EP3532786B1 - Erdgasverflüssigungssystem mit einem getriebeturboverdichter - Google Patents
Erdgasverflüssigungssystem mit einem getriebeturboverdichter Download PDFInfo
- Publication number
- EP3532786B1 EP3532786B1 EP17793914.7A EP17793914A EP3532786B1 EP 3532786 B1 EP3532786 B1 EP 3532786B1 EP 17793914 A EP17793914 A EP 17793914A EP 3532786 B1 EP3532786 B1 EP 3532786B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- refrigerant
- compressor
- compressor stages
- stages
- natural gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims description 170
- 239000003345 natural gas Substances 0.000 title claims description 82
- 239000003507 refrigerant Substances 0.000 claims description 222
- 238000001816 cooling Methods 0.000 claims description 78
- 230000005540 biological transmission Effects 0.000 claims description 40
- 238000000034 method Methods 0.000 claims description 28
- 239000007789 gas Substances 0.000 claims description 24
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims description 10
- 230000003247 decreasing effect Effects 0.000 claims description 10
- 238000002485 combustion reaction Methods 0.000 claims description 5
- 239000001294 propane Substances 0.000 claims description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 238000011144 upstream manufacturing Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000003949 liquefied natural gas Substances 0.000 description 5
- 244000309464 bull Species 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000005057 refrigeration Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0022—Hydrocarbons, e.g. natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D25/00—Pumping installations or systems
- F04D25/16—Combinations of two or more pumps ; Producing two or more separate gas flows
- F04D25/163—Combinations of two or more pumps ; Producing two or more separate gas flows driven by a common gearing arrangement
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/0052—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/0052—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
- F25J1/0055—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/008—Hydrocarbons
- F25J1/0087—Propane; Propylene
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/008—Hydrocarbons
- F25J1/0092—Mixtures of hydrocarbons comprising possibly also minor amounts of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0211—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
- F25J1/0214—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
- F25J1/0215—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
- F25J1/0216—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle using a C3 pre-cooling cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0281—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
- F25J1/0283—Gas turbine as the prime mechanical driver
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0281—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
- F25J1/0284—Electrical motor as the prime mechanical driver
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/029—Mechanically coupling of different refrigerant compressors in a cascade refrigeration system to a common driver
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0292—Refrigerant compression by cold or cryogenic suction of the refrigerant gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/20—Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/66—Closed external refrigeration cycle with multi component refrigerant [MCR], e.g. mixture of hydrocarbons
Definitions
- the present disclosure relates to systems and methods for liquefying natural gas. More specifically, the present disclosure relates to a system for liquefying natural gas with an integrally-geared turbo-compressor as well as to a compressor arrangement including an integrally-geared turbo-compressor. Further, the present disclosure relates to a method of liquefying natural gas with an integrally-geared turbo-compressor.
- US 2011/209496 A1 discloses producing liquefied and sub-cooled natural gas by means of a refrigerant assembly using a single phase gaseous refrigerant comprising at least two expanders, a compressor assembly, a heat exchanger assembly and a heat rejection assembly.
- the expanders and compressor assembly are assembled in two mechanically connected packages of which one is driven by a gas turbine and the other is driven by a steam turbine.
- Natural gas is becoming an increasingly important source of energy. In order to allow a cost-efficient transportation of the natural gas from the source of supply to the place of use, it is beneficial to reduce the volume of the gas. Cryogenic liquefaction has become a routinely practiced process for converting the natural gas into a liquid, which is more convenient, less expensive and safer to store and transport. Transportation by pipeline or ship vessels of liquefied natural gas (LNG) becomes possible at ambient pressure, by keeping the chilled and liquefied gas at a temperature lower than liquefaction temperature at ambient pressure.
- LNG liquefied natural gas
- the natural gas is preferably cooled down to around -150 to -170°C, where the gas possesses a nearly atmospheric vapor pressure.
- the natural gas Prior to passing the natural gas through the cooling stages, the natural gas is typically pretreated to remove impurities that can interfere the processing, damage the machinery or are undesired in the final product. Impurities include acid gases, sulfur compounds, carbon dioxide, mercaptans, water and mercury.
- the pre-treated gas from which impurities have been removed is then typically cooled by refrigerant streams to separate heavier hydrocarbons.
- the remaining gas mainly consists of methane and usually contains less than 0.1% hydrocarbons of higher molecular weight, such as propane or heavier hydrocarbons.
- the cleaned and purified natural gas is cooled down to the final temperature in a cryogenic section.
- the resulting LNG can be stored and transported at nearly atmospheric pressure.
- Cryogenic liquefaction is usually performed by means of a multi-cycle process, i.e. a process using two or more refrigeration cycles. Depending upon the kind of process, each cycle can use a different refrigerant, or alternatively the same refrigerant can be used in two or more cycles.
- a typical cryogenic liquefaction system e.g. in the so-called APCI process, the natural gas is first cooled by a first refrigerant which circulates in a pre-cooling loop and is subsequently cooled by a second refrigerant which circulates in a cooling loop.
- US2009/314030A1 discloses such a liquefaction system with a first refrigerant used in a pre-cooling loop with several refrigerant side streams and a second refrigerant.
- the respective first and second refrigerant compressors are driven by one driver and optionally an external gearing mechanism is used to distribute the driver power between the two compressors.
- the circulating first refrigerant may be compressed, condensed, and expanded, in order to subsequently remove heat from the natural gas.
- the circulating second refrigerant may be compressed and cooled, in order to subsequently remove heat from the natural gas.
- a natural gas liquefaction system a compressor arrangement as well as a method of liquefying natural gas are provided.
- a natural gas liquefaction system includes: an integrally-geared turbo-compressor with a plurality of compressor stages; a prime mover for driving the compressor; a pre-cooling loop, through which a first refrigerant is adapted to circulate, wherein one or more first compressor stages of the plurality of compressor stages are adapted to pressurize the first refrigerant; a cooling loop, through which a second refrigerant is adapted to circulate, wherein one or more second compressor stages of the plurality of compressor stages are adapted to pressurize the second refrigerant; a first heat exchanger device for transferring heat from natural gas and/or from the second refrigerant to the first refrigerant; and a second heat exchanger device for transferring heat from the natural gas to the second refrigerant.
- An integrally-geared turbo-compressor includes at least one force transmission mechanism, particularly a gear, connected between two or more compressor stages of the plurality of compressor stages.
- a compressor arrangement for compressing a plurality of refrigerants.
- the compressor arrangement includes: an integrally-geared turbo-compressor with a plurality of compressor stages; a first cooling loop, through which a first refrigerant is adapted to circulate, wherein one or more first compressor stages of the plurality of compressor stages are adapted to pressurize the first refrigerant; and a second cooling loop, through which a second refrigerant is adapted to circulate, wherein one or more second compressor stages of the plurality of compressor stages are adapted to pressurize the second refrigerant.
- a method of liquefying natural gas includes: providing an integrally-geared turbo compressor having a plurality of compressor stages; driving the compressor with a prime mover; circulating a first refrigerant through one or more first compressor stages of the plurality of compressor stages; circulating a second refrigerant through one or more second compressor stages of the plurality of compressor stages; cooling at least one of natural gas and the second refrigerant by heat exchange against the first refrigerant; and cooling the natural gas by heat exchange against the second refrigerant.
- FIG.1 shows a schematic diagram of a typical natural gas liquefaction system using the so-called APCI process.
- the shown process uses two refrigeration cycles.
- a pre-cooling cycle 12 uses a first refrigerant and a cooling cycle 2 uses a second refrigerant.
- the system labeled 1 as a whole, includes the cooling cycle 2 including a line formed by a gas turbine 3, which drives a compressor train.
- the compressor train includes a first compressor 5 and a second compressor 7 in series for compressing the second refrigerant.
