EP3524982B1 - Rotatable test element - Google Patents

Rotatable test element Download PDF

Info

Publication number
EP3524982B1
EP3524982B1 EP19160587.2A EP19160587A EP3524982B1 EP 3524982 B1 EP3524982 B1 EP 3524982B1 EP 19160587 A EP19160587 A EP 19160587A EP 3524982 B1 EP3524982 B1 EP 3524982B1
Authority
EP
European Patent Office
Prior art keywords
sample
test element
capillary
axis
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19160587.2A
Other languages
German (de)
French (fr)
Other versions
EP3524982A1 (en
Inventor
Christoph Boehm
Norbert Oranth
Juergen Spinke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
F Hoffmann La Roche AG
Roche Diagnostics GmbH
Original Assignee
F Hoffmann La Roche AG
Roche Diagnostics GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by F Hoffmann La Roche AG, Roche Diagnostics GmbH filed Critical F Hoffmann La Roche AG
Publication of EP3524982A1 publication Critical patent/EP3524982A1/en
Application granted granted Critical
Publication of EP3524982B1 publication Critical patent/EP3524982B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502753Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5023Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures with a sample being transported to, and subsequently stored in an absorbent for analysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0605Metering of fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0663Whole sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0681Filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/069Absorbents; Gels to retain a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0803Disc shape
    • B01L2300/0806Standardised forms, e.g. compact disc [CD] format
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0409Moving fluids with specific forces or mechanical means specific forces centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0688Valves, specific forms thereof surface tension valves, capillary stop, capillary break
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/08Regulating or influencing the flow resistance
    • B01L2400/082Active control of flow resistance, e.g. flow controllers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/11Automated chemical analysis
    • Y10T436/110833Utilizing a moving indicator strip or tape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/11Automated chemical analysis
    • Y10T436/111666Utilizing a centrifuge or compartmented rotor

