EP3533291B1 - Abwärtswandler für eine leuchtdiode - Google Patents

Abwärtswandler für eine leuchtdiode Download PDF

Info

Publication number
EP3533291B1
EP3533291B1 EP17780748.4A EP17780748A EP3533291B1 EP 3533291 B1 EP3533291 B1 EP 3533291B1 EP 17780748 A EP17780748 A EP 17780748A EP 3533291 B1 EP3533291 B1 EP 3533291B1
Authority
EP
European Patent Office
Prior art keywords
switch
down converter
conductive state
choke
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17780748.4A
Other languages
English (en)
French (fr)
Other versions
EP3533291A1 (de
Inventor
Lukas Saccavini
Frank Lochmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tridonic GmbH and Co KG
Original Assignee
Tridonic GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tridonic GmbH and Co KG filed Critical Tridonic GmbH and Co KG
Publication of EP3533291A1 publication Critical patent/EP3533291A1/de
Application granted granted Critical
Publication of EP3533291B1 publication Critical patent/EP3533291B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/375Switched mode power supply [SMPS] using buck topology
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light

Definitions

  • Various examples of the invention generally relate to a step-down converter for a light-emitting diode with a first switch and a second switch which are operated alternately and periodically in the conductive state by a controller.
  • Various examples of the invention relate in particular to a step-down converter in which the controller operates the first switch and the second switch as a function of a dimming signal.
  • lights typically have an operating device.
  • the operating device typically contains a buck converter, which is set up to reduce the amplitude of a DC supply voltage for operating the light-emitting diode.
  • the down converter can be set up to change the operation of the light-emitting diode as a function of a dimming signal, which indicates the desired brightness of the lamp.
  • step-down converters typically have a switch which is connected in series with a storage choke between a supply voltage connection and an output connection.
  • a choke current flows through the storage choke, which is fed by the supply voltage, and energy is stored in the storage choke.
  • a choke current flows which is fed by the energy previously stored in the storage choke.
  • a buck converter according to the preamble of claim 1 is from the document US 2015/0373805 A1 known.
  • discontinuous mode operating mode
  • continuous mode the inductor current does not drop to zero during the switch-off time.
  • borderline mode which corresponds to the transition between intermittent operation and continuous operation.
  • step-down converters it may be necessary to activate intermittent operation as a function of the dimming signal.
  • intermittent operation in particular, in connection with a low desired brightness of the luminaire, it may be necessary to activate the intermittent operation with a particularly long switch-off time. Then the brightness of the lamp is modulated with a comparatively low frequency.
  • the light-emitting diode is typically switched off in the meantime, i.e. the load current can drop to zero.
  • this type of operation of the luminaire is also referred to as pulse width modulation. This can have various negative effects on the surroundings of the luminaire: for example, interference with optical devices can occur.
  • step-down converters it may also be necessary to switch between intermittent operation and limit operation depending on the dimming signal.
  • this can mean that, depending on the dimming signal, there is a particularly strong jump in the frequency with which the switch is switched. This can require complex and expensive control technology.
  • a step-down converter for a light-emitting diode comprises a first switch and a second switch.
  • the second switch is connected in series with the first switch between a supply voltage connection and ground.
  • the buck converter also includes a Storage choke.
  • the storage choke is connected in series with the first switch between the supply voltage connection and an output connection.
  • the output connection is set up to output a load current to the light-emitting diode based on a choke current through the storage choke.
  • the buck converter also includes a controller. The controller is set up to operate the first switch and the second switch alternately and periodically in the conductive state as a function of a dimming signal.
  • a step-down converter with a first switch and a second switch according to the above example is also referred to as a synchronous converter.
  • the first switch is also referred to as a high-side switch because it is arranged at potential.
  • the second switch is sometimes also referred to as a low-side switch because it is arranged between potential and ground.
  • the first switch and / or the second switch can be implemented by a semiconductor switch element.
  • semiconductor switch elements include: a transistor; a bipolar transistor; a field effect transistor; a metal oxide field effect transistor; an insulated gate field effect transistor.
  • one side of the storage choke can be connected to a point which is arranged between the first switch and the second switch.
  • the second side of the storage choke can be connected to the output connection.
  • the storage choke can be implemented as a coil with several windings.
  • the storage choke can provide an inductance. Based on the law of induction, the voltage across the storage choke (choke voltage) can thus be equal to the inductance of the storage choke multiplied by the change in the choke current over time. In other words, the storage choke can counteract particularly rapid changes in the choke current
  • the output connection can, for example, comprise a smoothing capacitor which has the effect that the load current which is output to the light-emitting diode corresponds to a time average value of the inductor current.
  • the output connection could, for example, also have a plug contact, solder contact, clamping contact, etc. in order to establish an electrical connection to the light-emitting diode.
  • the control can be implemented, for example, as an application-specific integrated circuit (ASIC) or as a microcontroller.
  • ASIC application-specific integrated circuit
  • the controller could also be implemented as an FPGA or processor.
  • the control could also be implemented at least partially by an analog circuit.
  • the controller could receive the dimming signal via a communication interface, for example.
  • the brightness of the light-emitting diode can be controlled flexibly as a function of the dimming signal. In particular, it can be unnecessary to activate the intermittent operation when the brightness of the light-emitting diode is low. For example, it would be possible for continuous operation to be activated throughout - i.e. for all brightness levels of the dimming signal.
  • the controller it is possible for the controller to be set up to operate the second switch in the conductive state for an on time.
  • the on-time of the second switch is dimensioned in such a way that the polarity of the inductor current changes from positive to negative and the voltage at the midpoint of the two switches (midpoint voltage) swings around, i.e. for example from positive to negative polarity or in relation to another reference voltage, such as for example a bus voltage.
  • This can mean that the second switch is operated in the conductive state until the direction of the inductor current is reversed.
  • the inductor current could be fed with negative polarity by discharging a capacitor of the output connection.
  • the inductor current has a negative polarity at least temporarily, a particularly small time average value of the inductor current can be achieved.
  • a load current of small dimensions can in turn be output to the light-emitting diode.
  • low brightnesses can also be achieved for corresponding dimming signals for the light-emitting diode.
  • low brightness levels can be achieved without interrupting the operation of the light-emitting diode in accordance with the pulse-width modulation method.
  • a discontinuous mode can be avoided. Interfering influences on the environment - e.g. a flickering of the light-emitting diode - can be reduced or avoided.
  • the controller can be configured to implement a dead time during which the first switch and the second switch are operated in the non-conductive state. For example, a certain safety area can be provided by the dead time so that short circuits are avoided.
  • the first switch can first be switched to the non-conductive state before the second switch is switched to the conductive state ("break before make").
  • a corresponding dead time can be designed to be particularly short and, for example, be in the range from 100 ns to 1000 ns.
  • the dead time it can be desirable for the dead time to be lengthened or dimensioned to be comparatively long.
  • the dead time could not be less than 5% of the on time of the second switch, optionally not less than 10% of the on time of the second switch, further optionally not less than 25% of the on time of the second switch.
  • the controller it can be set up to switch the first switch in a time-synchronized manner with the reversal of the midpoint voltage from the non-conductive state to the conductive state (zero voltage switching, ZVS).
  • the first switch can optionally be switched without current (zero current switching).
  • Such a current-free switching of the first switch has the advantage of low power dissipation. As a result, the energy consumption of the buck converter can be reduced.
  • the controller could implement a control loop. It can thereby be achieved that the brightness of the light-emitting diode can be set particularly precisely and stably by generating the load current.
  • the controller could be set up to operate the first switch and the second switch in a regulated manner.
  • the corresponding control loop can take the time mean value of the inductor current into account as a controlled variable. Alternatively or additionally, it would also be possible to take the load current into account as a controlled variable.
  • the corresponding control loop could also take into account a reference variable that is determined based on the dimming signal. For example, it would be possible to use a look-up table to determine the reference variable based on the dimming signal in such a way that it can be compared directly with the load current as a controlled variable. In this way it can be possible to set the desired brightness in accordance with the dimming signal particularly precisely.
  • the controller could be set up to operate the first switch and the second switch in a regulated manner.
  • the corresponding control loop can have at least one Consider the peak value of the choke current as a manipulated variable.
  • the peak value of the inductor current with positive polarity could be taken into account as a manipulated variable.
  • the controller may be set up to operate the first switch and the second switch in a regulated manner, the peak value of the inductor current being taken into account as a manipulated variable in the case of positive polarity, but the peak value of the inductor current being kept constant in the case of negative polarity .
  • the voltage-free switching of the first switch can be implemented in a particularly simple manner.
  • a period of time between the switching of the second switch from the conductive state to the non-conductive state and the switching of the first switch from the non-conductive to the conductive state can also be kept constant at a fixed peak value of the inductor current with negative polarity.
  • the down converter can have a sensor circuit, for example.
  • the sensor circuit By means of the sensor circuit it can be possible to obtain a measurement signal which is indicative of the controlled variable.
  • the measurement signal could be indicative of the inductor current.
  • the measurement signal could be indicative of the time average value of the inductor current:
  • a low-pass filter could be provided in the sensor circuit, for example.
  • the measurement signal is indicative of the inductor current with a large bandwidth, which corresponds to the change in the inductor current due to the law of induction based on the inductance of the storage inductor.
  • the measurement signal it would also be possible for the measurement signal to be indicative of a choke voltage across the storage choke.
  • the sensor circuit can be set up, for example, to bring about a zero point offset between the measurement signal and the inductor current. It can thereby be achieved that the measurement signal has only positive or only negative polarity. A zero crossing of the measurement signal can - despite the zero crossing of the inductor current - be avoided.
  • a zero point offset can be implemented, for example, by providing a further current source that provides a reference current. Such a zero point offset could also be achieved, for example, by means of a suitable voltage divider. Since the measurement signal has only positive polarity or only negative polarity, a particularly simple regulation based on the measurement signal can be implemented.
  • an operating device for a luminaire comprises the down converter according to the various examples described herein.
  • Yet another example relates to the luminaire with the operating device which has the down converter.
  • the operating device could also have an AC / DC converter.
  • the AC / DC converter can be set up to convert an AC supply voltage into the DC supply voltage, which is then fed to the step-down converter.
  • a method in another example, includes receiving a dimming signal for a light emitting diode. The method further comprises, as a function of the dimming signal, the alternating and periodic operation of a first switch of a step-down converter and a second switch of the step-down converter in the conductive state. The second switch is connected in series with the first switch between a supply voltage connection of the step-down converter and ground. The method also includes outputting a load current to the light emitting diode via an output terminal of the buck converter. This takes place based on a choke current of a storage choke of the step-down converter. The storage choke is connected in series with the first switch between the supply voltage connection and the output connection.
  • effects can be achieved which are comparable to the effects which can be achieved for a buck converter according to various examples described herein.
  • the techniques described herein are particularly concerned with stepping down the DC supply voltage, i.e., down-converting.
  • the techniques described herein can be used in particular in connection with the operation of light-emitting diodes. In other examples, however, it would also be possible for the techniques described herein to be used in other areas of application. Examples concern, for example, charge storage devices, power supply units for electronic devices, or other forms of light sources, etc.
  • the supply voltage is converted depending on a dimming signal for the light-emitting diode.
  • the dimming signal can be indicative of a desired brightness of the light-emitting diode.