- An inter-stage cooler 9 may be provided to cool the second refrigerant delivered by the first compressor 5 to reduce the temperature and the volume of the second refrigerant before entering the second compressor 7.
- the compressed second refrigerant delivered by the second compressor 7 may be condensed against air or water in a second condenser 11.
- the second refrigerant is cooled and partly liquefied by a heat exchange against a first refrigerant which circulates in the pre-cooling cycle 12.
- the pre-cooling cycle 12 includes a line including a gas turbine 13, which drives a compressor 15.
- the compressed first refrigerant delivered by the compressor 15 is condensed in a first condenser 17 against water or air.
- the condensed first refrigerant is used to pre-cool the natural gas down to -40°C and to cool and partially liquefy the second refrigerant.
- the pre-cooling of the natural gas and the partial liquefaction of the second refrigerant are performed in a multi-pressure process, e.g. a four pressure process in the example shown in FIG. 1 .
- the stream of the condensed first refrigerant from the first condenser 17 is delivered to a first set of four, serially arranged auxiliary heat exchangers to cool and partly liquefy the second refrigerant, and to a second set of four, serially arranged, pre-cooling heat exchangers to pro-cool the natural gas.
- a first portion of the compressed first refrigerant streaming from the first condenser 17 is delivered through a pipe 19 to the first set of heat exchangers and is sequentially expanded in the serially arranged expanders 21, 23, 25 and 27 to four different, gradually decreasing pressure levels. Downstream from each expander, a portion of the expanded first refrigerant is diverted to a respective heat exchanger 29, 31, 33, and 35.
- the compressed second refrigerant delivered from the second condenser 11 may flow in a pipe 37 toward a main cryogenic heat exchanger 38.
- the pipe 37 sequentially passes through the heat exchangers 29, 31, 33 and 35, such that the second refrigerant is gradually cooled and partly liquefied against the expanded first refrigerant.
- a second fraction of the condensed first refrigerant from the first condenser 17 is delivered to a second pipe 39 and expanded sequentially in four serially arranged expanders 41, 43, 45, and 47.
- a portion of the first refrigerant expanded in each expander is diverted towards a corresponding pre-cooling heat exchanger 49, 51, 53 and 55, respectively.
- a main natural gas line 61 flows sequentially through said pre-cooling heat exchangers 49, 51, 53 and 55, such that the natural gas is pre-cooled before entering the main cryogenic heat exchanger 38.
- the heated first refrigerant exiting the pre-cooling heat exchangers 49, 51, 53 and 55 is collected with the first refrigerant exiting the heat exchangers 29, 31, 33 and 35, and is fed again to the compressor 15, which recovers the four evaporated streams of first refrigerant and recompresses the vapor.
- the system shown in FIG. 1 includes at least one compressor driven by a gas turbine 13 for compressing the first refrigerant, and at least one further compressor driven by a gas turbine 3 for compressing the second refrigerant. Accordingly, the energy-efficiency of the system shown in FIG. 1 is limited, and the two gas turbines 3, 13 consume a considerable amount of space.
- FIG. 2 A natural gas liquefaction system 100 in accordance with embodiments described herein is schematically shown in FIG. 2 .
- the natural gas liquefaction system 100 includes an integrally-geared turbo-compressor 150 (also simply referred to as compressor 150) with a plurality of compressor stages which is configured to be driven by a prime mover 160, particularly by a single prime mover such as an internal combustion engine or an electric motor.
- a prime mover 160 particularly by a single prime mover such as an internal combustion engine or an electric motor.
- each compressor stage of the plurality of compressor stages of the compressor 150 may be driven directly or indirectly by the prime mover 160.
- a transmission mechanism 301 particularly a gear of the compressor including one or more gear wheels, and/or other transmission units such as pinions, pulleys, toothed wheels etc. may be connected between the plurality of compressor stages of the compressor 150, in order to drive the plurality of compressor stages into rotation.
- the driving force may be provided by the prime mover 160, e.g. via a main driving shaft connected to the integrally-geared turbo compressor.
- the transmission mechanism can include a gear train or a transmission.
- the impellers of the compressor stages may be mounted on respective shafts which may be driven into rotation by one of the transmission elements of the gear.
- the gear may include at least one gear wheel which may drive one or more shafts into rotation.
- a pinion may be mounted on each of the shafts which may mesh with at least one gear wheel.
- one or two impellers of the plurality of compressor stages may be mounted on each of the shafts.
- At least one or more transmission units such as one or more gearwheels are connected between at least some of the plurality of compressor stages, so that the respective impellers of the compressor stages can be rotated at different rotational speeds.
- the compressor stages can be provided on different shafts, which may be adapted to rotate with different rotational speeds.
- the impellers of the one or more first compressor stages may be rotated at different rotational speeds as the impellers of the one or more second compressor stages.
- one or more force transmission elements such as one or more central gearwheels may be provided for driving the one or more first compressor stages and the one or more second compressor stages at different rotational speeds.
- the one or more first compressor stages may be provided on different shafts as the one or more second compressor stages.
- a force transmission element such as one or more central gearwheels may be configured for driving two or more first compressor stages at different rotational speeds.
- a force transmission element such as one or more central gearwheels may be configured for driving two or more second compressor stages at different rotational speeds.
- the integrally-geared compressor may include a plurality of force transmission elements such as a plurality of central gearwheels, in order to drive each stage of the plurality of compressor stages at a desired rotational speed.
- the natural gas liquefaction system 100 includes a pre-cooling loop 110, through which a first refrigerant is adapted to circulate, wherein one or more first compressor stages 151 of the plurality of compressor stages are adapted to pressurize the first refrigerant, and a cooling loop 130, through which a second refrigerant is adapted to circulate, wherein one or more second compressor stages 155 of the plurality of compressor stages are adapted to pressurize the second refrigerant.
- Each compressor stage of the plurality of first and second compressor stages may include a gas inlet, a gas outlet, and at least one impeller rotating on a respective shaft.
- the compressor stages may be axial or radial compressor stages.
- the one or more first compressor stages 151 for pressurizing the first refrigerant may be directly or indirectly driven by the prime mover 160, e.g. via the transmission mechanism or gear of the compressor.
- the one or more second compressor stages 155 for pressurizing the second refrigerant may also be directly or indirectly driven by the prime mover 160, e.g. via the transmission mechanism or gear of the compressor 150.
- a single integrally-geared multi-stage compressor driven by the prime mover 160 may be provided for pressurizing two or more refrigerants circulating in two or more cooling loops, e.g. in the pre-cooling loop 110 and in the cooling loop 130.
- the whole LNG liquefaction system may include a single integrally-geared compressor configured for pressurizing the two or more refrigerants which are used for liquefying the natural gas.
- the first compressor stages and the second compressor stages of the compressor may be housed in a single compressor casing, e.g. in a compact and space-saving way.
- a wall of a compressor housing may enclose the first plurality of compressor stages, the second plurality of compressor stages, as well as the transmission elements of the gear of the compressor which connect the driving shafts of the compressor stages with each other.
- the natural gas liquefaction system 100 may further include a first heat exchanger device 170 configured for transferring heat from natural gas to the first refrigerant and/or from the second refrigerant to the first refrigerant, and a second heat exchanger device 180 for transferring heat from the natural gas to the second refrigerant.
- the natural gas is adapted to be sequentially cooled by the first refrigerant and by the second refrigerant.
- the natural gas may be guided through one or more first heat exchangers of the first heat exchanger device 170, where the natural gas may be pre-cooled by the first refrigerant, e.g. to a temperature below 0°C, particularly -40°C or less.
- the natural gas may subsequently be guided through the second heat exchanger device 180, where the natural gas is cooled by the second refrigerant.
- the second heat exchanger device 180 may be the main cryogenic heat exchanger of the system which is configured to cool the natural gas down to the liquefaction temperature.