Definitions

  • the invention relates to a test element that is essentially disk-shaped and flat and can be rotated about a preferably central axis that is perpendicular to the disk-shaped test element plane, containing a sample application opening for application of a liquid sample, a capillary-active zone, which is a porous, absorbent matrix , and a sample channel that extends from the sample application opening to the capillary-active zone. Furthermore, the invention relates to a method for determining an analyte using the test element.
  • the systems used to analyze liquid sample materials or sample materials that can be converted into liquid form can be divided into two classes: on the one hand there are analysis systems that work exclusively with so-called wet reagents, on the other hand there are systems that work with so-called dry reagents.
  • analysis systems that work exclusively with so-called wet reagents
  • dry reagents systems that work with so-called dry reagents.
  • the former systems have prevailed in the field of permanently equipped laboratories, while the latter systems are mainly used in the field of "on-site" analysis.
  • test carriers e.g. B. offered test strips.
  • Prominent examples of this are test strips for determining blood sugar levels or test strips for urine tests.
  • Such test carriers usually integrate several functions (e.g. the storage of reagents in dried form or - albeit less frequently - in solution; the separation of unwanted sample components, in particular red blood cells from whole blood; in immunoassays, the so-called bound Free separation; the dosing of sample volumes; the transport of sample liquid from outside a device into a device; the control of the chronological sequence of individual reaction steps; etc.).
  • the function of sample transport is often accomplished by means of absorbent materials (e.g.
  • Disk-shaped test carriers so-called LabDiscs or optical BioDiscs, continue the idea of controlled sample transport using centrifugal force (centrifugal force).
  • Such disk-shaped, CompactDisc-like test carriers enable miniaturization through the use of microfluidic structures and at the same time the parallelization of processes through repeated application of identical structures for the parallel processing of similar analyzes from one sample or identical analyzes from different samples.
  • optical BioDiscs the integration of optically stored digital data for the identification of the test carrier or the control of the analysis systems on the optical BioDiscs is possible.
  • BioDiscs In addition to the miniaturization and parallelization of analyzes and the integration of digital data on optical discs, BioDiscs generally have the advantage that they can be manufactured using established manufacturing processes and measured using established evaluation technology. In the case of the chemical and biochemical components of such optical BioDiscs, it is usually possible to fall back on known chemical and biochemical components.
  • the disadvantage of the optical LabDiscs or Biodiscs based purely on centrifugal and capillary forces is that it is difficult to immobilize reagents and the accuracy of detection suffers. Especially in detection systems based on specific binding reactions such.
  • B. Immunoassays the volume component is missing compared to conventional test strip systems, especially in the so-called. Bound-free separation.
  • WO 2005/001429 (Phan et al. ) describes optical bio-disks that have pieces of membrane as reagent carriers in parts of the channel system. The reagents are dissolved by a liquid fed to the disk, resulting in buffered reagent solutions which are then contacted with the sample.
  • optical bio-disks which contain absorbent membranes or papers for moving a sample liquid, for separating particulate sample components, for carrying reagents and for analyzing the sample.
  • the sample is first applied to a blood separation membrane near the outer edge of the bio-disk and migrates radially therethrough to a reagent paper located closer to the center of the bio-disk.
  • the sample is then moved radially outwards again, ie away from the center of the Bio-Disk, and flows through a so-called analysis membrane.
  • the movement outwards takes place via chromatography, which is supported by the rotation of the Bio-Disk and the centrifugal force that acts on the sample as a result.
  • US 2002/0076354 A1 discloses optical bio-disks which, in addition to a channel system for transporting a liquid sample, have what is known as a “capture layer”.
  • the latter can consist of nitrocellulose, for example.
  • the "interceptor layer” is flown through with the help of centrifugal forces when the disk rotates.
  • US 2004/0265171 (Pugia et al. ) describes a test element with liquid channels in which the sample liquid is transported by means of an interplay of capillary force and centrifugal force.
  • a nitrocellulose strip can be provided within a liquid channel, which carries an agglutination reagent which reacts with the analyte and can thus lead to the formation of so-called bands which can finally be measured optically and thus serve to determine an analyte concentration in the sample.
  • the nitrocellulose strip it is possible to transport the sample liquid both parallel to the centrifugal force and in the opposite direction to the centrifugal force, especially when another absorbent material, for example an absorbent nitrocellulose paper, is used to support the suction effect.
  • WO 99/58245 (Larsson et al. ) describes microfluidic test elements in which the movement of liquids through different surfaces with different surface properties, such as e.g. B. different hydrophilicity is controlled.
  • test elements with microfluidic structures, which have, among other things, chambers for introducing the sample and chambers for introducing a dilution buffer, which are each microfluidically connected to mixing chambers, from which another channel branches off, which is connected to an analysis chamber.
  • US 5,160,702 discloses microfluidic structures that describe a sample chamber and a dilution chamber as separate substructures that open into a common mixing chamber. A channel leads from this mixing chamber to the fluidic areas in which the detection takes place.
  • the object of the invention is to eliminate the disadvantages of the prior art.
  • the subject matter of the invention is a test element according to claim 1, a system according to claim 11 and a method according to claim 7.
  • Advantageous configurations and preferred embodiments of the invention are the subject matter of the dependent patent claims.
  • test element is essentially disc-shaped and flat. It is rotatable about a preferably central axis that is perpendicular to the disk-shaped test element plane within the test element.
  • the test element is a circular disc, comparable to a compact disc.
  • the invention is not limited to this shape of the disk, but can also be used with non-symmetrical or non-circular disks.
  • the test element initially contains a sample application opening into which a liquid sample can be pipetted or introduced in some other way.
  • the sample application port is near-axis (ie, close to the center of the disk).
  • the sample application opening can open directly into a sample channel.
  • the sample application opening it is also possible for the sample application opening to initially open into a reservoir located behind it, into which the sample flows before it continues to flow into the sample channel.
  • Appropriate dimensioning can ensure that the sample flows from the sample application opening into the downstream fluidic structures without further action. This can be done by hydrophilizing the surfaces of the fluidic structures be necessary and/or the use of structures that promote the development of capillary forces.
  • the test element contains a capillary-active zone in the form of a porous, absorbent matrix that absorbs at least part of the liquid sample.
  • the capillary-active zone has a first end remote from the axis and a second end close to the axis.
  • the test element also has a sample channel that extends from the sample application opening to the first end of the capillary-active zone, which is a porous, absorbent matrix and is remote from the axis.
  • the sample channel runs at least once through a region close to the axis which is closer to the preferably central axis than the first end of the capillary-active zone which is remote from the axis.
  • the essential feature of the test element of the present invention is that the capillary-active zone, which is a porous, absorbent matrix, has a second end close to the axis.
  • the first end of the capillary-active zone that is remote from the axis is in contact with the sample channel in which the sample can be moved by capillary forces and/or centrifugal forces and/or other external forces such as positive or negative pressure.
  • the liquid sample - possibly after the absorption of reagents and/or dilution media and/or the expiry of preliminary reactions - reaches the first end of the capillary-active zone remote from the axis, it is absorbed into it and, by the capillary forces (which in the case of a porous absorbent Matrix can also be referred to as suction forces) transported through it.
  • the capillary forces which in the case of a porous absorbent Matrix can also be referred to as suction forces
  • the capillary-active zone is a porous, absorbent matrix, in particular a paper, a membrane or a fleece.
  • the capillary-active zone which is a porous, bibulous matrix, contains one or more zones with immobilized reagents.
  • the capillary-active zone which is a porous, absorbent matrix
  • specific binding reagents for example specific binding partners such as antigens, antibodies, (poly)haptens, streptavidin, polystreptavidin, ligands, receptors, nucleic acid strands ("capture probes") and the like , immobilized. They serve to selectively capture the analyte or species derived from the analyte and related thereto from the sample flowing through the capillary-active zone.
  • These binding partners are immobilized in the form of lines, dots, patterns in or on the material of the capillary-active zone.
  • an antibody against the analyte can be immobilized on the surface of the capillary-active zone, which is a porous, absorbent matrix, which then capture the analyte (in this case an antigen or hapten) from the sample and also immobilize it in the capillary-active zone.
  • the analyte can be made detectable by further reactions, for example by further bringing it into contact with a labeled partner capable of binding, for example by a visually, optically or fluorescence-optically detectable label.
  • the capillary-active zone which is a porous, absorbent matrix, adjoins another absorbent material or an absorbent structure with the second end near the axis, so that this or this liquid can be absorbed from the zone.
  • the porous bibulous matrix and the other material overlap slightly for this purpose.
  • the additional material or the additional absorbent structure serves on the one hand to support the suction effect of the capillary-active zone, which is a porous absorbent matrix, and on the other hand as a receiving zone for liquid that has already passed through the capillary-active zone.
  • the further material can consist of the same or different materials as the matrix.
  • the matrix can be a membrane and the other absorbent material can be a fleece or paper. Other combinations are of course also possible.
  • the test element according to the invention is characterized in that the sample channel has zones of different dimensions and/or for contains different functions.
  • the sample channel can contain a zone containing sample-soluble or sample-suspendable reagents. These can be dissolved or suspended in the liquid sample as it flows in or through it and react with the analyte in the sample or with other sample components.
  • the different zones in the sample channel can also differ in that there are zones with capillary activity and zones without.
  • zones with high hydrophilicity and low hydrophilicity can be included.
  • the individual zones can pass into one another almost seamlessly or be separated from one another by certain barriers, for example valves, in particular non-closing valves such as geometric valves or hydrophobic barriers.
  • the reagents in the sample channel are preferably in dried or lyophilized form. However, it is also possible for reagents to be present in liquid form in the test element according to the invention.
  • the reagents can be introduced into the test element in a manner known per se.
  • the test element preferably contains at least two layers, a base layer into which the fluidic structures are introduced and a cover layer which generally contains no further structures apart from the inlet openings for liquids and the ventilation openings.
  • the introduction of reagents during the manufacture of the test device usually takes place before the upper part of the test element (top layer) is applied to the lower part (bottom layer). At this point in time, the fluidic structures in the lower part are open, so that the reagents can easily be dosed in liquid or dried form.
  • the reagents can be introduced, for example, by printing or dispensing.
  • the reagents into the test element by placing them in the test element, impregnated in absorbent materials such as paper, fleece or membranes. After placing the reagents and inserting the absorbent materials, for example the porous, absorbent matrix (membrane) and optionally other absorbent materials (waste fleece, etc.), the upper and lower parts of the test element are connected to one another, for example clipped, welded, glued and the like.
  • absorbent materials such as paper, fleece or membranes.
  • the bottom layer also has the inlet openings for liquids and the ventilation openings in addition to the fluidic structures.
  • the cover layer can be formed entirely without openings, possibly with the exception of a central recess for accommodating a drive unit.
  • the upper part can simply consist of a plastic film that is glued to the lower part or welded to it.
  • the sample channel usually contains a zone for separating particulate components from the liquid sample.
  • this zone serves to separate the cellular sample components.
  • red blood cells erythrocytes
  • almost colorless plasma or serum can be obtained from blood, which is generally more suitable for subsequent visual or optical detection methods than the strongly colored blood.
  • the cellular sample components are preferably separated off by centrifugation, i. H. by rapidly rotating the test element after filling it with a liquid sample.
  • the test element according to the invention contains suitably dimensioned and geometrically designed channels and/or chambers.
  • the test element for the separation of cellular blood components contains an erythrocyte collection zone (erythrocyte chamber or erythrocyte trap) and a serum or plasma collection zone (serum or plasma chamber).
  • valves In order to control the flow of the sample liquid in the test element, this can have valves, especially so-called non-closing (non-closing) or geometric valves or hydrophobic barriers. These valves serve as capillary stops. They can ensure that a targeted temporal and spatial control of the sample flow through the sample channel and the individual zone of the test element is possible.
  • the sample channel can have a sample dosing zone that allows the sample—which was initially applied in excess—to be measured precisely.
  • the sample dosing zone extends from the sample application opening via a corresponding piece of a sample channel to a valve in the fluidic structure, in particular a geometric valve or a hydrophobic barrier.
  • the sample application opening can initially take up an excess of sample material.
  • the sample flows either driven by capillary forces or driven by centrifugation from the sample application zone into the channel structure and fills it up to the valve. Excess sample initially remains in the sample application zone.
  • the sample channel also has an inflow for other liquids apart from the sample liquid.
  • a second channel can open into the sample channel, the z. B. can be filled with a washing or reagent liquid.
  • the system according to the invention made up of a measuring device and a test element is used to determine an analyte in a liquid sample.
  • the measuring device contains, among other things, at least one drive for rotating the test element and evaluation optics for evaluating the visual or optical signal of the test element.
  • the optics of the measuring device can preferably be used for fluorescence measurement with spatially resolved detection.
  • an LED or a laser is typically used to illuminate the detection area of the test element and, if necessary, to excite optically detectable markings.
  • the optical signal is detected using CMOS or CCD (typically with 640 ⁇ 480 pixels).
  • the beam path is direct or folded (e.g. via mirrors or prisms).
  • the illumination or excitation is typically effected by means of an illumination line, which illuminates the detection area of the test element, preferably perpendicular to the detection and control lines.
  • the detection can take place here via a diode line.
  • the rotational movement of the test element can be used for the illumination and evaluation of the 2nd dimension in order to scan with the diode line over the flat area of the test element to be evaluated.
  • a DC motor with encoder or a stepper motor can be used as a drive for rotating and positioning the test element.
  • the temperature of the test element in the device is preferably controlled indirectly, for example by heating or cooling the plate on which the disc-shaped test element rests in the device.
  • the temperature is preferably measured without contact.
  • the method according to the invention serves to detect an analyte in a liquid sample.
  • the sample is first placed in the sample application opening of the test element.
  • the test element is then rotated—preferably about its preferably central axis; however, it is also possible to carry out the method according to the invention in such a way that the rotation takes place around another axis, which may also be located outside of the test element.
  • the sample is transported from the sample application opening to the end of the capillary-active zone, which is a porous, absorbent matrix, away from the axis.
  • the rotation of the test element is then slowed down or stopped to such an extent that the sample or a material obtained from the sample as it flows through the test element (e.g.
  • a mixture of the sample with reagents, a sample modified by pre-reactions with reagents from the test element, one of certain components liberated sample such as serum or plasma from whole blood after separating the erythrocytes, etc. is transported from the end of the capillary-active zone that is remote from the axis to the end near the axis, which is a porous, absorbent matrix.
  • the analyte is detected visually or optically in the capillary-active zone, which is a porous, absorbent matrix, or in a zone downstream of it.
  • the start of the migration of the sample (or a material obtained from the sample) through the capillary-active zone can be precisely timed and controlled by deliberately slowing down or stopping the rotation of the test element. Only when the amount of capillary force (suction force) in the capillary-active zone exceeds the amount of the counter-acting centrifugal force is it possible for the sample to move into and through the capillary-active zone.
  • the liquid transport in the capillary-active zone can be started in a targeted manner. For example, a possible pre-reaction or pre-incubation of the sample or a tempering of the sample can be awaited before the rotation of the test element is slowed down or stopped to such an extent that the sample can flow into the capillary-active zone.
  • the transport of the sample (or a material obtained from the sample) through the capillary-active zone can be specifically slowed down or stopped by rotating the test element again about its preferably central axis.
  • the centrifugal forces occurring during rotation counteract the capillary force, which moves the sample liquid from the end of the capillary-active zone that is remote from the axis to the end that is close to the axis.
  • a targeted Control, in particular slowing down, of the flow rate of the sample in the capillary-active zone is possible, up to and including reversing the direction of flow. In this way, for example, the dwell time of the sample in the capillary-active zone can be controlled.
  • test element and method according to the invention it is therefore possible, with the test element and method according to the invention, to reverse the direction of migration of the liquid sample and/or the other liquid through the capillary-active zone by rotating the test element, whereby this is also possible several times in order to avoid moving the to reach liquid.
  • capillary forces which transport the liquid in the capillary-active zone from the outside (i.e. from the end remote from the axis) inwards (i.e.
  • the detection can be carried out according to the sandwich assay principle or in the form of a competitive test.
  • test element after the test element has been rotated, another liquid is applied to the test element, which is transported after the sample from the end of the capillary-active zone that is remote from the axis to the end near the axis.
  • the further liquid can in particular be a buffer, preferably a washing buffer, or a reagent liquid.
  • a buffer preferably a washing buffer, or a reagent liquid.
  • the invention has the following advantages:
  • the capillary-active zone which is a porous, absorbent matrix, transports the liquid from an end remote from the axis to an end close to the axis, ie from the periphery of the disk-shaped test element in the direction of the axis of rotation.
  • the centrifugal force which can also be used to move the liquids, counteracts this direction of transport.
  • porous, absorbent matrix which essentially serves as a capture matrix for bound-free separation in immunoassays, allows sample components to be captured efficiently during the course of the immunoassay.
  • centrifugal and capillary forces makes it possible to move the sample back and forth over a reagent zone, in particular a zone with immobilized reagents (above all, a capture zone for heterogeneous immunoassays), without increased technical effort, and so on to ensure more effective dissolving of the reagents, mixing of the sample with reagents or scavenging of sample components on immobilized binding partners.
  • a reagent zone in particular a zone with immobilized reagents (above all, a capture zone for heterogeneous immunoassays)
  • the most efficient possible use of the small liquid volumes can be achieved not only for Reaction purposes (here the sample volume is used in particular) but also for washing purposes, for example for better discrimination of bound and free label in the capture zone. This effectively minimizes the amount of sample, liquid reagents and wash buffer.
  • the preferably central position of the axis of rotation within the test element makes it possible to design both the test element itself and the associated measuring device as compactly as possible.
  • chip-shaped test elements such as those used in figure 1 and 2 from US2004/0265171 are shown, the axis of rotation lies outside the test element.
  • An associated turntable or rotor is therefore inevitably larger than in a test element with identical dimensions, but in which the axis of rotation is preferably arranged centrally within the test element, as is the case with the test elements according to the invention.
  • figure 1 shows a schematic representation of a plan view of an embodiment of a test element that is not according to the invention. For the sake of clarity, only the layer of the test element that contains the fluidic structures is shown. The embodiment shown contains only one opening for the introduction of sample and / or washing liquid. In this embodiment, the interfering sample components are separated after the sample has been brought into contact with reagents.
  • FIG 2 shows schematically a further embodiment of a test element not according to the invention.
  • the test element there are two separate sample and wash buffer application ports.
  • the cellular sample components are already separated here before the sample is brought into contact with reagents.
  • figure 3 shows a variant of the embodiment according to the invention figure 1 in a schematic representation.
  • the cellular sample components are separated after the sample has been brought into contact with reagents.
  • the structure according to figure 3 a separate supply for washing liquid.
  • figure 4 shows a further preferred embodiment of a test element according to the invention in a schematic view analogously figure 2 .
  • figure 5 represents a minor further development of the test element according to the invention figure 3 represents.
  • figure 3 represents.
  • figure 5 a different geometric arrangement of the waste fleece and a different type of valve at the end of the sample dosing section.
  • figure 6 shows schematically a top view of a further development of the test element according to the invention according to FIG figure 5 .
  • the embodiment according to figure 5 contains the embodiment according to figure 6 a fluidic structure for taking up excess sample.
  • figure 7 is a schematic representation of a further variant of the test element according to the invention figure 3 .
  • the fluidic structures are essentially analogous to those of figure 3 . However, they are geometrically aligned and designed differently.
  • figure 8 shows schematically a further preferred embodiment of the test element according to the invention.
  • the structures in figure 8 essentially correspond to the functions provided by the test element figure 4 are already known.
  • figure 9 shows schematically a top view of an alternative to the test element according to FIG figure 6 .
  • figure 6 contains the embodiment according to figure 9 a sample application opening remote from the axis, which initially brings the sample closer to the center of the test element via a capillary, ie into an area close to the axis.
  • figure 10 shows the typical curve shape for troponin T measurements in whole blood samples (concentration of troponin T in ng/ml plotted against the signal strength (counts)). The samples were spiked with recombinant troponin T to the respective concentration.
  • Example 2 The data pertains to Example 2 and was determined using test elements according to figure 6 / Sample 1 received.
  • the Figures 3 to 8 show different preferred embodiments of a test element (1) according to the invention.
  • the figures 1 , 2 and 9 show alternative embodiments of a test element that are not according to the invention.
  • the substrate (2) containing the fluidic structures and the central recess (drive hole 3) is essentially shown in each case.
  • the disk-shaped test element (1) according to the invention also usually contains a cover layer, which is shown in the figures for clarity is not shown for the sake of it.
  • the cover layer can also have structures, but as a rule it will not have any structures apart from the openings for the samples and/or other liquids to be applied to the test element.
  • the cover layer can also be designed without any openings, for example in the form of a film which is connected to the substrate and closes off the structures located therein.
  • FIG 1 shows a first embodiment of a disc-shaped test element (1) not according to the invention.
  • the test element (1) contains a substrate (2) which contains the fluidic, microfluidic and chromatographic structures.
  • the substrate (2) is covered (not shown) by a corresponding counterpart (top layer) which contains sample application and ventilation openings which correspond to the structures in the substrate (2).
  • Both the cover layer and the substrate (2) have a central recess (3) which, in cooperation with a corresponding drive unit in a measuring device, enables the disk-shaped test element (1) to rotate.
  • test element (according to one of Figures 1 to 9 ) has no such central recess (3) and the drive is rotated via a drive unit of the measuring device designed according to the outer contours of the test element, for example a rotating plate, in which the test element is placed in a depression corresponding to its shape.
  • Sample liquid in particular whole blood, is fed to the test element (1) via the sample application opening (4). Driven by capillary forces and/or centrifugal forces, the sample liquid fills the sample dosing zone (5).
  • the sample dosing zone (5) can also contain the dried reagents. It is delimited by the capillary stops (6 and 8), which can be designed, for example, as a hydrophobic barrier or as a geometric/non-closing valve. The delimitation of the sample metering zone (5) by the capillary stops (6, 8) ensures that a defined sample volume is taken up and passed on to the fluidic zones that are downstream of the sample metering zone (5).
  • any excess sample is removed from the sample application opening (4) and the sample dosing zone (5) is transferred to the sample excess container (7), while the measured amount of sample is transferred from the sample dosing zone (5) to the channel (9).
  • the separation of red blood cells and other cellular sample components is started in channel (9).
  • the reagents contained in the sample dosing zone (5) are already dissolved in the sample when it enters the channel (9).
  • the entry of the sample into the channel (9) via the capillary stop (8) leads to the reagents in the sample being mixed.
  • the reagent-sample mixture is directed into the fluidic structures (10) (serum/plasma collection zone) and (11) (erythrocyte collection zone). Due to the centrifugal forces acting on the reagent-sample mixture, plasma or serum is separated from red blood cells. The red blood cells collect in the erythrocyte collection zone (11), while the plasma essentially remains in the collection zone (10).
  • sample volume can be used much more effectively with the test elements according to the invention, since there are practically no dead volumes (e.g. volume of the fiber interstices or pores) from which the sample cannot be taken again.
  • dead volumes e.g. volume of the fiber interstices or pores
  • these prior art blood-separating membranes and webs tend to be undesirable in some cases Adsorption of sample components (e.g. proteins) or destruction (lysis) of cells, which is also not observed with the test elements according to the invention.
  • the reagent-plasma mixture in which, in the case of an immunoassay, sandwich complexes of analyte and antibody conjugates have formed when the analyte is present
  • the porous-absorbent matrix (12) added to and passed through it.
  • the analyte-containing complexes are captured in the detection zone by the immobilized binding partners contained in the membrane (12) and unbound, labeled conjugate is bound in the control zone.
  • the fleece (13) adjoining the porous, absorbent matrix supports the movement of the sample through the membrane (12).
  • the fleece (13) also serves to hold the sample after it has flowed through the membrane (12).
  • the washing buffer is pipetted into the sample application opening (4) in a subsequent step.
  • the wash buffer flows through the corresponding fluidic structures of the test element (1) and washes in particular the membrane (12), where the bound analyte complexes are now located and thus removes excess reagent residues.
  • the washing step can be repeated one or more times in order to improve the signal-to-noise ratio. This allows the detection limit for the analyte to be optimized and the dynamic measuring range to be increased.
  • the sample channel in which the liquid sample in the test element (1) is transported from the sample application opening (4) to the first end of the membrane (12) remote from the axis, in the present case comprises the sample dosing zone (5), the capillary stop (8), the channel ( 9), the serum/plasma collection zone (10) and the erythrocyte chamber (11).
  • the sample channel can consist of more or fewer individual zones/areas/chambers.
  • FIG. 3 differs from figure 1 in that, on the one hand, there is no container for excess sample (7) adjoining the sample application opening (4) and there is no capillary stop at the end of the sample metering section (5) (ie metered sample application is required here) and, on the other hand, in that, according to the invention, a separate metering opening ( 16) for other liquids, e.g. B. washing buffer, and an associated channel (15) are present, which can transport the buffer to the membrane (12).
  • the transport of the buffer to the membrane (12) can be based on capillary forces or centrifugal forces.
  • the embodiment according to figure 5 is largely identical to the embodiment according to FIG figure 3 .
  • the two embodiments differ only in the shape of the waste fleece (13) and in that the test element according to FIG figure 5 a capillary stop (8) at the end of the sample dosing section (5).
  • the embodiment according to figure 6 is again essentially identical to the embodiment according to FIG figure 5 and differs from this by the additional presence of a container for excess sample (7) in the area between the sample dosing opening (4) and the sample dosing zone (5). No dosed application of the sample is required here (analogous to figure 1 ).
  • the embodiment of the test element (1) according to the invention figure 7 essentially corresponds to the test element (1) of figure 6 . Both embodiments have the same fluidic structures and functions. Only the arrangement and geometric design is different.
  • the embodiment according to figure 7 has additional ventilation openings (17), which due to the different dimensions of the fluidic structures compared to figure 6 are necessary to fill the To allow structures with samples or washing liquid.
  • Channel (9) is designed here as a thin capillary which is only filled when the test element rotates (ie overcoming the capillary stop (8) is only possible by means of centrifugal force). It is already in accordance with the test element (1) during the rotation figure 7 possible to discharge collected plasma from the erythrocyte collection zone 11; the decanting unit 18, which finally opens into the serum/plasma collection zone 10, is used for this purpose.
  • test element (1) according to the invention figure 9 essentially corresponds to the test element (1) of figure 6 . Both embodiments have the same fluidic structures and functions. Only the arrangement and geometric design is different.
  • the non-inventive embodiment according to figure 9 basically has a sample application opening (4) further to the outside, i.e. away from the axis. This can be advantageous if the test element (1) has already been placed in a measuring device for filling with sample. In this case, the sample application opening (4) can be made accessible to the user more easily than is the case with test elements according to FIG Figure 1 to 8 is possible where the sample application opening (4) is arranged close to the axis (ie away from the outer edge of the test element).
  • the separation of the cellular sample components from the sample liquid takes place before the sample comes into contact with reagents.
  • This has the advantage that the use of whole blood or plasma or serum as sample material does not lead to different measurement results, since plasma or serum always comes into contact with the reagents first and the dissolution/incubation/reaction behavior should therefore be practically the same .
  • the liquid sample is first applied to the test element (1) via the sample application opening (4). The sample is then transported further from the sample application opening (4) into the channel structures by capillary forces and/or centrifugal forces.
  • the sample after transferred to the sample application opening (4) in a sample dosing section (5) and then causes a serum/plasma separation from the whole blood by rotation.
  • the undesired cellular sample components essentially erythrocytes, collect in the erythrocyte trap (11), while serum or plasma collect in zone (10).
  • the serum is removed from the zone (10) via a capillary and transported further into the channel structure (9), where dried reagents are housed and are dissolved when the sample flows in.
  • the sample-reagent mixture from the channel structure (9) can overcome the capillary stop (14) and thus reach the membrane (12) via the channel (15).
  • the sample-reagent mixture is transported across the membrane (12) into the waste fleece (13).
  • the embodiments according to figure 2 and figure 4 differ in that in figure 2 a container for excess sample (7) is provided, while the embodiment according to figure 4 does not provide such a function. As in the embodiment according to figure 3 a dosed application of the sample is advisable here.
  • FIG 8 shows a variant of the embodiments according to FIG figures 2 and 4 .
  • the sample is transferred by centrifugation into an erythrocyte separation structure (10, 11) immediately after the sample application opening (4) after passing through a first geometric valve (19).
  • the area marked (10) serves as a serum/plasma collection zone (10) from which serum or plasma freed from cells is passed on via a capillary channel (21) after centrifugation.
  • Chamber (20) serves as a collection reservoir for excess serum or plasma, which may flow out of the serum/plasma collection zone (10) after the sample metering section (5) has been completely filled. All other functions and structures are analogous to the Figures 1 to 7 .
  • the hydrophilic or hydrophobic properties of the surfaces of the test element (1) By specifically designing the hydrophilic or hydrophobic properties of the surfaces of the test element (1), it can be achieved that the sample liquid and/or Washing liquids either only with the help of rotation and the resulting centrifugal forces or by a combination of centrifugal forces and capillary forces. The latter requires at least partially hydrophilized surfaces in the fluidic structures of the test element (1).
  • test elements according to the invention according to figures 6 , 7 and, 8th an automatic functionality that allows a relatively accurate measurement of a sample aliquot from a sample applied in excess to the test element (so-called "metering system"). It essentially comprises the elements 4, 5, 6 and 7 of the test elements (1) shown.
  • Sample liquid in particular whole blood, is fed to the test element (1) via the sample application opening (4). Driven by capillary forces and/or centrifugal forces, the sample liquid fills the sample dosing zone (5).
  • the sample dosing zone (5) can also contain the dried reagents.
  • the capillary stops (6 and 8) can be designed, for example, as a hydrophobic barrier or as geometric/non-closing valves.
  • the delimitation of the sample metering zone (5) by the capillary stops (6, 8) ensures that a defined sample volume is taken up and passed on to the fluidic zones that are downstream of the sample metering zone (5).
  • any excess sample is transferred from the sample application opening (4) and the sample dosing zone (5) into the container for excess sample (7), while the measured amount of sample from the sample dosing zone (5) flows into the channel (9 ) is transferred.
  • it is also possible to use other forces instead of the force generated by rotation that moves the sample e.g. B. by applying an overpressure on the sample inlet side or a negative pressure on the sample outlet side. Consequently, the metering system shown is not necessarily tied to rotatable test elements, but can also be used in other test elements.
  • a disadvantage of the design of the metering system according to U.S. 5,061,381 is that with sample volumes that are applied to the test element and that correspond exactly to the minimum volume or are only slightly larger than the minimum volume, there is a risk that the dosing zone will be underdosed, since a proportion of the sample always flows unhindered into the "overflow chamber" flows.
  • a capillary stop hydrophobic barrier or a geometric or non-closing valve
  • the capillary stop prevents the sample from flowing into the zone for sample excess before the sample dosing zone is completely filled. Even with sample volumes that are applied to the test element and which correspond exactly to the minimum volume or are only slightly larger than the minimum volume, this ensures that the sample dosing zone is completely filled.
  • a transition from less deep to deeper structures is generally only possible for liquids in the fluidic structures if an external force (e.g. centrifugal force) acts.
  • Such transitions act as geometric (non-closing) valves.
  • the substrate (2) also has the sample and buffer feed openings (4, 16), ventilation openings (17) and the central recess (3).
  • the surface of the substrate (2), which has the fluidic structures, can then be cleaned and rendered hydrophilic by means of plasma treatment.
  • Some of the reagents required for analyte detection e.g. biotinylated anti-analyte antibodies and anti-analyte antibodies marked with a fluorescent label
  • the reagent solutions are composed as follows: Biotinylated Antibody: 50mM Mes pH 5.6; 100 ⁇ g/ml biotinylated monoclonal anti-troponin T antibodies Labeled antibodies 50 mM Hepes pH 7.4, with squaric acid derivative fluorescent dye JG9 (embedded in polystyrene latex particles) fluorescently labeled anti-troponin T monoclonal antibody (0.35 percent solution)
  • the porous matrix (12) (nitrocellulose membrane on plastic carrier film; 21 ⁇ 5 mm 2 ; reinforced with 100 micron PE film cellulose nitrate membrane (type CN 140 from Sartorius, Germany)), in which an analyte detection line (polystreptavidin) and a control line (polyhapten) were introduced by means of line impregnation (see below), inserted and, if necessary, fixed with double-sided adhesive tape.
  • aqueous streptavidin solution (4.75 mg/ml) is applied by line dosing to the cellulose nitrate membrane described above.
  • the dosing is selected (dosing quantity 0.12 ml/min, web speed 3 m/min) that a line with a width of approx. 0.4 mm arises.
  • This line serves to identify the analyte to be determined and contains approx. 0.95 ⁇ g streptavidin per membrane.
  • an aqueous 0.3 mg/ml troponin T polyhapten solution is applied under identical dosing conditions.
  • This line serves as a function control of the test element and contains approx. 0.06 ⁇ g polyhapten per test.
  • the cover (foil or injection-molded part without fluidic structures, which can optionally be made hydrophilic) is then applied and optionally permanently connected to the substrate (2), preferably glued, welded or clipped.
  • the substrate is turned and the waste fleece (13) (13 ⁇ 7 ⁇ 1.5 mm 3 fleece made of 100 parts glass fiber (diameter 0.49 to 0.58 ⁇ m, length 1000 ⁇ m) and 5 Parts of polyvinyl alcohol fibers (Kuralon VPB 105-2 from Kuraray) with a basis weight of about 180 g/m 2 ) are inserted, which is then fixed in the substrate (2) by means of an adhesive tape.
  • the waste fleece (13) 13 ⁇ 7 ⁇ 1.5 mm 3 fleece made of 100 parts glass fiber (diameter 0.49 to 0.58 ⁇ m, length 1000 ⁇ m) and 5 Parts of polyvinyl alcohol fibers (Kuralon VPB 105-2 from Kuraray) with a basis weight of about 180 g/m 2 ) are inserted, which is then fixed in the substrate (2) by means of an adhesive tape.
  • the quasi-self-dosing sample receiving unit (comprising the sample application opening (4), the sample dosing section (5) and the structures delimiting it (capillary stop (8) and container for excess sample (7)) ensures that, regardless of the amount applied to the test element (1). sample amount (if it exceeds a minimum volume (in this example 27 ⁇ l)) when using different test elements, the same sample amounts can be used reproducibly.
  • reagents By distributing the reagents throughout the sample dosing section (5), preferably in the form of alternating reagent spots (i.e. small, almost punctiform reagent areas), in combination with rapid filling of the sample dosing section (5) with sample, a homogeneous dissolution of the reagents in the entire sample volume is achieved , especially if the filling is much faster than the release.
  • the reagents are practically completely dissolved, so that here again an increased reproducibility compared to conventional test elements based on absorbent materials (test strips, bio-disks with reagent pads, etc.) is observed.
  • the measurement data are in figure 10 played back.
  • the respective measurement signals (in counts) are plotted against the concentration of recombinant troponin T (c(TnT)) in [ng/ml]).
  • the actual troponin T concentration in the whole blood samples was determined using the "Roche Diagnostics Elecsys Troponin T Test" reference method.
  • the detection limit for the quantitatively evaluable measuring range with the test element according to the invention is shifted down (cardiac troponin T: 0.1 ng / ml; invention: 0.02 ng / ml) and the dynamic measuring range extended upwards (cardiac troponin T: 2.0 ng/ml; invention: 20 ng/ml).
  • the test elements according to the invention show improved precision.