  • the conversion can output a certain load current to the light-emitting diode, wherein the load current can be greater (lower) for greater (lower) desired brightnesses.
  • This architecture of the buck converter uses a first switch which is arranged at potential and a second switch which is arranged between potential and ground.
  • a first switch which is arranged at potential
  • a second switch which is arranged between potential and ground.
  • particularly energy-efficient operation can be achieved in this way: in particular, the voltage drop across the diode can be avoided by using the second switch.
  • the techniques described here make it possible to implement different brightnesses for the light-emitting diode without using pulse width modulation. This can prevent the light-emitting diode from flickering at low levels of brightness.
  • the techniques described herein can enable simple regulation in which there is no need to switch between continuous operation or limit operation of the step-down converter and intermittent operation of the step-down converter.
  • FIG. 1 illustrates aspects relating to an operating device 100 for a light-emitting diode 110.
  • the operating device 100 could be part of a lamp.
  • the luminaire could furthermore comprise a housing, heat sink, an emergency battery, etc.
  • the operating device 100 comprises an AC / DC converter 104, which is set up to convert an AC supply voltage 151 into a DC supply voltage 153.
  • the AC supply voltage 151 is received via a network connection 152.
  • the AC supply voltage 151 could have an amplitude in the range from 100V to 300V.
  • the AC / DC converter 104 could have a rectifier bridge circuit (in FIG. 1 not shown).
  • the AC / DC converter 104 is optional: in other examples, the operating device 100 could receive a DC supply voltage directly.
  • the operating device 100 also includes a DC / DC converter 101.
  • the DC / DC converter 101 is set up to convert the DC supply voltage 153.
  • the DC / DC converter 101 is set up to convert the DC supply voltage downwards. Therefore, the DC / DC converter 101 will hereinafter be referred to as the buck converter 101.
  • the light-emitting diode 110 is operated based on the DC supply voltage. For this purpose, a load current can be provided by the step-down converter 101 and output to the light-emitting diode 110.
  • the down converter 101 is activated by a controller 102.
  • the controller 102 could, for example, implement a regulated operation of the step-down converter 101.
  • the operation of the light-emitting diode 110 can be stabilized.
  • the operation of the light-emitting diode 110 can be controlled by external specifications.
  • the controller 102 receives a dimming signal 161 via a communication interface 103.
  • the dimming signal 161 is received via a dedicated transmission medium 162, for example a DALI interface.
  • the dimming signal 161 it would also be possible for the dimming signal 161 to be received via the network connection 152 (in FIG. 1 not shown).
  • the dimming signal 161 could be modulated onto the AC supply voltage 151.
  • An example would be a phase cut modulation.
  • the controller 102 can control the operation of the light-emitting diode 110 as a function of the dimming signal 161 as an external specification or control variable. For example, the controller 102 control the down converter 101 in such a way that the load current assumes different values depending on the dimming signal 161.
  • the dimming signal can, for example, also be specified by a resistor connected to the operating device 100, the resistance value preferably specifying the nominal current of the light-emitting diode.
  • a potentiometer could also be connected as a variable resistor, which would also enable the nominal current to be changed or set.
  • FIG. 2A and 2B illustrate aspects relating to buck converter 101.
  • the buck converter 101 in greater detail.
  • FIG. 2A FIG. 10 is a circuit diagram of the buck converter 101.
  • the down converter 101 is set up to receive the DC supply voltage 153 via a supply voltage connection 211.
  • a field effect transistor 201 with a freewheeling diode 205 implements a switch 291.
  • a field effect transistor 202 with a freewheeling diode 206 implements a switch 292.
  • the switch 291 and the switch 292 are connected in series between the supply voltage terminal 211 and ground 215.
  • the down converter 101 also includes a storage inductor 212.
  • the storage inductor 212 and the switch 291 are connected in series between the supply voltage connection 211 and an output connection 219 to the light-emitting diode 110.
  • a choke current 701 through the storage choke 212 is also illustrated.
  • An orientation of the choke current 701 in the direction of the output connection 219 is hereinafter referred to as the positive polarity of the inductor current 701.
  • the output connection 219 has a smoothing capacitor 213 with a resistor 214. Therefore, the load current 702, which is provided based on the inductor current 701 of the light-emitting diode 110, corresponds to a time average value of the inductor current 701.
  • a control signal 601 is applied to a control contact of the field effect transistor 201 of the switch 291.
  • the control signal 601 it is possible to operate the switch 291 either in the conductive state or in the non-conductive state. It is also possible to switch the switch 291 from the conductive state to the non-conductive state and to switch it from the non-conductive state to the conductive state.
  • the control signal 601 can be generated by the controller 102. As a result, the controller 102 can operate the switch 291 either in the conductive state or in the non-conductive state.
  • a control signal 602 is applied to a control contact of the field effect transistor 202 and thus switch 292.
  • the control signal 602 it is possible to operate the switch 292 either in the conductive state or in the non-conductive state. It is also possible to switch the switch 292 from the conductive state to the non-conductive state and to switch it from the non-conductive state to the conductive state.
  • the control signal 602 can be generated by the controller 102. As a result, the controller 102 can operate the switch 292 either in the conductive state or in the non-conductive state.
  • the controller 102 is set up to operate the switch 291 and the switch 292 alternately and periodically in the conductive state as a function of the dimming signal 161.
  • Figure 2B shows an alternative implementation of a buck converter.
  • the light-emitting diode 110 with the parallel capacitor 213 is not connected to the ground point 215, but to the supply voltage connection 211.
  • the storage choke 212 is magnetized during the on-time of the switch 292.
  • the time phase of the positive rise in the inductor current 701 is the on time of the switch 292.
  • the freewheeling phase, i.e. the phase of demagnetization of the storage inductor 212, takes place via the switch 291.
  • the time phase of the negative increase in the inductor current 701 is the on time of the switch 291
  • FIG. 3 illustrates aspects relating to operating the switches 291, 292 alternately and periodically in the conductive state.
  • FIG. 3 schematically illustrates the timing of control signal 601 and control signal 602.
  • FIG. 3 further schematically illustrates the resulting time profile of the inductor current 701.
  • FIG. 3 it can be seen that the switch 291 is operated in the conductive state during repeated on times 651.
  • the switch 291 is operated in the non-conductive state during repeated off times 652.
  • the switch 292 is accordingly operated in the conductive state during repeated on times 661.
  • the switch 292 is operated in the non-conductive state during repeated off times 662.
  • the period 670 is shown.
  • FIG. 3 it can also be seen that the switch 292 is always in the conductive state when the switch 291 is in the non-conductive state.
  • the switch 291 is always in the conductive state when the switch 292 is in the non-conductive state. Accordingly, the switches 291, 292 are alternately operated in the conductive state.
  • the on-time 661 of the switch 292 is dimensioned such that the polarity of the inductor current 701 changes from positive to negative at time 755.
  • the inductor current 701 With an at least temporarily negative polarity, it can be achieved that the time average value 712 (horizontal dashed line in FIG. 3 ) of the inductor current 701 - and thus the load current 702 - assumes particularly low values close to zero. As a result, low brightnesses of the light-emitting diode 110 can be achieved.
  • FIG. 4th illustrates aspects relating to operating the switches 291, 292 alternately and periodically in the conductive state.
  • the example of FIG. 4th basically corresponds to the example of FIG. 3 .
  • the FIG. 4th a comparatively long dead time 670 is provided.
  • the dead time 670 is approximately 25% of the on time 661 and approximately 20% of the off time 652.
  • both the switch 291 and the switch 292 are operated in the non-conductive state. Therefore, the switch 292 is switched from the conductive state to the non-conductive state at a different value of the inductor current 701 than the switch 291, which is switched from the non-conductive state to the conductive state.
  • the switch 291 is time-synchronized with the reversal of the midpoint voltage of both switches 291 and 292 from the non-conductive state switched to the conductive state.
  • the switch 291 can be switched from the non-conductive state to the conductive state in a time-synchronized manner with a zero crossing 753 of the inductor current 701.
  • a dead time in FIG. 4th not shown. This dead time between switching off the switch 291 and switching on the switch 292 can be dimensioned in order to avoid a short circuit through both switches 291 and 292.
  • switches 291, 292 - for example, according to the implementations of FIG. 3 and 4th - can be regulated in some examples.
  • the time mean value 712 of the inductor current 701 could be taken into account as a controlled variable, since this can be directly proportional to the load current 702.
  • the dimming signal 161 or a variable derived therefrom could be taken into account as a reference variable. A deviation between the reference variable and the controlled variable can then be minimized by suitable operation 291, 292.
  • manipulated variables could be taken into account in a corresponding regulation.
  • the duty cycle for the operation of the switch 291 in the conductive state and / or for the operation of the switch 292 in the conductive state could be taken into account as a manipulated variable.
  • the peak value 751 of the inductor current 701 in the case of positive polarity and / or the peak value 752 of the inductor current 701 in the case of negative polarity could be taken into account as a manipulated variable.
  • FIGs. 5A and 5B illustrate aspects relating to buck converter 101.
  • the examples of FIGs. 5A and 5B basically correspond to the example of FIG. 2A .
  • a sensor circuit 301 and a sensor circuit 311 are also shown.
  • the sensor circuit 301 is set up to output a measurement signal at the connection 302, which is indicative of a current value of the inductor current 701.
  • the inductor current 701 is detected by means of the resistor 214.
  • the sensor circuit 301 is also set up to output a measurement signal at the connection 303 which is indicative of the time average value 712 of the inductor current 701: a low-pass filter is provided for this purpose.
  • the sensor circuit 301 it would be possible for the sensor circuit 301 to be set up to provide a zero point offset between the measurement signal at connection 302 and the choke current 701). It can thereby be achieved that the measurement signal does not have alternating polarities - corresponding to the inductor current 701: this can simplify the determination of the peak values 751, 752 and / or an implementation of the control loop.
  • the zero point offset can be implemented, for example, by means of a power source that can preferably be integrated into the controller. This example is in the Figure 5A shown.
  • the zero point offset can be implemented by means of a pull-up resistor (sometimes also referred to as a pull-up resistor), which is preferably connected to a supply voltage such as the supply voltage Vcc of the operating device.
  • a pull-up resistor sometimes also referred to as a pull-up resistor
  • the sensor circuit 311 comprises a coil which is inductively coupled to the storage choke 212.
  • the sensor circuit 311 is set up to output a measurement signal at the connection 312, which is indicative of the throttle voltage and thus also of the voltage at the midpoint of the two switches 291 and 292.
  • the midpoint voltage of the two switches 291 and 292 can also be measured using a voltage divider which taps off the voltage at the midpoint of the two switches 291 and 292.
  • the voltage at the midpoint of the two switches 291 and 292 swings to the voltage of the supply voltage connection 211.
  • the midpoint voltage of the two switches 291 and 292 can swing around against the voltage at the ground point 215.
  • FIG. 6th Figure 3 is a flow diagram of a method according to various examples.
  • a dimming signal is received.
  • the dimming signal can be indicative of a desired brightness of a light-emitting diode of a lamp.
  • the dimming signal can be received in analog form or digital form, for example.
  • the dimming signal could be received by phase-cutting modulation of an AC supply voltage.
  • a first switch and a second switch of a step-down converter are then operated alternately and periodically in the conductive state. It would optionally be possible to provide dead times during which both the first switch and the second switch are operated in the non-conductive state. For example, it would be possible that current-free switching of the first switch and / or current-free switching of the second switch is achieved on the basis of a corresponding dimensioning of the dead times.
  • a choke current through a storage choke of the step-down converter can be modified.
  • the storage choke can be alternately charged and discharged by switching the switch.
  • a load current is then output to the light-emitting diode in block 1003.
  • the load current can correspond, for example, to an average value of the inductor current.
  • the load current is fed alternately by the supply voltage and the storage choke.
  • FIG. 7th Figure 3 is a flow diagram of a method according to various examples.
  • FIG. 7th illustrates details relating to the regulated operation of the first switch and the second switch. For example, the procedure according to FIG. 7th executed as part of block 1002.
  • a reference variable is determined based on the dimming signal.
  • a time average value of the inductor current is determined as a controlled variable.
  • the load current could also be taken into account as a controlled variable.
  • the aim of the control can be to minimize deviations between the controlled variable and the reference variable.
  • One or more manipulated variables can be changed for this purpose.
  • the peak value of the inductor current could be changed as a manipulated variable with positive polarity.
  • the peak value of the inductor current could also be changed as a manipulated variable in the case of negative polarity. This is done in block 1013.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Dc-Dc Converters (AREA)

