, in particular predeterminable, amount of energy. If this amount is reached, the output device can be driven automatically, for example.
  • the memory actuator according to the invention is operated by means of the method according to the invention or the method according to the invention is carried out on the memory actuator according to the invention.
  • Advantages and advantageous configurations of the first aspect of the invention are to be regarded as advantages and advantageous configurations of the second aspect of the invention and vice versa.
  • FIG 1 shows, in a schematic sectional view, a storage actuator 10 which has an output device 32.
  • the output device 32 represents an output of the storage actuator 10.
  • the storage actuator 10 is designed to operate the output device 32 and comprises at least one energy store 18 and a drive device 14, by means of which energy can be stored in the energy store 18 in at least one first operating state of the storage actuator 10.
  • the storage actuator 10 can have at least one second operating state in which at least part of the energy stored in the energy storage device 18 can be provided by the energy storage device 18, whereby the output device 32 can be supplied with the energy provided and can thereby be actuated.
  • the drive device 14 comprises a drive actuator 12.
  • the drive actuator 12 is advantageously designed as a piezo actuator, for example, alternatively, it can be designed as a different solid-state actuator and / or as a polymer actuator. In principle, any actuator concepts are possible as drive actuator 12.
  • a hydraulic fluid can be conveyed by means of the drive actuator 12 and thus by means of the drive device 14.
  • the storage actuator 10 further comprises a chamber 16 and the energy store 18.
  • a piston element 20 is arranged in the chamber 16 such that it can be moved in translation and divides the chamber 16 into a first chamber area 22 and a second chamber area 24.
  • the hydraulic fluid can be conveyed into the first chamber region 22 by means of the drive device 14.
  • At least one reservoir 38 in particular in the form of a tank, is provided to provide the hydraulic fluid, which in the first operating state can be conveyed into the energy store 18 by means of the drive device 14, whereby the energy can be stored in the energy store 18.
  • the energy store 18 can provide at least part of the hydraulic fluid stored in the energy store 18 and thereby at least part of the energy stored in the energy store 18, whereby the output device 32 can be actuated by means of the provided hydraulic fluid.
  • the piston element 20 By conveying the hydraulic fluid into the first chamber region 22, the piston element 20 can be moved from a first position, which is also referred to as the actuating position, into a second position, which is also referred to as the storage position.
  • the piston element is in the storage position in the first operating state and in the actuating position during the second operating state.
  • the first operating state is therefore referred to as the memory state and the second operating state as the actuating state.
  • the piston element 20 releases a first throughflow opening 26 of the accumulator actuator 10.
  • the piston element 10 blocks a second throughflow opening 28 of the storage actuator 10 in the second position, so that in the second position the hydraulic fluid conveyed into the first chamber area 22 can be introduced or flows from the first chamber area 22 via the first throughflow opening 26 into the energy store 18.
  • the storage actuator 10 has at least one resetting device 30, by means of which the piston element 20 can be moved from the second position into the first position, in which the piston element 20 releases the second throughflow opening 28 and blocks the first throughflow opening 26, so that at least part of the hydraulic fluid introduced into the energy store 18 can be introduced from the energy store 18 via the second through-flow opening 28 into the second chamber region 24.
  • the storage actuator 10 includes the output device 32, which can be supplied with at least part of the hydraulic fluid introduced into the second chamber region 24 and can thereby be driven.
  • the chamber 16 and a second chamber 34 of the storage actuator 10 connected to the chamber 16 in a fluidically conductive manner can be essentially cylindrical.
  • The, in particular hydraulic, storage actuator 10 is, while the piston element 20 is in the storage position, in a first phase (storage phase) or the first operating state, which is also referred to as the storage state.
  • the storage actuator 10 in particular its drive device 14, provides mechanical energy, which is stored in the energy store 18 by means of the hydraulic fluid.
  • the storage actuator 10 is in a second phase (actuation phase) or the second operating state, which is also referred to as the actuation state.
  • the output device 32 is actuated by means of the energy stored in the energy store 18 and thereby moved, for example, whereby an actuation can be effected by means of the output device 32.
  • the storage actuator 10 can be operated in such a way that the storage state or the storage of energy is not time-critical, that is, sufficient energy can be stored to provide the power required or required in the actuation state for the complete actuation phase.
  • the storage actuator 10 shown is of interest for applications in which, for example, an increase in the performance of an actuator would be associated with excessive costs and alternative actuator concepts compared to the Piezo actuator designed drive actuator 12, for example, can not achieve the desired force density.
  • the drive actuator 12 of the drive device 14 in the embodiment shown pumps the hydraulic fluid from the drive device 14 into the first chamber area 22 via a second check valve 36, so that the hydraulic fluid can be introduced into the first chamber area 22.
  • the drive device 14 in the exemplary embodiment shown has a drive chamber which can be supplied with the hydraulic fluid and a drive piston element which partially delimits the drive chamber and which can be driven by the drive actuator 12, by means of which the hydraulic fluid from the drive chamber into the first chamber area 24 by driving the drive piston element and is to be conveyed via the first chamber region 24 through the first flow opening 26 into the energy store 18.
  • the drive chamber and the drive piston element are shown in FIG FIG 1 Not shown.
  • the hydraulic fluid can be provided, for example, by the tank designed as a reservoir 38, which is located in the blocking direction on the same side of the second check valve 36 as the drive device 14.
  • a first check valve 40 which blocks in the direction of the first chamber region 24, is advantageously arranged in the first through-flow opening 26.
  • the hydraulic fluid is pumped or conveyed into the first chamber region 22 of the chamber 16 via the second check valve 36 and an opening 42 by means of the drive device 14. Due to the low compressibility of the hydraulic fluid, the piston element 20 is pressed against the restoring device 30, as a result of which the first throughflow opening 26 and thus the first check valve 40 are released.
  • the restoring device 30 advantageously has at least one spring 44.
  • the spring 44 is in the second position, i.e. in the storage position, tensed more than in the actuating position, as a result of which the spring 44 provides a spring force, at least in the storage position, by means of which the piston element 20 can be moved from the storage position into the actuation position.
  • the hydraulic fluid flows via the first check valve 40 at least indirectly into the energy store 18, which is connected to the first chamber area 22 via the chamber 34 and a further opening 46 in a fluidically conductive manner during the storage state.
  • the first check valve 40 prevents hydraulic fluid from flowing back from the second chamber 34 into the first chamber region 22. Due to the position of the piston element 20 in the storage position, the second throughflow opening 28 is blocked, in particular automatically, as a result of which no hydraulic fluid can flow out of the second chamber 34 and thus the energy storage device 18 into the second chamber region 24. If the hydraulic fluid is not conveyed by the drive device 14, the piston element 20 is moved translationally within the first chamber by the restoring force of the spring 44, so that the piston element 20 is shifted from the storage position into the actuating position, in particular translationally.
  • the piston element 20 is designed in such a way that leakage through the, in particular radial, gap between the piston element 20 and a wall of the chamber 16 is particularly small. That is to say, a fluidic exchange of the hydraulic fluid between the first chamber region 22 and the second chamber region 24 past the piston element 20 is particularly small, in particular negligible.
  • the in FIG 1 The energy store 18 shown is designed, for example, as a pneumatic and / or hydraulic store, that is, the more fluid or hydraulic fluid the drive actuator 12 pumps via the second check valve 36, the more energy is stored in the energy store 18.
  • the energy store 18 is already filled with sufficient hydraulic fluid or contains sufficient energy before the start of the storage state, so that only as much fluid volume ⁇ V has to be pumped into the energy store 18 or the second chamber 34 to ensure a required stroke ⁇ S of the output device 32 .
  • the pressure within the components of the, in particular hydraulic, storage actuator 10 to be filled with hydraulic fluid, such as in particular the energy store 18, should reach or apply a certain initial pressure, which is, for example, above an ambient pressure in the vicinity of the storage actuator 10.
  • the output device 32 has an output chamber 48 into which the hydraulic fluid can be introduced. Furthermore, the output device 32 has the output piston element 50 which partially delimits the output chamber 48 and which has an output surface 52 that can be acted upon by the hydraulic fluid introduced into the output chamber 48. By subjecting the output surface 52 to the hydraulic fluid introduced into the output chamber 48, the output piston element 50 can be driven.
  • the storage actuator 10 advantageously has a third check valve 54, via which the output device 32 can be supplied with the hydraulic fluid from the second chamber region 24. If the energy storage is ended, i.e. the drive actuator 12 stops conveying the hydraulic fluid via the check valve 36 into at least the first chamber region 22, the hydraulic fluid can then flow into the output device 32 after the piston element 20 has been reset by the reset device 30, whereby the output force and the output speed and thus the power, in particular at the output piston element 50, are provided. In this case, the, in particular translational, movement of the output piston element 50 takes place when the hydraulic fluid acts on the hydraulically effective output surface 52.
  • the drive piston element of the drive device 14, which executes the strokes caused by the drive actuator 12 to convey the hydraulic fluid can be moved back and forth at a frequency of less than 1000 Hertz, whereby the drive actuator 12 and thus the entire drive device 14, for example, are particularly wear-resistant and thus can be operated with little maintenance.
  • the storage state and thus the storage of energy advantageously take less than a second.
  • the piston element 20 is continuously in the second position, and the energy store 18 is at least predominantly, in particular completely, filled with the hydraulic fluid or can be filled with it during the period of time mentioned.
  • the period mentioned is also referred to as the trigger time, so that the trigger time of the memory actuator 10 can be less than one second.
  • the change between the storage state and the actuation state occurs passively, i.e.
  • FIG 2 shows a schematic sectional view of a further embodiment of the, in particular piezo-hydraulic, storage actuator 10, the second chamber 34 or the energy store 18 being designed as a bellows pressure accumulator which has at least one storage chamber, the second chamber 34, and at least one bellows 56 arranged in the storage chamber which is elastically compressible by introducing the hydraulic fluid into the storage chamber, the second chamber 34.
  • the FIG 2 shows only one half of the chambers of the memory actuator 10, since for reasons of symmetry, in particular due to a cylindrical design of the chamber 16 or 34 of the embodiment, no further information in FIG FIG 2 could be won.
  • the bellows pressure accumulator in FIG 2 an inner metal bellows 58 and an outer metal bellows 60, as a result of which, for example, a gas pressure accumulator or pressure accumulator which is particularly unsusceptible to malfunctions can be realized.
  • the embodiment shows a mechanical stop 62 of the bellows 56. This stop 62 can ensure that a certain amount of energy in the hydraulic fluid can already be held, so that only the fluid volume ⁇ V in the chamber region 22 or in the chamber 16 and thus in the energy store 18 must be introduced, which is required to ensure the required stroke ⁇ S on the output piston 50, the required volume being calculated over the area A of the output area 52 and the length ⁇ S of the stroke.
  • the mechanical stop 62 serves to prevent the already stored energy from being released during the storage state.
  • hydraulic fluid can be applied to the stop 62 in such a way that the bellows 56 can be compressed or is compressed by the application of the action.
  • the first check valve 40 is introduced into the chamber 34 and thus into the energy store 18, it elastically deforms the bellows 56 there, whereby energy can be stored by means of the hydraulic fluid by compressing the bellows 56.
  • piezo-hydraulic, storage actuator 10 in which the energy store 18 is combined with the drive device 14 and the output device 32 in such a way that the storage actuator 10 can be operated by means of two phases, the storage phase and the actuation phase, a lot of power can be generated which the drive actuator 12 itself cannot provide, which opens up a wide range of possibilities for using the memory actuator 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Reciprocating Pumps (AREA)

Description

Die Erfindung betrifft einen Speicheraktor sowie eine Verfahren zum Betreiben eines Speicheraktors.The invention relates to a memory actuator and a method for operating a memory actuator.

Im Allgemeinen versteht man unter einem Aktor ein Gerät oder eine Vorrichtung, welche elektrische Signale in mechanische Bewegung oder eine andere physikalische Größe umwandeln und somit Arbeit verrichten kann. Es sind verschiedenste Aktorkonzepte bekannt, wie beispielsweise Hydraulik- oder Pneumatikaktoren. Des Weiteren gibt es sogenannte Festkörperaktoren und Polymeraktoren. Ein Form eines Festkörperaktors ist der Piezoaktor, bei welchem eine gerichtete Verformung eines piezoelektrischen Materials (kurz: Piezo) ausgenutzt wird, um Arbeit zu verrichten. Wird ein Piezoaktor mit einer Hydraulik kombiniert, erhält man einen sogenannten piezohydraulischen Aktor. Allen Aktorkonzepten gemein ist, dass bei der mechanischen Bewegung des Aktors, dieser Arbeit verrichtet. Dabei hängt die durch den Aktor bereitgestellte, insbesondere mechanische, Leistung im Wesentlichen von dem Produkt aus Kraft und Geschwindigkeit ab. Durch dieses Produkt ergibt sich eine den jeweiligen Aktor charakterisierende Kennziffer des Aktors. Ist bei einer Anwendung mehr Leistung gefordert, als der Aktor erbringen kann, wird in der Regel häufig beispielsweise eine größere Variante des Aktors verwendet. So kann dies beispielsweise bei Piezoaktoren eine Version mit größerem Volumen, beispielsweise des Antriebs, sein. Eine einfache Vergrößerung des Aktor kann jedoch zu hohen Kosten führen. Darüber hinaus wächst der benötigte Bauraum für den entsprechenden Aktor, was bei manchen Anwendungen unerwünscht beziehungsweise nicht realisierbar ist, wie beispielsweise bei speziellen, medizinischen Anwendungen. Alternativ zu größeren Aktorversionen besteht auch die Möglichkeit, Aktoren, welche ein anderes Aktorkonzept aufweisen, zu verwenden. Dies ist jedoch oft nicht möglich, da gewünschte Effizienzen und somit Leistungen ebenfalls nicht durch ein alternatives Aktorkonzept realisierbar sind.In general, an actuator is understood to be a device or a device that converts electrical signals into mechanical movement or another physical quantity and can thus perform work. A wide variety of actuator concepts are known, such as hydraulic or pneumatic actuators. There are also so-called solid-state actuators and polymer actuators. One form of a solid-state actuator is the piezo actuator, in which a directional deformation of a piezoelectric material (piezo for short) is used to perform work. If a piezo actuator is combined with a hydraulic system, a so-called piezo hydraulic actuator is obtained. All actuator concepts have in common that when the actuator moves mechanically, it does work. The, in particular mechanical, power provided by the actuator depends essentially on the product of force and speed. This product results in a code number of the actuator that characterizes the respective actuator. If more power is required in an application than the actuator can provide, a larger variant of the actuator is usually used, for example. In the case of piezo actuators, for example, this can be a version with a larger volume, for example the drive. However, simply enlarging the actuator can lead to high costs. In addition, the space required for the corresponding actuator increases, which is undesirable or not feasible in some applications, for example in special medical applications. As an alternative to larger actuator versions, there is also the option of using actuators that have a different actuator concept. However, this is often not possible because of the desired efficiencies and thus Services cannot be realized using an alternative actuator concept either.