Description

Die Erfindung betrifft ein Testelement, das im Wesentlichen scheibenförmig und eben ist und um eine vorzugsweise zentrale Achse, die senkrecht zur scheibenförmigen Testelementebene liegt, rotierbar ist, enthaltend eine Probenaufgabeöffnung zur Aufgabe einer flüssigen Probe, eine kapillaraktive Zone, welche eine poröse, saugfähige Matrix ist, und einen Probenkanal, der von der Probenaufgabeöffnung zur kapillaraktiven Zone reicht. Weiterhin betrifft die Erfindung ein Verfahren zur Bestimmung eines Analyten mit Hilfe des Testelements.The invention relates to a test element that is essentially disk-shaped and flat and can be rotated about a preferably central axis that is perpendicular to the disk-shaped test element plane, containing a sample application opening for application of a liquid sample, a capillary-active zone, which is a porous, absorbent matrix , and a sample channel that extends from the sample application opening to the capillary-active zone. Furthermore, the invention relates to a method for determining an analyte using the test element.

Prinzipiell kann man die Systeme, die zur Analyse von flüssigen Probenmaterialien oder von Probenmaterialien, die in flüssige Form überführt werden können, in zwei Klassen unterteilen: zum einen gibt es Analysensysteme, die ausschließlich mit sog. Nassreagenzien arbeiten, zum anderen gibt es Systeme, die mit sog. Trockenreagenzien arbeiten. Insbesondere in der medizinischen Diagnostik, aber auch in der Umwelt- und Prozessanalytik, haben sich im Bereich der fest eingerichteten Labors vor allem die ersteren Systeme durchgesetzt, während letztere Systeme vor allem im Bereich der Analytik "vor Ort" eingesetzt werden.In principle, the systems used to analyze liquid sample materials or sample materials that can be converted into liquid form can be divided into two classes: on the one hand there are analysis systems that work exclusively with so-called wet reagents, on the other hand there are systems that work with so-called dry reagents. Especially in medical diagnostics, but also in environmental and process analysis, the former systems have prevailed in the field of permanently equipped laboratories, while the latter systems are mainly used in the field of "on-site" analysis.

Im Bereich der medizinischen Diagnostik werden Analysensysteme mit Trockenreagenzien insbesondere in Form von sog. Testträgern, z. B. Teststreifen angeboten. Prominente Beispiele hierfür sind Teststreifen für die Bestimmung des Blutzuckerwertes oder Teststreifen für Urinuntersuchungen. Solche Testträger integrieren in der Regel mehrere Funktionen (z. B. die Bevorratung von Reagenzien in getrockneter Form oder - wenn auch seltener - in Lösung; die Abtrennung von unerwünschten Probenbestandteilen, insbesondere von roten Blutkörperchen aus Vollblut; bei Immunoassays, die sog. Bound-Free-Trennung; die Dosierung von Probenvolumina; den Transport von Probenflüssigkeit von außerhalb eines Gerätes in ein Gerät hinein; die Steuerung der zeitlichen Abfolge von einzelnen Reaktionsschritten; usw.). Die Funktion des Probentransports wird dabei oft mittels saugfähiger Materialien (z. B. Papiere oder Vliese), mittels Kapillarkanälen oder durch Anwendung äußerer Triebkräfte (wie z. B. Druck; Saugen) oder mittels Zentrifugalkraft bewerkstelligt. Scheibenförmige Testträger, sog. LabDiscs oder optische BioDiscs, führen die Idee des gesteuerten Probentransports mittels Zentrifugalkraft (Fliehkraft) fort. Solche scheibenförmigen, CompactDisc-ähnlichen Testträger ermöglichen die Miniaturisierung durch Nutzung von mikrofluidischen Strukturen und gleichzeitig die Parallelisierung von Vorgängen durch wiederholtes Aufbringen identischer Strukturen für die parallele Abarbeitung ähnlicher Analysen aus einer Probe bzw. identische Analysen aus unterschiedlichen Proben. Gerade im Bereich der optischen BioDiscs ist die Integration von optisch gespeicherten digitalen Daten für die Identifizierung der Testträger oder die Steuerung der Analysensysteme auf den optischen BioDiscs möglich.In the field of medical diagnostics, analysis systems with dry reagents are used, in particular in the form of so-called test carriers, e.g. B. offered test strips. Prominent examples of this are test strips for determining blood sugar levels or test strips for urine tests. Such test carriers usually integrate several functions (e.g. the storage of reagents in dried form or - albeit less frequently - in solution; the separation of unwanted sample components, in particular red blood cells from whole blood; in immunoassays, the so-called bound Free separation; the dosing of sample volumes; the transport of sample liquid from outside a device into a device; the control of the chronological sequence of individual reaction steps; etc.). The function of sample transport is often accomplished by means of absorbent materials (e.g. paper or fleece), by means of capillary channels or by using external driving forces (e.g. pressure; suction) or by means of centrifugal force. Disk-shaped test carriers, so-called LabDiscs or optical BioDiscs, continue the idea of controlled sample transport using centrifugal force (centrifugal force). Such disk-shaped, CompactDisc-like test carriers enable miniaturization through the use of microfluidic structures and at the same time the parallelization of processes through repeated application of identical structures for the parallel processing of similar analyzes from one sample or identical analyzes from different samples. Especially in the area of optical BioDiscs, the integration of optically stored digital data for the identification of the test carrier or the control of the analysis systems on the optical BioDiscs is possible.

Neben der Miniaturisierung und Parallelisierung von Analysen und der Integration von digitalen Daten auf optische Discs haben BioDiscs im Allgemeinen den Vorteil, dass sie mittels etablierter Herstellverfahren hergestellt und mittels etablierter Auswertetechnologie gemessen werden können. Bei den chemischen und biochemischen Komponenten solcher optischen BioDiscs ist meist ein Rückgriff auf bekannte Chemie - und Biochemie-Komponenten - möglich. Nachteilig an den rein auf Zentrifugal- und Kapillarkräften beruhenden optischen LabDiscs oder Biodiscs ist, dass die Immobilisierung von Reagenzien schwer ist und die Nachweisgenauigkeit leidet. Insbesondere bei Nachweissystemen, die auf spezifischen Bindereaktionen beruhen, wie z. B. Immunoassays, fehlt im Vergleich zu herkömmlichen Teststreifensystemen die Volumenkomponente, insbesondere bei der sog. Bound-Free-Trennung.In addition to the miniaturization and parallelization of analyzes and the integration of digital data on optical discs, BioDiscs generally have the advantage that they can be manufactured using established manufacturing processes and measured using established evaluation technology. In the case of the chemical and biochemical components of such optical BioDiscs, it is usually possible to fall back on known chemical and biochemical components. The disadvantage of the optical LabDiscs or Biodiscs based purely on centrifugal and capillary forces is that it is difficult to immobilize reagents and the accuracy of detection suffers. Especially in detection systems based on specific binding reactions such. B. Immunoassays, the volume component is missing compared to conventional test strip systems, especially in the so-called. Bound-free separation.

Aus diesem Grund gibt es vor allem im Bereich der Immunoassays seit kurzem Ansätze, Hybride aus herkömmlichen Teststreifen und BioDiscs zu etablieren. Das Ergebnis sind BioDiscs mit Kanälen und kanalartigen Strukturen für den Flüssigkeitstransport einerseits und voluminösen saugfähigen Materialien in diesen Strukturen (zumindest teilweise) andererseits.For this reason, there have recently been attempts to establish hybrids of conventional test strips and BioDiscs, especially in the field of immunoassays. The result are BioDiscs with channels and channel-like structures for liquid transport on the one hand and bulky absorbent materials in these structures (at least in part) on the other.

WO 2005/001429 (Phan et al. ) beschreibt optische Bio-Disks, die in Teilen des Kanalsystems Membranstücke als Reagenzienträger aufweisen. Die Reagenzien werden von einer der Disk zugeführten Flüssigkeit gelöst und führen so zu gepufferten Reagenzlösungen, die dann mit der Probe in Kontakt gebracht werden. WO 2005/001429 (Phan et al. ) describes optical bio-disks that have pieces of membrane as reagent carriers in parts of the channel system. The reagents are dissolved by a liquid fed to the disk, resulting in buffered reagent solutions which are then contacted with the sample.

Aus WO 2005/009581 (Randall et al. ) sind optische Bio-Disks bekannt, die zum Bewegen einer Probenflüssigkeit, zum Abtrennen partikulärer Probenbestandteile, zum Tragen von Reagenzien und zur Analyse der Probe saugfähige Membranen oder Papiere enthalten. Die Probe wird nahe dem äußeren Rand der Bio-Disk zunächst auf eine Blutabtrennmembran aufgebracht und wandert radial durch diese hindurch zu einem Reagenzienpapier, das näher am Zentrum der Bio-Disk untergebracht ist. Danach wird die Probe wieder radial nach außen, d. h. vom Zentrum der Bio-Disk weg, bewegt und durchströmt eine so genannte Analysenmembran. Die Bewegung nach außen erfolgt dabei über Chromatographie, die durch Rotation der Bio-Disk und die dadurch auf die Probe wirkende Zentrifugalkraft unterstützt wird.Out of WO 2005/009581 (Randall et al. ) optical bio-disks are known which contain absorbent membranes or papers for moving a sample liquid, for separating particulate sample components, for carrying reagents and for analyzing the sample. The sample is first applied to a blood separation membrane near the outer edge of the bio-disk and migrates radially therethrough to a reagent paper located closer to the center of the bio-disk. The sample is then moved radially outwards again, ie away from the center of the Bio-Disk, and flows through a so-called analysis membrane. The movement outwards takes place via chromatography, which is supported by the rotation of the Bio-Disk and the centrifugal force that acts on the sample as a result.