Description

    TECHNISCHES GEBIET
  • Verschiedene Beispiele der Erfindung betreffen allgemein einen Abwärtswandler für eine Leuchtdiode mit einem ersten Schalter und einem zweiten Schalter, die von einer Steuerung alternierend und periodisch im leitenden Zustand betrieben werden. Verschiedene Beispiele der Erfindung betreffen insbesondere einen Abwärtswandler, bei welchem die Steuerung den ersten Schalter und den zweiten Schalter in Abhängigkeit von einem Dimmsignal betreibt.
  • HINTERGRUND
  • Zum Betreiben von Leuchtdioden weisen Leuchten typischerweise ein Betriebsgerät auf. Das Betriebsgerät beinhaltet typischerweise einen Abwärtswandler (engl. buck converter), welcher eingerichtet ist, um eine DC-Versorgungsspannung in der Amplitude zum Betreiben der Leuchtdiode herabzusetzen. Darüber hinaus kann der Abwärtswandler eingerichtet sein, um den Betrieb der Leuchtdiode in Abhängigkeit von einem Dimmsignal, welches die gewünschte Helligkeit der Leuchte indiziert, zu verändern.
  • Herkömmliche Abwärtswandler weisen typischerweise einen Schalter auf, der zwischen einem Versorgungsspannungsanschluss und einem Ausgangsanschluss in Serie mit einer Speicherdrossel geschaltet ist. Während einer An-Zeit des Schalters - d.h. während welcher der Schalter im leitenden Zustand betrieben wird -, fließt ein Drosselstrom durch die Speicherdrossel, der durch die Versorgungsspannung gespeist wird, und Energie wird in der Speicherdrossel gespeichert. Während einer Aus-Zeit des Schalters - während welcher der Schalter im nicht-leitenden Zustand betrieben wird -, fließt ein Drosselstrom, der durch die zuvor in der Speicherdrossel gespeicherten Energie gespeist wird.
  • Ein Abwärtswandler nach dem Oberbegriff des Anspruches 1 ist aus der Druckschrift US 2015/0373805 A1 bekannt. Auch die Druckschriften WO 2009/138908 A1 und WO 2013/028632A1 offenbaren ähnliche Abwärtswandler.
  • Weitere Abwärtswandler sind in den Druckschriften JP 2014-127376 A , US 2008/0224625 A1 und DE 10 2009 000602 A1 offenbart.
  • Dabei sind grundsätzlich unterschiedliche Betriebsarten des Abwärtswandlers bekannt. Beispielsweise kann in einer als lückender Betrieb (engl. discontinuous mode) bezeichneten Betriebsart der Drosselstrom während der Aus-Zeit des Schalters bis auf null absinken. Bei einer als kontinuierlicher Betrieb (engl. continuous mode) bezeichneten Betriebsart sinkt der Drosselstrom während der Aus-Zeit des Schalters nicht bis auf null ab. Dazwischen existiert noch der sogenannte Grenzbetrieb (engl. borderline mode), der den Übergang zwischen dem lückenden Betrieb und dem kontinuierlichen Betrieb entspricht.
  • Bei Referenzimplementierungen von Abwärtswandlern kann es erforderlich sein, in Abhängigkeit von dem Dimmsignal den lückenden Betrieb zu aktivieren. Insbesondere kann es im Zusammenhang mit einer geringen gewünschten Helligkeit der Leuchte notwendig sein, den lückenden Betrieb mit einer besonders langen Aus-Zeit des Schalters zu aktivieren. Dann wird die Helligkeit der Leuchte mit einer vergleichsweise geringen Frequenz moduliert. Die Leuchtdiode wird typischerweise zwischenzeitlich ausgeschaltet, d.h. der Laststrom kann bis auf null sinken. Manchmal wird ein solcher Betrieb der Leuchte auch als Pulsbreitenmodulation bezeichnet. Dies kann diverse negative Effekte auf das Umfeld der Leuchte haben: beispielsweise können Interferenzen mit optischen Geräten auftreten.
  • Bei Referenzimplementierungen von Abwärtswandlern kann es weiterhin erforderlich sein, in Abhängigkeit von dem Dimmsignal zwischen dem lückenden Betrieb und dem Grenzbetrieb zu wechseln. Insbesondere kann dies bedeuten, dass in Abhängigkeit von dem Dimmsignal ein besonders starker Sprung in der Frequenz auftritt, mit welcher der Schalter geschaltet wird. Dies kann eine komplizierte und aufwendige Regelungstechnik erfordern.
  • ZUSAMMENFASSUNG DER ERFINDUNG
  • Deshalb besteht ein Bedarf für verbesserte Abwärtswandlern und Techniken zum Abwärtswandeln einer Versorgungsspannung für eine Leuchtdiode. Insbesondere besteht ein Bedarf für solche Techniken, die zumindest einige der oben genannten Nachteile und Einschränkungen beheben.
  • Diese Aufgabe wird von den Merkmalen der unabhängigen Patentansprüche gelöst. Die Merkmale der abhängigen Patentansprüche definieren Ausführungsformen.
  • Erfindungsgemäß umfasst ein Abwärtswandler für eine Leuchtdiode einen ersten Schalter und einen zweiten Schalter. Der zweite Schalter ist zwischen einem Versorgungsspannungsanschluss und Masse in Serie mit dem ersten Schalter geschaltet. Der Abwärtswandler umfasst auch eine Speicherdrossel. Die Speicherdrossel ist zwischen dem Versorgungsspannungsanschluss und einem Ausgangsanschluss mit dem ersten Schalter in Serie geschaltet. Der Ausgangsanschluss ist eingerichtet, um basierend auf einem Drosselstrom durch die Speicherdrossel einen Laststrom an die Leuchtdiode auszugeben. Der Abwärtswandler umfasst auch eine Steuerung. Die Steuerung ist eingerichtet, um den ersten Schalter und den zweiten Schalter in Abhängigkeit von einem Dimmsignal alternierend und periodisch im leitenden Zustand zu betreiben.
  • In manchen Beispielen wird ein Abwärtswandler mit einem ersten Schalter und einem zweiten Schalter gemäß dem obigen Beispiel auch als Synchronwandler bezeichnet.
  • Manchmal wird der erste Schalter auch als high-side Schalter bezeichnet, weil er auf Potenzial angeordnet ist. Entsprechend wird der zweite Schalter manchmal auch als low-side Schalter bezeichnet, weil er zwischen Potenzial und Masse angeordnet ist. Beispielsweise wäre es möglich, dass der erste Schalter und/oder der zweite Schalter durch ein Halbleiter-Schalterelement implementiert wird. Beispiele für solche Halbleiter-Schalterelemente umfassen: ein Transistor; ein Bipolartransistor; ein Feldeffekt-Transistor; ein Metall-Oxid-Feldeffekt-Transistor; ein Isolierschicht-Feldeffekttransistor.
  • Beispielsweise kann eine Seite der Speicherdrossel mit einem Punkt verbunden sein, der zwischen dem ersten Schalter und dem zweiten Schalter angeordnet ist. Die zweite Seite der Speicherdrossel kann mit dem Ausgangsanschluss verbunden sein. Die Speicherdrossel kann als Spule mit mehreren Wicklungen implementiert sein. Die Speicherdrossel kann eine Induktivität bereitstellen. Basierend auf dem Induktionsgesetz kann damit die Spannung über die Speicherdrossel (Drosselspannung) gleich der Induktivität der Speicherdrossel multipliziert mit der zeitlichen Änderung des Drosselstroms sein. In anderen Worten kann die Speicherdrossel besonders schnellen Änderungen des Drosselstroms entgegenwirken
  • Der Ausgangsanschluss kann beispielsweise einen Glättungskondensator umfassen, der bewirkt, dass der Laststrom, welcher an die Leuchtdiode ausgegeben wird, einem Zeitmittelwert des Drosselstroms entspricht. Dadurch kann der Drosselstrom geglättet werden und es kann eine gleichmäßigere Helligkeit der Leuchtdiode erreicht werden. Der Ausgangsanschluss könnte beispielsweise weiterhin einen Steckkontakt, Lötkontakt, Klemmkontakt etc. aufweisen, um eine elektrische Verbindung der Leuchtdiode herzustellen.
  • Die Steuerung kann beispielsweise als applikationsspezifischer integrierter Schaltkreis (ASIC) oder als Mikrocontroller implementiert sein. Die Steuerung könnte auch als FPGA oder Prozessor implementiert sein. Die Steuerung könnte auch zumindest teilweise durch eine Analogschaltung implementiert sein. Die Steuerung könnte das Dimmsignal beispielsweise über eine Kommunikationsschnittstelle empfangen.
  • Durch die Verwendung des ersten Schalters und des zweiten Schalters zum Erzeugen des Laststroms, kann die Helligkeit der Leuchtdiode flexibel in Abhängigkeit von dem Dimmsignal gesteuert werden. Insbesondere kann es entbehrlich sein, den lückenden Betrieb bei geringen Helligkeiten der Leuchtdiode zu aktivieren. Beispielsweise wäre es möglich, dass ein kontinuierlicher Betrieb durchgängig - d.h. für alle Helligkeitslevel des Dimmsignals - aktiviert wird.
  • Zum Beispiel ist es möglich, dass die Steuerung eingerichtet ist, um den zweiten Schalter für eine An-Zeit im leitenden Zustand zu betreiben. Die An-Zeit des zweiten Schalters ist dabei derart dimensioniert, dass die Polarität des Drosselstroms von positiv auf negativ wechselt und die Spannung am Mittelpunkt der beiden Schalter (Mittelpunktspannung) umschwingt, d.h. z.B. von positive auf negative Polarität oder in Bezug auf eine andere Referenzspannung, wie beispielsweise eine Busspannung. Dies kann bedeuten, dass der zweite Schalter so lange im leitenden Zustand betrieben wird, bis sich die Richtung des Drosselstroms umkehrt. Beispielsweise könnte der Drosselstrom mit negativer Polarität durch Entladung eines Kondensators des Ausgangsanschlusses gespeist werden.
  • Indem der Drosselstrom zumindest zeitweise eine negative Polarität aufweist, kann ein besonders klein dimensionierter Zeitmittelwert des Drosselstroms erzielt werden. Dadurch kann wiederum ein klein dimensionierter Laststrom an die Leuchtdiode ausgegeben werden. Dadurch können auch geringe Helligkeiten für entsprechende Dimmsignale für die Leuchtdiode erzielt werden. Insbesondere können geringe Helligkeiten ohne Unterbrechung des Betriebs der Leuchtdiode gemäß dem Pulsbreiten-Modulationsverfahren erzielt werden. Ein diskontinuierlicher Modus kann vermieden werden. Störeinflüsse auf die Umgebung - d.h. beispielsweise ein Flackern der Leuchtdiode - können reduziert bzw. vermieden werden.
  • In manchen Beispielen kann die Steuerung eingerichtet sein, um eine Totzeit zu implementieren, während welcher der erste Schalter und der zweite Schalter im nicht-leitenden Zustand betrieben werden. Beispielsweise kann durch die Totzeit ein gewisser Sicherheitsbereich bereitgestellt werden, so das Kurzschlüsse vermieden werden. Beispielsweise kann zunächst der erste Schalter in den nicht-leitenden Zustand geschaltet werden, bevor der zweite Schalter in den leitenden Zustand geschaltet wird (engl. "break before make"). Eine entsprechende Totzeit kann besonders kurz dimensioniert werden und zum Beispiel im Bereich von 100 ns bis 1000 ns liegen.