Die US 6 070 408 A offenbart eine hydraulische Vorrichtung mit hydraulischen Versorgungsmitteln und einem Druckspeicher mit einem Druckkolben und einem Mittel zum Erfassen der Speicherkolbenposition, um eine Lastanforderung an ein Steuermittel anzuzeigen, um die hydraulische Versorgungseinrichtung selektiv zu betätigen, um die hydraulische Lastanforderung zu erfüllen und einen relativen Druck bereitzustellen pulsfreier Betrieb durch Betätigen der Hydraulikversorgungseinrichtung in Reaktion auf die Position und Bewegung des Speicherkolbens.The U.S. 6,070,408 A discloses a hydraulic device with hydraulic supply means and an accumulator with a pressure piston and means for sensing the accumulator piston position to indicate a load request to a control means to selectively actuate the hydraulic supply device to meet the hydraulic load request and provide a relative pressure pulse-free operation by actuating the hydraulic supply device in response to the position and movement of the accumulator piston.

Die EP 3 045 737 A1 offenbart ein hydraulisches Lade- und Antriebssystem, ein Flugzeug, das dasselbe verwendet, und entsprechende Verfahren zum Ausfahren und Einfahren eines hydraulischen Aktuators. Ferner ist aus der
DE 10 2017 205 404 A1 eine hydraulische Steuervorrichtung bekannt.
The EP 3 045 737 A1 discloses a hydraulic loading and propulsion system, an aircraft using the same, and corresponding methods for extending and retracting a hydraulic actuator. Furthermore, from the
DE 10 2017 205 404 A1 a hydraulic control device is known.

Aufgabe der vorliegenden Erfindung ist es daher, einen Speicheraktor und ein Verfahren zum Betreiben eines solchen Speicheraktors zu schaffen, dessen Abtriebsvorrichtung mit einer besonders großen Leistung betreibbar ist.The object of the present invention is therefore to create a storage actuator and a method for operating such a storage actuator, the output device of which can be operated with a particularly high output.

Diese Aufgabe wird durch einen Speicheraktor mit den Merkmalen des Patentanspruchs 1 gelöst. Ferner wird diese Aufgabe durch ein Verfahren mit den Merkmalen des Patentanspruchs 12 gelöst. Vorteilhafte Ausgestaltungen mit zweckmäßigen Weiterbildungen der Erfindung sind in den übrigen Ansprüchen angegeben.This object is achieved by a memory actuator with the features of claim 1. Furthermore, this object is achieved by a method having the features of patent claim 12. Advantageous refinements with expedient developments of the invention are specified in the remaining claims.

Ein erster Aspekt der Erfindung betrifft einen Speicheraktor zum Betätigen einer Abtriebsvorrichtung, mit der Abtriebsvorrichtung, mit wenigstens einem Energiespeicher und mit einer Antriebsvorrichtung. Mittels der Antriebsvorrichtung ist in wenigstens einem ersten Betriebszustand des Speicheraktors Energie in den Energiespeicher einspeicherbar. Der Speicheraktor weist wenigstens einen zweiten Betriebszustand auf, in welchem von dem Energiespeicher zumindest ein Teil der in dem Energiespeicher gespeicherten Energie bereitstellbar ist, wodurch die Abtriebsvorrichtung mit der bereitgestellten Energie versorgbar und dadurch betätigbar ist. Der erste Betriebszustand kann als Speicherzustand bezeichnet werden. Der zweite Betriebszustand kann als Aktuierzustand bezeichnet werden. Durch den erfindungsgemäßen Speicheraktor ergibt sich der Vorteil, dass, aufgrund der wenigstens zwei Betriebszustände und der damit einhergehenden Speicherung der Energie in dem ersten Betriebszustand und dem anschließenden Freigeben der Energie in dem zweiten Betriebszustand, die Abtriebsvorrichtung mit einer besonders großen Leistung betreibbar ist. Die Abtriebsvorrichtung ist vorzugsweise eine mechanische Abtriebsvorrichtung.A first aspect of the invention relates to a storage actuator for actuating an output device, with the output device, with at least one energy store and with a drive device. By means of the drive device, energy is in the energy store in at least one first operating state of the storage actuator storable. The storage actuator has at least one second operating state, in which at least part of the energy stored in the energy storage can be provided by the energy storage, whereby the output device can be supplied with the provided energy and can thereby be actuated. The first operating state can be referred to as the memory state. The second operating state can be referred to as the actuating state. The storage actuator according to the invention has the advantage that, due to the at least two operating states and the associated storage of the energy in the first operating state and the subsequent release of the energy in the second operating state, the output device can be operated with a particularly high output. The output device is preferably a mechanical output device.

Es ist wenigstens ein Reservoir zum Bereitstellen einer Hydraulikflüssigkeit vorgesehen. Die Hydraulikflüssigkeit ist in dem ersten Betriebszustand mittels der Antriebsvorrichtung in den Energiespeicher förderbar, wodurch die Energie in den Energiespeicher einspeicherbar ist, wobei der Energiespeicher in dem zweiten Betriebszustand zumindest ein Teil der in dem Energiespeicher gespeicherte Hydraulikflüssigkeit und dadurch zumindest den Teil der in dem Energiespeicher gespeicherten Energie bereitstellt, wodurch die Abtriebsvorrichtung mittels der bereitgestellten Hydraulikflüssigkeit betätigbar ist. Das heißt, dass beispielweise wenigstens eine, beispielsweise mechanische, Komponente des Energiespeichers durch kinetische Energie der Hydraulikflüssigkeit, also durch ihre Bewegungsenergie, bewegt wird und dabei Energie aufnimmt beziehungsweise speichert, wenn die Hydraulikflüssigkeit in den Energiespeicher eingeleitet wird. Beispielweise kann die Komponenten eine Gewicht sein, welches in eine Speicherposition angehoben wird, wobei die Bewegungsenergie in Lageenergie, also potentiell Energie überführt wird. Alternativ oder zusätzlich kann die Komponente wenigstens ein, insbesondere elastisch, verformbares Element und/oder ein komprimierbares Fluid umfassen, wobei das Element verformt und/oder das Fluid komprimiert wird, die Hydraulikflüssigkeit in den Energiespeicher eingeleitet wird. Hierdurch speichert die Komponente Energie, welche mittels der Hydraulikflüssigkeit übertragen wird. Dadurch wird Energie mittels des Energiespeichers gespeichert. Solange die Komponente in der Speicherposition verharrt, kann der Energiespeicher die Energie speichern. Beispielsweise kann die Energie statt in Lageenergie auch in Druck- und/oder Verformungsenergie überführt werden, indem beispielsweise die Komponente deformiert und/oder komprimiert wird. Bei einem Entspannen, bei welche die Komponente in ihren ursprünglichen Zustand übergeht, den die Komponente vor dem Deformieren beziehungsweise Komprimieren eingenommen hat, ist die gespeicherte Energie, insbesondere zurück in beziehungsweise an die Hydraulikflüssigkeit, wieder abgebbar. So kann gesagt werden, dass in der Hydraulikflüssigkeit Energie, insbesondere in Form von Druckenergie, gespeichert sein kann, sodass in dem Energiespeicher mittels der Hydraulikflüssigkeit Energie gespeichert werden kann. Durch die Hydraulikflüssigkeit kann der Energiespeicher besonders einfach mit Energie befüllt werden, sodass die Abtriebsvorrichtung besonders vorteilhaft mit einer besonders großen Leistung betreibbar ist.At least one reservoir is provided for providing a hydraulic fluid. In the first operating state, the hydraulic fluid can be conveyed into the energy store by means of the drive device, whereby the energy can be stored in the energy store, with the energy store in the second operating state at least part of the hydraulic fluid stored in the energy store and thereby at least part of the hydraulic fluid stored in the energy store Provides energy, whereby the output device can be actuated by means of the hydraulic fluid provided. This means that, for example, at least one, for example mechanical, component of the energy store is moved by kinetic energy of the hydraulic fluid, i.e. by its kinetic energy, and absorbs or stores energy when the hydraulic fluid is introduced into the energy store. For example, the components can be a weight that is lifted into a storage position, the kinetic energy being converted into positional energy, that is to say potential energy. Alternatively or in addition, the component can have at least one, in particular elastic, deformable element and / or one compressible Include fluid, wherein the element is deformed and / or the fluid is compressed, the hydraulic fluid is introduced into the energy store. As a result, the component stores energy which is transmitted by means of the hydraulic fluid. As a result, energy is stored by means of the energy store. As long as the component remains in the storage position, the energy store can store the energy. For example, the energy can also be converted into pressure and / or deformation energy instead of into position energy, for example by deforming and / or compressing the component. During relaxation, in which the component changes to its original state, which the component assumed before deforming or compressing, the stored energy can be released again, in particular back into or to the hydraulic fluid. It can thus be said that energy, in particular in the form of pressure energy, can be stored in the hydraulic fluid, so that energy can be stored in the energy store by means of the hydraulic fluid. The energy store can be filled with energy particularly easily by means of the hydraulic fluid, so that the output device can be operated particularly advantageously with a particularly high output.

Ferner umfasst der erfindungsgemäße Speicheraktor wenigstens die einen Antriebsaktor aufweisende Antriebsvorrichtung zum Fördern der Hydraulikflüssigkeit. Ferner umfasst der Speicheraktor den Energiespeicher zum Speichern von Hydraulikflüssigkeit beziehungsweise von durch die Hydraulikflüssigkeit übertragbarer Energie. Des Weiteren umfasst der, insbesondere hydraulische, Speicheraktor eine Kammer mit einem bewegbar in der Kammer angeordneten Kolbenelement, welches die Kammer in einem ersten Kammerbereich, in welchem die Hydraulikflüssigkeit mittels der Antriebsvorrichtung förderbar ist, und einen zweiten Kammerbereich unterteilt. Das Kolbenelement ist durch beziehungsweise mittels Fördern der Hydraulikflüssigkeit in den ersten Kammerbereich aus einer ersten Stellung in eine zweite Stellung bewegbar. In der zweiten Stellung gibt das Kolbenelement eine erste Durchströmöffnung frei und versperrt eine zweite Durchströmöffnung, sodass die in den ersten Kammerbereich geförderte Hydraulikflüssigkeit aus dem ersten Kammerbereich über die erste Durchströmöffnung in den Energiespeicher einleitbar ist. Ferner umfasst der erfindungsgemäße Speicheraktor wenigstens eine Rückstelleinrichtung, mittels welcher das Kolbenelement aus der zweiten Stellung in die erste Stellung bewegbar ist, in welcher das Kolbenelement die zweite Durchströmöffnung freigibt und die erste Durchströmöffnung versperrt, sodass zumindest ein Teil der in den Energiespeicher eingeleiteten Hydraulikflüssigkeit aus dem Energiespeicher über die zweite Durchströmöffnung in den zweiten Kammerbereich einleitbar ist. Ferner weist der Speicheraktor eine Abtriebsvorrichtung auf, welche mit zumindest einem Teil der in den zweiten Kammerbereich eingeleiteten Hydraulikflüssigkeit versorgbar und dadurch antreibbar ist. Die erste Stellung, in welcher sich das Kolbenelement befinden kann, kann auch als Aktuierstellung bezeichnet werden und charakterisiert eine Aktuierungsphase beziehungsweise den Aktuierzustand des gesamten Speicheraktors. Die zweite Stellung kann auch als Speicherstellung bezeichnet werden, in welcher der Speicheraktor, insbesondere dessen den Antriebsaktor umfassende Antriebsvorrichtung, mechanische Energie bereitstellt, mittels welcher die Hydraulikflüssigkeit dem Energiespeicher zugeführt wird, sodass mittels der Hydraulikflüssigkeit Energie in dem Energiespeicher gespeichert wird. Befindet sich das Kolbenelement in der Speicherstellung, so befindet sich der Aktor, insbesondere das Kolbenelement, in dem Speicherzustand beziehungsweise dem ersten Betriebszustand.Furthermore, the storage actuator according to the invention comprises at least the drive device having a drive actuator for conveying the hydraulic fluid. Furthermore, the storage actuator comprises the energy store for storing hydraulic fluid or energy that can be transmitted by the hydraulic fluid. Furthermore, the, in particular hydraulic, accumulator actuator comprises a chamber with a piston element arranged movably in the chamber, which divides the chamber into a first chamber area, in which the hydraulic fluid can be conveyed by means of the drive device, and a second chamber area. The piston element can be moved from a first position into a second position by means of or by conveying the hydraulic fluid into the first chamber region. In the second position the piston element releases a first through-flow opening and blocks a second through-flow opening, so that the hydraulic fluid conveyed into the first chamber area can be introduced into the energy store from the first chamber area via the first through-flow opening. Furthermore, the storage actuator according to the invention comprises at least one resetting device, by means of which the piston element can be moved from the second position into the first position, in which the piston element releases the second flow opening and blocks the first flow opening, so that at least part of the hydraulic fluid introduced into the energy storage device is released from the Energy store can be introduced into the second chamber region via the second through-flow opening. Furthermore, the storage actuator has an output device which can be supplied and thereby driven with at least part of the hydraulic fluid introduced into the second chamber area. The first position in which the piston element can be located can also be referred to as the actuation position and characterizes an actuation phase or the actuation state of the entire storage actuator. The second position can also be referred to as the storage position, in which the storage actuator, in particular its drive device comprising the drive actuator, provides mechanical energy by means of which the hydraulic fluid is supplied to the energy store, so that energy is stored in the energy store by means of the hydraulic fluid. If the piston element is in the storage position, the actuator, in particular the piston element, is in the storage state or the first operating state.