US 2002/0076354 A1 (Cohen ) offenbart optische Bio-Disks, die neben einem Kanalsystem für den Transport einer flüssigen Probe eine so genannte "Abfangschicht" (engl. "capture layer") aufweisen. Letztere kann beispielsweise aus Nitrozellulose bestehen. Die "Abfangschicht" wird mit Hilfe von Zentrifugalkräften beim Rotieren der Disk durchströmt. US 2002/0076354 A1 (Cohen ) discloses optical bio-disks which, in addition to a channel system for transporting a liquid sample, have what is known as a “capture layer”. The latter can consist of nitrocellulose, for example. The "interceptor layer" is flown through with the help of centrifugal forces when the disk rotates.

US 2005/0014249 (Staimer et al. ) und US 2005/0037484 (Staimer et al. ) beschreiben optische Bio-Disks mit in Kanälen integrierten porösen Materialien, die als chromatographische Trennmedien wirken. Die Probenflüssigkeit wird mittels Zentrifugalkraft von einer zentrumsnahen Probenaufgabestelle durch die Trennmedien nach außen gezwungen und fließt anschließend nach Passieren eines Filters wieder in einem Kanal radial nach innen. US 2005/0014249 (Staimer et al. ) and US 2005/0037484 (Staimer et al. ) describe optical bio-disks with porous materials integrated into channels that act as chromatographic separation media. The sample liquid is forced outwards through the separating media from a sample application point near the center by means of centrifugal force and then flows radially inwards again in a channel after passing through a filter.

US 2004/0265171 (Pugia et al. ) beschreibt ein Testelement mit Flüssigkeitskanälen, bei dem Probenflüssigkeit mittels eines Wechselspiels von Kapillarkraft und Zentrifugalkraft transportiert wird. Innerhalb eines Flüssigkeitskanals kann ein Nitrocellulosestreifen vorgesehen sein, der ein Agglutinationsreagenz trägt, das mit dem Analyten reagiert und so zur Bildung von sogenannten Banden führen kann, die schließlich optisch vermessen werden können und so zur Bestimmung einer Analytkonzentration in der Probe dienen. Mit Hilfe des Nitrocellulosestreifens ist es möglich, die Probenflüssigkeit sowohl parallel zur Zentrifugalkraft als auch der Zentrifugalkraft entgegengesetzt zu transportieren, insbesondere wenn ein weiteres absorptionsfähiges Material, beispielsweise ein saugfähiges Nitrocellulosepapier, zur Unterstützung der Saugwirkung verwendet wird. US 2004/0265171 (Pugia et al. ) describes a test element with liquid channels in which the sample liquid is transported by means of an interplay of capillary force and centrifugal force. A nitrocellulose strip can be provided within a liquid channel, which carries an agglutination reagent which reacts with the analyte and can thus lead to the formation of so-called bands which can finally be measured optically and thus serve to determine an analyte concentration in the sample. With the help of the nitrocellulose strip it is possible to transport the sample liquid both parallel to the centrifugal force and in the opposite direction to the centrifugal force, especially when another absorbent material, for example an absorbent nitrocellulose paper, is used to support the suction effect.

WO 99/58245 (Larsson et al. ) beschreibt mikrofluidische Testelemente, bei denen die Bewegung der Flüssigkeiten durch unterschiedliche Oberflächen mit unterschiedlichen Oberflächeneigenschaften, wie z. B. unterschiedliche Hydrophilie, gesteuert wird. WO 99/58245 (Larsson et al. ) describes microfluidic test elements in which the movement of liquids through different surfaces with different surface properties, such as e.g. B. different hydrophilicity is controlled.

US 5,242,606 (Braynin et al. ) offenbart kreisförmige, scheibenartige Rotoren für Zentrifugen, die über Kanäle und Kammern zum Transport von Probenflüssigkeiten verfügen. US 5,242,606 (Braynin et al. ) discloses circular, disk-like rotors for centrifuges that have channels and chambers for transporting sample liquids.

US 2005/084422 (Kido et al. ) beschreibt Testelemente mit mikrofluidischen Strukturen, welche unter anderem Kammern zum Einbringen der Probe sowie Kammern zum Einbringen eines Verdünnungspuffers aufweisen, welche jeweils mikrofluidisch mit Mischkammern verbunden sind, aus welchen ein weiterer Kanal abzweigt, welcher mit einer Analysekammer in Verbindung steht. US 2005/084422 (Kido et al. ) describes test elements with microfluidic structures, which have, among other things, chambers for introducing the sample and chambers for introducing a dilution buffer, which are each microfluidically connected to mixing chambers, from which another channel branches off, which is connected to an analysis chamber.

US 5,160,702 (Kopf-Sill et al. ) offenbart mikrofluidische Strukturen, welche eine Probenkammer und eine Verdünnungskammer als getrennte Teilstrukturen beschreiben, die in eine gemeinsame Mischkammer münden. Aus dieser Mischkammer führt ein Kanal zu den fluidischen Bereichen, in welchen die Detektion stattfindet. US 5,160,702 (Kopf-Sill et al. ) discloses microfluidic structures that describe a sample chamber and a dilution chamber as separate substructures that open into a common mixing chamber. A channel leads from this mixing chamber to the fluidic areas in which the detection takes place.

Nachteilig an den Konzepten des Standes der Technik ist, dass gerade für spezifische Bindungsassays, wie z. B. Immunoassays eine gezielte Steuerung der Reaktions- und Verweilzeiten der Probenflüssigkeit nach Aufnahme der Reagenzien und nach dem Einströmen in die poröse, saugfähige Matrix nicht möglich ist.A disadvantage of the concepts of the prior art is that just for specific binding assays such. B. Immunoassays a targeted control of the reaction and residence times of the sample liquid after receiving the reagents and after flowing into the porous, absorbent matrix is not possible.

Aufgabe der Erfindung ist es, die Nachteile des Standes der Technik zu beseitigen.The object of the invention is to eliminate the disadvantages of the prior art.

Diese Aufgabe wird durch den Gegenstand der Erfindung gelöst.This object is achieved by the subject matter of the invention.

Gegenstand der Erfindung ist ein Testelement gemäß Anspruch 1, ein System gemäß Anspruch 11 sowie ein Verfahren gemäß Anspruch 7. Vorteilhafte Ausgestaltungen und bevorzugte Ausführungsformen der Erfindung sind Gegenstand der abhängigen Patentansprüche.The subject matter of the invention is a test element according to claim 1, a system according to claim 11 and a method according to claim 7. Advantageous configurations and preferred embodiments of the invention are the subject matter of the dependent patent claims.

Das erfindungsgemäße Testelement ist im Wesentlichen scheibenförmig und eben. Es ist um eine vorzugsweise zentrale Achse, die senkrecht zur scheibenförmigen Testelementebene innerhalb des Testelements liegt, rotierbar. Typischerweise ist das Testelement eine kreisrunde Scheibe, vergleichbar einer Compactdisc. Die Erfindung ist jedoch nicht auf diese Form der Scheibe beschränkt, sondern kann ohne weiteres auch bei nicht-symmetrischen oder nicht-kreisförmigen Scheiben Verwendung finden.The test element according to the invention is essentially disc-shaped and flat. It is rotatable about a preferably central axis that is perpendicular to the disk-shaped test element plane within the test element. Typically, the test element is a circular disc, comparable to a compact disc. However, the invention is not limited to this shape of the disk, but can also be used with non-symmetrical or non-circular disks.

Als Bestandteile enthält das Testelement zunächst eine Probenaufgabeöffnung, in die eine flüssige Probe pipettiert oder auf andere Weise eingebracht werden kann. Die Probenaufgabeöffnung ist achsennah (d. h. nahe am Zentrum der Scheibe). Die Probenaufgabeöffnung kann dabei direkt in einen Probenkanal münden. Es ist jedoch auch möglich, dass die Probenaufgabeöffnung zunächst in ein dahinter liegendes Reservoir mündet, in das die Probe einströmt, bevor sie in den Probenkanal weiterfließt. Durch geeignete Dimensionierung kann dafür gesorgt werden, dass die Probe von der Probenaufgabenöffnung ohne weiteres Zutun in den nachfolgenden fluidischen Strukturen hineinströmt. Dazu kann eine Hydrophilisierung der Oberflächen der fluidischen Strukturen notwendig sein und/oder die Verwendung von Strukturen, die das Entstehen von Kapillarkräften fördern. Es ist jedoch auch möglich, das Befüllen der fluidischen Strukturen des erfindungsgemäßen Testelements aus der Probenaufgabeöffnung erst nach Einwirken einer äußeren Kraft, vorzugsweise einer Zentrifugalkraft, zu ermöglichen.As a component, the test element initially contains a sample application opening into which a liquid sample can be pipetted or introduced in some other way. The sample application port is near-axis (ie, close to the center of the disk). The sample application opening can open directly into a sample channel. However, it is also possible for the sample application opening to initially open into a reservoir located behind it, into which the sample flows before it continues to flow into the sample channel. Appropriate dimensioning can ensure that the sample flows from the sample application opening into the downstream fluidic structures without further action. This can be done by hydrophilizing the surfaces of the fluidic structures be necessary and/or the use of structures that promote the development of capillary forces. However, it is also possible to allow the fluidic structures of the test element according to the invention to be filled from the sample application opening only after the action of an external force, preferably a centrifugal force.

Weiterhin enthält das Testelement eine kapillaraktive Zone in Form einer porösen, saugfähigen Matrix, die zumindest einen Teil der flüssigen Probe aufnimmt. Die kapillaraktive Zone weist ein achsenfernes erstes Ende und ein achsennahes zweites Ende auf.Furthermore, the test element contains a capillary-active zone in the form of a porous, absorbent matrix that absorbs at least part of the liquid sample. The capillary-active zone has a first end remote from the axis and a second end close to the axis.

Das Testelement besitzt darüber hinaus einen Probenkanal, der von der Probenaufgabeöffnung zum achsenfernen ersten Ende der kapillaraktiven Zone, welche eine poröse, saugfähige Matrix ist, reicht. Der Probenkanal durchläuft dabei mindestens einmal einen achsennahen Bereich, der näher an der vorzugsweise zentralen Achse liegt als das achsenferne erste Ende der kapillaraktiven Zone.The test element also has a sample channel that extends from the sample application opening to the first end of the capillary-active zone, which is a porous, absorbent matrix and is remote from the axis. The sample channel runs at least once through a region close to the axis which is closer to the preferably central axis than the first end of the capillary-active zone which is remote from the axis.

Wesentlich am Testelement der vorliegenden Erfindung ist, dass die kapillaraktive Zone, welche eine poröse, saugfähige Matrix ist, ein achsennahes zweites Ende aufweist. Das achsenferne erste Ende der kapillaraktiven Zone steht dabei mit dem Probenkanal, in dem die Probe durch Kapillarkräfte und/oder Zentrifugalkräfte und/oder andere externe Kräfte, wie Über- oder Unterdruck, bewegt werden kann, in Kontakt. Sobald die flüssige Probe - ggf. nach Aufnahme von Reagenzien und/oder Verdünnungsmedien und/oder dem Ablaufen von Vorreaktionen - das achsenferne erste Ende der kapillaraktiven Zone erreicht, wird sie in die in sie aufgenommen und durch die Kapillarkräfte (die im Falle einer porösen saugfähigen Matrix auch als Saugkräfte bezeichnet werden können) durch sie hindurch transportiert.The essential feature of the test element of the present invention is that the capillary-active zone, which is a porous, absorbent matrix, has a second end close to the axis. The first end of the capillary-active zone that is remote from the axis is in contact with the sample channel in which the sample can be moved by capillary forces and/or centrifugal forces and/or other external forces such as positive or negative pressure. As soon as the liquid sample - possibly after the absorption of reagents and/or dilution media and/or the expiry of preliminary reactions - reaches the first end of the capillary-active zone remote from the axis, it is absorbed into it and, by the capillary forces (which in the case of a porous absorbent Matrix can also be referred to as suction forces) transported through it.

Die kapillaraktive Zone ist eine poröse, saugfähige Matrix, insbesondere ein Papier, eine Membran oder ein Vlies.The capillary-active zone is a porous, absorbent matrix, in particular a paper, a membrane or a fleece.

Die kapillaraktive Zone, welche eine poröse, saugfähige Matrix ist, enthält eine oder mehrere Zonen mit immobilisierten Reagenzien.The capillary-active zone, which is a porous, bibulous matrix, contains one or more zones with immobilized reagents.

In der kapillaraktiven Zone, welche eine poröse, saugfähige Matrix ist, sind spezifische Bindereagenzien, beispielsweise spezifische Bindepartner, wie Antigene, Antikörper, (Poly-)Haptene, Streptavidin, Polystreptavidin, Liganden, Rezeptoren, Nukleinsäurestränge ("capture probes") und dergleichen mehr, immobilisiert. Sie dienen dazu, aus der durch die kapillaraktive Zone fließenden Probe gezielt den Analyten oder vom Analyten abgeleitete und mit diesem in Beziehung stehende Spezies abzufangen. Diese Bindepartner liegen in Form von Linien, Punkten, Mustern in oder auf dem Material der kapillaraktiven Zone immobilisiert vor So kann beispielsweise im Fall von Immunoassays ein Antikörper gegen den Analyten auf der Oberfläche der kapillaraktiven Zone, welcheeine poröse, saugfähige Matrix ist, immobilisiert vorliegen, der dann den Analyten (in diesem Fall ein Antigen oder Hapten) aus der Probe abfangen und ebenfalls in der kapillaraktiven Zone immobilisieren. Der Analyt kann dabei durch weitere Reaktionen, beispielsweise durch weiteres Inkontaktbringen mit einem markierten bindefähigen Partner, detektierbar gemacht werden, beispielsweise durch ein visuell, optisch oder fluoreszenzoptisch nachweisbares Label.In the capillary-active zone, which is a porous, absorbent matrix, are specific binding reagents, for example specific binding partners such as antigens, antibodies, (poly)haptens, streptavidin, polystreptavidin, ligands, receptors, nucleic acid strands ("capture probes") and the like , immobilized. They serve to selectively capture the analyte or species derived from the analyte and related thereto from the sample flowing through the capillary-active zone. These binding partners are immobilized in the form of lines, dots, patterns in or on the material of the capillary-active zone. For example, in the case of immunoassays, an antibody against the analyte can be immobilized on the surface of the capillary-active zone, which is a porous, absorbent matrix, which then capture the analyte (in this case an antigen or hapten) from the sample and also immobilize it in the capillary-active zone. The analyte can be made detectable by further reactions, for example by further bringing it into contact with a labeled partner capable of binding, for example by a visually, optically or fluorescence-optically detectable label.