  • In weiteren Beispielen kann es erstrebenswert sein, dass die Totzeit verlängert wird bzw. vergleichsweise lang dimensioniert wird. Beispielsweise könnte die Totzeit nicht kleiner als 5 % der An-Zeit des zweiten Schalters sein, optional nicht kleiner als 10 % der An-Zeit des zweiten Schalters, weiter optional nicht kleiner als 25 % der An-Zeit des zweiten Schalters. Derart kann erreicht werden, dass nach Schalten des zweiten Schalters in den nicht-leitenden Zustand - und dem fortwährenden Betreiben des ersten Schalters im nicht-leitenden Zustand - der Drosselstrom abnimmt und schließlich verschwindet. Dann ist es möglich, dass die Steuerung eingerichtet ist, um den ersten Schalter zeitsynchronisiert mit dem Umschwung der Mittelpunktspannung vom nicht-leitenden Zustand in den leitenden Zustand zu schalten (engl. zero voltage switching, ZVS). Derart kann optional ein stromfreies Schalten des ersten Schalters erfolgen (engl. zero current switching). Ein solches stromfreies Schalten des ersten Schalters weist den Vorteil einer geringen Verlustleistung auf. Dadurch kann der Energieverbrauch des Abwärtswandlers reduziert werden.
  • Es wäre möglich, dass ein geregelter Betrieb des ersten Schalters und des zweiten Schalters durch die Steuerung implementiert wird. Dies bedeutet, dass die Steuerung einen Regelkreis implementieren könnte. Dadurch kann erreicht werden, dass die Helligkeit der Leuchtdiode durch Erzeugen des Laststroms besonders genau und stabil eingestellt werden kann.
  • Zum Beispiel könnte die Steuerung eingerichtet sein, um den ersten Schalter und den zweiten Schalter geregelt zu betreiben. Dabei kann der entsprechende Regelkreis den Zeitmittelwert des Drosselstroms als Regelgröße berücksichtigen. Alternativ oder zusätzlich wäre es auch möglich, den Laststrom als Regelgröße zu berücksichtigen. Der entsprechende Regelkreis könnte auch eine Führungsgröße berücksichtigen, die basierend auf dem Dimmsignal bestimmt wird. Beispielsweise wäre es möglich, mittels einer Nachschlagetabelle die Führungsgröße basierend auf dem Dimmsignal derart zu bestimmen, dass diese unmittelbar mit dem Laststrom als Regelgröße verglichen werden kann. Derart kann es möglich sein, besonders genau die gewünschte Helligkeit gemäß dem Dimmsignal einzustellen.
  • Zum Beispiel könnte die Steuerung eingerichtet sein, um den ersten Schalter und den zweiten Schalter geregelt zu betreiben. Dabei kann der entsprechende Regelkreis zumindest einen Spitzenwert des Drosselstroms als Stellgröße berücksichtigen. Beispielsweise könnte der Spitzenwert des Drosselstroms bei positiver Polarität als Stellgröße berücksichtigt werden. Alternativ oder zusätzlich wäre es auch möglich, den Spitzenwert des Drosselstroms bei negativer Polarität als Stellgröße zu berücksichtigen, wodurch der Betrieb in einem besonders guten Betriebspunkt erreicht werden kann. Alternativ oder zusätzlich wäre es zum Beispiel möglich, den Tastgrad der An-Zeit des ersten Schalters und / oder des zweiten Schalters als Stellgröße zu berücksichtigen. Alternativ oder zusätzlich wäre es zum Beispiel auch möglich, die An-Zeit des ersten Schalters und/oder des zweiten Schalters als Stellgröße zu berücksichtigen. Alternativ oder zusätzlich wäre es zum Beispiel auch möglich, die Aus-Zeit des ersten Schalters und/oder des zweiten Schalters als Stellgröße zu berücksichtigen.
  • Manchmal kann es erstrebenswert sein, den Spitzenwert des Drosselstroms bei negativer Polarität konstant zu halten. Damit kann ein stromfreies Schalten des ersten Schalters erzielt werden - und gleichzeitig die Totzeit vergleichsweise gering und fix dimensioniert werden.
  • Damit kann erreicht werden, dass die Spannung am Mittelpunkt der beiden Schalter umschwingen kann und ein spannungsfreies Einschalten des ersten Schalters gewährleistet ist.
  • In manchen Beispielen kann es erstrebenswert sein, dass die Steuerung eingerichtet ist, um den ersten Schalter und den zweiten Schalter geregelt zu betreiben, wobei der Spitzenwert des Drosselstroms bei positiver Polarität als Stellgröße berücksichtigt wird, jedoch der Spitzenwert des Drosselstroms bei negativer Polarität konstant gehalten wird. Bei einem festen Spitzenwert des Drosselstroms bei negativer Polarität kann erreicht werden, dass das spannungsfreie Schalten des ersten Schalters besonders einfach implementiert werden kann. Insbesondere kann eine Zeitdauer zwischen den Schalten des zweiten Schalters vom leitenden Zustand in den nicht-leitenden Zustand und dem Schalten des ersten Schalters vom nicht-leitenden in den leitenden Zustand bei einem festen Spitzenwert des Drosselstroms bei negativer Polarität auch konstant gehalten werden.
  • Für einen geregelten Betrieb kann der Abwärtswandler beispielsweise eine Sensorschaltung aufweisen. Mittels der Sensorschaltung kann es möglich sein, ein Messsignal zu erhalten, welches indikativ für die Regelgröße ist. Beispielsweise könnte das Messsignal indikativ für den Drosselstrom sein. Beispielsweise könnte das Messsignal indikativ für den Zeitmittelwert des Drosselstroms sein: Dazu könnte beispielsweise ein Tiefpassfilter in der Sensorschaltung vorgesehen sein. Es wäre aber alternativ oder zusätzlich auch möglich, dass das Messsignal indikativ für den Drosselstrom mit einer großen Bandbreite, die der Änderung des Drosselstroms aufgrund des Induktionsgesetzes basierend auf der Induktivität der Speicherdrossel entspricht, ist. Alternativ oder zusätzlich wäre es darüber hinaus möglich, dass das Messsignal indikativ für eine Drosselspannung über die Speicherdrossel ist. Die Sensorschaltung kann beispielsweise eingerichtet sein, um einen Nullpunktversatz zwischen dem Messsignal und dem Drosselstrom zu bewirken. Dadurch kann erreicht werden, dass das Messsignal lediglich positive oder lediglich negative Polarität aufweist. Ein Nulldurchgang des Messsignals kann - trotz des Nulldurchgangs des Drosselstroms - vermieden werden. Ein solcher Nullpunktversatz kann zum Beispiel durch das Vorsehen einer weiteren Stromquelle, die einen Referenzstrom bereitstellt, implementiert werden. Ein solcher Nullpunktversatz könnte zum Beispiel auch durch einen geeigneten Spannungsteiler erreicht werden. Indem das Messsignal nur positive Polarität oder nur negative Polarität aufweist, kann eine besonders einfache Regelung auf Grundlage des Messsignals implementiert werden.
  • In einem weiteren Beispiel umfasst ein Betriebsgerät für eine Leuchte den Abwärtswandler gemäß der verschiedenen hierin beschriebenen Beispiele. Noch ein weiteres Beispiel betrifft die Leuchte mit dem Betriebsgerät, welches den Abwärtswandler aufweist.
  • Zum Beispiel könnte das Betriebsgerät weiterhin einen AC/DC-Wandler aufweisen. Der AC/DC-Wandler kann eingerichtet sein, um eine AC-Versorgungsspannung in die DC-Versorgungsspannung zu wandeln, die anschließend dem Abwärtswandlern zugeführt wird. In anderen Beispielen wäre es aber auch möglich, dass das Betriebsgerät direkt die DC-Versorgungsspannung empfängt.
  • In einem weiteren Beispiel umfasst ein Verfahren das Empfangen eines Dimmsignals für eine Leuchtdiode. Das Verfahren umfasst weiterhin, in Abhängigkeit von dem Dimmsignal, das alternierende und periodische Betreiben eines ersten Schalters eines Abwärtswandlers und eines zweiten Schalters des Abwärtswandlers im leitenden Zustand. Dabei ist der zweite Schalter zwischen einem Versorgungsspannungsanschluss des Abwärtswandlers und Masse in Serie mit dem ersten Schalter geschaltet. Das Verfahren umfasst auch das Ausgeben eines Laststroms an die Leuchtdiode über einen Ausgangsanschluss des Abwärtswandlers. Dies erfolgt basierend auf einem Drosselstrom einer Speicherdrossel des Abwärtswandlers. Die Speicherdrossel ist zwischen dem Versorgungsspannungsanschluss und dem Ausgangsanschluss mit dem ersten Schalter in Serie geschaltet.
  • Für ein solches Verfahren können Effekte erzielt werden, die vergleichbar sind mit den Effekten, die für einen Abwärtswandler gemäß verschiedene hierin beschriebener Beispiele erzielt werden können.
  • KURZE BESCHREIBUNG DER FIGUREN
    • FIG. 1 illustriert schematisch ein Betriebsgerät einer Leuchte mit einem Abwärtswandler gemäß verschiedener Ausführungsformen.
    • FIGs. 2A und 2B illustrieren schematisch den Abwärtswandler mit einem ersten Schalter und einem zweiten Schalter und einer Speicherdrossel gemäß verschiedener Ausführungsformen.
    • FIG. 3 illustriert schematisch das Betreiben des ersten Schalters und des zweiten Schalters alternierend und periodisch im leitenden Zustand gemäß verschiedener Ausführungsformen.
    • FIG. 4 illustriert schematisch das Betreiben des ersten Schalters und des zweiten Schalters alternierend und periodisch im leitenden Zustand gemäß verschiedener Ausführungsformen, wobei in dem Beispiel der FIG. 4 eine Totzeit vorgesehen ist.
    • FIGs. 5A und 5B illustrieren schematisch den Abwärtswandlern mit einem ersten Schalter und einem zweiten Schalter und einer Speicherdrossel und einer Sensorschaltung gemäß verschiedener Ausführungsformen.
    • FIG. 6 ist ein Flussdiagramm eines Verfahrens gemäß verschiedener Ausführungsformen.
    • FIG. 7 ist ein Flussdiagramm eines Verfahrens gemäß verschiedener Ausführungsformen.
    DETAILLIERTE BESCHREIBUNG VON AUSFÜHRUNGSFORMEN