Durch den Speicheraktor kann eine besonders große mechanische Leistung erbracht werden. Insbesondere das erfindungsgemäße Kolbenelement, welches die Kammer in einen ersten Kammerbereich und einen zweiten Kammerbereich unterteilt, ermöglicht es durch die von ihm einnehmbare erste Stellung und einnehmbare zweite Stellung, eine besonders große, vorgebbare Menge an Energie zu speichern und eine entsprechende Menge in Form von Leistung an der Abtriebsvorrichtung des Speicheraktors bereitzustellen beziehungsweise abzugeben. Der Speicheraktor funktioniert quasi in zwei Phasen, beziehungsweise weißt dieser wenigstens die zwei genannten Betriebszustände auf: Den Speicherzustand, während welchem sich das Kolbenelement in der zweiten Stellung beziehungsweise Speicherstellung befindet, und den Aktuierzustand, während welchem sich das Kolbenelement in der ersten Stellung beziehungsweise Aktuierstellung befindet. Der erfindungsgemäße Speicheraktor eignet sich insbesondere für Anwendungen, bei welchen eine Auslösezeit des Speicheraktor eine nebengeordnete Rolle spielt, bei welchen jedoch eine besonders große Leistung mit möglichst konstanter Kraft und Geschwindigkeit über die gesamte Aktuierungsphase an der Abtriebsvorrichtung gewünscht ist. Dabei ist der Zeitraum, während dessen die Aktuierung erfolgt, sprich die Dauer der Aktuierungsphase, die Aktuierungszeit, das heißt die Zeit, während welcher eine Stellung beziehungsweise Bewegung an der Abtriebsvorrichtung stattfindet. Die Auslösezeit ist die Zeit, welche von der ersten Betätigung des Antriebsaktors beziehungsweise dessen Einschalten bis zum Beginn der Aktuierung vergeht. Der Beginn der Aktuierung ist das Starten einer Bewegung an der Abtriebsvorrichtung.A particularly large mechanical output can be provided by the storage actuator. In particular, the piston element according to the invention, which divides the chamber into a first chamber area and a second chamber area, makes it possible to store a particularly large, predeterminable amount of energy and a corresponding amount in the form of power through the first position and second position that it can occupy on the output device of the storage actuator to provide or to deliver. The storage actuator works in two phases, or it has at least the two mentioned operating states: the storage state, during which the piston element is in the second position or storage position, and the actuation state, during which the piston element is in the first position or actuation position . The storage actuator according to the invention is particularly suitable for applications in which a trigger time of the storage actuator plays a secondary role, but in which a particularly high output with as constant a force and speed as possible over the entire actuation phase is desired on the output device. The period during which the actuation takes place, that is to say the duration of the actuation phase, is the actuation time, that is to say the time during which a position or movement takes place on the output device. The trigger time is the time that elapses from the first actuation of the drive actuator or its switching on until the actuation begins. The start of the actuation is the start of a movement on the output device.

In der zweiten Stellung des Kolbenelements beziehungsweise in dem Speicherzustand wird die durch die Antriebsvorrichtung beziehungsweise den wenigstens einen Antriebsaktor bereitgestellte, insbesondere mechanische, Energie, beispielsweise in Form von hydraulischer Energie, in dem, insbesondere hydraulischen, Energiespeicher gespeichert. Dazu wird die Hydraulikflüssigkeit mittels des Antriebsaktor in den ersten Kammerbereich der Kammer gefördert beziehungsweise bewegt.In the second position of the piston element or in the storage state, the in particular mechanical energy provided by the drive device or the at least one drive actuator, for example in the form of hydraulic energy, is stored in the in particular hydraulic energy store. For this purpose, the hydraulic fluid is conveyed or moved into the first chamber area of the chamber by means of the drive actuator.

Befindet sich das Kolbenelement zunächst in der ersten Stellung, und wird dabei mittels des Antriebsaktor die Hydraulikflüssigkeit zu dem beziehungsweise in den ersten Kammerbereich gefördert, so wird dadurch das Kolbenelement aus der ersten Stellung in die zweite Stellung bewegt. Dabei gibt das Kolbenelement die erste Durchströmöffnung, welche aus dem ersten Kammerbereich zumindest mittelbar zu dem zum Speichern der Hydraulikflüssigkeit ausgebildeten Energiespeicher führt, frei. In der Folge kann die Hydraulikflüssigkeit von dem ersten Kammerbereich in den Energiespeicher strömen. Durch das Freigeben der ersten Durchströmöffnung kann somit eine Speicherung der Hydraulikflüssigkeit beziehungsweise der in der Hydraulikflüssigkeit enthaltenen Energie in dem Energiespeicher, insbesondere mittels einer Einleitung der Hydraulikflüssigkeit in den Energiespeicher, erfolgen. Dabei kommt die in der Hydraulikflüssigkeit enthaltene Energie, insbesondere durch eine Beaufschlagung der Hydraulikflüssigkeit mit einem Druck zustande, mittels welchem insbesondere mechanische Arbeit, insbesondere an der Abtriebsvorrichtung, bewirkt beziehungsweise verrichtet werden kann.If the piston element is initially in the first position and the hydraulic fluid is conveyed to or into the first chamber area by means of the drive actuator, the piston element is thereby moved from the first position into the second position. The piston element provides the first through-flow opening, which extends from the first chamber area at least indirectly to that for storage the hydraulic fluid formed energy storage leads freely. As a result, the hydraulic fluid can flow from the first chamber area into the energy store. By releasing the first through-flow opening, the hydraulic fluid or the energy contained in the hydraulic fluid can thus be stored in the energy store, in particular by introducing the hydraulic fluid into the energy store. The energy contained in the hydraulic fluid is generated, in particular, by applying a pressure to the hydraulic fluid, by means of which, in particular, mechanical work, in particular on the output device, can be brought about or performed.

Unterbleibt nun die Förderung der Hydraulikflüssigkeit beziehungsweise ein Einleiten der Hydraulikflüssigkeit in den ersten Kammerbereich durch die Antriebsvorrichtung, das heißt wird die mittels der Antriebsvorrichtung bewirkte Förderung der Hydraulikflüssigkeit in den ersten Kammerbereich beendet, so kann das Kolbenelement insbesondere mittels der Rückstelleinrichtung aus der zweiten Stellung in die erste Stellung bewegt werden. In der zweiten Stellung ist die zweite Durchströmöffnung freigegeben und die erste Durchströmöffnung versperrt. Durch das Versperren der ersten Durchströmöffnung kann somit keine Hydraulikflüssigkeit aus dem Energiespeicher zurück in den ersten Kammerbereich fließen beziehungsweise strömen. Durch die freigegebene zweite Durchströmöffnung kann nun die Hydraulikflüssigkeit aus dem Energiespeicher in den zweiten Kammerbereich fließen, beziehungsweise ist die Hydraulikflüssigkeit in diesen einleitbar beziehungsweise förderbar. Während des Aktuierzustands kann die über die zweite Durchströmöffnung in den zweiten Kammerbereich eingeleitete beziehungsweise eingeförderte Hydraulikflüssigkeit beziehungsweise ein Teil dieser Hydraulikflüssigkeit weiter in die Abtriebsvorrichtung geleitet beziehungsweise gefördert werden. Mit anderen Worten ist die Abtriebsvorrichtung mit zumindest einem Teil der Hydraulikflüssigkeit versorgbar und durch diese antreibbar, sodass der Speicheraktor an der Abtriebsvorrichtung und somit an seinem Abtrieb mechanische Arbeit verrichten kann. Wie oben bereits erwähnt eignet sich der Speicheraktor besonders für Anwendungen, bei welchen die Auslösezeit eine nebengeordnete Rolle spielt. Daher ist die Speicherphase beziehungsweise der Speicherzustand nicht zeitkritisch, wodurch in besonders großen Maße gewährleistet werden kann, dass der Energiespeicher mit ausreichend Energie befüllt werden kann, um die geforderte Leistung für den Aktuierzustand, beziehungsweise die Aktuierung selbst, bereitzustellen. Hierdurch kann durch den erfindungsgemäßen Speicheraktor eine besonders große Leistung bereitgestellt werden beziehungsweise kann ein vergleichsweise kleiner Antriebsaktor eine besonders große Leistungserhöhung erfahren, was bei alternativen Aktorkonzepten beispielsweise mit besonders großen Kosten verbunden wäre und/oder zu einem besonders großen Bauraumverbrauch führen kann. Des Weiteren kann der erfindungsgemäße Speicheraktor derart ausgebildet sein, dass dieser eine besonders hohe Kraftdichte aufweist, welche eine Randbedingung zum Betreiben des Speicheraktors darstellen kann. Dabei kann die geforderte Kraftdichte von alternativen Aktorkonzepten häufig ebenso nicht bereitgestellt werden. So ist beispielsweise bei einem piezohydraulischen Aktor ohne Speicherkomponente eine Variation des Kraftbereichs und gleichzeitig des Geschwindigkeitsbereichs möglich, sodass dabei beispielsweise auch eine Größe des am Abtrieb beziehungsweise einer Abtriebsvorrichtung zur Verfügung stehenden Hubs verändert wird, wobei die Leistung eines Piezoaktors jedoch immer nur von dem Piezo beziehungsweise Piezoaktor selbst abhängt. Durch insbesondere den Energiespeicher des erfindungsgemäßen Speicheraktors kann die Kraftdichte besonders vorteilhaft gewählt werden. Dabei kann die Kraftdichte als Verhältnis des mit Hydraulikflüssigkeit befüllbaren Volumens der Abtriebsvorrichtung bezogen auf das gesamte Volumen des Speicheraktors, das heißt eine Gesamtheit aller mit Hydraulikflüssigkeit befüllbaren Komponenten, wie beispielsweise die Kammer und der Energiespeicher, verstanden werden.If the hydraulic fluid is now not conveyed or the hydraulic fluid is not introduced into the first chamber area by the drive device, i.e. if the hydraulic fluid conveyed into the first chamber area by means of the drive device is ended, the piston element can move from the second position to the first position can be moved. In the second position, the second through-flow opening is released and the first through-flow opening is blocked. By blocking the first through-flow opening, no hydraulic fluid can flow or flow back from the energy store into the first chamber area. The hydraulic fluid can now flow from the energy store into the second chamber region through the released second through-flow opening, or the hydraulic fluid can be introduced or conveyed into it. During the actuation state, the hydraulic fluid introduced or conveyed into the second chamber area via the second through-flow opening or a part of this hydraulic fluid can be conveyed or conveyed further into the output device. In other words, the output device can be supplied with at least part of the hydraulic fluid and can be driven by it, so that the storage actuator on the output device and thus can perform mechanical work on its output. As already mentioned above, the storage actuator is particularly suitable for applications in which the tripping time plays a secondary role. Therefore, the storage phase or the storage state is not time-critical, whereby it can be guaranteed to a particularly large extent that the energy store can be filled with sufficient energy to provide the required power for the actuation state or the actuation itself. As a result, the storage actuator according to the invention can provide a particularly large power or a comparatively small drive actuator can experience a particularly large increase in power, which in alternative actuator concepts would be associated with particularly high costs and / or can lead to a particularly large amount of installation space. Furthermore, the memory actuator according to the invention can be designed such that it has a particularly high force density, which can represent a boundary condition for operating the memory actuator. The required power density cannot be provided by alternative actuator concepts either. For example, with a piezo-hydraulic actuator without a storage component, a variation of the force range and, at the same time, the speed range is possible so that, for example, a size of the stroke available at the output or an output device is also changed, with the output of a piezo actuator always only from the piezo or Piezo actuator itself depends. The force density can be selected particularly advantageously through the energy store of the storage actuator according to the invention. The force density can be understood as the ratio of the volume of the output device that can be filled with hydraulic fluid in relation to the entire volume of the storage actuator, that is, a total of all components that can be filled with hydraulic fluid, such as the chamber and the energy store.

Bei dem erfindungsgemäßen Speicheraktor ist die Speichereinheit des Aktors, der Energiespeicher, so umgesetzt beziehungsweise ausgebildet, dass die in ihm in Form von Energie gespeicherte Leistung, insbesondere aufgrund der Speicherstellung des Kolbenelements, während dem Speicher der durch die Antriebsvorrichtung bereitgestellten Energie, nicht freigegeben wird.In the storage actuator according to the invention, the storage unit of the actuator, the energy store, is implemented or designed in such a way that the power stored in it in the form of energy, in particular due to the storage position of the piston element, is not released during the storage of the energy provided by the drive device.