- the second heat exchanger device 180 is depicted in a simplified way as a device which removes heat from the natural gas flowing through a main natural gas line 61 and transfers the heat to the second refrigerant flowing through the cooling loop 130.
- the first refrigerant circulating in the pre-cooling loop 110 may be used for pre-cooling the natural gas at a position of the main natural gas line 61 upstream from the second heat exchanger device 180.
- the first refrigerant may be used for cooling the second refrigerant at a position of the cooling loop 130 upstream from the second heat exchanger device 180.
- the first heat exchanger device 170 includes a heat exchanger configured for pre-cooling the natural gas and a further heat exchanger configured for cooling the second refrigerant.
- the first refrigerant which leaves the first heat exchanger device 170 may be guided back to the compressor 150 to be re-compressed in the one or more first compressor stages 151 of the compressor.
- the second refrigerant which leaves the second heat exchanger device 180 may be guided back to the compressor 150 to be re-compressed in the one or more second compressor stages 155 of the compressor.
- the pre-cooling loop 110 includes a first condenser 17 for removing heat from the first refrigerant after compression.
- the pre-cooling loop may further include at least one expansion element (not shown in FIG. 2 ) for expanding the first refrigerant upstream from the first heat exchanger device 170.
- the cooling loop 130 may include a second condenser 11 for removing heat from the second refrigerant after compression.
- the first refrigerant includes a gas with a molecular weight of 35 or more, particularly 40 or more, more particularly propane.
- the second refrigerant is a mixed refrigerant, which may include a mixture including at least one or more of nitrogen, methane, ethane and propane.
- At least one compressor stage of the plurality of compressor stages is provided with a movable inlet guide vane for autonomously regulating a flow entering in the at least one compressor stage.
- each of the one or more first compressor stages 151 may be provided with a respective movable inlet guide vane.
- a single prime mover may be provided for driving each of the one or more first and second compressor stages.
- the prime mover 160 may be or include a gas turbine and/or a motor, e.g. an electric motor or an internal combustion engine.
- One or more gearbox elements of the integrally-geared turbo compressor may be connected between the prime mover, the one or more first compressor stages and/or the one or more second compressor stages.
- at least some of the impellers of the one or more first compressor stages may rotate at a different rotational speed and be provided on different rotary shafts than at least some of the impellers of the one or more second compressor stages.
- a natural gas liquefaction system 200 in accordance with embodiments described herein is schematically shown in FIG. 3 .
- the basic setup of the natural gas liquefaction system 200 is similar to the system shown in FIG. 2 so that reference can be made to the above explanations which are not repeated here.
- the natural gas liquefaction system 200 includes an integrally-geared turbo-compressor 150 with a plurality of compressor stages which is configured to be driven by a prime mover 160, particularly by a single prime mover such as a gas turbine or another internal combustion engine.
- a prime mover 160 particularly by a single prime mover such as a gas turbine or another internal combustion engine.
- each compressor stage of the plurality of compressor stages of the compressor 150 may be driven directly or indirectly by the prime mover 160.
- a transmission mechanism particularly a gear of the compressor, with a plurality of gear wheels and/or other transmission units such as pinions and/or pulleys may be connected between the prime mover 160 and the plurality of compressor stages of the compressor 150, in order to drive the plurality of compressor stages at appropriate rotational speeds.
- the compressor 150 includes a plurality of first compressor stages 151 configured for pressurizing the first refrigerant circulating in the pre-cooling loop 110.
- first compressor stages 151 configured for pressurizing the first refrigerant circulating in the pre-cooling loop 110.
- four first compressor stages may be provided.
- a different number of first compressor stages may be provided, e.g. two, three, or more than four first compressor stages.
- the plurality of first compressor stages 151 may be sequentially arranged in the pre-cooling loop.
- the first refrigerant which enters the compressor 150 at an initial first compressor stage may be subsequently pressurized by said initial first compressor stage and by other first compressor stage(s) arranged downstream from the initial first compressor stage.
- the pressure of the first refrigerant may be increased in each of the sequentially arranged first compressor stages 151.
- the compressor 150 may include a plurality of second compressor stages 155 configured for pressurizing the second refrigerant circulating in the cooling loop 130.
- the second compressor stages 155 may be sequentially arranged in the cooling loop.
- the second refrigerant which enters the compressor 150 at an initial second compressor stage may be subsequently pressurized by said initial second compressor stage and by further second compressor stage(s) arranged downstream from the initial second compressor stage.
- the pressure of the second refrigerant may be increased by each of the sequentially arranged second compressor stages 155.
- the impellers of two or more second compressor stages may be mounted on different shafts and may be rotated at different rotational speeds in some embodiments.
- the compressor 150 may include four first compressor stages for pressurizing the first refrigerant and three (or alternatively four) second compressor stages for pressurizing the second refrigerant.
- the pre-cooling loop 110 may be configured to divide the first refrigerant into a plurality of precooling streams, which are guided to a respective one of said plurality of first compressor stages 151.
- the number of precooling streams may correspond to the number of first compressor stages.
- Each of the precooling streams may enter the compressor at an associated first compressor stage to be re-compressed by the associated first compressor stage and potentially by further first compressor stage(s) arranged downstream thereof, if any.
- a plurality of first expansion elements 241, 243, 245, 247 may be sequentially arranged in the pre-cooling loop 110 and configured for expanding the first refrigerant at a plurality of decreasing pressure levels.
- a plurality of first heat exchangers 249, 251, 253, 255 of the first heat exchanger device 270 may be provided for receiving respective precooling streams of said first refrigerant expanded through at least one of said plurality of first expansion elements 241, 243, 245, 247 and for transferring heat from the natural gas to the first refrigerant.
- a plurality of return paths 261, 263, 265, 267 configured for returning said precooling streams of the first refrigerant from the plurality of first heat exchangers 249, 251, 253, 255 to a respective one of said plurality of first compressor stages 151 may be provided.
- At least one first auxiliary expansion element may be arranged in the precooling loop. Further, at least one first auxiliary heat exchanger may be provided for receiving at least a portion of said first refrigerant expanded through the at least one first auxiliary expansion element and for transferring heat from the second refrigerant to the first refrigerant.
- the system may include a plurality of first auxiliary expansion elements 221, 223, 225, 227 sequentially arranged in the pre-cooling loop 110 and configured for expanding the first refrigerant at a plurality of decreasing pressure levels.
- a plurality of first auxiliary heat exchangers 229, 231, 233, 235 of the first heat exchanger device 270 may be provided for receiving respective portions of said first refrigerant expanded through at least one of said plurality of first auxiliary expansion elements 221, 223, 225, 227 and for transferring heat from the second refrigerant to the first refrigerant.
- the plurality of return paths 261, 263, 265, 267 may be configured for returning said portions of the first refrigerant from the plurality of first auxiliary heat exchangers 229, 231, 233, 235 and/or from the first heat exchangers 249, 251, 253, 255 to a respective one of said plurality of first compressor stages 151.
- a flow of compressed first refrigerant may be delivered from a most downstream first compressor stage of the plurality of first compressor stages 151 to a first condenser 17.
- the flow of the first refrigerant delivered through the first condenser 17 may be cooled, e.g. against water or air, and condensed.
- the condensed first refrigerant is circulated in the pre-cooling loop 110 to pre-cool the natural gas in the plurality of first heat exchangers 249, 251, 253, 255, and/or to cool and optionally partially liquefy the second refrigerant circulating in the cooling loop 130 in the plurality of first auxiliary heat exchangers 229, 231, 233, 235.
- the pre-cooling loop 110 may be divided into a plurality of n pressure levels, e.g. four pressure levels.
- the number n of pressure levels may correspond to the number n of first compressor stages of the compressor 150 configured for compressing the first refrigerant.