  • Nachfolgend wird die vorliegende Erfindung anhand bevorzugter Ausführungsformen unter Bezugnahme auf die Zeichnungen näher erläutert. In den Figuren bezeichnen gleiche Bezugszeichen gleiche oder ähnliche Elemente. Die Figuren sind schematische Repräsentationen verschiedener Ausführungsformen der Erfindung. In den Figuren dargestellte Elemente sind nicht notwendigerweise maßstabsgetreu dargestellt. Vielmehr sind die verschiedenen in den Figuren dargestellten Elemente derart wiedergegeben, dass ihre Funktion und genereller Zweck dem Fachmann verständlich wird. Funktionale Einheiten können als Hardware, Software oder eine Kombination aus Hardware und Software implementiert werden.
  • Nachfolgend werden Techniken in Bezug auf das Wandeln einer DC-Versorgungsspannung beschrieben. Die hierin beschriebenen Techniken betreffen insbesondere das Herabsetzen der DC-Versorgungsspannung, d.h. das Abwärtswandeln. Die hierin beschriebenen Techniken können insbesondere im Zusammenhang mit dem Betreiben von Leuchtdioden eingesetzt werden. In anderen Beispielen wäre es aber auch möglich, dass die hierin beschriebenen Techniken in anderen Anwendungsgebieten eingesetzt werden. Beispiele betreffen zum Beispiel Ladungsspeicher, Netzgeräte für elektronische Geräte, oder andere Formen von Leuchtmitteln, etc.
  • In verschiedenen Beispielen wird die Versorgungsspannung in Abhängigkeit eines Dimmsignal für die Leuchtdiode gewandelt. Das Dimmsignal kann indikativ für eine gewünschte Helligkeit der Leuchtdiode sein. Das Wandeln kann dabei einen bestimmten Laststrom an die Leuchtdiode ausgeben, wobei der Laststrom größer (geringer) für größere (geringere) gewünschte Helligkeiten sein kann.
  • Die verschiedenen hierin beschriebenen Techniken werden insbesondere in Bezug auf eine bestimmte Architektur des Abwärtswandlers beschrieben: Dieser Architektur des Abwärtswandlers verwendet einen ersten Schalter, der auf Potenzial angeordnet ist, sowie einen zweiten Schalter, der zwischen Potenzial und Masse angeordnet ist. Im Vergleich zu anderen Architekturen von Abwärtswandlern, die anstatt des zweiten Schalters lediglich eine Diode einsetzen, kann derart ein besonders energieeffizienter Betrieb erreicht werden: insbesondere kann der Spannungsabfall über die Diode durch das Verwenden des zweiten Schalters vermieden werden.
  • Die hierin beschriebenen Techniken ermöglichen es, unterschiedliche Helligkeiten für die Leuchtdiode ohne Verwendung einer Pulsbreitenmodulation umzusetzen. Dadurch kann das vermieden werden, dass die Leuchtdiode bei geringen Helligkeiten flackert. Außerdem können die hierin beschriebenen Techniken eine einfache Regelung ermöglichen, bei der nicht zwischen einem kontinuierlichen Betrieb bzw. einem Grenzbetrieb des Abwärtswandlers und einem lückenden Betrieb des Abwärtswandlers umgeschaltet werden muss.
  • FIG. 1 illustriert Aspekte in Bezug auf ein Betriebsgerät 100 für eine Leuchtdiode 110. Beispielsweise könnte das Betriebsgerät 100 Teil einer Leuchte sein. Die Leuchte könnte weiterhin ein Gehäuse, Kühlkörper, eine Notstrombatterie, etc. umfassen.
  • Das Betriebsgerät 100 umfasst einen AC/DC-Wandler 104, der eingerichtet ist, um eine AC-Versorgungsspannung 151 in eine DC-Versorgungsspannung 153 zu wandeln. Die AC-Versorgungsspannung 151 wird über einen Netzanschluss 152 empfangen. Beispielsweise könnte die AC-Versorgungsspannung 151 eine Amplitude im Bereich von 100 V bis 300 V aufweisen. Beispielsweise könnte der AC/DC-Wandler 104 eine Gleichrichter-Brückenschaltung aufweisen (in FIG. 1 nicht dargestellt). Der AC/DC-Wandler 104 ist optional: in anderen Beispielen könnte das Betriebsgerät 100 direkt eine DC-Versorgungsspannung empfangen.
  • Das Betriebsgerät 100 umfasst auch einen DC/DC-Wandler 101. Der DC/DC-Wandler 101 ist eingerichtet, um die DC-Versorgungsspannung 153 zu wandeln. Insbesondere ist der DC/DC-Wandler 101 eingerichtet, um die DC-Versorgungsspannung abwärts zu wandeln. Deshalb wird auf den DC/DC-Wandler 101 nachfolgend als Abwärtswandlern 101 Bezug genommen. Basierend auf der DC-Versorgungsspannung wird die Leuchtdiode 110 betrieben. Dazu kann ein Laststrom vom Abwärtswandler 101 bereitgestellt werden und an die Leuchtdiode 110 ausgegeben werden.
  • Der Abwärtswandler 101 wird durch eine Steuerung 102 angesteuert. Die Steuerung 102 könnte beispielsweise einen geregelten Betrieb des Abwärtswandlern 101 implementieren. Dadurch kann der Betrieb der Leuchtdiode 110 stabilisiert werden. Außerdem kann der Betrieb der Leuchtdiode 110 durch externe Vorgaben gesteuert werden.
  • In dem Beispiel der FIG. 1 empfängt die Steuerung 102 ein Dimmsignal 161 über eine Kommunikationsschnittstelle 103. In dem Beispiel der FIG. 1 wird das Dimmsignal 161 über ein dediziertes Übertragungsmedium 162 empfangen, z.B. eine DALI-Schnittstelle. In anderen Beispielen wäre es jedoch auch möglich, dass das Dimmsignal 161 über den Netzanschluss 152 empfangen wird (in FIG. 1 nicht dargestellt). Beispielsweise könnte das Dimmsignal 161 auf die AC-Versorgungsspannung 151 moduliert werden. Ein Beispiel wäre eine PhasenschnittModulation.
  • Die Steuerung 102 kann den Betrieb der Leuchtdiode 110 in Abhängigkeit von dem Dimmsignal 161 als externe Vorgabe bzw. Steuergröße steuern. Beispielsweise könnte die Steuerung 102 den Abwärtswandlern 101 derart ansteuern, dass der Laststrom je nach Dimmsignal 161 unterschiedliche Werte annimmt.
  • Das Dimmsignal kann beispielsweise auch durch einen an das Betriebsgerät 100 angeschlossenen Widerstand vorgegeben werden, wobei vorzugsweise der Widerstandswert den Nennstrom der Leuchtdiode vorgibt. Es könnte dabei auch ein Potentiometer als veränderbarer Widerstand angeschlossen werden, womit auch eine Änderung oder Einstellung des Nennstromes ermöglicht wäre.
  • FIG. 2A und 2B illustrieren Aspekte in Bezug auf den Abwärtswandler 101. Insbesondere illustriert FIG. 2A den Abwärtswandler 101 in größerem Detail. FIG. 2A ist ein Schaltungsdiagramm des Abwärtswandlers 101.
  • Der Abwärtswandler 101 ist eingerichtet, um über einen Versorgungsspannungsanschluss 211 die DC-Versorgungsspannung 153 zu empfangen. Ein Feldeffekttransistor 201 mit einer Freilaufdiode 205 implementiert einen Schalter 291. Ein Feldeffekttransistor 202 mit einer Freilaufdiode 206 implementiert einen Schalter 292. Der Schalter 291 und der Schalter 292 sind zwischen dem Versorgungsspannungsanschluss 211 und Masse 215 in Serie geschaltet.
  • Der Abwärtswandlern 101 umfasst auch eine Speicherdrossel 212. Die Speicherdrossel 212 und der Schalter 291 sind zwischen dem Versorgungsspannungsanschluss 211 und einem Ausgangsanschluss 219 zur Leuchtdiode 110 in Serie geschaltet. In FIG. 2A ist auch ein Drosselstrom 701 durch die Speicherdrossel 212 illustriert. Eine Orientierung des Drosselstrom 701 in Richtung des Ausgangsanschlusses 219 (wie durch den entsprechenden Pfeil in FIG. 2A dargestellt) wird nachfolgend als positive Polarität des Drosselstroms 701 bezeichnet.
  • Der Ausgangsanschluss 219 weist einen Glättungskondensator 213 mit Widerstand 214 auf. Deshalb entspricht der Laststrom 702, der basierend auf dem Drosselstrom 701 der Leuchtdiode 110 bereitgestellt wird, einem Zeitmittelwert des Drosselstroms 701.
  • In FIG. 2A ist ferner dargestellt, dass ein Steuersignal 601 an einem Steuerkontakt des Feldeffekttransistors 201 des Schalters 291 anliegt. Mittels des Steuersignals 601 ist es möglich, den Schalter 291 wahlweise im leitenden Zustand oder im nicht-leitenden Zustand zu betreiben. Ferner ist es möglich, den Schalter 291 vom leitenden Zustand in den nicht-leitenden Zustand zu schalten und vom nicht-leitenden Zustand in den leitenden Zustand zu schalten. Beispielsweise kann das Steuersignal 601 von der Steuerung 102 erzeugt werden. Dadurch kann die Steuerung 102 den Schalter 291 wahlweise im leitenden Zustand oder im nicht-leitenden Zustand betreiben.
  • In FIG. 2A ist auch dargestellt, dass ein Steuersignal 602 an einem Steuerkontakt des Feldeffekttransistors 202 und somit Schalters 292 anliegt. Mittels des Steuersignals 602 ist es möglich, den Schalter 292 wahlweise im leitenden Zustand oder im nicht-leitenden Zustand zu betreiben. Ferner ist es möglich, den Schalter 292 vom leitenden Zustand in den nicht-leitenden Zustand zu schalten und vom nicht-leitenden Zustand in den leitenden Zustand zu schalten. Beispielsweise kann das Steuersignal 602 von der Steuerung 102 erzeugt werden. Dadurch kann die Steuerung 102 den Schalter 292 wahlweise im leitenden Zustand oder nicht-leitenden Zustand betreiben.
  • Die Steuerung 102 ist eingerichtet, um den Schalter 291 und den Schalter 292 in Abhängigkeit von dem Dimmsignals 161 alternierend und periodisch im leitenden Zustand zu betreiben.
  • Fig. 2B zeigt eine alternative Implementierung eines Abwärtswandlers. Bei der Fig.2B ist im Gegensatz zur Fig. 2A die Leuchtdiode 110 mit dem parallelen Kondensator 213 nicht gegen den Massepunkt 215, sondern gegen den Versorgungsspannungsanschlusses 211 verschaltet. Die Speicherdrossel 212 wird während der An-Zeit des Schalters 292 aufmagnetisiert. Die Zeitphase des positiven Anstiegs des Drosselstromes 701 ist die An-Zeit des Schalters 292. Die Freilaufphase, also die Phase der Entmagnetisierung der Speicherdrossel 212, erfolgt über den Schalter 291. Die Zeitphase des negativen Anstiegs des Drosselstromes 701 ist die An-Zeit des Schalters 291.
  • FIG. 3 illustriert Aspekte in Bezug auf das Betreiben der Schalter 291, 292 alternierend und periodisch im leitenden Zustand. FIG. 3 illustriert schematisch den Zeitverlauf des Steuersignals 601 sowie des Steuersignals 602. FIG. 3 illustriert ferner schematisch den daraus resultierenden Zeitverlauf des Drosselstroms 701.