Ist beispielsweise der Energiespeicher hinreichend mit Hydraulikflüssigkeit befüllt, sodass beispielsweise in dem Energiespeicher eine vorgebbare oder gewünschte und somit hinreichende Menge an Energie gespeichert ist, welche beispielsweise für eine Betätigung der Abtriebsvorrichtung ausreicht, so wird beispielsweise die durch die Antriebsvorrichtung bewirkte Förderung der Hydraulikflüssigkeit zu dem beziehungsweise in den ersten Kammerbereich beendet. Insbesondere direkt im Anschluss gibt das Kolbenelement, insbesondere automatisch, die im Energiespeicher gespeicherte Energie frei, insbesondere dadurch, dass das Kolbenelement aus der zweiten Stellung in die erste Stellung mittels der Rückstelleinrichtung bewegt wird. Die Freigabe der Energie erfolgt somit passiv, das heißt ohne weiteres Zutun beispielsweise eines Nutzer und/oder der Antriebsvorrichtung des Speicheraktors.If, for example, the energy store is sufficiently filled with hydraulic fluid, so that, for example, a predeterminable or desired and thus sufficient amount of energy is stored in the energy store, which is sufficient, for example, to actuate the output device, then, for example, the delivery of the hydraulic fluid to the or ended in the first chamber area. In particular directly afterwards, the piston element releases, in particular automatically, the energy stored in the energy store, in particular in that the piston element is moved from the second position into the first position by means of the resetting device. The energy is thus released passively, that is to say without further action, for example by a user and / or the drive device of the storage actuator.

Der erfindungsgemäße Speicheraktor kann besonders konstante Abtriebsparameter, insbesondere bei Kraft und/oder Geschwindigkeit, während der Aktuierungsphase liefern, insbesondere dann, wenn bereits vor dem der Aktuierungsphase vorausgehenden Speicherzustand bereits eine gewisse Menge Energie im Energiespeicher enthalten ist. Das heißt, der Speicheraktor ist derart mit Hydraulikflüssigkeit beziehungsweise mit einer entsprechenden Menge an Hydraulikflüssigkeit gefüllt, sodass während des Speichervorgangs nur noch so viel Volumen der Hydraulikflüssigkeit in den Energiespeicher gepumpt werden muss, um einen geforderten Hub ΔS des Abtriebs beziehungsweise der Abtriebsvorrichtung zu gewährleisten. Dabei hängt die Menge der benötigten Hydraulikflüssigkeit beziehungsweise das Volumen der benötigten Hydraulikflüssigkeit ΔV ab von dem Produkt aus ΔS und einem Abtriebsquerschnitt A der Abtriebsvorrichtung.The storage actuator according to the invention can deliver particularly constant output parameters, in particular in terms of force and / or speed, during the actuation phase, in particular when a certain amount of energy is already contained in the energy storage device before the storage state preceding the actuation phase. That is, the storage actuator is filled with hydraulic fluid or with a corresponding amount of hydraulic fluid, so that during the storage process only enough volume of the hydraulic fluid has to be pumped into the energy store to ensure a required stroke ΔS of the output or the output device. The amount of hydraulic fluid required or the volume of hydraulic fluid required ΔV depends on the Product of ΔS and an output cross section A of the output device.

Durch die Kombination der Antriebsvorrichtung mit dem Energiespeicher des erfindungsgemäßen Speicheraktors, kann vorteilhafterweise die Energie gespeichert und erst bei ausreichender, zur Verfügung stehender Menge selbiger freigegeben werden. Ein weiterer Vorteil ist, dass eine Freigabe der Energie automatisch und ohne eine gesonderte Auslöseeinheit erfolgt, also auf passive Art. Durch die Verwendung des Energiespeichers kann der eigentliche Antriebsaktor wenig tatsächliche Leistung an der Antriebsvorrichtung bereitstellen, wodurch Kosten besonders gering gehalten werden können. Zusätzlich kann durch den erfindungsgemäßen Speicheraktor Bauraum eingespart werden. Ferner kann eine besonders hohe, realisierbare Energiedichte mit dem Speicheraktor erzeugt und dieser dadurch besonders vorteilhaft in möglichen Anwendungsszenarien integriert werden. Insgesamt kann der Speicheraktor dazu ausgebildet sein, eine besonders große mechanische Leistung erbringen zu können.By combining the drive device with the energy store of the storage actuator according to the invention, the energy can advantageously be stored and only released when a sufficient amount is available. Another advantage is that the energy is released automatically and without a separate triggering unit, ie in a passive manner. By using the energy store, the actual drive actuator can provide little actual power to the drive device, which means that costs can be kept particularly low. In addition, installation space can be saved by the storage actuator according to the invention. Furthermore, a particularly high, realizable energy density can be generated with the storage actuator and this can be integrated particularly advantageously in possible application scenarios. Overall, the storage actuator can be designed to be able to provide a particularly high mechanical power.

In vorteilhafter Ausgestaltung der Erfindung ist der Antriebsaktor als Festkörperaktor, insbesondere als Piezoaktor, und/oder Polymeraktor ausgebildet ist. Mit anderen Worten kann als Aktorkonzept der Antriebsvorrichtung aus einer Vielzahl von Aktorkonzepten ausgewählt werden. Festkörper und Polymeraktoren ist häufig gemein, dass diese einen Stellweg beziehungsweise Fahrweg aufweisen, welcher besonders kurz ist, wodurch bestimmte Anwendungen mit diesen Aktorkonzepten nicht realisierbar sind. So ist bei einem Piezokator der Stellweg beispielweise durch eine maximale Verformbarkeit des Piezos begrenzt. Dafür kann ein Piezoaktor beispielweise eine besonders große Kraftdichte bereitstellen. Durch den erfindungsgemäßen Speicheraktor kann in vorteilhafterweise ein Anwendungsbereich von beispielsweise Festkörperaktoren, wie dem Piezoaktor, vergrößert werden. Darüber hinaus kann eine Kombination von Kraftdichte und Leistung besonders vorteilhaft ausgestaltet werden. Der erfindungsgemäße Speicheraktor kann somit insbesondere als piezohydraulischer Speicheraktor ausgebildet sein.In an advantageous embodiment of the invention, the drive actuator is designed as a solid-state actuator, in particular as a piezo actuator, and / or a polymer actuator. In other words, the actuator concept of the drive device can be selected from a large number of actuator concepts. Solid body and polymer actuators often have in common that they have a travel path or travel path which is particularly short, which means that certain applications cannot be implemented with these actuator concepts. In the case of a piezocator, for example, the travel range is limited by the maximum deformability of the piezo. A piezo actuator can, for example, provide a particularly high force density for this purpose. The storage actuator according to the invention can advantageously enlarge an application range of, for example, solid-state actuators, such as the piezo actuator. In addition, a combination of force density and power can be designed particularly advantageously. The memory actuator according to the invention can thus in particular be designed as a piezo-hydraulic storage actuator.

In vorteilhafter Ausgestaltung der Erfindung weist der Speicheraktor ein in der ersten Durchströmöffnung angeordnetes Rückschlagventil auf, welches in Richtung des ersten Kammerbereichs sperrt. Dadurch wird ein Fluss beziehungsweise Rückfluss der Hydraulikflüssigkeit aus dem Energiespeicher zurück in den ersten Kammerbereich möglichst gering gehalten beziehungsweise unterbunden, wodurch beispielsweise ein besonders effizientes Speichern der Energie beziehungsweise der Hydraulikflüssigkeit beziehungsweise der in der Hydraulikflüssigkeit enthaltenen Energie durchgeführt werden kann. Darüber hinaus wird, insbesondere beim Wechsel aus der ersten Stellung in die zweite Stellung des Kolbenelements oder umgekehrt, ein Rückfluss besonders klein gehalten beziehungsweise vermieden, wodurch ein besonders hoher Wirkungsgrad des Speicheraktors erreichbar ist.In an advantageous embodiment of the invention, the storage actuator has a check valve which is arranged in the first throughflow opening and which blocks in the direction of the first chamber region. As a result, a flow or backflow of the hydraulic fluid from the energy store back into the first chamber area is kept as low as possible or prevented, whereby, for example, a particularly efficient storage of the energy or the hydraulic fluid or the energy contained in the hydraulic fluid can be carried out. In addition, especially when changing from the first position to the second position of the piston element or vice versa, backflow is kept particularly small or avoided, as a result of which a particularly high efficiency of the storage actuator can be achieved.

In vorteilhafter Ausgestaltung der Erfindung weist die Antriebsvorrichtung eine mit der Hydraulikflüssigkeit versorgbare Antriebskammer und ein die Antriebskammer teilweise begrenzendes und von dem Antriebsaktor antreibbares Antriebskolbenelement auf, mittels welchem durch Antreiben des Antriebskolbenelements die Hydraulikflüssigkeit aus der Antriebskammer in den ersten Kammerbereich und über den ersten Kammerbereich und die erste Durchströmöffnung in den Energiespeicher zu fördern ist. Mit anderen Worten, wird das Antriebskolbenelement mittels des Antriebsaktors angetrieben und dadurch bewegt, so wird zumindest ein Teil der zunächst in der Antriebskammer aufgenommenen Hydraulikflüssigkeit aus der Antriebskammer mittels des Antriebskolbenelements herausgefördert. Kurz gesagt, weist die Antriebsvorrichtung einen zumindest teilweise durch die Antriebskammer und das Antriebskolbenelement gebildeten Hydraulikzylinder auf, welcher als sogenannter Arbeitszylinder fungiert. Dabei wird die Energie aus der Hydraulikflüssigkeit in eine besonders einfach steuerbare beziehungsweise handhabbare, wirkende Kraft umgesetzt, mittels welcher der Energiespeicher besonders vorteilhaft mit Energie beziehungsweise Hydraulikflüssigkeit befüllt werden kann. Dadurch ist beispielsweise eine besonders einfache und dadurch wartungsarme Antriebsvorrichtung realisierbar.In an advantageous embodiment of the invention, the drive device has a drive chamber that can be supplied with the hydraulic fluid and a drive piston element that partially delimits the drive chamber and that can be driven by the drive actuator, by means of which the hydraulic fluid from the drive chamber into the first chamber area and via the first chamber area and the first flow opening is to be promoted in the energy store. In other words, if the drive piston element is driven by means of the drive actuator and thereby moved, at least part of the hydraulic fluid initially received in the drive chamber is conveyed out of the drive chamber by means of the drive piston element. In short, the drive device has a hydraulic cylinder which is at least partially formed by the drive chamber and the drive piston element and which functions as a so-called working cylinder. The energy from the hydraulic fluid is converted into an effective force that is particularly easy to control or handle implemented, by means of which the energy store can be particularly advantageously filled with energy or hydraulic fluid. In this way, for example, a particularly simple and therefore low-maintenance drive device can be implemented.

In weiterer vorteilhafter Ausgestaltung der Erfindung führt das Antriebskolbenelement durch den Antriebsaktor bewirkte Hübe zum Fördern der Hydraulikflüssigkeit mit einer Frequenz von weniger als 10000 Hertz, insbesondere kleiner 1000 Hertz aus. Durch diese für einen, insbesondere als Piezoaktor ausgebildeten, Antriebsaktor niedrige Frequenz kann beispielsweise ein besonders energieeffizienter und verschleißarmer Betrieb des Piezoaktors und somit des gesamten, insbesondere piezohydraulischen, Speicheraktors erreicht werden.In a further advantageous embodiment of the invention, the drive piston element executes strokes caused by the drive actuator to convey the hydraulic fluid at a frequency of less than 10,000 Hertz, in particular less than 1000 Hertz. This low frequency for a drive actuator, in particular designed as a piezo actuator, enables, for example, particularly energy-efficient and low-wear operation of the piezo actuator and thus of the entire, in particular piezo-hydraulic, storage actuator.

In vorteilhafter Ausgestaltung der Erfindung weist die Abtriebsvorrichtung eine Abtriebskammer, in welche die Hydraulikflüssigkeit einleitbar ist, und ein die Abtriebskammer teilweise begrenzendes Abtriebskolbenelement auf, welches eine mit der in die Abtriebskammer eingeleiteten Hydraulikflüssigkeit beaufschlagbare Abtriebsfläche aufweist. Durch Beaufschlagen der Abtriebsfläche des Abtriebskolbenelements mit der in die Abtriebskammer eingeleiteten Hydraulikflüssigkeit ist das Abtriebskolbenelement antreibbar. Mit anderen Worten bilden das Abtriebskolbenelement und die Abtriebskammer zumindest teilweise einen Hydraulikzylinder aus, welcher besonders vorteilhaft die in dem Energiespeicher gespeicherte Hydraulikflüssigkeit zum Betreiben des Aktors umsetzt beziehungsweise einsetzt, wodurch beispielsweise besonders vorteilhaft eine gewünschte Abtriebsgeschwindigkeit und/oder eine gewünschte Abtriebskraft durch den Speicheraktor bereitgestellt werden kann. Mit anderen Worten, weist das Abtriebskolbenelement eine hydraulisch wirksame Abtriebsfläche auf, welche mit der in die Abtriebskammer eingeleiteten Hydraulikflüssigkeit beaufschlagbar ist. Durch dieses Beaufschlagen der Abtriebsfläche mit der in die Abtriebskammer eingeleiteten Hydraulikflüssigkeit, während des Aktuierzustands, ist das Abtriebskolbenelement antreibbar und somit, insbesondere translatorisch, bewegbar. Durch die beschriebene Ausbildung der Abtriebsvorrichtung kann beispielsweise besonders viel Leistung am Abtrieb beziehungsweise am Abtriebskolbenelement zur Verfügung gestellt werden.In an advantageous embodiment of the invention, the output device has an output chamber into which the hydraulic fluid can be introduced, and an output piston element which partially delimits the output chamber and which has an output surface that can be acted upon by the hydraulic fluid introduced into the output chamber. The output piston element can be driven by subjecting the output surface of the output piston element to the hydraulic fluid introduced into the output chamber. In other words, the output piston element and the output chamber at least partially form a hydraulic cylinder which particularly advantageously converts or uses the hydraulic fluid stored in the energy store to operate the actuator, whereby, for example, a desired output speed and / or a desired output force are provided by the storage actuator in a particularly advantageous manner can. In other words, the output piston element has a hydraulically effective output surface which can be acted upon by the hydraulic fluid introduced into the output chamber. As a result of this loading of the output surface with the hydraulic fluid introduced into the output chamber, during the actuation state the driven piston element can be driven and thus moved, in particular in a translatory manner. Due to the described design of the output device, for example, a particularly large amount of power can be made available at the output or the output piston element.