- the flow of first refrigerant delivered through the first condenser 17 may be sequentially expanded at n progressively reducing pressure levels and be divided into n partial flows. Each partial flow of first refrigerant may be returned as a side flow to the compressor 150 at an inlet of a corresponding one of the plurality of first compressor stages 151.
- a first delivery line 217 may deliver a first part of the condensed first refrigerant flow to the plurality of first expansion elements 241, 243, 245, 247.
- a second delivery line 218 branched off the first delivery line 217 may deliver a second part of the condensed first refrigerant flow to the plurality of first auxiliary expansion elements 221,223,225,227.
- the first part of the condensed first refrigerant from the first condenser 17 may be sequentially expanded in the plurality of first expansion elements 241, 243, 245, 247 at n different, gradually decreasing pressure levels. Downstream from each first expansion element, a portion of the flow of partly expanded first refrigerant may be diverted to a respective one of the plurality of first heat exchangers 249, 251, 253, 255. The remaining part of the partly expanded first refrigerant may be caused to flow through the next first expansion element and so on.
- the residual first refrigerant flowing through the most downstream one (247) of the plurality of first expansion elements 241, 243, 245, 247 may be delivered to a most downstream one (255) of the plurality of first heat exchangers 249, 251, 253, 255.
- the first refrigerant may exchange heat against the natural gas flowing in the main natural gas line 61, thus pre-cooling and optionally partly liquefying the natural gas.
- the second part of the condensed first refrigerant expanded in at least one of the plurality of first auxiliary expansion elements 221, 223, 225, 227 may be diverted towards a corresponding one of the plurality of first auxiliary heat exchangers 229, 231, 233, 235.
- the portion of first refrigerant delivered by each one of the plurality of first auxiliary expansion elements 221, 223, 225, 227 and which is not caused to flow through the respective first auxiliary heat exchanger is delivered through the subsequent one of the plurality of first auxiliary expansion elements 221, 223, 225, 227.
- the most downstream one (235) of said plurality of first auxiliary heat exchangers 229, 231, 233, 235 receives the residual fraction of first refrigerant expanded in the most downstream one (227) of the plurality of first auxiliary expansion elements 221, 223, 225, 227.
- the first refrigerant exchanges heat against the second refrigerant which circulates in the cooling loop 130, so that at the delivery side of the most downstream one (235) of the plurality of first auxiliary heat exchangers 229, 231, 233, 235, the second refrigerant is cooled and optionally at least partly liquefied.
- Heated first refrigerant exiting the plurality of first heat exchangers 249, 251, 253, 255 may be collected with the heated first refrigerant exiting the first auxiliary heat exchangers 229, 231, 233, 235 and may be fed again to the integrally-geared turbo-compressor 150 at the inlet of the respective first compressor stage.
- the heated first refrigerant exiting one of the plurality of first auxiliary heat exchangers 229, 231, 233, 235 is at around the same pressure as the heated first refrigerant exiting a corresponding one of the plurality of first heat exchangers 249, 251, 253, 255.
- the first refrigerant collected at corresponding pressure levels may be delivered at the inlet of a corresponding stage of the plurality of first compressor stages of the compressor 150. A plurality of side streams of the first refrigerant is thus returned at gradually decreasing pressure levels at the inlets of the sequentially arranged first compressor stages 151.
- the plurality of return paths 261, 263, 265, 267 may be configured for delivering the side streams of expanded and exhausted first refrigerant from the plurality of first heat exchangers 249, 251, 253, 255 and/or from the plurality of first auxiliary heat exchangers 229, 231, 233, 235 to a corresponding stage of the plurality of first compressor stages 151.
- the second refrigerant circulating in the cooling loop 130 may be compressed by the plurality of second compressor stages 155 which may be sequentially arranged in the cooling loop 130.
- the plurality of second compressor stages 155 are part of the same integrally-geared compressor as the plurality of first compressor stages 151.
- the integrally-geared compressor may include at least one multi-stage compressor unit with two or more compressor stages sequentially arranged on a single shaft, e.g. a multi-stage centrifugal compressor unit.
- the prime mover 160 which drives the compressor may include an internal combustion engine or an electric motor.
- the prime mover 160 can be a gas turbine, e.g. an aeroderivative gas turbine.
- At least one first intercooler may be arranged between at least two sequentially arranged first compressor stages of the plurality of first compressor stages 151.
- at least one second intercooler may be arranged between at least two sequentially arranged second compressor stages of the plurality of second compressor stages 155.
- the intercoolers may be configured to reduce the temperature and the volume of the respective refrigerant delivered by the respective compressor stage before entering the subsequent compressor stage or before leaving the compressor.
- the second refrigerant delivered by the most downstream one of the plurality of second compressor stages 155 may be condensed by a second condenser 11.
- the second condenser 11 may be an air condenser of a water condenser, where the second refrigerant may be condensed by exchanging heat against air or water.
- the condensed second refrigerant may be subsequently delivered by a delivery line through the plurality of first auxiliary heat exchangers 229, 231, 233, 235, where the second refrigerant may be cooled and optionally liquefied by exchanging heat against the first refrigerant circulating in the pre-cooling loop 110, as described above.
- the cooled second refrigerant delivered from the plurality of first auxiliary heat exchangers may be guided toward the second heat exchanger device 180, which may be a main cryogenic heat exchanger, where the second refrigerant may remove further heat from the pre-cooled natural gas, completing the liquefaction process.
- the heated second refrigerant may be returned through a return line 269 to an initial one of the plurality of second compressor stages 155 of the compressor 150.
- FIG. 3 the plurality of compressor stages of the integrally-geared turbo-compressor 150 is depicted in a schematic way only.
- the compressor 150 of an exemplary embodiment is illustrated in more detail in FIG. 4 .
- FIG. 4 is an enlarged schematic view of a compressor arrangement with an integrally-geared turbo-compressor 150 according to embodiments described herein.
- the compressor 150 may be driven by a prime mover 160 and may include a plurality of compressor stages which are directly or indirectly driven by the prime mover 160.
- the plurality of compressor stages includes one or more first compressor stages 151 for pressurizing the first refrigerant circulating in the pre-cooling loop 110, and one or more second compressor stages 155 for pressurizing the second refrigerant circulating in the cooling loop 130. More details of the pre-cooling loop 110 and of the cooling loop 130 are described above with reference to FIG. 2 and FIG. 3 and are not repeated here.
- the compressor 150 may include a transmission mechanism 301, e.g. an integral gear, which may be arranged in a compressor housing 330 and configured to be driven by said prime mover 160.
- the compressor 150 may further include at least one first shaft 303 configured to be driven into rotation by said transmission mechanism 301 and configured for driving at least one of the plurality of first compressor stages 151.
- an impeller of at least one first compressor stage may be mounted on the at least one first shaft 303 such as to rotate together with the first shaft.
- the compressor 150 may include at least one second shaft 305 configured to be driven into rotation by said transmission mechanism 301 and configured for driving at least one of the plurality of second compressor stages 155.
- an impeller of at least one second compressor stage may be mounted on the at least one second shaft 305 such as to rotate together with the second shaft.
- At least one first shaft 303 may drive two first compressor stages of the plurality of first compressor stages, e.g. two subsequent first compressor stages.
- at least one second shaft 305 may drive two second compressor stages of the plurality of second compressor stages, for example two subsequent second compressor stages.
- the at least one first shaft 303 may be provided with a pinion meshing with a gear wheel of the transmission mechanism 301, and/or the at least one second shaft 305 may be provided with a further pinion meshing with a gear wheel of the transmission mechanism 301.
- the transmission mechanism 301 may include a first gear wheel 307 configured for driving the at least one first shaft 303 and a second gear wheel 308 configured for driving the at least one second shaft 305.