  • Aus FIG. 3 ist ersichtlich, dass der Schalter 291 während wiederholten An-Zeiten 651 im leitenden Zustand betrieben wird. Der Schalter 291 wird während wiederholten Aus-Zeiten 652 im nicht-leitenden Zustand betrieben. Der Schalter 292 wird entsprechend während wiederholten An-Zeiten 661 im leitenden Zustand betrieben. Der Schalter 292 wird während wiederholten Aus-Zeiten 662 im nicht-leitenden Zustand betrieben. In dem Beispiel der FIG. 3 ist die Periodendauer 670, mit welcher die Schalter 291, 272 periodisch im leitenden Zustand betrieben werden, dargestellt.
  • Aus FIG. 3 ist ferner ersichtlich, dass sich der Schalter 292 immer dann im leitenden Zustand befindet, wenn sich der Schalter 291 im nicht-leitenden Zustand befindet. Außerdem befindet sich der Schalter 291 immer dann im leitenden Zustand, wenn sich der Schalter 292 im nicht-leitenden Zustand befindet. Entsprechend werden die Schalter 291, 292 alternierend im leitenden Zustand betrieben.
  • Insbesondere ist die An-Zeit 661 des Schalters 292 derart dimensioniert, dass die Polarität des Drosselstroms 701 zum Zeitpunkt 755 von positiv auf negativ wechselt. Durch das implementieren des Drosselstroms 701 mit einer zumindest zeitweise negativen Polarität kann erreicht werden, dass der Zeitmittelwert 712 (horizontale gestrichelte Linie in FIG. 3) des Drosselstroms 701 - und damit der Laststrom 702 - besonders geringe Werte nahe bei null annimmt. Dadurch können geringe Helligkeiten der Leuchtdiode 110 erzielt werden.
  • In dem Beispiel der FIG. 3 könnte es möglich sein, eine Totzeit zwischen dem Schalten der Schalter 291, 292 vorzusehen (in FIG. 3 nicht dargestellt). Eine solche Totzeit kann Kurzschlüsse vermeiden. Eine solche Totzeit zum Vermeidung von Kurzschlüssen kann besonders kurz dimensioniert werden: Insbesondere erfolgt das Schalten der Schalter 291, 292 im Wesentlichen bei denselben Werten des Drosselstroms 701. In dem Beispiel der FIG. 3 entsprechen diese Werte des Drosselstroms 701, bei welchen die Schalter 291, 292 geschaltet werden, Spitzenwerten 751, 752 des Drosselstroms 701 (vergleiche vertikale gestrichelte Linien in FIG. 3). In manchen Beispielen kann es auch möglich sein, eine längere Totzeit vorzusehen.
  • FIG. 4 illustriert Aspekte in Bezug auf das Betreiben der Schalter 291, 292 alternierend und periodisch im leitenden Zustand. Das Beispiel der FIG. 4 entspricht dabei grundsätzlich dem Beispiel der FIG. 3. Jedoch wird in dem Beispiel der FIG. 4 eine vergleichsweise lange Totzeit 670 vorgesehen. In dem Beispiel der FIG. 4 beträgt die Totzeit 670 in etwa 25 % der An-Zeit 661 und ca. 20 % der Aus-Zeit 652. Während der Totzeit 670 werden sowohl der Schalter 291, als auch der Schalter 292 im nicht-leitenden Zustand betrieben. Deshalb wird der Schalter 292 bei einem anderen Wert des Drosselstroms 701 vom leitenden Zustand in den nicht-leitenden Zustand geschaltet, als der Schalter 291, der vom nicht-leitenden Zustand in den leitenden Zustand geschaltet wird. Insbesondere wird der Schalter 291 zeitsynchronisiert mit dem Umschwung der Mittelpunktspannung beider Schalter 291 und 292 vom nicht-leitenden Zustand in den leitenden Zustand geschaltet. Alternativ oder zusätzlich kann der Schalter 291 zeitsynchronisiert mit einem Nulldurchgang 753 des Drosselstroms 701 vom nicht-leitenden Zustand in den leitenden Zustand geschaltet werden. Zwischen der An-Zeit 651 und der Aus-Zeit 652 liegt optional ebenfalls eine Totzeit (in FIG. 4 nicht dargestellt). Diese Totzeit zwischen dem Ausschalten des Schalters 291 und dem Einschalten des Schalters 292 kann dimensioniert werden, um einen Kurzschluss durch beide Schalter 291 und 292 zu vermeiden.
  • Der Betrieb der Schalter 291, 292 - zum Beispiel entsprechend den Implementierungen der FIGs. 3 und 4 - kann in manchen Beispielen geregelt erfolgen. Zum Beispiel könnte der Zeitmittelwert 712 des Drosselstroms 701 als Regelgröße berücksichtigt werden, da dieser direkt proportional zum Laststrom 702 sein kann. Beispielsweise könnte das Dimmsignal 161 oder eine daraus abgeleitete Größe als Führungsgröße berücksichtigt werden. Dann kann durch geeignetes Betreiben 291, 292 eine Abweichung zwischen der Führungsgröße und der Regelgröße minimiert werden.
  • Grundsätzlich könnten unterschiedliche Stellgrößen bei einer entsprechenden Regelung berücksichtigt werden. Zum Beispiel könnte der Tastgrad für den Betrieb des Schalters 291 im leitenden Zustand und/oder für den Betrieb des Schalters 292 im leitenden Zustand als Stellgröße berücksichtigt werden. Zum Beispiel könnte der Spitzenwert 751 des Drosselstroms 701 bei positiver Polarität und/oder der Spitzenwert 752 des Drosselstroms 701 bei negativer Polarität als Stellgröße berücksichtigt werden. In manchen Beispielen kann es erstrebenswert sein, dass der Spitzenwert 752 des Drosselstroms 701 bei negativer Polarität auf einen konstanten Wert geregelt wird, um die Totzeit 670 zu reduzieren und gleichzeitig stromloses Schalten des Schalters 291 zu ermöglichen.
  • Die FIGs. 5A und 5B illustrieren Aspekte in Bezug auf den Abwärtswandler 101. Die Beispiele der FIGs. 5A und 5B entsprechen grundsätzlich dem Beispiel der FIG. 2A.
  • In dem Beispiel der FIG. 5A ist weiterhin eine Sensorschaltung 301, sowie eine Sensorschaltung 311 dargestellt. Die Sensorschaltung 301 ist eingerichtet, um am Anschluss 302 ein Messsignal auszugeben, welches indikativ für einen aktuellen Wert des Drosselstroms 701 ist. Die Erfassung des Drosselstromes 701 erfolgt mittels des Widerstandes 214. Die Sensorschaltung 301 ist weiterhin eingerichtet, um am Anschluss 303 ein Messsignal auszugeben, welches indikativ für Zeitmittelwert 712 des Drosselstroms 701 ist: dazu ist ein Tiefpassfilter vorgesehen. Optional wäre es möglich, dass die Sensorschaltung 301 eingerichtet ist, um einen Nullpunktversatz zwischen dem Messsignal am Anschluss 302 und dem Drosselstrom 701) zu bewirken. Dadurch kann erreicht werden, dass das Messsignal nicht - entsprechend dem Drosselstrom 701 - wechselnde Polaritäten aufweist: dies kann das Ermitteln der Spitzenwerte 751, 752 und/oder eine Implementierung des Regelkreises vereinfachen.
  • Der Nullpunktversatz kann beispielsweise mittels einer Stromquelle realisiert werden, die vorzugsweise in die Steuerung integriert werden kann. Dieses Beispiel ist in der Fig. 5A dargestellt. Alternativ kann beispielsweise der Nullpunktversatz mittels eines Hochziehwiderstandes (manchmal auch als Pull-up Widerstand bezeichnet) realisiert werden, der vorzugsweise mit einer Versorgungsspannung wie beispielsweise der Versorgungsspannung Vcc des Betriebsgerätes verbunden ist. Dieses Beispiel ist in der Fig. 5B dargestellt.
  • Die Sensorschaltung 311 umfasst eine Spule, die induktiv mit der Speicherdrossel 212 gekoppelt ist. Die Sensorschaltung 311 ist eingerichtet, um am Anschluss 312 ein Messsignal auszugeben, welches indikativ für die Drosselspannung und somit auch für die Spannung am Mittelpunkt der beiden Schalter 291 und 292 ist. Alternativ kann beispielsweise auch die Mittelpunktspannung der beiden Schalter 291 und 292 über einen Spannungsteiler, der die Spannung am Mittelpunkt der beiden Schalter 291 und 292 abgreift, gemessen werden. Im Beispiel der Fig. 5A schwingt die Spannung am Mittelpunkt der beiden Schalter 291 und 292 auf die Spannung des Versorgungsspannungsanschlusses 211 um. Bei dem Beispiel der Fig. 5B kann die Mittelpunktspannung der beiden Schalter 291 und 292 gegen die Spannung am Massepunkt 215 umschwingen.
  • FIG. 6 ist ein Flussdiagramm eines Verfahrens gemäß verschiedener Beispiele. Zunächst wird in Block 1001 ein Dimmsignal empfangen. Das Dimmsignal kann indikativ für eine gewünschte Helligkeit einer Leuchtdiode einer Leuchte sein. Das Dimmsignal kann beispielsweise in analoger Form oder digitaler Form empfangen werden. Beispielsweise könnte das Dimmsignal durch Phasenschnittmodulation einer AC-Versorgungsspannung empfangen werden.
  • Anschließend werden ein erster Schalter und ein zweiter Schalter eines Abwärtswandlers alternierend und periodisch im leitenden Zustand betrieben. Dabei wäre es optional möglich, Totzeiten vorzusehen, während welcher sowohl der erste Schalter, als auch der zweite Schalter im nicht-leitenden Zustand betrieben werden. Zum Beispiel wäre es möglich, dass stromfreies Schalten des ersten Schalters und/oder stromfreies Schalten des zweiten Schalters auf Grundlage einer entsprechenden Dimensionierung der Totzeiten erzielt wird.
  • Durch das Schalten der Schalter kann ein Drosselstrom durch eine Speicherdrossel des Abwärtswandlers modifiziert werden. Insbesondere kann durch das Schalten der Schalter die Speicherdrossel abwechselnd geladen und entladen werden.
  • Anschließend erfolgt in Block 1003 das Ausgeben eines Laststroms an die Leuchtdiode. Der Laststrom kann zum Beispiel einem Mittelwert des Drosselstroms entsprechen. Der Laststrom wird alternierend durch die Versorgungsspannung und die Speicherdrossel gespeist.
  • FIG. 7 ist ein Flussdiagramm eines Verfahrens gemäß verschiedener Beispiele. FIG. 7 illustriert Details in Bezug auf den geregelten Betrieb des ersten Schalters und des zweiten Schalters. Zum Beispiel könnte das Verfahren gemäß FIG. 7 als Teil von Block 1002 ausgeführt werden. Zunächst erfolgt in Block 1011 das Bestimmen einer Führungsgröße basierend auf dem Dimmsignal.
  • Dann erfolgt in Block 1012 das Bestimmen eines Zeitmittelwertes des Drosselstroms als Regelgröße. Alternativ oder zusätzlich könnte auch der Laststrom als Regelgröße berücksichtigt werden.
  • Es ist dann möglich, die Regelgröße mit der Führungsgröße zu vergleichen. Ziel der Regelung kann es sein, Abweichungen zwischen der Regelgröße und der Führungsgröße zu minimieren. Dazu können ein oder mehrere Stellgrößen verändert werden. Zum Beispiel könnte der Spitzenwert des Drosselstroms bei positiver Polarität als Stellgröße verändert werden. Alternativ oder zusätzlich könnte auch der Spitzenwert des Drosselstroms bei negativer Polarität als Stellgröße verändert werden. Dies erfolgt in Block 1013.