In vorteilhafter Ausgestaltung der Erfindung weist die Rückstelleinrichtung wenigstens eine Feder auf, welche in der zweiten Stellung stärker als in der ersten Stellung gespannt ist und dadurch zumindest in der zweiten Stellung eine Federkraft beziehungsweise Rückstellkraft bereitstellt, mittels welcher das Kolbenelement aus der zweiten Stellung, der Speicherstellung, in die erste Stellung, die Aktuierstellung, bewegbar ist. Dabei wird während der Speicherstellung beziehungsweise des Speicherzustands das Kolbenelement derart mit Hydraulikflüssigkeit im ersten Kammerteil beaufschlagt, dass die Feder insbesondere beim Erreichen der Speicherstellung derart gespannt wird, sodass eine Rückstellkraft in der Feder herrscht, welche insbesondere passiv, das heißt ohne weiteres Steuern beziehungsweise Regeln, bei Beendigung der Speicherung das Kolbenelement in die Aktuierstellung bewegt, sodass die zweite Durchströmöffnung geöffnet wird, über welche über den zweiten Kammerbereich die Hydraulikflüssigkeit in die Abtriebsvorrichtung strömen kann. Durch Verwendung einer Feder als zumindest ein Teil der Rückstelleinrichtung ist eine besonders einfache und somit wartungsarme und Kosten gering haltende Ausbildung der Rückstelleinrichtung realisierbar, wodurch der Speicheraktor besonders günstig betrieben werden kann beziehungsweise betreibbar ist.In an advantageous embodiment of the invention, the restoring device has at least one spring which is tensioned more strongly in the second position than in the first position and thereby provides a spring force or restoring force at least in the second position, by means of which the piston element moves from the second position, the storage position , is movable into the first position, the actuating position. In this case, during the storage position or the storage state, the piston element is acted upon with hydraulic fluid in the first chamber part in such a way that the spring is tensioned in such a way, especially when the storage position is reached, that a restoring force prevails in the spring, which is particularly passive, i.e. without further control or regulation, at the end of the storage, the piston element is moved into the actuating position, so that the second throughflow opening is opened, through which the hydraulic fluid can flow into the output device via the second chamber region. By using a spring as at least a part of the resetting device, a particularly simple and thus low-maintenance and low-cost design of the resetting device can be implemented, as a result of which the storage actuator can be or can be operated particularly inexpensively.

In vorteilhafter Ausgestaltung der Erfindung ist der Energiespeicher als ein Balgdruckspeicher ausgebildet, welcher wenigstens eine Speicherkammer und wenigstens einen in der Speicherkammer angeordneten Balg aufweist, welcher durch Einleiten der Hydraulikflüssigkeit in die Speicherkammer elastisch komprimierbar ist. Dabei wird durch Einleiten von Hydraulikflüssigkeit mittels der Antriebsvorrichtung in den Energiespeicher der Balg, insbesondere elastisch, komprimiert, wodurch Energie in dem Speicher gespeichert werden kann. Im Aktuierzustand, in welchem keine Hydraulikflüssigkeit in dem Energiespeicher gefördert wird, entspannt sich der im Speicherzustand komprimierte Balg, sodass die Energie des Balgs auf die Hydraulikflüssigkeit übertragen wird, um die Abtriebsvorrichtung anzutreiben. Dabei kann der Energiespeicher, welcher somit als sogenannter Gasdruckspeicher ausgebildet ist, beispielsweise einen inneren und einen äußeren Balg aufweisen, welche jeweils insbesondere zumindest teilweise aus Metall ausgebildet sind. Ferner kann der Balg einen, insbesondere mechanischen, Anschlag, aufweisen, mittels welchem verhindert wird, dass bereits während des Speicherzustands Energie abgegeben wird. Durch die Verwendung eines Balgdruckspeichers als Energiespeicher kann der erfindungsgemäße Speicheraktor beispielsweise besonders kompakt und/oder besonders kostengünstig ausgebildet werden. Andere Arten von Hydraulik- und/oder Gasdruckspeichern können zusätzlich oder alternativ als Energiespeicher verwendet werden.In an advantageous embodiment of the invention, the energy store is designed as a bellows pressure accumulator which has at least one storage chamber and at least one bellows arranged in the storage chamber, which can be elastically compressed by introducing the hydraulic fluid into the storage chamber. By introducing hydraulic fluid into the energy store by means of the drive device, the bellows is compressed, in particular elastically, whereby energy can be stored in the memory. In the actuation state, in which no hydraulic fluid is conveyed in the energy store, the bellows compressed in the storage state relaxes so that the energy of the bellows is transferred to the hydraulic fluid in order to drive the output device. The energy store, which is thus designed as a so-called gas pressure store, can, for example, have an inner and an outer bellows, each of which is in particular at least partially formed from metal. Furthermore, the bellows can have a stop, in particular a mechanical stop, by means of which it is prevented that energy is already given off during the storage state. By using a bellows pressure accumulator as an energy store, the storage actuator according to the invention can be designed, for example, to be particularly compact and / or particularly inexpensive. Other types of hydraulic and / or gas pressure accumulators can additionally or alternatively be used as energy stores.

In vorteilhafter Ausgestaltung der Erfindung ist ein zweites Rückschlagventil vorgesehen, über welches die Hydraulikflüssigkeit von der Antriebsvorrichtung in den ersten Kammerbereich einleitbar ist. Durch das zweite Rückschlagventil kann in besonders vorteilhafter Weise ein Rückfluss von Hydraulikflüssigkeit in die Antriebsvorrichtung verhindert werden, wodurch ein Aufladen des Energiespeichers besonders effizient durchgeführt werden kann. Ferner kann bei einem Wechsel aus dem Speicherzustand in den Aktuierzustand, insbesondere mittels der Rückstelleinrichtung, Hydraulikflüssigkeit zusätzlich in den Energiespeicher eingeleitet werden, anstatt in die Antriebsvorrichtung zurück zu fließen beziehungsweise zu strömen.In an advantageous embodiment of the invention, a second check valve is provided, via which the hydraulic fluid can be introduced from the drive device into the first chamber area. A backflow of hydraulic fluid into the drive device can be prevented in a particularly advantageous manner by the second check valve, as a result of which the energy store can be charged particularly efficiently. Furthermore, when changing from the storage state to the actuating state, in particular by means of the resetting device, hydraulic fluid can additionally be introduced into the energy store instead of flowing back into the drive device.

In vorteilhafter Ausgestaltung der Erfindung ist ein drittes Rückschlagventil vorgesehen, über welches die Abtriebsvorrichtung mit der Hydraulikflüssigkeit aus dem zweiten Kammerbereich versorgbar ist. Durch das dritte Rückschlagventil wird ein Rückfluss der Hydraulikflüssigkeit aus der Abtriebsvorrichtung, insbesondere aus der Abtriebskammer, in den zweiten Kammerbereich verhindert beziehungsweise besonders gering gehalten, wodurch das Aktuieren der Abtriebsvorrichtung besonders effizient erfolgen kann und bei einem Wechsel aus der Aktuierstellung in die Speicherstellung beispielsweise ein Zurückbewegen des Abtriebskolbenelements verhindert beziehungsweise besonders gering gehalten werden kann. Durch Verwenden des dritten Rückschlagventils ist somit ein besonders vorteilhafter Betrieb während des Aktuierzustands realisierbar, da beispielsweise ein Leistungseinbruch während des Aktuierens besonders gering ausfallen kann.In an advantageous embodiment of the invention, a third check valve is provided, via which the output device can be supplied with the hydraulic fluid from the second chamber area. Through the third check valve a backflow of the hydraulic fluid from the output device, in particular from the output chamber, into the second chamber area is prevented or kept particularly low, which means that the output device can be actuated particularly efficiently and, when changing from the actuation position to the storage position, for example, prevents or prevents the output piston element from moving back can be kept particularly low. By using the third check valve, a particularly advantageous operation can be implemented during the actuation state, since, for example, a drop in performance during actuation can be particularly small.

In vorteilhafter Ausgestaltung der Erfindung ist der Energiespeicher innerhalb höchstens 10 Sekunden, insbesondere innerhalb höchstens einer Sekunde, während welcher sich das Kolbenelement durchgängig in der zweiten Stellung beziehungsweise der Speicherstellung befindet, zumindest überwiegend, insbesondere vollständig, mit der Hydraulikflüssigkeit auffüllbar. Das heißt, der Energiespeicher kann während des Speicherzustands insbesondere innerhalb höchstens einer Sekunde zumindest überwiegend, insbesondere vollständig, mit der Energie geladen werden, um während des folgenden Aktuierzustands die Abtriebsvorrichtung mit der geforderten Leistung betreiben zu können. Ein Zeitintervall, welches mit dem Anschalten des Antriebsaktors zum Speichern der Energie bis zum tatsächlichen Umschalten des Speicheraktors in den Aktuierzustand erfolgt, kann, wie bereits erwähnt, als sogenannte Auslösezeit verstanden werden. Das heißt, die Auslösezeit des erfindungsgemäßen Speicheraktors beträgt weniger als zehn beziehungsweise eine Sekunde und ist somit besonders gering, wodurch sich ein besonders breites Anwendungsspektrum für eine Verwendung des erfindungsgemäßen Speicheraktors ergibt.In an advantageous embodiment of the invention, the energy store can be at least predominantly, in particular completely, filled with the hydraulic fluid within a maximum of 10 seconds, in particular within a maximum of one second, during which the piston element is continuously in the second position or the storage position. That is, the energy store can be charged with the energy at least predominantly, in particular completely, during the storage state, in particular within a maximum of one second, in order to be able to operate the output device with the required power during the following actuation state. As already mentioned, a time interval that occurs between the switching on of the drive actuator for storing the energy and the actual switchover of the storage actuator to the actuation state can be understood as a so-called trigger time. This means that the trigger time of the memory actuator according to the invention is less than ten or one second and is therefore particularly short, which results in a particularly wide range of applications for using the memory actuator according to the invention.

Ein zweiter Aspekt der Erfindung betrifft ein Verfahren zum Betätigen einer Abtriebsvorrichtung mittels eines Speicheraktors, bei welchem in einem ersten Betriebszustand des Speicheraktors wenigstens ein Energiespeicher mittels einer Antriebsvorrichtung des Speicheraktors mit Energie versorgt wird, wodurch die Energie in dem Energiespeicher gespeichert wird, wobei in einem zweiten Betriebszustand des Speicheraktors der Energiespeicher zumindest ein Teil der in dem Energiespeicher gespeicherten Energie bereitstellt, wodurch die Abtriebsvorrichtung mit der bereitgestellten Energie versorgt und dadurch mittels der bereitgestellten Energie betätigt wird.A second aspect of the invention relates to a method for actuating an output device by means of a storage actuator, in which, in a first operating state of the storage actuator, at least one energy storage device is by means of a drive device of the storage actuator is supplied with energy, whereby the energy is stored in the energy store, wherein in a second operating state of the storage actuator the energy store provides at least part of the energy stored in the energy store, whereby the output device is supplied with the energy provided and thereby by means of the energy provided is operated.

Das erfindungsgemäße Verfahren kann vorteilhafterweise derart durchgeführt werden, dass ein automatisches Freigeben der gespeicherten Energie erfolgt. Alternativ dazu kann die Energie solange vorgehalten beziehungsweise gespeichert werden, das heißt ein beziehungsweise der Speicherzustand arretiert werden, bis beispielweise eine Freigabe der Energie manuell erfolgt. Ferner kann das Speichern der Energie bis zu einer bestimmten, insbesondere vorgebbaren, Menge an Energie erfolgen. Ist diese Menge erreicht kann beispielweise ein automatisches Antreiben der Abtriebsvorrichtung erflogen.The method according to the invention can advantageously be carried out in such a way that the stored energy is automatically released. As an alternative to this, the energy can be held available or stored, that is to say a storage state or the storage state can be locked until, for example, the energy is released manually. Furthermore, the energy can be stored up to a certain, in particular predeterminable, amount of energy. If this amount is reached, the output device can be driven automatically, for example.

Dabei wird der erfindungsgemäße Speicheraktor mittels des erfindungsgemäßen Verfahrens betrieben beziehungsweise das erfindungsgemäße Verfahren wird an dem erfindungsgemäßen Speicheraktor durchgeführt. Vorteile und vorteilhafte Ausgestaltungen des ersten Aspekts der Erfindung sind als Vorteile und vorteilhafte Ausgestaltungen des zweiten Aspekts der Erfindung anzusehen und umgekehrt.The memory actuator according to the invention is operated by means of the method according to the invention or the method according to the invention is carried out on the memory actuator according to the invention. Advantages and advantageous configurations of the first aspect of the invention are to be regarded as advantages and advantageous configurations of the second aspect of the invention and vice versa.

Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung zumindest eines bevorzugten Ausführungsbeispiels sowie anhand der Zeichnungen. Die vorstehend in der Beschreibung genannten Merkmale und Merkmalskombinationen sowie die nachfolgend in der Figurenbeschreibung genannten und/oder in den Figuren alleine gezeigten Merkmale und Merkmalskombinationen sind nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar, ohne den Rahmen der Erfindung zu verlassen.Further advantages, features and details of the invention emerge from the following description of at least one preferred exemplary embodiment and with reference to the drawings. The features and combinations of features mentioned above in the description as well as the features and combinations of features mentioned below in the description of the figures and / or shown alone in the figures can be used not only in the respectively specified combination, but also in other combinations or on their own, without the scope of Invention to leave.