In einer bevorzugten Ausgestaltung des erfindungsgemäßen Testelements grenzt die kapillaraktive Zone, welche eine poröse, saugfähige Matrix ist, mit dem achsennahen zweiten Ende an ein weiteres saugfähiges Material oder eine saugfähige Struktur, so dass dieses bzw. diese Flüssigkeit aus der Zone aufnehmen kann. Typischerweise überlappen die poröse saugfähige Matrix und das weitere Material sich zu diesem Zweck geringfügig. Das weitere Material bzw. die weitere saugfähige Struktur dient dabei einerseits zur Unterstützung der Saugwirkung der kapillaraktiven Zone, welche eine poröse saugfähige Matrix ist, andererseits als Aufnahmezone für Flüssigkeit, die bereits die kapillaraktive Zone durchlaufen hat. Das weitere Material kann dabei aus denselben oder unterschiedlichen Materialien wie die Matrix bestehen. Beispielsweise kann die Matrix eine Membran sein und das weitere saugfähige Material ein Vlies oder ein Papier. Andere Kombinationen sind natürlich ebenso möglich.In a preferred embodiment of the test element according to the invention, the capillary-active zone, which is a porous, absorbent matrix, adjoins another absorbent material or an absorbent structure with the second end near the axis, so that this or this liquid can be absorbed from the zone. Typically, the porous bibulous matrix and the other material overlap slightly for this purpose. The additional material or the additional absorbent structure serves on the one hand to support the suction effect of the capillary-active zone, which is a porous absorbent matrix, and on the other hand as a receiving zone for liquid that has already passed through the capillary-active zone. The further material can consist of the same or different materials as the matrix. For example, the matrix can be a membrane and the other absorbent material can be a fleece or paper. Other combinations are of course also possible.

Das erfindungsgemäße Testelement zeichnet sich in einer bevorzugten Ausführungsform dadurch aus, dass der Probenkanal Zonen unterschiedlicher Dimensionen und/oder für unterschiedliche Funktionen enthält. Beispielsweise kann der Probenkanal eine Zone enthalten, die in der Probe lösliche oder in der Probe suspendierbare Reagenzien enthält. Diese können beim Ein- oder Durchströmen der flüssigen Probe in dieser gelöst oder suspendiert werden und eine Reaktion mit dem Analyten in der Probe oder mit anderen Probenbestandteilen eingehen.In a preferred embodiment, the test element according to the invention is characterized in that the sample channel has zones of different dimensions and/or for contains different functions. For example, the sample channel can contain a zone containing sample-soluble or sample-suspendable reagents. These can be dissolved or suspended in the liquid sample as it flows in or through it and react with the analyte in the sample or with other sample components.

Die unterschiedlichen Zonen im Probenkanal können sich auch dadurch unterscheiden, dass es Zonen mit Kapillaraktivität gibt und solche ohne. Darüber hinaus können Zonen mit hoher Hydrophilie und niedriger Hydrophilie enthalten sein. Die einzelnen Zonen können quasi nahtlos ineinander übergeben oder durch gewisse Barrieren, beispielsweise Ventile, insbesondere nicht schließende Ventile, wie geometrische Ventile oder Hydrophobsperren voneinander getrennt sein.The different zones in the sample channel can also differ in that there are zones with capillary activity and zones without. In addition, zones with high hydrophilicity and low hydrophilicity can be included. The individual zones can pass into one another almost seamlessly or be separated from one another by certain barriers, for example valves, in particular non-closing valves such as geometric valves or hydrophobic barriers.

Die Reagenzien im Probenkanal liegen bevorzugt in getrockneter oder lyophilisierter Form vor. Es ist jedoch auch möglich, dass Reagenzien in flüssiger Form im erfindungsgemäßen Testelement vorliegen.The reagents in the sample channel are preferably in dried or lyophilized form. However, it is also possible for reagents to be present in liquid form in the test element according to the invention.

Die Reagenzien können in an sich bekannter Weise in das Testelement eingebracht werden. Bevorzugt enthält das Testelement mindestens zwei Schichten, eine Bodenschicht, in die die fluidischen Strukturen eingebracht sind und eine Deckschicht, die in der Regel außer den Einlassöffnungen für Flüssigkeiten und den Entlüftungsöffnungen keine weiteren Strukturen enthält. Das Einbringen von Reagenzien während der Herstellung des Testdevices erfolgt in der Regel bevor das Oberteil des Testelements (Deckschicht) auf das Unterteil (Bodenschicht) aufgebracht wird. Zu diesem Zeitpunkt liegen die fluidischen Strukturen im Unterteil offen, so dass eine Dosierung der Reagenzien in flüssiger oder getrockneter Form ohne weiteres möglich ist. Das Einbringen der Reagenzien kann dabei beispielsweise durch Drucken oder Dispensieren erfolgen. Es ist auch möglich, die Reagenzien dadurch in das Testelement einzubringen, dass sie in saugfähigen Materialien, wie Papieren, Vliesen oder Membranen imprägniert in das Testelement eingelegt werden. Nach dem Platzieren der Reagenzien und dem Einlegen der saugfähigen Materialien, beispielsweise der porösen, saugfähigen Matrix (Membran) und gegebenenfalls weiterer saugfähiger Materialien (Waste-Vlies etc.) werden Ober- und Unterteil des Testelements miteinander verbunden, beispielsweise verklipst, verschweißt, verklebt und dergleichen mehr.The reagents can be introduced into the test element in a manner known per se. The test element preferably contains at least two layers, a base layer into which the fluidic structures are introduced and a cover layer which generally contains no further structures apart from the inlet openings for liquids and the ventilation openings. The introduction of reagents during the manufacture of the test device usually takes place before the upper part of the test element (top layer) is applied to the lower part (bottom layer). At this point in time, the fluidic structures in the lower part are open, so that the reagents can easily be dosed in liquid or dried form. The reagents can be introduced, for example, by printing or dispensing. It is also possible to introduce the reagents into the test element by placing them in the test element, impregnated in absorbent materials such as paper, fleece or membranes. After placing the reagents and inserting the absorbent materials, for example the porous, absorbent matrix (membrane) and optionally other absorbent materials (waste fleece, etc.), the upper and lower parts of the test element are connected to one another, for example clipped, welded, glued and the like.

Alternativ ist es möglich, dass die Bodenschicht neben den fluidischen Strukturen auch die Einlassöffnungen für Flüssigkeiten und die Entlüftungsöffnungen aufweist. In diesem Fall kann die Deckschicht völlig ohne Öffnungen ausgebildet sein, gegebenenfalls mit Ausnahme einer zentralen Aussparung zur Aufnahme einer Antriebseinheit. Besonders in diesem Fall kann das Oberteil einfach aus einer Kunststofffolie bestehen, die auf das Unterteil aufgeklebt oder mit diesem verschweißt wird.Alternatively, it is possible that the bottom layer also has the inlet openings for liquids and the ventilation openings in addition to the fluidic structures. In this case, the cover layer can be formed entirely without openings, possibly with the exception of a central recess for accommodating a drive unit. Especially in this case, the upper part can simply consist of a plastic film that is glued to the lower part or welded to it.

Üblicherweise enthält der Probenkanal eine Zone zum Abtrennen partikulärer Bestandteile aus der flüssigen Probe. Insbesondere falls als Probenmaterial Blut oder andere Körperflüssigkeiten mit zellulären Bestandteilen verwendet werden, dient diese Zone dem Abtrennen der zellulären Probenbestandteile. Aus Blut kann so durch Abtrennen insbesondere der roten Blutkörperchen (Erythrozyten) nahezu farbloses Plasma oder Serum gewonnen werden, das sich für nachfolgende visuelle oder optische Nachweismethoden in der Regel besser eignet als das stark gefärbte Blut.The sample channel usually contains a zone for separating particulate components from the liquid sample. In particular, if blood or other body fluids with cellular components are used as the sample material, this zone serves to separate the cellular sample components. By separating the red blood cells (erythrocytes), in particular, almost colorless plasma or serum can be obtained from blood, which is generally more suitable for subsequent visual or optical detection methods than the strongly colored blood.

Vorzugsweise erfolgt das Abtrennen zellulärer Probenbestandteile durch Zentrifugation, d. h. durch schnelles Rotieren des Testelements nach Befüllen mit flüssiger Probe. Das erfindungsgemäße Testelement enthält zu diesem Zweck geeignet dimensionierte und geometrisch gestaltete Kanäle und/oder Kammern. Insbesondere enthält das Testelement für die Abtrennung von zellulären Blutbestandteilen eine Erythrozytensammelzone (Erythrozytenkammer oder Erythrozytenfalle) und eine Serum- bzw. Plasmasammelzone (Serum- bzw. Plasmakammer).The cellular sample components are preferably separated off by centrifugation, i. H. by rapidly rotating the test element after filling it with a liquid sample. For this purpose, the test element according to the invention contains suitably dimensioned and geometrically designed channels and/or chambers. In particular, the test element for the separation of cellular blood components contains an erythrocyte collection zone (erythrocyte chamber or erythrocyte trap) and a serum or plasma collection zone (serum or plasma chamber).

Zur Steuerung des Fließens der Probenflüssigkeit im Testelement kann dieses vor allem im Probenkanal Ventile, insbesondere sogenannte nicht-schließende (non-closing) oder geometrische Ventile oder Hydrophobsperren, enthalten. Diese Ventile dienen als Kapillarstopps. Durch sie kann sichergestellt werden, dass eine gezielte zeitliche und räumliche Steuerung des Probenflusses durch den Probenkanal und die einzelne Zone des Testelements möglich wird.In order to control the flow of the sample liquid in the test element, this can have valves, especially so-called non-closing (non-closing) or geometric valves or hydrophobic barriers. These valves serve as capillary stops. They can ensure that a targeted temporal and spatial control of the sample flow through the sample channel and the individual zone of the test element is possible.

Insbesondere kann der Probenkanal eine Probendosierzone aufweisen, die ein genaues Abmessen der - zunächst im Überschuss aufgegebenen - Probe erlaubt. In einer bevorzugten Ausführungsform reicht die Probendosierzone von der Probenaufgabeöffnung über ein entsprechendes Stück eines Probenkanals bis zu einem Ventil in der Fluidikstruktur, insbesondere einem geometrischen Ventil oder einer Hydrophobsperre. Die Probenaufgabeöffnung kann dabei zunächst einen Überschuss an Probenmaterial aufnehmen. Die Probe fließt entweder getrieben durch Kapillarkräfte oder durch Zentrifugation angetrieben von der Probenaufgabenzone in die Kanalstruktur und füllt diese bis zum Ventil. Überschüssige Probe bleibt dabei zunächst in der Probenaufgabezone. Erst wenn die Kanalstruktur bis zum Ventil gefüllt ist, wird eine an die Probenaufgabezone angrenzende und vom Probenkanal abzweigende Probenüberschusskammer befüllt, beispielsweise durch Kapillarkräfte oder durch Zentrifugieren des Testelements. Dabei muss sichergestellt werden, dass durch geeignete Wahl des Ventils das abzumessende Probenvolumen vorerst nicht über das Ventil hinweg transportiert wird. Sobald überschüssige Probe in der entsprechenden Überlaufkammer abgefangen ist, befindet sich zwischen dem Ventil des Probenkanals auf der einen Seite und dem Eingang zur Probenüberlaufkammer auf der anderen Seite ein genau definiertes Probenvolumen. Durch Anlegen externer Kräfte, insbesondere durch Starten einer weiteren Zentrifugation wird dieses definierte Probenvolumen nun über das Ventil hinaus bewegt. Alle fluidischen Bereiche, die nach dem Ventil liegen und mit der Probe in Kontakt kommen, werden nun zunächst mit einem genau definierten Probenvolumen befüllt.In particular, the sample channel can have a sample dosing zone that allows the sample—which was initially applied in excess—to be measured precisely. In a preferred embodiment, the sample dosing zone extends from the sample application opening via a corresponding piece of a sample channel to a valve in the fluidic structure, in particular a geometric valve or a hydrophobic barrier. The sample application opening can initially take up an excess of sample material. The sample flows either driven by capillary forces or driven by centrifugation from the sample application zone into the channel structure and fills it up to the valve. Excess sample initially remains in the sample application zone. Only when the channel structure is filled up to the valve is a sample excess chamber adjacent to the sample application zone and branching off from the sample channel filled, for example by capillary forces or by centrifuging the test element. It must be ensured that the sample volume to be measured is not initially transported across the valve by selecting a suitable valve. As soon as excess sample is caught in the corresponding overflow chamber, there is a precisely defined sample volume between the valve of the sample channel on the one hand and the entrance to the sample overflow chamber on the other side. By applying external forces, in particular by starting another centrifugation, this defined sample volume is now moved beyond the valve. All fluidic areas that are downstream of the valve and come into contact with the sample are now initially filled with a precisely defined sample volume.

Der Probenkanal weist weiterhin einen Zufluss für weitere Flüssigkeiten außer der Probenflüssigkeit auf. Beispielsweise kann in den Probenkanal ein zweiter Kanal münden, der z. B. mit einer Wasch- oder Reagenzflüssigkeit befüllbar ist.The sample channel also has an inflow for other liquids apart from the sample liquid. For example, a second channel can open into the sample channel, the z. B. can be filled with a washing or reagent liquid.

Das erfindungsgemäße System aus Messgerät und Testelement dient zur Bestimmung eines Analyten in einer flüssigen Probe. Das Messgerät enthält dabei unter anderem zumindest einen Antrieb für die Rotation des Testelements und eine Auswerteoptik zum Auswerten des visuellen oder optischen Signals des Testelements.The system according to the invention made up of a measuring device and a test element is used to determine an analyte in a liquid sample. The measuring device contains, among other things, at least one drive for rotating the test element and evaluation optics for evaluating the visual or optical signal of the test element.

Vorzugsweise kann die Optik des Messgeräts zur Fluoreszenzmessung mit ortsaufgelöster Detektion eingesetzt werden. Bei zweidimensionaler, d. h. flächiger Auswerteoptik, wird typischerweise zur Beleuchtung des Nachweisbereichs des Testelements und ggf. der Anregung von optisch detektierbaren Markierungen eine LED oder ein Laser eingesetzt. Die Detektion des optischen Signals erfolgt mittels CMOS oder CCD (typischerweise mit 640 × 480 Pixel). Der Strahlengang ist direkt oder gefaltet (z. B. über Spiegel bzw. Prismen).The optics of the measuring device can preferably be used for fluorescence measurement with spatially resolved detection. With two-dimensional, i. H. flat evaluation optics, an LED or a laser is typically used to illuminate the detection area of the test element and, if necessary, to excite optically detectable markings. The optical signal is detected using CMOS or CCD (typically with 640 × 480 pixels). The beam path is direct or folded (e.g. via mirrors or prisms).

Bei anamorphotischer Optik wird typischerweise die Beleuchtung bzw. Anregung mittels Beleuchtungsstrich, der den Nachweisbereich des Testelements vorzugsweise senkrecht zu den Nachweis- und Kontrollstrichen beleuchtet, bewirkt. Die Detektion kann hier über eine Diodenzeile erfolgen. Für die Beleuchtung und Auswertung der 2. Dimension kann in diesem Fall die Drehbewegung des Testelements ausgenutzt werden, um so mit der Diodenzeile über den auszuwertenden flächigen Bereich des Testelements zu scannen.In the case of anamorphic optics, the illumination or excitation is typically effected by means of an illumination line, which illuminates the detection area of the test element, preferably perpendicular to the detection and control lines. The detection can take place here via a diode line. In this case, the rotational movement of the test element can be used for the illumination and evaluation of the 2nd dimension in order to scan with the diode line over the flat area of the test element to be evaluated.

Als Antrieb zum Rotieren und Positionieren des Testelements kann ein DC-Motor mit Encoder oder ein Schrittmotor eingesetzt werden.A DC motor with encoder or a stepper motor can be used as a drive for rotating and positioning the test element.

Vorzugsweise wird die Temperierung des Testelements im Gerät indirekt vorgenommen, beispielsweise durch Heizen oder Kühlen der Platte, auf die das scheibenförmige Testelement im Gerät aufliegt. Die Messung der Temperatur erfolgt vorzugsweise kontaktlos.The temperature of the test element in the device is preferably controlled indirectly, for example by heating or cooling the plate on which the disc-shaped test element rests in the device. The temperature is preferably measured without contact.