- the transmission mechanism 301 may include one center gear wheel 307 configured for driving the at least one first shaft 303 and for driving the at least one second shaft 305.
- a single bull gear can be provided that is configured for (e.g., directly) driving each of the first and second compressor stages.
- a first pinion with a first diameter may be connected to the at least one first shaft 303 and/or a second pinion with a second diameter may be connected to the at least one second shaft 305.
- the central gear wheel 307 of the gear may directly mesh with the first pinion and with the second pinion for driving the at least one first shaft and the at least one second shaft into rotation.
- the central gear wheel 307 directly meshes with respective pinions connected to two or more first shafts 303 and to two or more second shafts 305.
- the (single) central gear wheel may directly drive the shafts of three, four or more first compressor stages and of three, four or more second compressor stages.
- the first diameter of the first pinion may correspond to the second diameter of the second pinion. Accordingly, the first shaft and the second shaft may rotate at corresponding rotational speeds. Alternatively, the first diameter and the second diameter may be different. Accordingly, the rotational speed of the first shaft and of the second shaft may be adjusted to differ as appropriate. For example, the rotational speeds of the first and second compressor stages may be adapted to the properties of the respective refrigerant guided therethrough.
- two or more bull gears may be provided for driving the plurality of compressor stages.
- a first bull gear may drive the one or more first compressor stages
- a second bull gear may drive the one or more second compressor stages.
- the at least one first shaft and/or the at least one second shaft may drive two compressor stages which may be arranged on opposite ends of the respective shaft.
- two compressor stages provided on a single shaft are schematically illustrated by two arrowheads directed in opposite directions which are connected by a connection line illustrating the common shaft.
- a first impeller of one compressor stage may be mounted in a first portion of a common shaft
- a second impeller of a further compressor stage may be mounted in a second portion of the common shaft.
- the first gear wheel 307 may drive the plurality of first compressor stages 151
- the second gear wheel 308 may drive the plurality of second compressor stages 155.
- the gear wheels may be toothed wheels which are driven in rotation directly or indirectly by the prime mover 160, respectively.
- the first and second shafts may each comprise a pinion mounted thereon and meshing with a respective toothed wheel. The first and second shafts and the impeller(s) mounted on the shafts can therefore rotate at different rotational speeds.
- the diameter of the second gear wheel 308 may be smaller than the diameter of the first gear wheel 307.
- the second gear wheel 308 may rotate at a higher rotational speed than the first gear wheel 307.
- the at least one second shaft 305 driven by the second gear wheel 308 may be rotated at a higher rotational speed than the at least one first shaft 303 driven by the first gear wheel 307.
- the impeller(s) of the first compressor stage(s) which are mounted on the at least one first shaft 303 may be rotated at a higher rotational speed than the impeller(s) of the second compressor stage(s) which are mounted on the at least one second shaft 305.
- the compressor may include two or more first shafts which drive the plurality of first compressor stages 151, wherein the two or more first shafts may be driven by the first gear wheel 307. At least one first shaft may be configured to drive two sequentially arranged first compressor stages. Alternatively or additionally, at least one first shaft may be configured to drive a single first compressor stage. In the latter case, the impeller of a single first compressor stage may be mounted on the first shaft.
- the compressor may include two or more second shafts for driving the plurality of second compressor stages 155, wherein the two or more second shafts may be driven by the second gear wheel 308. At least one second shaft may be configured to drive two sequentially arranged second compressor stages. Alternatively or additionally, at least one second shaft may be configured to drive a single one of the plurality of second compressor stages.
- Each compressor stage of the plurality of compressor stages may include a gas inlet, a gas outlet, and at least one impeller mounted on a respective shaft.
- Each impeller can be a radial impeller, with an axial inlet and a radial outlet.
- the fluid processed through the impeller may be collected in a respective volute of the compressor stage.
- the impellers can be paired, wherein a pair of impellers (e.g. belonging to two subsequent compressor stages) may be mounted on a common rotary shaft.
- the plurality of first compressor stages 151 may be configured to compress the first refrigerant so that the pressurized first refrigerant is delivered from the most downstream first compressor stage 312 of the plurality of first compressor stages 151 at a pressure ranging from 10 bar to 40 bar absolute, particularly from 20 bar to 30 bar absolute, more particularly from 22 bar to 24 bar absolute.
- the pressure of the first refrigerant at the inlet of the most upstream first compressor stage 315 may be between 1 bar absolute and 2 bar absolute in some embodiments.
- the plurality of first compressor stages 151 may be configured to compress the first refrigerant so that the pressurized first refrigerant is delivered from the most downstream first compressor stage 312 of the plurality of first compressor stages 151 at a temperature ranging from 60°C to 100°C, particularly from 75°C to 85°C.
- no inter-cooling stage may be provided between the two first compressor stages.
- the at least one first shaft 303 on which one or more impellers of one or more first compressor stages 151 are mounted may be configured to rotate at a rotational speed from 3.000rpm (rotations per minute) to 7.000rpm, particularly from about 4.000rpm to about 5.500 rpm.
- two or more first shafts may be provided, on which the impellers of all of the first compressor stages are mounted. Each first shaft may be configured to rotate at a rotational speed from 3000rpm to about 7000rpm.
- the shaft of the most upstream first compressor stage may rotate at a lower speed than the shaft of the most downstream first compressor stage.
- the plurality of first compressor stages 151 may deliver the compressed first refrigerant at a flow rate ranging from about 10,000 actual m 3 /h to about 70,000 actual m 3 /h.
- the plurality of first compressor stages 151 may absorb a power ranging from about 10 MW to about 40 MW, particularly ranging from about 25 MW to about 35 MW.
- the plurality of second compressor stages 155 may absorb a power ranging from about 10 MW to about 40 MW, particularly ranging from about 25 MW to about 35 MW.
- the prime mover 160 may provide a power ranging from 20 MW to 80 MW, particularly from 50 MW to 70 MW.
- the plurality of second compressor stages 155 may be configured to compress the second refrigerant so that the pressurized second refrigerant is delivered from the most downstream second compressor stage 316 of the plurality of second compressor stages 155 at a pressure ranging from 50 bar to 100 bar absolute, particularly from 55 bar to 65 bar absolute.
- the pressure of the second refrigerant at the inlet of the most upstream second compressor stage 319 may be below 10 bar absolute in some embodiments.
- the plurality of second compressor stages 155 may be configured to compress the second refrigerant so that the pressurized second refrigerant is delivered from the most downstream second compressor stage 316 of the plurality of second compressor stages 155 at a temperature ranging from 60°C to 120°C, particularly from 80°C to 100°C.
- one, two or more inter-cooling stages 320 may be provided between at least two subsequent second compressor stages. Thus, the exit temperature of the second refrigerant can be reduced.
- the at least one second shaft 305 on which the impeller(s) of one or more second compressor stages is mounted may be configured to rotate at a rotational speed from 7.000rpm to 20.000rpm, particularly from 8.000rpm to about 15.000 rpm.
- two or more second shafts may be provided for driving the impellers of all second compressor stages 155.
- the shaft of the most upstream second compressor stage 319 may rotate at a lower speed (e.g. between 9.000rpm and 11.000rpm) than the shaft of the most downstream second compressor stage 316 (e.g. at a speed between 14.000rpm and 16.000rpm).
- FIG. 4 shows an exemplary embodiment, in which the plurality of first compressor stages 151 includes a total of four subsequently arranged first compressor stages.
- the upstream pair of first compressor stages is driven by a rotary shaft, and the downstream pair of first compressor stages is driven by a further rotary shaft, wherein both rotary shafts are driven by the first gear wheel 307.
- the impellers of the upstream pair of first compressor stages are mounted on a common rotary shaft, and the impellers of the downstream pair of first compressor stages are mounted on a further common rotary shaft.