Dabei zeigt:

FIG 1
eine schematische Schnittansicht eines erfindungsgemäßen Speicheraktors; und
FIG 2
eine weitere Ausführungsform des Speicheraktors, mit einem Balgdruckspeicher.
It shows:
FIG 1
a schematic sectional view of a memory actuator according to the invention; and
FIG 2
another embodiment of the memory actuator, with a bellows pressure accumulator.

FIG 1 zeigt in einer schematischen Schnittansicht einen Speicheraktor 10, welcher eine Abtriebsvorrichtung 32 aufweist. Die Abtriebsvorrichtung 32 stellt einen Abtrieb des Speicheraktors 10 dar. Der Speicheraktor 10 ist zum Betätigen der Abtriebsvorrichtung 32 ausgebildet und umfasst wenigstens einen Energiespeicher 18 und eine Antriebsvorrichtung 14, mittels welcher in wenigstens einem ersten Betriebszustand des Speicheraktors 10 Energie in den Energiespeicher 18 einspeicherbar ist. Der Speicheraktor 10 kann wenigstens einen zweiten Betriebszustand aufweisen, in welchem von dem Energiespeicher 18 zumindest ein Teil der in dem Energiespeicher 18 gespeicherten Energie bereitstellbar ist, wodurch die Abtriebsvorrichtung 32 mit der bereitgestellten Energie versorgbar und dadurch betätigbar ist. FIG 1 shows, in a schematic sectional view, a storage actuator 10 which has an output device 32. The output device 32 represents an output of the storage actuator 10. The storage actuator 10 is designed to operate the output device 32 and comprises at least one energy store 18 and a drive device 14, by means of which energy can be stored in the energy store 18 in at least one first operating state of the storage actuator 10. The storage actuator 10 can have at least one second operating state in which at least part of the energy stored in the energy storage device 18 can be provided by the energy storage device 18, whereby the output device 32 can be supplied with the energy provided and can thereby be actuated.

Die Antriebsvorrichtung 14 umfasst einen Antriebsaktor 12. Der Antriebsaktor 12 ist vorteilhafterweise als ein Piezoaktor ausgebildet, kann beispielsweise alternativ dazu durch einen anderen Festkörperaktor und/oder als Polymeraktor ausgebildet sein. Prinzipiell sind beliebige Aktorkonzepte als Antriebsaktor 12 möglich.The drive device 14 comprises a drive actuator 12. The drive actuator 12 is advantageously designed as a piezo actuator, for example, alternatively, it can be designed as a different solid-state actuator and / or as a polymer actuator. In principle, any actuator concepts are possible as drive actuator 12.

Mittels des Antriebsaktors 12 und somit mittels der Antriebsvorrichtung 14 kann eine Hydraulikflüssigkeit gefördert werden. Ferner umfasst der Speicheraktor 10 eine Kammer 16 sowie den Energiespeicher 18. In der Kammer 16 ist ein Kolbenelement 20 translatorisch bewegbar angeordnet, welches die Kammer 16 in einen ersten Kammerbereich 22 und einen zweiten Kammerbereich 24 unterteilt. Dabei ist die Hydraulikflüssigkeit mittels der Antriebsvorrichtung 14 in den ersten Kammerbereich 22 förderbar.A hydraulic fluid can be conveyed by means of the drive actuator 12 and thus by means of the drive device 14. The storage actuator 10 further comprises a chamber 16 and the energy store 18. A piston element 20 is arranged in the chamber 16 such that it can be moved in translation and divides the chamber 16 into a first chamber area 22 and a second chamber area 24. Here is the hydraulic fluid can be conveyed into the first chamber region 22 by means of the drive device 14.

Wenigstens ein, insbesondere als Tank ausgebildetes, Reservoir 38 ist zum Bereitstellen der Hydraulikflüssigkeit vorgesehen, welche in dem ersten Betriebszustand mittels der Antriebsvorrichtung 14 in den Energiespeicher 18 förderbar ist, wodurch die Energie in den Energiespeicher 18 einspeicherbar ist. Der Energiespeicher 18 kann in dem zweiten Betriebszustand zumindest einen Teil der in dem Energiespeicher 18 gespeicherte Hydraulikflüssigkeit und dadurch zumindest einen Teil der in dem Energiespeicher 18 gespeicherten Energie bereitstellen, wodurch die Abtriebsvorrichtung 32 mittels der bereitgestellten Hydraulikflüssigkeit betätigbar ist.At least one reservoir 38, in particular in the form of a tank, is provided to provide the hydraulic fluid, which in the first operating state can be conveyed into the energy store 18 by means of the drive device 14, whereby the energy can be stored in the energy store 18. In the second operating state, the energy store 18 can provide at least part of the hydraulic fluid stored in the energy store 18 and thereby at least part of the energy stored in the energy store 18, whereby the output device 32 can be actuated by means of the provided hydraulic fluid.

Durch das Fördern der Hydraulikflüssigkeit in den ersten Kammerbereich 22 ist das Kolbenelement 20 aus einer ersten Stellung, welche auch als Aktuierstellung bezeichnet wird, in eine zweite Stellung bewegbar, welche auch als Speicherstellung bezeichnet wird. Dabei befindet sich das Kolbenelement im ersten Betriebszustand in der Speicherstellung und während des zweiten Betriebszustands in der Aktuierstellung. Der erste Betriebszustand wird daher als Speicherzustand und der zweite Betriebszustand als Aktuierzustand bezeichnet. In der zweiten Stellung gibt das Kolbenelement 20 eine erste Durchströmöffnung 26 des Speicheraktors 10 frei. Ferner versperrt das Kolbenelement 10 in der zweiten Stellung eine zweite Durchströmöffnung 28 des Speicheraktors 10, sodass in der zweiten Stellung die in den ersten Kammerbereich 22 geförderte Hydraulikflüssigkeit aus dem ersten Kammerbereich 22 über die erste Durchströmöffnung 26 in den Energiespeicher 18 einleitbar ist beziehungsweise strömt.By conveying the hydraulic fluid into the first chamber region 22, the piston element 20 can be moved from a first position, which is also referred to as the actuating position, into a second position, which is also referred to as the storage position. The piston element is in the storage position in the first operating state and in the actuating position during the second operating state. The first operating state is therefore referred to as the memory state and the second operating state as the actuating state. In the second position, the piston element 20 releases a first throughflow opening 26 of the accumulator actuator 10. In addition, the piston element 10 blocks a second throughflow opening 28 of the storage actuator 10 in the second position, so that in the second position the hydraulic fluid conveyed into the first chamber area 22 can be introduced or flows from the first chamber area 22 via the first throughflow opening 26 into the energy store 18.

Ferner weist der Speicheraktor 10 wenigstens eine Rückstelleinrichtung 30 auf, mittels welcher das Kolbenelement 20 aus der zweiten Stellung in die erste Stellung bewegbar ist, in welcher das Kolbenelement 20 die zweite Durchströmöffnung 28 freigibt und die erste Durchströmöffnung 26 versperrt, sodass zumindest ein Teil der in den Energiespeicher 18 eingeleiteten Hydraulikflüssigkeit aus dem Energiespeicher 18 über die zweite Durchströmöffnung 28 in den zweiten Kammerbereich 24 einleitbar ist. Darüber hinaus umfasst der Speicheraktor 10 die Abtriebsvorrichtung 32, welche mit zumindest einem Teil der in den zweiten Kammerbereich 24 eingeleiteten Hydraulikflüssigkeit versorgbar und dadurch antreibbar ist.Furthermore, the storage actuator 10 has at least one resetting device 30, by means of which the piston element 20 can be moved from the second position into the first position, in which the piston element 20 releases the second throughflow opening 28 and blocks the first throughflow opening 26, so that at least part of the hydraulic fluid introduced into the energy store 18 can be introduced from the energy store 18 via the second through-flow opening 28 into the second chamber region 24. In addition, the storage actuator 10 includes the output device 32, which can be supplied with at least part of the hydraulic fluid introduced into the second chamber region 24 and can thereby be driven.

Außenumfangsseitig können die Kammer 16 sowie eine fluidisch leitend mit der Kammer 16 verbundene, zweite Kammer 34 des Speicheraktors 10 im Wesentlichen zylinderförmig sein. Der, insbesondere hydraulische, Speicheraktor 10 ist, während sich das Kolbenelement 20 in der Speicherstellung befindet, in einer ersten Phase (Speicherphase) beziehungsweise dem ersten Betriebszustand, welcher auch als Speicherzustand bezeichnet wird. In dem Speicherzustand stellt der Speicheraktor 10, insbesondere dessen Antriebsvorrichtung 14, mechanische Energie bereit, welche mittels der Hydraulikflüssigkeit in dem Energiespeicher 18 gespeichert wird. Befindet sich das Kolbenelement 20 in der Aktuierstellung, so befindet sich der Speicheraktor 10 in einer zweiten Phase(Aktuierphase) beziehungsweise dem zweiten Betriebszustand, welcher auch als Aktuierzustand bezeichnet wird. In dem Aktuierzustand wird die Abtriebsvorrichtung 32 mittels der in dem Energiespeicher 18 gespeicherten Energie betätigt und dadurch beispielsweise bewegt, wodurch mittels der Abtriebsvorrichtung 32 eine Aktuierung bewirkt werden kann.On the outer circumference, the chamber 16 and a second chamber 34 of the storage actuator 10 connected to the chamber 16 in a fluidically conductive manner can be essentially cylindrical. The, in particular hydraulic, storage actuator 10 is, while the piston element 20 is in the storage position, in a first phase (storage phase) or the first operating state, which is also referred to as the storage state. In the storage state, the storage actuator 10, in particular its drive device 14, provides mechanical energy, which is stored in the energy store 18 by means of the hydraulic fluid. If the piston element 20 is in the actuation position, the storage actuator 10 is in a second phase (actuation phase) or the second operating state, which is also referred to as the actuation state. In the actuation state, the output device 32 is actuated by means of the energy stored in the energy store 18 and thereby moved, for example, whereby an actuation can be effected by means of the output device 32.

Dabei kann der Speicheraktor 10 so betrieben werden, dass der Speicherzustand beziehungsweise das Speichern der Energie nicht zeitkritisch ist, das heißt es kann ausreichend Energie gespeichert werden, um die im Aktuierzustand benötigte beziehungsweise geforderte Leistung für die komplette Aktuierungsphase bereitzustellen. Dadurch ist der gezeigte Speicheraktor 10 für Anwendungen interessant, bei denen beispielsweise eine Leistungserhöhung eines Aktors mit zu großen Kosten verbunden wäre und alternative Aktorkonzepte, im Vergleich zu dem als Piezoaktor ausgebildeten Antriebsaktor 12, beispielsweise nicht die gewünschte Kraftdichte erreichen können.The storage actuator 10 can be operated in such a way that the storage state or the storage of energy is not time-critical, that is, sufficient energy can be stored to provide the power required or required in the actuation state for the complete actuation phase. As a result, the storage actuator 10 shown is of interest for applications in which, for example, an increase in the performance of an actuator would be associated with excessive costs and alternative actuator concepts compared to the Piezo actuator designed drive actuator 12, for example, can not achieve the desired force density.

Im Speicherzustand pumpt der Antriebsaktor 12 der Antriebsvorrichtung 14 in der gezeigten Ausführungsform die Hydraulikflüssigkeit über ein zweites Rückschlagventil 36 von der Antriebsvorrichtung 14 in den ersten Kammerbereich 22, sodass die Hydraulikflüssigkeit in den ersten Kammerbereich 22 einleitbar ist. Um die Hydraulikflüssigkeit zu fördern, weist die Antriebsvorrichtung 14 im gezeigten Ausführungsbespiel eine mit der Hydraulikflüssigkeit versorgbare Antriebskammer und ein die Antriebskammer teilweise begrenzendes und von dem Antriebsaktor 12 antreibbares Antriebskolbenelement auf, mittels welchem durch Antreiben des Antriebskolbenelements die Hydraulikflüssigkeit aus der Antriebskammer in den ersten Kammerbereich 24 und über den ersten Kammerbereich 24 durch die erste Durchströmöffnung 26 in den Energiespeicher 18 zu fördern ist. Die Antriebskammer und das Antriebskolbenelement sind aus Gründen der Übersichtlichkeit in FIG 1 nicht gezeigt. Die Hydraulikflüssigkeit kann beispielsweise durch den als Reservoir 38 ausgebildeten Tank, welcher sich in Sperrrichtung auf der gleichen Seite des zweiten Rückschlagventils 36 wie die Antriebsvorrichtung 14 befindet, bereitgestellt werden. Vorteilhafterweise ist in der ersten Durchströmöffnung 26 ein erstes Rückschlagventil 40 angeordnet, welches in Richtung des ersten Kammerbereichs 24 sperrt.In the storage state, the drive actuator 12 of the drive device 14 in the embodiment shown pumps the hydraulic fluid from the drive device 14 into the first chamber area 22 via a second check valve 36, so that the hydraulic fluid can be introduced into the first chamber area 22. In order to convey the hydraulic fluid, the drive device 14 in the exemplary embodiment shown has a drive chamber which can be supplied with the hydraulic fluid and a drive piston element which partially delimits the drive chamber and which can be driven by the drive actuator 12, by means of which the hydraulic fluid from the drive chamber into the first chamber area 24 by driving the drive piston element and is to be conveyed via the first chamber region 24 through the first flow opening 26 into the energy store 18. For the sake of clarity, the drive chamber and the drive piston element are shown in FIG FIG 1 Not shown. The hydraulic fluid can be provided, for example, by the tank designed as a reservoir 38, which is located in the blocking direction on the same side of the second check valve 36 as the drive device 14. A first check valve 40, which blocks in the direction of the first chamber region 24, is advantageously arranged in the first through-flow opening 26.