Das erfindungsgemäße Verfahren dient zum Nachweis eines Analyten in einer flüssigen Probe. Dabei wird die Probe zunächst in die Probenaufgabeöffnung des Testelements aufgegeben. Anschließend wird das Testelement - bevorzugt um seine vorzugsweise zentrale Achse - rotiert; es ist jedoch auch möglich, das erfindungsgemäße Verfahren so auszuführen, dass die Rotation um eine andere, möglicherweise auch außerhalb des Testelements gelegene Achse, erfolgt. Dabei wird die Probe von der Probenaufgabeöffnung zum achsenfernen Ende der kapillaraktiven Zone, welche eine poröse, saugfähige Matrix ist, transportiert. Die Rotation des Testelements wird dann soweit verlangsamt bzw. gestoppt, dass die Probe oder ein beim Durchströmen des Testelements aus der Probe gewonnenes Material (beispielsweise ein Gemisch der Probe mit Reagenzien, eine durch Vorreaktionen mit Reagenzien aus dem Testelement veränderte Probe, eine von bestimmten Bestandteilen befreite Probe wie Serum oder Plasma aus Vollblut nach Abtrennen der Erythrozyten, etc.) vom achsenfernen zum achsennahen Ende der kapillaraktiven Zone, welche eine poröse, saugfähige Matrix ist, transportiert wird. Der Analyt wird schließlich in der kapillaraktiven Zone, welche eine poröse, saugfähige Matrix ist, oder einer ihr nachgelagerten Zone visuell oder optisch nachgewiesen.The method according to the invention serves to detect an analyte in a liquid sample. The sample is first placed in the sample application opening of the test element. The test element is then rotated—preferably about its preferably central axis; however, it is also possible to carry out the method according to the invention in such a way that the rotation takes place around another axis, which may also be located outside of the test element. The sample is transported from the sample application opening to the end of the capillary-active zone, which is a porous, absorbent matrix, away from the axis. The rotation of the test element is then slowed down or stopped to such an extent that the sample or a material obtained from the sample as it flows through the test element (e.g. a mixture of the sample with reagents, a sample modified by pre-reactions with reagents from the test element, one of certain components liberated sample such as serum or plasma from whole blood after separating the erythrocytes, etc.) is transported from the end of the capillary-active zone that is remote from the axis to the end near the axis, which is a porous, absorbent matrix. Finally, the analyte is detected visually or optically in the capillary-active zone, which is a porous, absorbent matrix, or in a zone downstream of it.

Der Start der Wanderung der Probe (oder eines aus der Probe gewonnen Materials) durch die kapillaraktive Zone kann durch gezieltes Verlangsamen bzw. Stoppen der Rotation des Testelements zeitlich genau festgelegt und gesteuert werden. Nur wenn der Betrag Kapillarkraft (Saugkraft) in der kapillaraktiven Zone den Betrag der ihr entgegengesetzt gerichteten Zentrifugalkraft übersteigt, ist ein Bewegen der Probe in und durch kapillaraktive Zone möglich. Der Flüssigkeitstransport in der kapillaraktiven Zone lässt sich so gezielt starten. Beispielsweise kann so eine eventuelle Vorreaktion oder Vorinkubation der Probe oder eine Temperierung der Probe abgewartet werden, bevor die Rotation des Testelements so weit verlangsamt bzw. gestoppt wird, dass ein Einströmen der Probe in die kapillaraktive Zone ermöglicht wird.The start of the migration of the sample (or a material obtained from the sample) through the capillary-active zone can be precisely timed and controlled by deliberately slowing down or stopping the rotation of the test element. Only when the amount of capillary force (suction force) in the capillary-active zone exceeds the amount of the counter-acting centrifugal force is it possible for the sample to move into and through the capillary-active zone. The liquid transport in the capillary-active zone can be started in a targeted manner. For example, a possible pre-reaction or pre-incubation of the sample or a tempering of the sample can be awaited before the rotation of the test element is slowed down or stopped to such an extent that the sample can flow into the capillary-active zone.

Der Transport der Probe (oder eines aus der Probe gewonnen Materials) durch die kapillaraktive Zone kann durch erneute Rotation des Testelementes um seine vorzugsweise zentrale Achse gezielt verlangsamt oder gestoppt werden. Die bei der Rotation auftretenden Zentrifugalkräfte wirken der Kapillarkraft, die die Probenflüssigkeit vom achsenfernen Ende der kapillaraktiven Zone hin zum achsennahen Ende bewegen, entgegen. So ist eine gezielte Steuerung, insbesondere Verlangsamung, der Flussgeschwindigkeit der Probe in der kapillaraktiven Zone möglich, bis hin zur Umkehrung der Flussrichtung. Auf diese Weise kann beispielweise die Verweildauer der Probe in der kapillaraktiven Zone gesteuert werden.The transport of the sample (or a material obtained from the sample) through the capillary-active zone can be specifically slowed down or stopped by rotating the test element again about its preferably central axis. The centrifugal forces occurring during rotation counteract the capillary force, which moves the sample liquid from the end of the capillary-active zone that is remote from the axis to the end that is close to the axis. So is a targeted Control, in particular slowing down, of the flow rate of the sample in the capillary-active zone is possible, up to and including reversing the direction of flow. In this way, for example, the dwell time of the sample in the capillary-active zone can be controlled.

Insbesondere ist es also möglich, die mit dem erfindungsgemäßen Testelement und Verfahren die Wanderungsrichtung der flüssigen Probe und/oder der weiteren Flüssigkeit durch die kapillaraktive Zone durch die Rotation des Testelements umzukehren, wobei dies auch mehrfach möglich ist, um so ein Hin- und Herbewegen der Flüssigkeit zu erreichen. Durch ein gezieltes Wechselspiel von Kapillarkräften, die die Flüssigkeit in der kapillaraktiven Zone von außen (d. h. vom achsenfernen Ende) nach innen (d. h. zum achsennahen Ende) transportieren, und entgegengesetzt gerichteten Zentrifugalkräften ist es unter anderem möglich, die Bindungseffizienz der Bindereaktionen in der kapillaraktiven Zone zu steigern, lösliche Reagenzien besser zu lösen und mit der Probe oder anderen Flüssigkeiten zu durchmischen, oder die Wascheffizienz ("bound-free separation") bei Affinitätsassays zu erhöhen.In particular, it is therefore possible, with the test element and method according to the invention, to reverse the direction of migration of the liquid sample and/or the other liquid through the capillary-active zone by rotating the test element, whereby this is also possible several times in order to avoid moving the to reach liquid. Through a targeted interplay of capillary forces, which transport the liquid in the capillary-active zone from the outside (i.e. from the end remote from the axis) inwards (i.e. to the end close to the axis), and oppositely directed centrifugal forces, it is possible, among other things, to increase the binding efficiency of the binding reactions in the capillary-active zone to increase, to better dissolve soluble reagents and to mix them with the sample or other liquids, or to increase the washing efficiency ("bound-free separation") in affinity assays.

Insbesondere im Zusammenhang mit Immunoassays kann der Nachweis nach dem Prinzip des Sandwichassays oder in Form eines kompetitiven Tests durchgeführt werden.In particular in connection with immunoassays, the detection can be carried out according to the sandwich assay principle or in the form of a competitive test.

Es ist auch möglich, dass nach der Rotation des Testelements eine weitere Flüssigkeit auf das Testelement aufgegeben wird, die nach der Probe vom achsenfernen zum achsennahen Ende der kapillaraktiven Zone transportiert wird.It is also possible that, after the test element has been rotated, another liquid is applied to the test element, which is transported after the sample from the end of the capillary-active zone that is remote from the axis to the end near the axis.

Die weitere Flüssigkeit kann insbesondere ein Puffer, bevorzugt ein Waschpuffer, oder eine Reagenzflüssigkeit sein. Durch die Zugabe der weiteren Flüssigkeit kann insbesondere im Zusammenhang mit Immunoassays ein im Vergleich zu herkömmlichen Teststreifen verbessertes Signal-zu-Hintergrund-Verhältnis erzielt werden, da die Zugabe der Flüssigkeit quasi als Waschschritt nach der Bound-Free-Trennung eingesetzt werden kann.The further liquid can in particular be a buffer, preferably a washing buffer, or a reagent liquid. By adding the further liquid, an improved signal-to-background ratio can be achieved in comparison to conventional test strips, particularly in connection with immunoassays, since the addition of the liquid can be used as a kind of washing step after the bound-free separation.

Die Erfindung weist die folgenden Vorteile auf:
Die Kombination des Flüssigkeitstransports mittels Zentrifugalkräften und mittels Saugkräften in kapillaraktiven Zonen, insbesondere in porösen, saugfähigen Matrixmaterialien, erlaubt eine präzise Steuerung von Flüssigkeitsströmen. Erfindungsgemäß transportiert die kapillaraktive Zone, welche eine poröse, saugfähige Matrix ist, die Flüssigkeit von einem achsenfernen Ende hin zu einem achsennahen Ende, d. h. von der Peripherie des scheibenförmigen Testelements hin in Richtung der Drehachse. Die Zentrifugalkraft, die ebenfalls zum Bewegen der Flüssigkeiten benutzt werden kann, wirkt dieser Transportrichtung genau entgegen. Durch gezielte Steuerung der Rotation des Testelements (wie z. B. schnelleres/langsameres Rotieren, An- und Abschalten der Rotationsbewegung) ist es deshalb möglich, den Fluss der Probenflüssigkeit in der kapillaraktiven Zone, welche eine poröse, saugfähige Matrix ist, zu verlangsamen oder zu stoppen, so dass gezielte und definierte Reaktionsbedingungen eingehalten werden können. Gleichzeitig erlaubt die Verwendung der porösen, saugfähigen Matrix, die im Wesentlichen als Abfangmatrix für die Bound-Free-Separation in Immunoassays dient, ein effizientes Abfangen von Probenbestandteilen im Verlauf des Immunoassays. Insbesondere ist es durch das Wechselspiel von Zentrifugal- und Kapillarkräften (Saugkräften) möglich, ohne gesteigerten technischen Aufwand ein Hin- und Herbewegen der Probe über eine Reagenzienzone, insbesondere eine Zone mit immobilisierten Reagenzien (v. a. Abfangzone für heterogene Immunoassays), zu ermöglichen und so ein effektiveres Auflösen der Reagenzien, Mischen der Probe mit Reagenzien bzw. ein Abfangen von Probenbestandteilen an immobilisierten Bindepartnern zu gewährleisten. Gleichzeitig ist es möglich, Verarmungseffekte bei der Bindung von Probenbestandteilen (v. a. Analyt) an immobilisierte Bindepartner auszuschalten und so die Bindeeffizienz zu steigern (d. h. an Analyt verarmte Probenteile können beim Hin- und Herbewegen der Probe über die Abfangzone und/oder durch effizientes Durchmischen durch analytreiche Probenteile ersetzt werden). Darüber hinaus kann durch das Hin- und Herbewegen von Flüssigkeiten in der kapillaraktiven Zone ein möglichst effizientes Ausnutzen der kleinen Flüssigkeitsvolumina nicht nur für Reaktionszwecke (hier wird insbesondere das Probenvolumen ausgenutzt) sondern auch für Waschzwecke, beispielsweise zur besseren Diskriminierung von gebundenem und freiem Label in der Abfangzone, bewirkt werden. Dadurch lassen sich effektiv die Proben- und Flüssigreagenzienmenge sowie Waschpuffermengen minimieren.
The invention has the following advantages:
The combination of liquid transport by means of centrifugal forces and by means of suction forces in capillary-active zones, in particular in porous, absorbent matrix materials, allows liquid flows to be precisely controlled. According to the invention, the capillary-active zone, which is a porous, absorbent matrix, transports the liquid from an end remote from the axis to an end close to the axis, ie from the periphery of the disk-shaped test element in the direction of the axis of rotation. The centrifugal force, which can also be used to move the liquids, counteracts this direction of transport. By specifically controlling the rotation of the test element (e.g. faster/slower rotation, switching the rotary movement on and off), it is therefore possible to slow down or to stop, so that targeted and defined reaction conditions can be maintained. At the same time, the use of the porous, absorbent matrix, which essentially serves as a capture matrix for bound-free separation in immunoassays, allows sample components to be captured efficiently during the course of the immunoassay. In particular, the interplay of centrifugal and capillary forces (suction forces) makes it possible to move the sample back and forth over a reagent zone, in particular a zone with immobilized reagents (above all, a capture zone for heterogeneous immunoassays), without increased technical effort, and so on to ensure more effective dissolving of the reagents, mixing of the sample with reagents or scavenging of sample components on immobilized binding partners. At the same time, it is possible to eliminate depletion effects when binding sample components (above all analyte) to immobilized binding partners and thus increase the binding efficiency (i.e. sample parts depleted in analyte can be separated by analyte-rich sample parts are replaced). In addition, by moving liquids back and forth in the capillary-active zone, the most efficient possible use of the small liquid volumes can be achieved not only for Reaction purposes (here the sample volume is used in particular) but also for washing purposes, for example for better discrimination of bound and free label in the capture zone. This effectively minimizes the amount of sample, liquid reagents and wash buffer.

Durch die vorzugsweise zentrale Lage der Drehachse innerhalb des Testelements ist es möglich, sowohl das Testelement selbst als auch das dazugehörige Messgerät möglichst kompakt zu gestalten. Bei chipförmigen Testelementen, wie sie beispielsweise in Figur 1 und 2 von US 2004/0265171 gezeigt sind, liegt die Drehachse außerhalb des Testelements. Ein dazugehöriger Drehteller oder Rotor ist somit zwangsläufig größer als bei einem Testelement mit identischen Ausmaßen, bei dem aber die Drehachse innerhalb des Testelements, vorzugsweise zentral angeordnet ist, wie dies bei den erfindungsgemäßen Testelementen der Fall ist.The preferably central position of the axis of rotation within the test element makes it possible to design both the test element itself and the associated measuring device as compactly as possible. With chip-shaped test elements, such as those used in figure 1 and 2 from US2004/0265171 are shown, the axis of rotation lies outside the test element. An associated turntable or rotor is therefore inevitably larger than in a test element with identical dimensions, but in which the axis of rotation is preferably arranged centrally within the test element, as is the case with the test elements according to the invention.

Die Erfindung wird durch die nachfolgenden Beispiele und Figuren näher erläutert. Hierbei wird jeweils auf immunologische Sandwich-Assays Bezug genommen. Die Erfindung ist jedoch nicht hierauf beschränkt. Sie kann auf andere Arten der Immunoassays, insbesondere auch auf kompetitive Immunoassays, oder andere Arten von spezifischen Bindeassays (beispielsweise solche, die als Bindepartner Zucker und Lectine, Hormone und deren Rezeptoren, oder auch komplementäre Nukleinsäurepaare verwenden) ebenfalls angewandt werden. Typische Vertreter dieser spezifischen Bindeassays sind dem Fachmann an sich bekannt (im Zusammenhang mit Immunoassays wird hier ausdrücklich auf die Figuren 1 und 2 und die dazugehörigen Beschreibungspassagen des Dokuments US 4,861,711 Bezug genommen) und können auf die vorliegende Erfindung ohne weiteres übertragen werden. Figur 1 zeigt in schematischer Darstellung eine Aufsicht auf eine nicht erfindungsgemäße Ausführungsform eines Testelements. Der Klarheit halber ist dabei lediglich die Schicht des Testelements dargestellt, die die fluidischen Strukturen enthält. Die gezeigte Ausführungsform enthält dabei nur eine Öffnung zum Einbringen von Proben- und/oder Waschflüssigkeit. Die Abtrennung störender Probenbestandteile erfolgt in dieser Ausführungsform, nach dem die Probe mit Reagenzien kontaktiert wurde.The invention is explained in more detail by the following examples and figures. Here, reference is made in each case to immunological sandwich assays. However, the invention is not limited to this. It can also be applied to other types of immunoassays, in particular also to competitive immunoassays, or other types of specific binding assays (for example those that use sugar and lectins, hormones and their receptors, or complementary nucleic acid pairs as binding partners). Typical representatives of these specific binding assays are known per se to those skilled in the art (in connection with immunoassays, reference is expressly made here to figures 1 and 2 and the associated descriptive passages of the document U.S. 4,861,711 referenced) and can be readily applied to the present invention. figure 1 shows a schematic representation of a plan view of an embodiment of a test element that is not according to the invention. For the sake of clarity, only the layer of the test element that contains the fluidic structures is shown. The embodiment shown contains only one opening for the introduction of sample and / or washing liquid. In this embodiment, the interfering sample components are separated after the sample has been brought into contact with reagents.