- only the upstream pair of first compressor stages may be driven by a common rotary shaft, whereas the two downstream first compressor stages may be driven by a separate rotary shaft, respectively, or vice versa.
- the plurality of second compressor stages 155 includes a total of four subsequently arranged second compressor stages.
- the upstream pair of second compressor stages is driven by a rotary shaft, and the downstream pair of second compressor stages is driven by a further rotary shaft, wherein both rotary shafts are driven by the second gear wheel 308.
- the impellers of the upstream pair of second compressor stages are mounted on a common rotary shaft, and the impellers of the downstream pair of second compressor stages are mounted on a further common rotary shaft.
- only three subsequently arranged second compressor stages may be provided, wherein the upstream pair of second compressor stages may be driven by a common rotary shaft, and the downstream second compressor stage may be driven by a separate rotary shaft, or vice versa.
- first and second compressor stages on respective rotary shafts driven into rotation by the transmission mechanism or gear of the compressor will be apparent to the skilled person.
- a compressor arrangement for compressing a plurality of refrigerants.
- the compressor arrangement includes an integrally-geared turbo-compressor 150 with a plurality of compressor stages which may have some or all of the features of the above described compressors.
- the compressor arrangement may include a first cooling line, e.g. being part of the pre-cooling loop, through which a first refrigerant is adapted to flow, wherein one or more first compressor stages of the plurality of compressor stages are adapted to pressurize the first refrigerant streaming through the first cooling line.
- the compressor arrangement may further include a second cooling line, e.g. being part of the cooling loop, through which a second refrigerant is adapted to flow, wherein one or more second compressor stages of the plurality of compressor stages are adapted to pressurize the second refrigerant streaming through the second cooling line.
- the compressor arrangement may be used in a natural gas liquefaction system according to any of the embodiments described above.
- the compressor arrangement may include a transmission mechanism or gear with some or all of the features of the embodiments described above. Further, all compressor stages may be included in a single housing in some embodiments.
- a method of liquefying a natural gas is provided.
- a flow diagram of a method according to embodiments described herein is schematically depicted in FIG. 6 .
- an integrally-geared turbo compressor having a plurality of compressor stages is provided.
- the compressor is driven with a prime mover.
- a first refrigerant is circulated through one or more first compressor stages of the plurality of compressor stages
- a second refrigerant is circulated through one or more second compressor stages of the plurality of compressor stages.
- at least one of natural gas and the second refrigerant is cooled by heat exchange against the first refrigerant.
- the natural gas is cooled by heat exchange against the second refrigerant.
- the compressed first refrigerant and/or the compressed second refrigerant may be condensed.
- the condensed first refrigerant may be expanded, e.g. in a plurality of sequentially arranged first expansion elements.
- the first refrigerant may be divided in a plurality of partial flows.
- first refrigerant may be sequentially compressed by a plurality of first compressor stages, e.g. three, four or more first compressor stages, and/or the second refrigerant may be sequentially compressed by a plurality of second compressor stages, e.g. three, four or more second compressor stages.
- Movable inlet guide vanes may be provided at inlets of at least one of the plurality of first compressor stages.
- the movable inlet guide vanes may be individually controlled to regulate partial flows at the suction side of the plurality of first compressor stages, particularly as a function of flow conditions of the partial flows.
- the method may further include: expanding the first refrigerant through a plurality of sequentially arranged first expansion elements at a plurality of decreasing pressure levels; circulating portions of the expanded first refrigerant from the first expansion elements through a plurality of first heat exchangers to remove heat from the natural gas; and returning the portions of expanded first refrigerant from the plurality of first heat exchangers to respective ones of the one or more first compressor stages.
- the method may further include: expanding the first refrigerant through a plurality of sequentially arranged first auxiliary expansion elements at a plurality of decreasing pressure levels; circulating portions of the expanded first refrigerant through a plurality of first auxiliary heat exchangers to remove heat from the second refrigerant; and returning the portions of first refrigerant from the plurality of first auxiliary heat exchangers to a respective one of the one or more first compressor stages.
- the prime mover may drive a transmission mechanism, e.g. an internal gear, of the compressor, wherein the transmission mechanism may drive at least one first shaft and at least one second shaft into rotation.
- a transmission mechanism e.g. an internal gear
- the at least one first shaft may be driven into rotation by said transmission mechanism at a rotation speed of 3.000rpm or more and 7.000rpm or less.
- the impellers of one or two first compressor stages may be mounted on the at least one first shaft and may rotate at the rotational speed of the at least one shaft.
- the at least one second shaft may be driven into rotation by said transmission mechanism at a rotation speed of 8.000rpm or more and 15.000rpm or less and may drive at least one of the second compressor stages.
- an impeller of at least one second compressor stage may be mounted on the at least one second shaft.
- the first refrigerant may be sequentially circulated through three, four or more first compressor stages of the compressor and compressed to an exit pressure ranging from 10 bar to 40 bar absolute, particularly from 20 bar to 30 bar absolute.
- the second refrigerant may be sequentially circulated through three, four or more second compressor stages of the compressor and compressed to an exit pressure ranging from 40 bar to 100 bar absolute, particularly from 50 bar to 80 bar absolute.
- an integrally-geared turbo-compressor for pressurizing two or more different refrigerants circulating in two or more cooling loops may result in an enhanced efficiency of the natural gas liquefaction system and thus reduced power consumption, and may further result in considerable cost savings when compared to systems with two or more separate compressors and compressor driving units.
- the gear of the compressor may be adjusted such that each compressor stage may rotate at an appropriate rotation speed. Using a single compressor unit in a natural gas liquefaction system is an advantage in terms of cost, footprint and flexibility.
- first and second compressor stages as well as details of the internal gear of the compressor (e.g. details of the transmission mechanism) may depend on the properties of the refrigerants to be compressed. Further, a larger or a modified transmission mechanism may be provided, if three, four or more refrigerants are to be compressed by the integrally-geared compressor.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Claims (17)
- Erdgasverflüssigungssystem (100), umfassend:einen Integralgetriebeturboverdichter (150) mit einer Vielzahl von Verdichterstufen;eine einzelne Antriebsmaschine (160) zum Antreiben des Verdichters (150);einen Vorkühlkreislauf (110), durch den ein erstes Kältemittel zirkulieren kann, wobei eine oder mehrere erste Verdichterstufen (151) der Vielzahl von Verdichterstufen das erste Kältemittel mit Druck beaufschlagen können;einen Kühlkreislauf (130), durch den ein zweites Kältemittel zirkulieren kann, wobei eine oder mehrere zweite Verdichterstufen (155) der Vielzahl von Verdichterstufen das zweite Kältemittel mit Druck beaufschlagen können;eine erste Wärmetauschervorrichtung (170) zum Übertragen von Wärme von einem Erdgas und/oder von dem zweiten Kältemittel auf das erste Kältemittel; undeine zweite Wärmetauschervorrichtung (180) zum Übertragen von Wärme von dem Erdgas auf das zweite Kältemittel;wobei die einzelne Antriebsmaschine (160) jede der einen oder mehreren ersten Verdichterstufen (151) und zweiten Verdichterstufen (155) antreibt;wobei der Verdichter (150) eine Vielzahl von ersten Verdichterstufen (151) umfasst und wobei der Vorkühlkreislauf (110) konfiguriert ist, um das erste Kältemittel in eine Vielzahl von Vorkühlströmen aufzuteilen, die zu einer jeweiligen der Vielzahl von ersten Verdichterstufen (151) geleitet werden.
- System nach Anspruch 1, wobei der Verdichter (150) eine Vielzahl von ersten Verdichterstufen (151), insbesondere vier sequenziell angeordnete erste Verdichterstufen, zum Druckbeaufschlagen des ersten Kältemittels und/oder eine Vielzahl von zweiten Verdichterstufen (155), insbesondere drei oder vier sequenziell angeordnete zweite Verdichterstufen, zum Druckbeaufschlagen des zweiten Kältemittels umfasst.