Befindet sich das Kolbenelement 20 nun in der Speicherstellung, wird mittels der Antriebsvorrichtung 14 die Hydraulikflüssigkeit über das zweite Rückschlagventil 36 und über eine Öffnung 42 in den ersten Kammerbereich 22 der Kammer 16 gepumpt beziehungsweise gefördert. Aufgrund einer geringen Kompressibilität der Hydraulikflüssigkeit wird das Kolbenelement 20 gegen die Rückstelleinrichtung 30 gedrückt, wodurch die erste Durchströmöffnung 26 und somit das erste Rückschlagventil 40 freigegeben wird. Dazu weist die Rückstelleinrichtung 30 vorteilhafterweise wenigstens eine Feder 44 auf. Die Feder 44 ist in der zweiten Stellung, das heißt in der Speicherstellung, stärker als in der Aktuierstellung gespannt, dadurch stellt die Feder 44 zumindest in der Speicherstellung eine Federkraft bereit, mittels welcher das Kolbenelement 20 aus der Speicherstellung in die Aktuierstellung bewegbar ist. Solange jedoch die Hydraulikflüssigkeit mittels der Abtriebsvorrichtung 32 gefördert wird, fließt diese über das erste Rückschlagventil 40 zumindest mittelbar in den Energiespeicher 18, welcher über die Kammer 34 und eine weitere Öffnung 46 fluidisch leitend während des Speicherzustands mit dem ersten Kammerbereich 22 verbunden ist. Dabei verhindert das erste Rückschlagventil 40, dass Hydraulikflüssigkeit aus der zweiten Kammer 34 zurück in den ersten Kammerbereich 22 fließen kann. Durch die Position des Kolbenelements 20 in der Speicherstellung wird, insbesondere automatisch, die zweite Durchströmöffnung 28 versperrt, wodurch keine Hydraulikflüssigkeit aus der zweiten Kammer 34 und somit dem Energiespeicher 18 in den zweiten Kammerbereich 24 fließen kann. Unterbleibt die Förderung der Hydraulikflüssigkeit mittels der Antriebsvorrichtung 14, wird das Kolbenelement 20 durch die Rückstellkraft der Feder 44 translatorisch innerhalb der ersten Kammer bewegt, sodass das Kolbenelement 20 aus der Speicherstellung in die Aktuierstellung, insbesondere translatorisch, verschoben wird.If the piston element 20 is now in the storage position, the hydraulic fluid is pumped or conveyed into the first chamber region 22 of the chamber 16 via the second check valve 36 and an opening 42 by means of the drive device 14. Due to the low compressibility of the hydraulic fluid, the piston element 20 is pressed against the restoring device 30, as a result of which the first throughflow opening 26 and thus the first check valve 40 are released. For this purpose, the restoring device 30 advantageously has at least one spring 44. The spring 44 is in the second position, i.e. in the storage position, tensed more than in the actuating position, as a result of which the spring 44 provides a spring force, at least in the storage position, by means of which the piston element 20 can be moved from the storage position into the actuation position. However, as long as the hydraulic fluid is conveyed by means of the output device 32, it flows via the first check valve 40 at least indirectly into the energy store 18, which is connected to the first chamber area 22 via the chamber 34 and a further opening 46 in a fluidically conductive manner during the storage state. The first check valve 40 prevents hydraulic fluid from flowing back from the second chamber 34 into the first chamber region 22. Due to the position of the piston element 20 in the storage position, the second throughflow opening 28 is blocked, in particular automatically, as a result of which no hydraulic fluid can flow out of the second chamber 34 and thus the energy storage device 18 into the second chamber region 24. If the hydraulic fluid is not conveyed by the drive device 14, the piston element 20 is moved translationally within the first chamber by the restoring force of the spring 44, so that the piston element 20 is shifted from the storage position into the actuating position, in particular translationally.

Das Kolbenelement 20 ist so ausgeführt, dass eine Leckage über den, insbesondere radialen, Spalt zwischen dem Kolbenelements 20 und einer Wandung der Kammer 16 besonders gering ist. Das heißt, ein fluidischer Austausch der Hydraulikflüssigkeit zwischen dem ersten Kammerbereich 22 und dem zweiten Kammerbereich 24 an dem Kolbenelement 20 vorbei ist besonders gering, insbesondere vernachlässigbar. Der in FIG 1 gezeigte Energiespeicher 18 ist beispielsweise als pneumatischer und/oder hydraulischer Speicher ausgeführt, das heißt je mehr Fluid beziehungsweise Hydraulikflüssigkeit der Antriebsaktor 12 über das zweite Rückschlagventil 36 pumpt, desto mehr Energie wird in dem Energiespeicher 18 gespeichert. Vorteilhafterweise ist der Energiespeicher 18 bereits vor Beginn des Speicherzustands bereits mit ausreichend Hydraulikflüssigkeit gefüllt beziehungsweise enthält ausreichend Energie, sodass nur noch so viel Fluidvolumen ΔV in den Energiespeicher 18 beziehungsweise die zweite Kammer 34 gepumpt werden muss, um einen geforderten Hub ΔS der Abtriebsvorrichtung 32 zu gewährleisten. Mit anderen Worten sollte der Druck innerhalb der mit Hydraulikflüssigkeit zu befüllenden Komponenten des, insbesondere hydraulischen, Speicheraktors 10, wie insbesondere dem Energiespeicher 18, einen gewissen Initialdruck erreichen beziehungsweise aufbringen, welcher beispielsweise über einen Umgebungsdruck in einer Umgebung des Speicheraktors 10 liegt. Dadurch können während des Aktuierzustands, in welchem die Abtriebsvorrichtung 32 die mechanische Arbeit verrichtet, konstante Abtriebsparameter bei Kraft und Geschwindigkeit eingehalten werden, sodass beispielsweise ein Abtriebskolbenelement 50 gegen Ende seiner translatorischen Bewegung eine gewünschte Mindestgeschwindigkeit nicht unterschreitet. In der gezeigten Ausführungsform weist die Abtriebsvorrichtung 32 eine Abtriebskammer 48 auf, in welche die Hydraulikflüssigkeit einleitbar ist. Ferner weist die Abtriebsvorrichtung 32 das die Abtriebskammer 48 teilweise begrenzendes Abtriebskolbenelement 50 auf, welches eine mit der in die Abtriebskammer 48 eingeleiteten Hydraulikflüssigkeit beaufschlagbare Abtriebsfläche 52 aufweist. Durch Beaufschlagen der Abtriebsfläche 52 mit der in die Abtriebskammer 48 eingeleiteten Hydraulikflüssigkeit ist das Abtriebskolbenelement 50 antreibbar.The piston element 20 is designed in such a way that leakage through the, in particular radial, gap between the piston element 20 and a wall of the chamber 16 is particularly small. That is to say, a fluidic exchange of the hydraulic fluid between the first chamber region 22 and the second chamber region 24 past the piston element 20 is particularly small, in particular negligible. The in FIG 1 The energy store 18 shown is designed, for example, as a pneumatic and / or hydraulic store, that is, the more fluid or hydraulic fluid the drive actuator 12 pumps via the second check valve 36, the more energy is stored in the energy store 18. Advantageously, the energy store 18 is already filled with sufficient hydraulic fluid or contains sufficient energy before the start of the storage state, so that only as much fluid volume ΔV has to be pumped into the energy store 18 or the second chamber 34 to ensure a required stroke ΔS of the output device 32 . In other words, the pressure within the components of the, in particular hydraulic, storage actuator 10 to be filled with hydraulic fluid, such as in particular the energy store 18, should reach or apply a certain initial pressure, which is, for example, above an ambient pressure in the vicinity of the storage actuator 10. As a result, constant output parameters for force and speed can be maintained during the actuation state in which the output device 32 performs the mechanical work, so that, for example, an output piston element 50 does not fall below a desired minimum speed towards the end of its translational movement. In the embodiment shown, the output device 32 has an output chamber 48 into which the hydraulic fluid can be introduced. Furthermore, the output device 32 has the output piston element 50 which partially delimits the output chamber 48 and which has an output surface 52 that can be acted upon by the hydraulic fluid introduced into the output chamber 48. By subjecting the output surface 52 to the hydraulic fluid introduced into the output chamber 48, the output piston element 50 can be driven.

Vorteilhafterweise weist der Speicheraktor 10 ein drittes Rückschlagventil 54 auf, über welches die Abtriebsvorrichtung 32 mit der Hydraulikflüssigkeit aus dem zweiten Kammerbereich 24 versorgbar ist. Wird die Energiespeicherung beendet, das heißt der Antriebsaktor 12 stoppt das Fördern der Hydraulikflüssigkeit über das Rückschlagventil 36 in zumindest den ersten Kammerbereich 22, kann die Hydraulikflüssigkeit im Anschluss, nach Zurückstellen des Kolbenelements 20 durch die Rückstelleinrichtung 30, in die Abtriebsvorrichtung 32 strömen, wodurch die Abtriebskraft und die Abtriebsgeschwindigkeit und somit die Leistung, insbesondere an dem Abtriebskolbenelement 50, bereitgestellt wird. Dabei erfolgt die, insbesondere translatorische, Bewegung des Abtriebskolbenelements 50 durch eine Beaufschlagung der Hydraulikflüssigkeit auf die hydraulisch wirksame Abtriebsfläche 52.The storage actuator 10 advantageously has a third check valve 54, via which the output device 32 can be supplied with the hydraulic fluid from the second chamber region 24. If the energy storage is ended, i.e. the drive actuator 12 stops conveying the hydraulic fluid via the check valve 36 into at least the first chamber region 22, the hydraulic fluid can then flow into the output device 32 after the piston element 20 has been reset by the reset device 30, whereby the output force and the output speed and thus the power, in particular at the output piston element 50, are provided. In this case, the, in particular translational, movement of the output piston element 50 takes place when the hydraulic fluid acts on the hydraulically effective output surface 52.

Vorteilhafterweise ist das Antriebskolbenelement der Antriebsvorrichtung 14, welches durch den Antriebsaktor 12 bewirkte Hübe zum Fördern der Hydraulikflüssigkeit ausführt, mit einer Frequenz von weniger als 1000 Hertz hin- und herführbar beziehungswies bewegbar, wodurch der Antriebsaktor 12 und somit die gesamte Antriebsvorrichtung 14 beispielsweise besonders verschleißarm und somit wartungsarm betrieben werden kann.Advantageously, the drive piston element of the drive device 14, which executes the strokes caused by the drive actuator 12 to convey the hydraulic fluid, can be moved back and forth at a frequency of less than 1000 Hertz, whereby the drive actuator 12 and thus the entire drive device 14, for example, are particularly wear-resistant and thus can be operated with little maintenance.

Vorteilhafterweise dauert der Speicherzustand und somit das Speichern von Energie weniger als eine Sekunde. Während dieser Sekunde befindet sich das Kolbenelement 20 durchgängig in der zweiten Stellung, und der Energiespeicher 18 wird während der genannten Zeitperiode zumindest überwiegend, insbesondere vollständig, mit der Hydraulikflüssigkeit befüllt beziehungsweise ist mit dieser auffüllbar. Der genannte Zeitraum wird auch als Auslösezeit bezeichnet, womit die Auslösezeit des Speicheraktors 10 weniger als eine Sekunde betragen kann. Der Wechsel zwischen dem Speicherzustand und dem Aktuierzustand geschieht passiv, das heißt es ist kein Zutun seitens eines Benutzers oder einer speziellen Vorrichtung nötig, um die Aktuierung des Speicheraktors 10 insbesondere an dessen Abtriebskolbenelement 50, insbesondere künstlich, durchzuführen, sondern der Start der Aktuierungsphase erfolgt alleine durch Unterbleiben der Förderung der Antriebsvorrichtung 14, insbesondere dessen Antriebsaktor 12, und durch das selbstständige Rückstellen des Kolbenelements 20 mittels der Rückstelleinrichtung 30, insbesondere durch die Rückstellkraft deren Feder 44.The storage state and thus the storage of energy advantageously take less than a second. During this second, the piston element 20 is continuously in the second position, and the energy store 18 is at least predominantly, in particular completely, filled with the hydraulic fluid or can be filled with it during the period of time mentioned. The period mentioned is also referred to as the trigger time, so that the trigger time of the memory actuator 10 can be less than one second. The change between the storage state and the actuation state occurs passively, i.e. no action is required on the part of a user or a special device to actuate the storage actuator 10, in particular on its output piston element 50, in particular artificially, but the actuation phase starts alone by stopping the conveyance of the drive device 14, in particular its drive actuator 12, and by automatically resetting the piston element 20 by means of the resetting device 30, in particular by the resetting force of its spring 44.