Figur 2 zeigt schematisch eine weitere nicht erfindungsgemäße Ausführungsform eines Testelements. Auch hier wurde lediglich die Struktur abgebildet, die die fluidischen Elemente des Testelements aufweist. In dieser Ausführungsform des Testelements gibt es zwei separate Proben- und Waschpufferaufgabeöffnungen. Eine Abtrennung der zellulären Probenbestandteile erfolgt hier bereits, bevor die Probe mit Reagenzien in Kontakt gebracht wird. figure 2 shows schematically a further embodiment of a test element not according to the invention. Here, too, only the structure that has the fluidic elements of the test element was depicted. In this embodiment of the test element there are two separate sample and wash buffer application ports. The cellular sample components are already separated here before the sample is brought into contact with reagents.

Figur 3 zeigt eine erfindungsgemäße Variante der Ausführungsform gemäß Figur 1 in schematischer Darstellung. Auch hier erfolgt die Abtrennung zellulärer Probenbestandteile, nach dem die Probe mit Reagenzien in Kontakt gebracht wurde. Erfindungsgemäß weist die Struktur gemäß Figur 3 eine separate Zuführung für Waschflüssigkeit auf. figure 3 shows a variant of the embodiment according to the invention figure 1 in a schematic representation. Here, too, the cellular sample components are separated after the sample has been brought into contact with reagents. According to the invention, the structure according to figure 3 a separate supply for washing liquid.

Figur 4 zeigt eine weitere bevorzugte Ausführungsform eines erfindungsgemäßen Testelements in schematischer Ansicht analog Figur 2. figure 4 shows a further preferred embodiment of a test element according to the invention in a schematic view analogously figure 2 .

Figur 5 stellt eine geringfügige Weiterentwicklung des erfindungsgemäßen Testelements gemäß Figur 3 dar. Im Unterschied zur Ausführungsform gemäß Figur 3 enthält Figur 5 eine andere geometrische Anordnung des Waste-Vlieses und eine andere Art von Ventil am Ende des Probendosierabschnittes. figure 5 represents a minor further development of the test element according to the invention figure 3 represents. In contrast to the embodiment according to figure 3 contains figure 5 a different geometric arrangement of the waste fleece and a different type of valve at the end of the sample dosing section.

Figur 6 zeigt schematisch eine Aufsicht auf eine Weiterentwicklung des erfindungsgemäßen Testelements gemäß Figur 5. Im Unterschied zu der Ausführungsform gemäß Figur 5 enthält die Ausführungsform gemäß Figur 6 eine fluidische Struktur zur Aufnahme eines Probenüberschusses. figure 6 shows schematically a top view of a further development of the test element according to the invention according to FIG figure 5 . In contrast to the embodiment according to figure 5 contains the embodiment according to figure 6 a fluidic structure for taking up excess sample.

Figur 7 ist eine schematische Darstellung einer weiteren Variante des erfindungsgemäßen Testelements gemäß Figur 3. Funktional sind die fluidischen Strukturen im Wesentlichen analog denen von Figur 3. Allerdings sind sie geometrisch anders ausgerichtet und gestaltet. figure 7 is a schematic representation of a further variant of the test element according to the invention figure 3 . Functionally, the fluidic structures are essentially analogous to those of figure 3 . However, they are geometrically aligned and designed differently.

Figur 8 zeigt schematisch eine weitere bevorzugte Ausführungsform des erfindungsgemäßen Testelements. Die Strukturen in Figur 8 entsprechen dabei im Wesentlichen den Funktionen, die durch das Testelement gemäß Figur 4 bereits bekannt sind. figure 8 shows schematically a further preferred embodiment of the test element according to the invention. The structures in figure 8 essentially correspond to the functions provided by the test element figure 4 are already known.

Figur 9 zeigt schematisch eine Aufsicht auf eine nicht erfindungsgemäße Alternative zum Testelement gemäß Figur 6. Im Unterschied zu der erfindungsgemäßen Ausführungsform gemäß Figur 6 enthält die Ausführungsform gemäß Figur 9 eine achsenferne Probenaufgabeöffnung, die die Probe über eine Kapillare zunächst näher ans Zentrum des Testelements heranführt, das heißt in einen achsennahen Bereich. figure 9 shows schematically a top view of an alternative to the test element according to FIG figure 6 . In contrast to the embodiment according to the invention figure 6 contains the embodiment according to figure 9 a sample application opening remote from the axis, which initially brings the sample closer to the center of the test element via a capillary, ie into an area close to the axis.

Figur 10 zeigt den typischen Kurvenverlauf für Troponin T-Messungen in Vollblutproben (Konzentration an Troponin T in ng/ml aufgetragen gegen die Signalstärke (counts)). Die Proben wurden mit rekombinantem Troponin T auf die jeweilige Konzentration aufgestockt. figure 10 shows the typical curve shape for troponin T measurements in whole blood samples (concentration of troponin T in ng/ml plotted against the signal strength (counts)). The samples were spiked with recombinant troponin T to the respective concentration.

Die Daten gehören zu Beispiel 2 und wurden mit Hilfe von Testelementen gemäß Figur 6/ Beispiel 1 erhalten.The data pertains to Example 2 and was determined using test elements according to figure 6 / Sample 1 received.

Die Ziffern und Abkürzungen in den Figuren haben die folgende Bedeutung:

1
scheibenförmiges Testelement (Disk)
2
Substrat (z. B. ein- oder mehrteilig, Spritzguss, gefräst, aus Schichten aufgebaut etc.)
3
zentrale Aussparung (Antriebsloch)
4
Probenaufgabeöffnung
5
Probendosierzone (Dosierabschnitt des Kanals)
6
Kapillarstopp (z. B. hydrophobe Barriere, geometrisches/nicht-schließendes Ventil)
7
Behälter für Probenüberschuss
8
Kapillarstopp (z. B. hydrophobe Barriere, geometrisches/nicht-schließendes Ventil)
9
Kanal
10
Serum-/Plasmasammelzone (Serum-/Plasmakammer)
11
Erythrozytensammelzone (Erythrozytenkammer)
12
poröse, saugfähige Matrix (Membran)
13
Waste (Vlies)
14
Kapillarstopp (z. B. hydrophobe Barriere, geometrisches/nicht-schließendes Ventil)
15
Kanal
16
Zugabeöffnung für weitere Flüssigkeiten, z. B. Waschpuffer
17
Entlüftungsöffnung
18
Dekantierkanal
19
Kapillarstopp (z. B. hydrophobe Barriere, geometrisches/nicht-schließendes Ventil)
20
Auffangreservoir
21
Kapillarkanal
The numbers and abbreviations in the figures have the following meaning:
1
disc-shaped test element (disk)
2
Substrate (e.g. one or more parts, injection molding, milled, made up of layers, etc.)
3
central recess (drive hole)
4
sample application port
5
sample dosing zone (dosing section of the channel)
6
Capillary stop (e.g. hydrophobic barrier, geometric/non-closing valve)
7
Container for excess sample
8th
Capillary stop (e.g. hydrophobic barrier, geometric/non-closing valve)
9
channel
10
Serum/plasma collection zone (serum/plasma chamber)
11
Erythrocyte collection zone (erythrocyte chamber)
12
porous, absorbent matrix (membrane)
13
waste
14
Capillary stop (e.g. hydrophobic barrier, geometric/non-closing valve)
15
channel
16
Addition opening for further liquids, e.g. B. Wash Buffer
17
vent hole
18
decantation channel
19
Capillary stop (e.g. hydrophobic barrier, geometric/non-closing valve)
20
collection reservoir
21
capillary channel

Die Figuren 3 bis 8 zeigen unterschiedliche bevorzugte Ausführungsformen eines erfindungsgemäßen Testelements (1). Die Figuren 1, 2 und 9 zeigen hingegen alternative und nicht erfindungsgemäße Ausführungsformen eines Testelements. Im Wesentlichen ist jeweils das Substrat (2), enthaltend die fluidischen Strukturen und die zentrale Aussparung (Antriebsloch 3), abgebildet. Neben dem Substrat, das zum Beispiel ein oder mehrteilig sein kann, und mittels Spritzguss, Fräsen oder durch Laminieren von entsprechenden Schichten aufgebaut sein kann, enthält das erfindungsgemäße, scheibenförmige Testelement (1) auch in der Regel eine Deckschicht, die in den Figuren der Übersichtlichkeit halber nicht dargestellt ist. Grundsätzlich kann die Deckschicht ebenfalls Strukturen tragen, in der Regel aber wird sie außer den Öffnungen für die Proben und/oder weiteren auf das Testelement aufzugebenden Flüssigkeiten keinerlei Strukturen aufweisen. Die Deckschicht kann auch vollkommen ohne Öffnungen gestaltet sein, beispielsweise in Form einer Folie, die mit dem Substrat verbunden ist und die darin befindlichen Strukturen abschließt.the Figures 3 to 8 show different preferred embodiments of a test element (1) according to the invention. the figures 1 , 2 and 9 show alternative embodiments of a test element that are not according to the invention. The substrate (2) containing the fluidic structures and the central recess (drive hole 3) is essentially shown in each case. In addition to the substrate, which can be one or more parts, for example, and can be constructed by injection molding, milling or by laminating corresponding layers, the disk-shaped test element (1) according to the invention also usually contains a cover layer, which is shown in the figures for clarity is not shown for the sake of it. In principle, the cover layer can also have structures, but as a rule it will not have any structures apart from the openings for the samples and/or other liquids to be applied to the test element. The cover layer can also be designed without any openings, for example in the form of a film which is connected to the substrate and closes off the structures located therein.

Die Ausführungsformen, die in den Figuren 1 bis 9 dargestellt sind, zeigen fluidische Strukturen, die weitgehend gleiche Funktionen erfüllen, auch wenn sie im Detail von Ausführungsform zu Ausführungsform sich unterscheiden. Der grundsätzliche Aufbau und die grundsätzliche Funktion soll deshalb hier näher anhand der Ausführungsform gemäß Figur 1 erläutert werden. Die Ausführungsformen gemäß Figur 2 bis 9 werden anschließend lediglich anhand der spezifischen Unterschiede zueinander näher erläutert, um unnötige Wiederholungen zu vermeiden.The embodiments in the Figures 1 to 9 are shown show fluidic structures that largely fulfill the same functions, even if they differ in detail from embodiment to embodiment. The basic structure and the basic function should therefore be described here in more detail based on the embodiment figure 1 be explained. The embodiments according to Figure 2 to 9 are then explained in more detail based on the specific differences between them in order to avoid unnecessary repetition.

Figur 1 zeigt eine erste Ausführungsform eines nicht erfindungsgemäßen, scheibenförmigen Testelements (1). Das Testelement (1) enthält ein Substrat (2), welches die fluidischen und mikrofluidischen sowie chromatographischen Strukturen enthält. Das Substrat (2) ist durch ein entsprechendes Gegenstück (Deckschicht) abgedeckt (nicht gezeigt), welches Probenaufgabe und Lüftungsöffnungen enthält, die zu den Strukturen im Substrat (2) korrespondieren. Sowohl die Deckschicht als auch das Substrat (2) weisen eine zentrale Aussparung (3) auf, die im Zusammenwirken mit einer entsprechenden Antriebseinheit in einem Messgerät ein Rotieren des scheibenförmigen Testelements (1) ermöglichen. Alternativ ist es möglich, dass das Testelement (gemäß einer der Figuren 1 bis 9) keine solche zentrale Aussparung (3) aufweist und der Antrieb über eine entsprechend den äußeren Konturen des Testelements gestaltete Antriebseinheit des Messgeräts rotiert wird, beispielsweise einen rotierenden Teller, in den das Testelement in eine seiner Form entsprechenden Vertiefung eingelegt wird. figure 1 shows a first embodiment of a disc-shaped test element (1) not according to the invention. The test element (1) contains a substrate (2) which contains the fluidic, microfluidic and chromatographic structures. The substrate (2) is covered (not shown) by a corresponding counterpart (top layer) which contains sample application and ventilation openings which correspond to the structures in the substrate (2). Both the cover layer and the substrate (2) have a central recess (3) which, in cooperation with a corresponding drive unit in a measuring device, enables the disk-shaped test element (1) to rotate. Alternatively, it is possible that the test element (according to one of Figures 1 to 9 ) has no such central recess (3) and the drive is rotated via a drive unit of the measuring device designed according to the outer contours of the test element, for example a rotating plate, in which the test element is placed in a depression corresponding to its shape.

Probenflüssigkeit, insbesondere Vollblut, wird dem Testelement (1) über die Probenaufgabeöffnung (4) zugeführt. Angetrieben durch Kapillarkräfte und/oder Zentrifugalkräfte füllt die Probenflüssigkeit die Probendosierzone (5). Die Probendosierzone (5) kann dabei auch die getrockneten Reagenzien beinhalten. Sie wird durch die Kapillarstopps (6 und 8), die beispielsweise als hydrophobe Barriere oder als geometrisches/nicht schließendes Ventil ausgebildet sein können, begrenzt. Die Begrenzung der Probendosierzone (5) durch die Kapillarstopps (6, 8) gewährleistet dabei, dass ein definiertes Probenvolumen aufgenommen und in die fluidischen Zonen, die stromabwärts der Probendosierzone (5) liegen, weitergegeben wird. Bei Rotation des Testelements (1) wird ein eventueller Probenüberschuss von der Probenaufgabeöffnung (4) und der Probendosierzone (5) in den Behälter für Probenüberschuss (7) überführt, während die abgemessene Menge an Probe aus der Probendosierzone (5) in den Kanal (9) überführt wird.Sample liquid, in particular whole blood, is fed to the test element (1) via the sample application opening (4). Driven by capillary forces and/or centrifugal forces, the sample liquid fills the sample dosing zone (5). The sample dosing zone (5) can also contain the dried reagents. It is delimited by the capillary stops (6 and 8), which can be designed, for example, as a hydrophobic barrier or as a geometric/non-closing valve. The delimitation of the sample metering zone (5) by the capillary stops (6, 8) ensures that a defined sample volume is taken up and passed on to the fluidic zones that are downstream of the sample metering zone (5). When the test element (1) rotates, any excess sample is removed from the sample application opening (4) and the sample dosing zone (5) is transferred to the sample excess container (7), while the measured amount of sample is transferred from the sample dosing zone (5) to the channel (9).

Bei entsprechenden Rotationsgeschwindigkeiten wird in Kanal (9) die Abtrennung roter Blutkörperchen und anderer zellulärer Probenbestandteile gestartet. Die in der Probendosierzone (5) enthaltenen Reagenzien sind beim Eintritt der Probe in den Kanal (9) bereits gelöst in der Probe vorhanden. Der Eintritt der Probe in Kanal (9) über den Kapillarstopp (8) führt dabei zu einer Durchmischung der Reagenzien in der Probe.With appropriate rotation speeds, the separation of red blood cells and other cellular sample components is started in channel (9). The reagents contained in the sample dosing zone (5) are already dissolved in the sample when it enters the channel (9). The entry of the sample into the channel (9) via the capillary stop (8) leads to the reagents in the sample being mixed.