Claims (8)

  1. Abwärtswandler (101) für eine Leuchtdiode (110), der umfasst:
    - einen Versorgungsspannungsanschluss (211),
    - einen Ausgangsanschluss (219), der an der Leuchtdiode (110) anschließbar ist,
    - einen ersten Schalter (201, 205, 291),
    - einen zweiten Schalter (202, 206, 292), der zwischen dem Versorgungsspannungsanschluss (211) und Masse (215) in Serie mit dem ersten Schalter (201, 205, 291) geschaltet ist,
    - eine Speicherdrossel (212), wobei die Speicherdrossel (212) und der erste Schalter (201, 205, 291) zwischen dem Versorgungsspannungsanschluss (211) und dem Ausgangsanschluss (219) in Serie geschaltet sind, wobei der Ausgangsanschluss (219) eingerichtet ist, um basierend auf einem Drosselstrom (701) durch die Speicherdrossel (212) einen Laststrom (702) an die Leuchtdiode (110) auszugeben, und
    - eine Steuerung (102), die eingerichtet ist, um den ersten Schalter (201, 205, 291) und den zweiten Schalter (202, 206, 292) in Abhängigkeit von einem Dimmsignal (161) alternierend und periodisch im leitenden Zustand zu betreiben,
    wobei die Steuerung (102) ferner eingerichtet ist, um den zweiten Schalter (202, 206, 292) für eine An-Zeit (661) im leitenden Zustand zu betreiben,
    dadurch gekennzeichnet, dass die An-Zeit (661) des zweiten Schalters (202, 206, 292) derart dimensioniert ist, dass die Polarität des Drosselstroms (701) während der An-Zeit (661) des zweiten Schalters (202, 206, 292) von positiv auf negativ wechselt und eine Spannung am Mittelpunkt der Serienschaltung des ersten Schalters (201, 205, 291) und des zweiten Schalters (202, 206, 292) umschwingt.
  2. Abwärtswandler (101) nach Anspruch 1,
    wobei die Steuerung (102) eingerichtet ist, um eine Totzeit zu implementieren, während welcher der erste Schalter und der zweite Schalter im nicht-leitenden Zustand betrieben werden.
  3. Abwärtswandler (101) nach einem der voranstehenden Ansprüche,
    wobei die Steuerung (102) eingerichtet ist, um den ersten Schalter (201, 205, 291) zeitsynchronisiert mit dem Umschwung einer Mittelpunktspannung zwischen dem ersten Schalter (201, 205, 291) und dem zweiten Schalter (202, 206, 292) vom nicht-leitenden Zustand in den leitenden Zustand zu schalten.
  4. Abwärtswandler (101) nach einem der voranstehenden Ansprüche,
    wobei die Steuerung (102) eingerichtet ist, um den ersten Schalter (201, 205, 291) und den zweiten Schalter (202, 206, 292) geregelt zu betreiben mit dem Zeitmittelwert des Drosselstroms (701) als Regelgröße und mit einer basierend auf dem Dimmsignal (161) bestimmten Führungsgröße.
  5. Abwärtswandler (101) nach einem der Ansprüche 1 bis 3,
    wobei die Steuerung (102) eingerichtet ist, um den ersten Schalter (201, 205, 291) und den zweiten Schalter (202, 206, 292) geregelt zu betreiben mit zumindest einem Spitzenwert des Drosselstroms (701) als Stellgröße.
  6. Abwärtswandler (101) nach Anspruch 5,
    wobei die Steuerung (102) eingerichtet ist, um den ersten Schalter (201, 205, 291) und den zweiten Schalter (202, 206, 292) geregelt zu betreiben mit dem Spitzenwert des Drosselstroms (701) bei positiver Polarität als Stellgröße und mit einem konstanten Spitzenwert des Drosselstroms (701) bei negativer Polarität.
  7. Abwärtswandler (101) nach einem der voranstehenden Ansprüche, der weiterhin umfasst:
    - eine Sensorschaltung (301), die eingerichtet ist, um ein Messsignal auszugeben, das indikativ für den Drosselstrom (701) ist, wobei die Sensorschaltung eingerichtet ist, um einen Nullpunktversatz zwischen dem Messsignal und dem Drosselstrom (701) zu bewirken.
  8. Verfahren zum Ausgeben eines Laststroms durch einen Ausgangsanschluss (219) eines Abwärtswandler (101) an eine Leuchtdiode (110), wobei das Verfahren umfasst:
    - Empfangen eines Dimmsignals (161) für die Leuchtdiode (110),
    - in Abhängigkeit von dem Dimmsignal (161): alternierendes und periodisches Betreiben eines ersten Schalters (201, 205, 291) des Abwärtswandlers (101) und eines zweiten Schalters (202, 206, 292) des Abwärtswandlers (101), wobei der zweite Schalter (202, 206, 292) zwischen einem Versorgungsspannungsanschluss (211) des Abwärtswandlers (101) und Masse (215) in Serie mit dem ersten Schalter (201, 205, 291) geschaltet ist, wobei das Betreiben des zweiten Schalters (202, 206, 292) im leitenden Zustand für eine An-Zeit (661) erfolgt, und
    - basierend auf einem Drosselstrom (701) einer Speicherdrossel (212): Ausgeben des Laststroms (702) an die Leuchtdiode (110) über den Ausgangsanschluss (219), wobei die Speicherdrossel (212) und der erste Schalter (201, 205, 291) zwischen dem Versorgungsspannungsanschluss (211) und dem Ausgangsanschluss (219) in Serie geschaltet sind, gekennzeichnet durch Dimensionierung der An-Zeit (661) des zweiten Schalters (202, 206, 292), so dass die Polarität des Drosselstroms (701) während der An-Zeit (661) des zweiten Schalters (202, 206, 292) von positiv auf negativ wechselt und die Spannung am Mittelpunkt der Serienschaltung des ersten Schalters (201, 205, 291) und des zweiten Schalters (202, 206, 292) umschwingt.
EP17780748.4A 2016-10-31 2017-10-09 Abwärtswandler für eine leuchtdiode Active EP3533291B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016221398.9A DE102016221398A1 (de) 2016-10-31 2016-10-31 Abwärtswandler für eine leuchtdiode
PCT/EP2017/075619 WO2018077599A1 (de) 2016-10-31 2017-10-09 Abwärtswandler für eine leuchtdiode