- System nach Anspruch 1 oder 2, wobei der Verdichter (150) umfasst:einen Übertragungsmechanismus (301), insbesondere einschließlich eines Zahnrads, der konfiguriert ist, um durch die Antriebsmaschine in Drehung versetzt zu werden;mindestens eine erste Welle (303), die konfiguriert ist, um durch den Übertragungsmechanismus (301) in Drehung versetzt zu werden, und konfiguriert ist, um mindestens eine der ersten Verdichterstufen anzutreiben; undmindestens eine zweite Welle (305), die konfiguriert ist, um durch den Übertragungsmechanismus (301) in Drehung versetzt zu werden, und konfiguriert ist, um mindestens eine der zweiten Verdichterstufen anzutreiben.
- System nach Anspruch 3, wobei der Übertragungsmechanismus (301) ein erstes Zahnrad (307) umfasst, das mit mindestens einem ersten Ritzel in Eingriff ist, das mit der mindestens einen ersten Welle (303) verbunden ist, um die mindestens eine erste Verdichterstufe anzutreiben.
- System nach Anspruch 3 oder 4, wobei das erste Zahnrad (307) ferner mit mindestens einem zweiten Ritzel in Eingriff steht, das mit der mindestens einen zweiten Welle (305) verbunden ist, um die mindestens eine zweite Verdichterstufe anzutreiben.
- System nach Anspruch 3, wobei der Übertragungsmechanismus (301) ein erstes Zahnrad (307), das zum Antreiben der mindestens einen ersten Welle (303) konfiguriert ist, und ein zweites Zahnrad (308), das zum Antreiben der mindestens einen zweiten Welle (305) konfiguriert ist, umfasst, insbesondere wobei der Durchmesser des zweiten Zahnrads (308) kleiner ist als der Durchmesser des ersten Zahnrads (307) und/oder wobei das erste Zahnrad und das zweite Zahnrad direkt in Eingriff stehende Zahnräder sind.
- System nach einem der Ansprüche 3 bis 6, wobei mindestens eine der mindestens einen ersten Welle und der mindestens einen zweiten Welle zwei Verdichterstufen antreibt, die an gegenüberliegenden Enden der jeweiligen Welle angeordnet sind.
- System nach einem der vorstehenden Ansprüche, umfassend:eine Vielzahl von ersten Expansionselementen (241, 243, 245, 247), die sequenziell in dem Vorkühlkreislauf (110) angeordnet sind und zum Expandieren des ersten Kältemittels bei einer Vielzahl von abnehmenden Druckniveaus konfiguriert sind;eine Vielzahl von ersten Wärmetauschern (249, 251, 253, 255) der ersten Wärmetauschervorrichtung (170, 270) zum Aufnehmen jeweiliger Vorkühlströme des ersten Kältemittels, das durch mindestens eines der Vielzahl von ersten Expansionselementen (241, 243, 245, 247) expandiert wird, und zum Übertragen von Wärme von dem Erdgas auf das erste Kältemittel; undeine Vielzahl von Rückführwegen (261, 263, 265, 267), die zum Zurückführen der Vorkühlströme des ersten Kältemittels von der Vielzahl von ersten Wärmetauschern (249, 251, 253, 255) zu einer jeweiligen der Vielzahl von ersten Verdichterstufen (151) konfiguriert sind.
- System nach einem der vorstehenden Ansprüche, umfassend mindestens ein erstes Hilfsexpansionselement, das in dem Vorkühlkreislauf (110) angeordnet ist, und mindestens einen ersten Hilfswärmetauscher der ersten Wärmetauschervorrichtung (170, 270), die zum Aufnehmen eines Teils des ersten Kältemittels, das durch das mindestens eine erste Hilfsexpansionselement expandiert ist, und zum Übertragen von Wärme von dem zweiten Kältemittel auf das erste Kältemittel konfiguriert ist.
- System nach Anspruch 9, umfassend:eine Vielzahl von ersten Hilfsexpansionselementen (221, 223, 225, 227), die sequenziell in dem Vorkühlkreislauf (110) angeordnet sind und zum Expandieren des ersten Kältemittels bei einer Vielzahl von abnehmenden Druckniveaus konfiguriert sind;eine Vielzahl von ersten Hilfswärmetauschern (229, 231, 233, 235) der ersten Wärmetauschervorrichtung (170, 270), die zum Aufnehmen jeweiliger Teile des ersten Kältemittels, die durch mindestens eines der Vielzahl von ersten Hilfsexpansionselementen (221, 223, 225, 227) expandiert sind, und zum Übertragen von Wärme von dem zweiten Kältemittel auf das erste Kältemittel konfiguriert sind; undeine Vielzahl von Rückführwegen (261, 263, 265, 267), die zum Zurückführen der Teile des ersten Kältemittels von der Vielzahl von ersten Hilfswärmetauschern (229, 231, 233, 235) zu einer jeweiligen der Vielzahl von ersten Verdichterstufen (151) konfiguriert sind.
- System nach einem der vorstehenden Ansprüche, wobei das erste Kältemittel ein Gas mit einem Molekulargewicht von 40 oder mehr, insbesondere Propan, umfasst und/oder wobei das zweite Kältemittel ein gemischtes Kältemittel ist, insbesondere eine Mischung, die Methan, Ethan, Propan und/oder Stickstoff umfasst.
- System nach einem der vorstehenden Ansprüche, wobei die Antriebsmaschine (160) einen Elektromotor oder einen Verbrennungsmotor, insbesondere eine Gasturbine, umfasst.
- Verfahren zum Verflüssigen von Erdgas, umfassend:Bereitstellen eines Integralgetriebeturboverdichters (150) mit einer Vielzahl von Verdichterstufen;Antreiben des Verdichters (150) mit einer einzelnen Antriebsmaschine (160);Zirkulieren eines ersten Kältemittels, das in eine Vielzahl von Vorkühlströmen aufgeteilt ist, die durch eine jeweilige der Vielzahl von Verdichterstufen (151) geleitet werden, wobei jede der einen oder mehreren ersten Verdichterstufen (151) durch die einzelne Antriebsmaschine (160) angetrieben wird;Zirkulieren eines zweiten Kältemittels durch eine oder mehrere zweite Verdichterstufen (155) der Vielzahl von Verdichterstufen, wobei jede der einen oder mehreren zweiten Verdichterstufen (155) durch die einzelne Antriebsmaschine (160) angetrieben wird;Kühlen von mindestens einem von Erdgas und dem zweiten Kältemittel durch Wärmeaustausch mit dem ersten Kältemittel; undKühlen des Erdgases durch Wärmeaustausch mit dem zweiten Kältemittel.
- Verfahren nach Anspruch 13, ferner umfassend:Expandieren des ersten Kältemittels durch eine Vielzahl von sequenziell angeordneten ersten Expansionselementen (241, 243, 245, 247) bei einer Vielzahl von abnehmenden Druckniveaus;Zirkulieren von Teilen des ersten Kältemittels von der Vielzahl von sequenziell angeordneten ersten Expansionselementen durch eine Vielzahl von ersten Wärmetauschern (249, 251, 253, 255), um Wärme aus dem Erdgas zu entfernen; undZurückführen der Teile des ersten Kältemittels von der Vielzahl von ersten Wärmetauschern zu jeweiligen der einen oder mehreren ersten Verdichterstufen.