FIG 2 zeigt eine schematische Schnittansicht einer weiteren Ausführungsform des, insbesondere piezohydraulischen, Speicheraktors 10, wobei die zweite Kammer 34 beziehungsweise der Energiespeicher 18 als ein Balgdruckspeicher ausgebildet ist, welcher wenigstens eine Speicherkammer, die zweite Kammer 34, und wenigstens einen in der Speicherkammer angeordneten Balg 56 aufweist, welcher durch Einleiten der Hydraulikflüssigkeit in die Speicherkammer, die zweite Kammer 34, elastisch komprimierbar ist. Die FIG 2 zeigt nur eine Hälfte der Kammern des Speicheraktors 10, da aus Gründen der Symmetrie, insbesondere durch eine zylinderförmige Gestaltung der Kammer 16 beziehungsweise 34 der Ausführungsform, durch eine vollständige Schnittansicht keine weitere Information in FIG 2 gewonnen werden könnte. Ferner weist der Balgdruckspeicher in FIG 2 einen inneren Metallbalg 58 sowie einen äußeren Metallbalg 60 auf, wodurch beispielsweise ein für Störungen besonders unanfälliger Gasdruckspeicher beziehungsweise Druckspeicher realisierbar ist. Darüber hinaus zeigt die Ausführungsform einen mechanischen Anschlag 62 des Balgs 56. Durch diesen Anschlag 62 kann gewährleistet werden, dass bereits eine gewisse Energie der Hydraulikflüssigkeit vorgehalten werden kann, sodass nur noch das Fluidvolumen ΔV in den Kammerbereich 22 beziehungsweise in die Kammer 16 und somit in den Energiespeicher 18 eingeleitet werden muss, welches benötigt wird, um den geforderten Hub ΔS am Abtriebskolben 50 zu gewährleisten, wobei sich das geforderte Volumen über die Fläche A der Abtriebsfläche 52 und die Länge ΔS des Hubs berechnet. Der mechanische Anschlag 62 dient dazu, nicht bereits während des Speicherzustands die bereits gespeicherte Energie abzugeben. FIG 2 shows a schematic sectional view of a further embodiment of the, in particular piezo-hydraulic, storage actuator 10, the second chamber 34 or the energy store 18 being designed as a bellows pressure accumulator which has at least one storage chamber, the second chamber 34, and at least one bellows 56 arranged in the storage chamber which is elastically compressible by introducing the hydraulic fluid into the storage chamber, the second chamber 34. The FIG 2 shows only one half of the chambers of the memory actuator 10, since for reasons of symmetry, in particular due to a cylindrical design of the chamber 16 or 34 of the embodiment, no further information in FIG FIG 2 could be won. Furthermore, the bellows pressure accumulator in FIG 2 an inner metal bellows 58 and an outer metal bellows 60, as a result of which, for example, a gas pressure accumulator or pressure accumulator which is particularly unsusceptible to malfunctions can be realized. In addition, the embodiment shows a mechanical stop 62 of the bellows 56. This stop 62 can ensure that a certain amount of energy in the hydraulic fluid can already be held, so that only the fluid volume ΔV in the chamber region 22 or in the chamber 16 and thus in the energy store 18 must be introduced, which is required to ensure the required stroke ΔS on the output piston 50, the required volume being calculated over the area A of the output area 52 and the length ΔS of the stroke. The mechanical stop 62 serves to prevent the already stored energy from being released during the storage state.

Ferner kann der Anschlag 62 derart mit Hydraulikflüssigkeit beaufschlagt werden, dass durch die Beaufschlagung der Balg 56 komprimierbar ist beziehungsweise komprimiert wird. Während des Speicherzustands, bei welchem die Hydraulikflüssigkeit mittels der Antriebsvorrichtung 14, insbesondere aus dem Reservoir 38 beziehungsweise Tank, über das zweite Rückschlagventil 36 und die Öffnung 42 in den ersten Kammerbereich 22 und weiter über die Durchströmöffnung 26 beziehungsweise das erste Rückschlagventil 40 in die Kammer 34 und somit in den Energiespeicher 18 eingeleitet wird, verformt diese den Balg 56 dort elastisch, wodurch eine Speicherung von Energie mittels der Hydraulikflüssigkeit durch Kompression des Balgs 56 möglich ist.Furthermore, hydraulic fluid can be applied to the stop 62 in such a way that the bellows 56 can be compressed or is compressed by the application of the action. During the storage state in which the hydraulic fluid is transferred by means of the drive device 14, in particular from the reservoir 38 or tank, via the second check valve 36 and the opening 42 into the first chamber region 22 and further via the through-flow opening 26, respectively the first check valve 40 is introduced into the chamber 34 and thus into the energy store 18, it elastically deforms the bellows 56 there, whereby energy can be stored by means of the hydraulic fluid by compressing the bellows 56.

Durch den gezeigte, insbesondere piezohydraulischen, Speicheraktor 10, bei welchem der Energiespeicher 18 mit der Antriebsvorrichtung 14 und der Abtriebsvorrichtung 32 derart kombiniert wird, dass der Speicheraktor 10 mittels zwei Phasen, die Speicher- und die Aktuierungsphase, betreibbar ist, kann eine Menge an Leistung bereitgestellt werden, welche der Antriebsaktor 12 selbst nicht bereitstellen kann, wodurch sich mannigfaltige Möglichkeiten der Anwendung des Speicheraktors 10 eröffnen.Through the shown, in particular piezo-hydraulic, storage actuator 10, in which the energy store 18 is combined with the drive device 14 and the output device 32 in such a way that the storage actuator 10 can be operated by means of two phases, the storage phase and the actuation phase, a lot of power can be generated which the drive actuator 12 itself cannot provide, which opens up a wide range of possibilities for using the memory actuator 10.

Claims (12)

  1. A storage actuator (10) for actuating an output device (32), with the output device (32), with at least one energy storage (18), with a drive device (14) by means of which energy can be stored in the energy storage (18) in at least one first operating state of the storage actuator (10), wherein the storage actuator (10) has at least one second operating state in which at least a part of the energy stored in the energy storage (18) can be provided from the energy storage (18) whereby the output device (32) can be supplied with the provided energy and can thereby be actuated, wherein at least one reservoir (38) for providing a hydraulic fluid is provided which can be conveyed into the energy storage (18) by means of the drive device (14) in the first operating state, whereby the energy can be stored in the energy storage (18), and wherein the energy storage (18) provides at least a part of the hydraulic fluid stored in the energy storage (18) and thereby at least the part of the energy stored in the energy storage (18) in the second operating state, whereby the output device (32) can be actuated by means of the provided hydraulic fluid, wherein the storage actuator further comprises:
    - the drive device (14) including at least one drive actuator (12) for conveying the hydraulic fluid;
    - a chamber (16);
    - a piston element (20) movably arranged in the chamber (16), the piston element (20) dividing the chamber (16) into a first chamber area (22) into which the hydraulic fluid can be conveyed by means of the drive device (14), and a second chamber area (24), and the piston element (20) being, by conveying the hydraulic fluid into the first chamber area (22), movable from a first position into a second position in which the piston element (20) unblocks a first through-flow opening (26) and blocks a second through-flow opening (28) such that the hydraulic fluid conveyed into the first chamber area (22) can be introduced from the first chamber area (22) via the first through-flow opening (26) into the energy storage (18);
    - at least one return device (30) by means of which the piston element (20) is movable from the second position into the first position in which the piston element (20) unblocks the second through-flow opening (28) and blocks the first through-flow opening (26) such that at least a part of the hydraulic fluid introduced into the energy storage (18) can be introduced from the energy storage (18) via the second through-flow opening (28) into the second chamber area (24); and
    - the output device (32) which can be supplied with at least a part of the hydraulic fluid introduced into the second chamber area (24) thereby driving the output device (32).
  2. The storage actuator (10) according to claim 1, wherein the drive actuator (12) is formed as a solid-state actuator, in particular as a piezo actuator, and/or polymer actuator.
  3. The storage actuator (10) according to claim 1 or 2, wherein a first check valve (40), which blocks towards the first chamber area (22), is arranged in the first through-flow opening (26).
  4. The storage actuator (10) according to claim 1 to 3, wherein the drive device (14) comprises a drive chamber capable of being supplied with the hydraulic fluid and a drive piston element partially bounding the drive chamber and drivable by the drive actuator (12), by means of which the hydraulic fluid can be conveyed from the drive chamber into the first chamber area (22) and via the first chamber area (22) and the first through-flow opening (26) into the energy storage (18) by driving the drive piston element.
  5. The storage actuator (10) according to claim 4, wherein the drive piston element carries out strokes effected by the drive actuator (12) for conveying the hydraulic fluid with a frequency of less than 10000 Hertz, in particular smaller than 1000 Hertz.
  6. The storage actuator (10) according to claim 1 to 5, wherein the output device (32) comprises an output chamber (48), into which the hydraulic fluid can be introduced, and an output piston element (50) partially bounding the output chamber (48), which comprises an output surface (52) capable of being applied with the hydraulic fluid introduced into the output chamber (48) and can be driven by applying the output surface (52) with the hydraulic fluid introduced into the output chamber (48).
  7. The storage actuator (10) according to claim 1 to 6, wherein the return device (30) comprises at least one spring (44), which is more severely tensioned in the second position than in the first position and thereby provides a spring force at least in the second position, by means of which the piston element (20) is movable from the second position into the first position.
  8. The storage actuator (10) according to claim 1 to 7, wherein the energy storage (18) is formed as a bellows pressure storage, which comprises at least one storage chamber (34) and at least one bellows (56) arranged in the storage chamber (34), which is elastically compressible by introducing the hydraulic fluid into the storage chamber (34).
  9. The storage actuator (10) according to claim 1 to 8, wherein a second check valve (36) is provided, via which the hydraulic fluid can be introduced from the drive device (14) into the first chamber area (22).
  10. The storage actuator (10) according to claim 1 to 9, wherein a third check valve (54) is provided, via which the output device (32) can be supplied with the hydraulic fluid from the second chamber area (24).
  11. The storage actuator (10) according to claim 1 to 10, wherein the energy storage (18) can be at least predominantly, in particular completely, filled up with the hydraulic fluid within at most 10 seconds, in particular within at most one second, during which the piston element (20) is continuously in the second position.
  12. A method for actuating an output device (32) by means of a storage actuator (10) according to any one of the preceding claims, in which at least one energy storage (18) is supplied with energy by means of a drive device (14) of the storage actuator (10) in a first operating state of the storage actuator (10), whereby the energy is stored in the energy storage (18), wherein the energy storage (18) provides at least a part of the energy stored in the energy storage (18) in a second operating state of the storage actuator (10), whereby the output device (32) is supplied with the provided energy and thereby is actuated by means of the provided energy.
EP18160844.9A 2018-03-09 2018-03-09 Actuator with accumulator Active EP3536976B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18160844.9A EP3536976B1 (en) 2018-03-09 2018-03-09 Actuator with accumulator
DK18160844.9T DK3536976T3 (en) 2018-03-09 2018-03-09 Bearing actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18160844.9A EP3536976B1 (en) 2018-03-09 2018-03-09 Actuator with accumulator

Publications (2)

Publication Number Publication Date
EP3536976A1 EP3536976A1 (en) 2019-09-11
EP3536976B1 true EP3536976B1 (en) 2020-11-11

Family

ID=61626913

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18160844.9A Active EP3536976B1 (en) 2018-03-09 2018-03-09 Actuator with accumulator

Country Status (2)

Country Link
EP (1) EP3536976B1 (en)
DK (1) DK3536976T3 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115552784A (en) * 2020-02-14 2022-12-30 麦迪思莫迅股份有限公司 Actuator device and method for operating such an actuator device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6070408A (en) * 1997-11-25 2000-06-06 Caterpillar Inc. Hydraulic apparatus with improved accumulator for reduced pressure pulsation and method of operating the same
GB201500553D0 (en) * 2015-01-14 2015-02-25 Bae Systems Plc Hydraulic Actuators
US10247204B2 (en) * 2016-04-01 2019-04-02 Yamada Manufacturing Co., Ltd. Hydraulic control apparatus and hydraulic control method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3536976A1 (en) 2019-09-11
DK3536976T3 (en) 2021-01-25

Similar Documents

Publication Publication Date Title
EP3620296B1 (en) Baling press and method for controlling same
DE102011105648A1 (en) Hydraulic actuator for the actuation of clutches in particular a multi-clutch transmission for motor vehicles
DE102012008902A1 (en) Hydropneumatic device for pressure transmission and riveting device
EP3416783B1 (en) Device and method for transmitting a mechanical force for driving a pressing device for press fittings
DE102018120001A1 (en) Digital pump axis control system
EP3536976B1 (en) Actuator with accumulator
DE1424839A1 (en) Device for converting flow pressure into mechanical movement
DE102018200561A1 (en) Device for generating a high-pressure liquid jet
EP2229537A1 (en) Hydraulic drive device having two pressure chambers and method for operating a hydraulic drive device having two pressure chambers
WO2022223069A1 (en) Hydraulic system and method for operating a hydraulic system
EP3109485B1 (en) Hydraulic system for pressure supply of a hydro-cylinder with three separate pressurisable surfaces and method for operating the hydraulic system
DE102015107207A1 (en) Magnetic pump for an auxiliary unit of a vehicle
EP1967706B1 (en) Valve gear
DE112004001161T5 (en) Hydraulic impact device
DE10100217A1 (en) Disc brake system for vehicle has super-magnetostrictive element, disc brake unit, electric pump, pressure reservoir, electromagnetic valve and control unit for controlling pump and valve
DE202008015574U1 (en) Drive device for a pressing device and pressing device with such a drive device
EP3956569A1 (en) Hydraulic transmission unit for an actuator
DE19921951A1 (en) Motor vehicle pump under piezo-control
EP4104286B1 (en) Actuator device and method for operating an actuator device of this type
DE102011108207A1 (en) Valve controller for hydraulic machine operated as e.g. hydraulic motor, has high pressure seat valve fixed upstream to workspace, and compensating valve and low pressure valve that are integrated to valve unit
DE102015206035A1 (en) Actuator device, hydraulic device, hydraulic system
DE102022123285A1 (en) Hydraulic actuation system for use in a motor vehicle, especially for a parking lock
DE102008064290A1 (en) Pump guide for hydraulic ABS
DE102022208469A1 (en) SYSTEM AND METHOD FOR INCREASING FLUID PRESSURE
EP0520255A1 (en) Hydraulic working implement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200228

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F15B 15/20 20060101ALI20200716BHEP

Ipc: F15B 1/033 20060101AFI20200716BHEP

INTG Intention to grant announced

Effective date: 20200729

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1333743

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018002953

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KELLER SCHNEIDER PATENT- UND MARKENANWAELTE AG, CH

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20210121

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210211

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210212

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210311

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210211

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210311

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018002953

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210309

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230320

Year of fee payment: 6

Ref country code: DK

Payment date: 20230323

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180309

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230331

Year of fee payment: 6

Ref country code: CH

Payment date: 20230402

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240325

Year of fee payment: 7

Ref country code: GB

Payment date: 20240322

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1333743

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230309