Publications (2)

Publication Number Publication Date
EP3533291A1 EP3533291A1 (de) 2019-09-04
EP3533291B1 true EP3533291B1 (de) 2021-04-07

Family

ID=60037619

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17780748.4A Active EP3533291B1 (de) 2016-10-31 2017-10-09 Abwärtswandler für eine leuchtdiode

Country Status (4)

Country Link
EP (1) EP3533291B1 (de)
AT (1) AT17349U1 (de)
DE (1) DE102016221398A1 (de)
WO (1) WO2018077599A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018115174B4 (de) * 2018-06-25 2024-01-11 Tridonic Gmbh & Co Kg LED-Konverter als Audioverstärker

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7944153B2 (en) * 2006-12-15 2011-05-17 Intersil Americas Inc. Constant current light emitting diode (LED) driver circuit and method
EP2283701B1 (de) * 2008-05-13 2013-05-29 Nxp B.V. Verfahren und schalteranordnung zur zyklusweisen steuerung eines durch eine led-schalteranordnung fliessenden led-stroms sowie zugehörige schalterzusammensetzung und beleuchtungssystem
US8026704B2 (en) * 2008-06-06 2011-09-27 Infineon Technologies Austria Ag System and method for controlling a converter
WO2013028632A1 (en) * 2011-08-19 2013-02-28 Marvell Semiconductor, Inc. Regulator for led lighting color mixing
JP5986921B2 (ja) * 2012-12-27 2016-09-06 日立アプライアンス株式会社 点灯装置
CN104066246B (zh) * 2014-06-24 2017-01-04 成都芯源系统有限公司 发光元件驱动方法和发光元件驱动器及其控制器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2018077599A1 (de) 2018-05-03
EP3533291A1 (de) 2019-09-04
AT17349U1 (de) 2022-01-15
DE102016221398A1 (de) 2018-05-03

Similar Documents

Publication Publication Date Title
EP2837259B1 (de) Verfahren zum betreiben eines llc-resonanzwandlers für ein leuchtmittel, wandler und led-konverter
DE102010037684B4 (de) LED-Treiber mit Abblendsteuerung mit offenem Regelkreis
DE102006022819A1 (de) Schaltungsanordnung zum Versorgen einer Last mit einem Ausgangsstrom
EP2795999B1 (de) Betriebsschaltung und verfahren mit regelkreis-anpassung, zum betrieb von leuchtdioden
EP3105995B1 (de) Treiberschaltung für leds
DE112015007044B4 (de) Schaltleistungswandler mit magnetisierender Stromformung
EP3350911B1 (de) Pfc-modul für lückenden betrieb
EP3202235B1 (de) Getakteter elektronischer energiewandler mit einstellbarer lückenzeit
DE102014106869B4 (de) LED-Beleuchtungsvorrichtung und Beleuchtungsgerät
DE102012011755A1 (de) Leistungsfaktorkorrekturschaltung, Betriebsgerät für ein Leuchtmittel und Verfahren zum Steuern einer Leistungsfaktorkorrekturschaltung
EP3533291B1 (de) Abwärtswandler für eine leuchtdiode
EP3662570B1 (de) Schaltwandler mit stromregelung und verfahren
AT16905U1 (de) Schaltwandler mit zyklischer Frequenzänderung
DE102014221554A1 (de) Pulsweitenmodulierte Ansteuerung einer getakteten Schaltung mit einstellbarer Leistungsübertragung
EP3086626B1 (de) Betriebsschaltung, leuchte und verfahren zum erfassen eines steuersignals
DE102013205859A1 (de) LED-Steuerung
WO2014172733A1 (de) Schaltungsanordnung und verfahren zum betreiben eines leuchtmittels
DE102013222892B4 (de) LED-Konverter und Verfahren zum Steuern einer Wandlerschaltung eines LED-Konverters
DE102021134072A1 (de) Steuerung von Halbleiterschaltern einer Spannungswandler-Schaltungsanordnung
EP3069436A1 (de) Leistungsfaktorkorrekturschaltung, betriebsgerät für ein leuchtmittel und verfahren zum steuern einer leistungsfaktorkorrekturschaltung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190416

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502017010025

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H05B0033080000

Ipc: H05B0045370000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H05B 45/37 20200101AFI20201118BHEP

INTG Intention to grant announced

Effective date: 20201209

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1381378

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210415

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017010025

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210807

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210708

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210809

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017010025

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220110

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210807

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211009

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211009

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20221019

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20171009

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231024

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231026

Year of fee payment: 7

Ref country code: DE

Payment date: 20231027

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1381378

Country of ref document: AT

Kind code of ref document: T

Effective date: 20231009