- Verfahren nach einem der Ansprüche 13 oder 14, wobei ein Übertragungsmechanismus (301) des Verdichters durch die Antriebsmaschine (160) angetrieben wird, mindestens eine erste Welle (303) durch den Übertragungsmechanismus (301) mit einer Drehzahl von 3,000 U/min oder mehr und 7,000 U/min oder weniger in Drehung versetzt wird und mindestens eine der ersten Verdichterstufen antreibt; und
mindestens eine zweite Welle (305) durch den Übertragungsmechanismus (301) mit einer Drehzahl von 8,000 U/min oder mehr und 20,000 U/min oder weniger in Drehung versetzt wird und mindestens eine der zweiten Verdichterstufen antreibt. - Verfahren nach einem der Ansprüche 13 bis 15, wobei das erste Kältemittel sequenziell durch drei, vier oder mehr erste Verdichterstufen zirkuliert und auf einen Austrittsdruck im Bereich von 10 bar bis 40 bar absolut verdichtet wird und/oder wobei das zweite Kältemittel sequenziell durch drei, vier oder mehr zweite Verdichterstufen zirkuliert und auf einen Austrittsdruck im Bereich von 50 bar bis 100 bar absolut verdichtet wird.
- Verfahren nach einem der Ansprüche 13 bis 16, ferner umfassend das Steuern unabhängig beweglicher Einlassleitschaufeln, um Teilströme an einer Saugseite der einen oder mehreren ersten Verdichterstufen zu regulieren, insbesondere in Abhängigkeit von Strömungsbedingungen jeweiliger Teilströme.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IT102016000109378A IT201600109378A1 (it) | 2016-10-28 | 2016-10-28 | Sistema di liquefazione di gas naturale comprendente un turbocompressore con moltiplicatore integrato |
PCT/EP2017/077281 WO2018077935A1 (en) | 2016-10-28 | 2017-10-25 | Natural gas liquefaction system including an integrally-geared turbo-compressor |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3532786A1 EP3532786A1 (de) | 2019-09-04 |
EP3532786B1 true EP3532786B1 (de) | 2021-01-27 |
Family
ID=58163029
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17793914.7A Active EP3532786B1 (de) | 2016-10-28 | 2017-10-25 | Erdgasverflüssigungssystem mit einem getriebeturboverdichter |
Country Status (7)
Country | Link |
---|---|
US (1) | US20190249921A1 (de) |
EP (1) | EP3532786B1 (de) |
JP (1) | JP6940606B2 (de) |
KR (1) | KR20190096958A (de) |
CN (1) | CN110088546A (de) |
IT (1) | IT201600109378A1 (de) |
WO (1) | WO2018077935A1 (de) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10935312B2 (en) * | 2018-08-02 | 2021-03-02 | Air Products And Chemicals, Inc. | Balancing power in split mixed refrigerant liquefaction system |
WO2022033714A1 (en) * | 2020-08-12 | 2022-02-17 | Cryostar Sas | Simplified cryogenic refrigeration system |
DE102020006394A1 (de) * | 2020-10-17 | 2022-04-21 | Linde Gmbh | Verfahren und Anlage zur Erzeugung eines verflüssigten Kohlenwasserstoffprodukts |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6484533B1 (en) * | 2000-11-02 | 2002-11-26 | Air Products And Chemicals, Inc. | Method and apparatus for the production of a liquid cryogen |
US6962060B2 (en) * | 2003-12-10 | 2005-11-08 | Air Products And Chemicals, Inc. | Refrigeration compression system with multiple inlet streams |
WO2008015224A2 (en) * | 2006-08-02 | 2008-02-07 | Shell Internationale Research Maatschappij B.V. | Method and apparatus for liquefying a hydrocarbon stream |
FR2924205B1 (fr) * | 2007-11-23 | 2013-08-16 | Air Liquide | Dispositif et procede de refrigeration cryogenique |
NO331154B1 (no) * | 2008-11-04 | 2011-10-24 | Hamworthy Gas Systems As | System for kombinert syklusmekanisk drift i kryogene kondensasjonsprosesser. |
US20100147024A1 (en) * | 2008-12-12 | 2010-06-17 | Air Products And Chemicals, Inc. | Alternative pre-cooling arrangement |
JP5883800B2 (ja) * | 2010-01-15 | 2016-03-15 | ドレッサー ランド カンパニーDresser−Rand Company | 一体式コンプレッサ・エキスパンダ |
DE102010020145A1 (de) * | 2010-05-11 | 2011-11-17 | Siemens Aktiengesellschaft | Mehrstufiger Getriebeverdichter |
CA2710697A1 (en) * | 2010-07-15 | 2012-01-15 | Enviro World Corporation | Precipitation collector |
EP2604960A1 (de) * | 2011-12-15 | 2013-06-19 | Shell Internationale Research Maatschappij B.V. | Verfahren zum Betreiben eines Kompressors und System und Verfahren zum Herstellen eines flüssigen Kohlenwasserstoffstroms |
ITFI20130076A1 (it) * | 2013-04-04 | 2014-10-05 | Nuovo Pignone Srl | "integrally-geared compressors for precooling in lng applications" |
JP2016125773A (ja) * | 2015-01-05 | 2016-07-11 | 三菱重工業株式会社 | 液化ガス用冷却装置 |
-
2016
- 2016-10-28 IT IT102016000109378A patent/IT201600109378A1/it unknown
-
2017
- 2017-10-25 CN CN201780067005.8A patent/CN110088546A/zh active Pending
- 2017-10-25 EP EP17793914.7A patent/EP3532786B1/de active Active
- 2017-10-25 KR KR1020197013198A patent/KR20190096958A/ko not_active IP Right Cessation
- 2017-10-25 JP JP2019523605A patent/JP6940606B2/ja active Active
- 2017-10-25 US US16/345,454 patent/US20190249921A1/en active Pending
- 2017-10-25 WO PCT/EP2017/077281 patent/WO2018077935A1/en unknown
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
KR20190096958A (ko) | 2019-08-20 |
JP6940606B2 (ja) | 2021-09-29 |
JP2019536969A (ja) | 2019-12-19 |
WO2018077935A1 (en) | 2018-05-03 |
IT201600109378A1 (it) | 2018-04-28 |
CN110088546A (zh) | 2019-08-02 |
EP3532786A1 (de) | 2019-09-04 |
US20190249921A1 (en) | 2019-08-15 |
BR112019008639A2 (pt) | 2019-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2981777B1 (de) | Getriebeverdichter zur vorkühlung bei flüssigerdgasanwendungen | |
EP3351882B1 (de) | Kompressionsstrang mit einem zentrifugalkompressor und lng-anlage | |
US20130074511A1 (en) | Method of operating a gas turbine and gas turbine | |
EP3532786B1 (de) | Erdgasverflüssigungssystem mit einem getriebeturboverdichter | |
CN108692523B (zh) | Lng工厂中使用双流压缩机的并行压缩 | |
CN110793231B (zh) | 在分流混合的制冷剂液化系统中平衡功率 | |
US20160161179A1 (en) | Process and plant for the liquefaction of air and for the storage and recovery of electrical energy | |
BR112019008639B1 (pt) | Sistema de liquefação de gás natural e método de liquefação de gás natural | |
KR102300875B1 (ko) | 천연가스의 액화를 위한 분리형 냉매 압축기 | |
WO2020228986A1 (en) | Compressor train with combined gas turbine and steam turbine cycle | |
KR20230146010A (ko) | 유체를 냉장 또는 액화하기 위한 장치 및 방법 | |
KR20230144567A (ko) | 수소 및/또는 헬륨과 같은 유체를 액화하기 위한 디바이스 및 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190520 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200825 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1358729 Country of ref document: AT Kind code of ref document: T Effective date: 20210215 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602017032169 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210127 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1358729 Country of ref document: AT Kind code of ref document: T Effective date: 20210127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210427 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210527 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210427 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210527 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602017032169 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20211028 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210527 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20211031 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20211025 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211025 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211025 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211025 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210127 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230526 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20171025 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230920 Year of fee payment: 7 Ref country code: CH Payment date: 20231102 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240919 Year of fee payment: 8 |