Die Möglichkeit der zeitlichen Steuerung der Rotationsvorgänge, die mit dem erfindungsgemäßen Testelement möglich sind, erlaubt dabei eine gezielte Steuerung der Verweilzeiten und damit der Inkubationszeit der Probe mit Reagenzien und der Reaktionszeiten.The possibility of temporal control of the rotation processes, which is possible with the test element according to the invention, allows a targeted control of the dwell times and thus the incubation time of the sample with reagents and the reaction times.

Während der Rotation wird die Reagenz-Proben-Mischung in die fluidischen Strukturen (10) (Serum-/Plasmasammelzone) und (11) (Erythrozytensammelzone) geleitet. Aufgrund der Zentrifugalkräfte, die auf die Reagenz-Proben-Mischung wirken, wird Plasma bzw. Serum von roten Blutkörperchen getrennt. Die roten Blutkörperchen sammeln sich dabei in der Erythrozytensammelzone (11), während das Plasma im Wesentlichen in der Sammelzone (10) verbleibt.During the rotation, the reagent-sample mixture is directed into the fluidic structures (10) (serum/plasma collection zone) and (11) (erythrocyte collection zone). Due to the centrifugal forces acting on the reagent-sample mixture, plasma or serum is separated from red blood cells. The red blood cells collect in the erythrocyte collection zone (11), while the plasma essentially remains in the collection zone (10).

Im Gegensatz zu Testelementen, die Membranen oder Vliese zum Abtrennen partikulärer Probenbestandteile nutzen (beispielsweise Glasfaservliese oder asymmetrisch poröse Kunststoffmembranen zum Abtrennen roter Blutkörperchen aus Vollblut, allgemein als Blut abtrennende Membranen oder Vliese bezeichnet) kann das Probenvolumen mit den erfindungsgemäßen Testelementen wesentlich effektiver ausgenutzt werden, da praktisch keine Totvolumina (z. B. Volumen der Faserzwischenräume oder Poren) vorhanden sind, aus denen die Probe nicht wieder entnommen werden kann. Außerdem neigen diese Blut abtrennenden Membranen und Vliese des Standes der Technik teilweise zur unerwünschten Adsorption von Probenbestandteilen (z. B. Proteinen) oder zur Zerstörung (Lyse) von Zellen, was mit den erfindungsgemäßen Testelementen ebenfalls nicht beobachtet wird.In contrast to test elements that use membranes or nonwovens for separating particulate sample components (e.g. glass fiber nonwovens or asymmetrically porous plastic membranes for separating red blood cells from whole blood, generally referred to as blood-separating membranes or nonwovens), the sample volume can be used much more effectively with the test elements according to the invention, since there are practically no dead volumes (e.g. volume of the fiber interstices or pores) from which the sample cannot be taken again. In addition, these prior art blood-separating membranes and webs tend to be undesirable in some cases Adsorption of sample components (e.g. proteins) or destruction (lysis) of cells, which is also not observed with the test elements according to the invention.

Wird die Rotation des Testelements (1) angehalten oder verlangsamt, wird das Reagenz-Plasma-Gemisch (in dem sich bei Anwesenheit des Analyten im Falle eines Immunoassays, beispielsweise Sandwichkomplexe aus Analyt- und Antikörperkonjugaten gebildet haben) durch die Saugwirkung der porös-saugfähigen Matrix (12) in diese aufgenommen und durch diese hindurchgeleitet. Im Fall von Immunoassays werden durch die immobilisierten Bindepartner, die in der Membran (12) enthalten sind, die analythaltigen Komplexe in der Nachweiszone abgefangen und in der Kontrollzone ungebundenes, gelabeltes Konjugat gebunden. Das an die poröse, saugfähige Matrix angrenzende Vlies (13) unterstützt dabei die Bewegung der Probe durch die Membran (12). Das Vlies (13) dient darüber hinaus der Aufnahme der Probe nach dem Durchströmen der Membran (12).If the rotation of the test element (1) is stopped or slowed down, the reagent-plasma mixture (in which, in the case of an immunoassay, sandwich complexes of analyte and antibody conjugates have formed when the analyte is present) is absorbed by the suction effect of the porous-absorbent matrix (12) added to and passed through it. In the case of immunoassays, the analyte-containing complexes are captured in the detection zone by the immobilized binding partners contained in the membrane (12) and unbound, labeled conjugate is bound in the control zone. The fleece (13) adjoining the porous, absorbent matrix supports the movement of the sample through the membrane (12). The fleece (13) also serves to hold the sample after it has flowed through the membrane (12).

Nachdem die flüssige Probe die fluidische Struktur des Testelements (1) von der Probenaufgabeöffnung (4) bis zum Vlies (13) durchströmt hat, wird in einem nachfolgenden Schritt Waschpuffer in die Probenaufgabeöffnung (4) pipettiert. Durch dieselbe Kombination von Kapillar-, Zentrifugal- und chromatographischen Kräften durchströmt der Waschpuffer die entsprechenden fluidischen Strukturen des Testelements (1) und wäscht insbesondere die Membran (12), wo sich nunmehr die gebundenen Analytkomplexe befinden und entfernt so überschüssige Reagenzreste. Der Waschschritt kann ein oder mehrmals wiederholt werden, um so das Signal-zu-Hintergrund-Verhältnis zu verbessern. Das erlaubt eine Optimierung der Nachweisgrenze für den Analyten und eine Erhöhung des dynamischen Messbereichs.After the liquid sample has flowed through the fluidic structure of the test element (1) from the sample application opening (4) to the fleece (13), the washing buffer is pipetted into the sample application opening (4) in a subsequent step. Using the same combination of capillary, centrifugal and chromatographic forces, the wash buffer flows through the corresponding fluidic structures of the test element (1) and washes in particular the membrane (12), where the bound analyte complexes are now located and thus removes excess reagent residues. The washing step can be repeated one or more times in order to improve the signal-to-noise ratio. This allows the detection limit for the analyte to be optimized and the dynamic measuring range to be increased.

Der Probenkanal, in dem die flüssige Probe im Testelement (1) von der Probenaufgabeöffnung (4) zum achsenfernen ersten Ende der Membran (12) transportiert wird, umfasst im vorliegenden Fall die Probendosierzone (5), den Kapillarstopp (8), den Kanal (9), die Serum-/Plasmasammelzone (10) und die Erythrozytenkammer (11). In anderen Ausführungsformen kann der Probenkanal aus mehr oder weniger Einzelzonen/-breichen/- kammern bestehen.The sample channel, in which the liquid sample in the test element (1) is transported from the sample application opening (4) to the first end of the membrane (12) remote from the axis, in the present case comprises the sample dosing zone (5), the capillary stop (8), the channel ( 9), the serum/plasma collection zone (10) and the erythrocyte chamber (11). In other In some embodiments, the sample channel can consist of more or fewer individual zones/areas/chambers.

Die Figuren 3, 5, 6, 7 und 9 zeigen im Wesentlichen analoge Ausführungsformen zu Figur 1. Figur 3 unterscheidet sich von Figur 1 dadurch, dass sich einerseits an die Probenaufgabeöffnung (4) kein Behälter für Probenüberschuss (7) anschließt und am Ende des Probendosierabschnitts (5) kein Kapillarstopp vorhanden ist (d. h. hier ist ein dosierter Probenauftrag erforderlich) und andererseits dadurch, dass erfindungsgemäß eine separate Zugabeöffnung (16) für weitere Flüssigkeiten, wie z. B. Waschpuffer, und ein dazugehöriger Kanal (15) vorhanden sind, der den Puffer zur Membran (12) transportieren kann. Der Transport des Puffers zur Membran (12) kann dabei auf Kapillarkräften oder Zentrifugalkräften beruhen.the Figures 3 , 5 , 6 , 7 and 9 show essentially analogous embodiments figure 1 . figure 3 differs from figure 1 in that, on the one hand, there is no container for excess sample (7) adjoining the sample application opening (4) and there is no capillary stop at the end of the sample metering section (5) (ie metered sample application is required here) and, on the other hand, in that, according to the invention, a separate metering opening ( 16) for other liquids, e.g. B. washing buffer, and an associated channel (15) are present, which can transport the buffer to the membrane (12). The transport of the buffer to the membrane (12) can be based on capillary forces or centrifugal forces.

Die Ausführungsform gemäß Figur 5 ist weitgehend identisch mit der Ausführungsform gemäß Figur 3. Die beiden Ausführungsformen unterscheiden sich lediglich durch die Form des Waste-Vlieses (13) und dadurch, dass das Testelement gemäß Figur 5 einen Kapillarstopp (8) am Ende des Probendosierabschnitts (5) aufweist.The embodiment according to figure 5 is largely identical to the embodiment according to FIG figure 3 . The two embodiments differ only in the shape of the waste fleece (13) and in that the test element according to FIG figure 5 a capillary stop (8) at the end of the sample dosing section (5).

Die Ausführungsform gemäß Figur 6 ist wiederum im Wesentlichen identisch mit der Ausführungsform gemäß Figur 5 und unterscheidet sich von dieser durch das zusätzliche Vorhandensein eines Behälters für Probenüberschuss (7) im Bereich zwischen der Probendosieröffnung (4) und der Probendosierzone (5). Hier ist kein dosiertes Aufbringen der Probe erforderlich (analog Figur 1).The embodiment according to figure 6 is again essentially identical to the embodiment according to FIG figure 5 and differs from this by the additional presence of a container for excess sample (7) in the area between the sample dosing opening (4) and the sample dosing zone (5). No dosed application of the sample is required here (analogous to figure 1 ).

Die Ausführungsform des erfindungsgemäßen Testelements (1) gemäß Figur 7 entspricht im Wesentlichen dem Testelement (1) der Figur 6. Beide Ausführungsformen weisen die gleichen fluidischen Strukturen und Funktionen auf. Lediglich die Anordnung und geometrische Ausgestaltung ist unterschiedlich. Die Ausführungsform gemäß Figur 7 weist zusätzliche Entlüftungsöffnungen (17) auf, die aufgrund der andersartigen Dimensionierung der fluidischen Strukturen im Vergleich zu Figur 6 notwendig sind, um ein Befüllen der Strukturen mit Proben oder Waschflüssigkeit zu ermöglichen. Kanal (9) ist hier als dünne Kapillare ausgestaltet, die erst beim Rotieren des Testelements befüllt wird (d. h. ein Überwinden des Kapillarstopps (8) ist nur mittels Zentrifugalkraft möglich). Bereits während der Rotation ist es mit dem Testelement (1) gemäß Figur 7 möglich, gewonnenes Plasma aus der Erythrozytensammelzone 11 abzuführen; dazu dient die Dekantiereinheit 18, die schließlich in die Serum-/Plasmasammelzone 10 mündet.The embodiment of the test element (1) according to the invention figure 7 essentially corresponds to the test element (1) of figure 6 . Both embodiments have the same fluidic structures and functions. Only the arrangement and geometric design is different. The embodiment according to figure 7 has additional ventilation openings (17), which due to the different dimensions of the fluidic structures compared to figure 6 are necessary to fill the To allow structures with samples or washing liquid. Channel (9) is designed here as a thin capillary which is only filled when the test element rotates (ie overcoming the capillary stop (8) is only possible by means of centrifugal force). It is already in accordance with the test element (1) during the rotation figure 7 possible to discharge collected plasma from the erythrocyte collection zone 11; the decanting unit 18, which finally opens into the serum/plasma collection zone 10, is used for this purpose.

Die Ausführungsform eines nicht erfindungsgemäßen Testelements (1) gemäß Figur 9 entspricht im Wesentlichen dem Testelement (1) der Figur 6. Beide Ausführungsformen weisen die gleichen fluidischen Strukturen und Funktionen auf. Lediglich die Anordnung und geometrische Ausgestaltung ist unterschiedlich. Die nicht erfindungsgemäße Ausführungsform gemäß Figur 9 weist grundsätzlich eine weiter außen, das heißt achsferne, Probenaufgabeöffnung (4) auf. Dies kann vorteilhaft sein, wenn das Testelement (1) zum Befüllen mit Probe bereits in einem Messgerät eingebracht ist. Dem Benutzer kann in diesem Fall die Probenaufgabeöffnung (4) leichter zugänglich gemacht werden als dies bei Testelementen gemäß Figur 1 bis 8 möglich ist, wo die Probenaufgabeöffnung (4) jeweils achsnah (d. h. entfernt vom äußeren Rand des Testelements) angeordnet ist.The embodiment of a test element (1) according to the invention figure 9 essentially corresponds to the test element (1) of figure 6 . Both embodiments have the same fluidic structures and functions. Only the arrangement and geometric design is different. The non-inventive embodiment according to figure 9 basically has a sample application opening (4) further to the outside, i.e. away from the axis. This can be advantageous if the test element (1) has already been placed in a measuring device for filling with sample. In this case, the sample application opening (4) can be made accessible to the user more easily than is the case with test elements according to FIG Figure 1 to 8 is possible where the sample application opening (4) is arranged close to the axis (ie away from the outer edge of the test element).

Im Gegensatz zur Ausführungsform gemäß Figur 1, 3, 5, 6, 7 und 9 findet in den Ausführungsformen gemäß Figur 2, 4 und 8 die Abtrennung der zellulären Probenbestandteile aus der Probenflüssigkeit statt, bevor die Probe mit Reagenzien in Kontakt kommt. Das hat den Vorteil, dass die Verwendung von Vollblut oder Plasma bzw. Serum als Probenmaterial nicht zu unterschiedlichen Messergebnissen führt, da stets zunächst Plasma bzw. Serum mit den Reagenzien in Kontakt kommt und das Auflöse-/Inkubations-/Reaktionsverhalten damit praktisch gleich sein sollte. Auch in den Ausführungsformen gemäß Figur 2, 4 und 8 wird die flüssige Probe zunächst über die Probenaufgabeöffnung (4) auf das Testelement (1) aufgegeben. Durch Kapillarkräfte und/oder Zentrifugalkräfte wird die Probe anschließend von der Probenaufgabeöffnung (4) in die Kanalstrukturen weitertransportiert. In den Ausführungsformen gemäß Figur 2 und 4 wird die Probe nach dem Aufgeben in die Probenaufgabeöffnung (4) in einem Probendosierabschnitt (5) überführt und anschließend durch Rotation eine Serum-/Plasmaabtrennung vom Vollblut bewirkt. Die unerwünschten zellulären Probenbestandteile, im Wesentlichen Erythrozyten, sammeln sich dabei in der Erythrozytenfalle (11), während Serum bzw. Plasma sich in der Zone (10) ansammeln. Über eine Kapillare wird das Serum aus der Zone (10) entnommen und in die Kanalstruktur (9) weitertransportiert, wo getrocknete Reagenzien untergebracht sind und beim Einströmen der Probe gelöst werden. Durch nochmaliges Rotieren des Testelements (1) kann die Proben-Reagenz-Mischung aus Kanalstruktur (9) den Kapillarstopp (14) überwinden und so über den Kanal (15) zur Membran (12) gelangen. Beim Verlangsamen oder Anhalten der Rotation wird die Proben-Reagenz-Mischung über die Membran (12) in das Waste-Vlies (13) transportiert.In contrast to the embodiment according to figure 1 , 3 , 5 , 6 , 7 and 9 takes place in the embodiments according to figure 2 , 4 and 8th the separation of the cellular sample components from the sample liquid takes place before the sample comes into contact with reagents. This has the advantage that the use of whole blood or plasma or serum as sample material does not lead to different measurement results, since plasma or serum always comes into contact with the reagents first and the dissolution/incubation/reaction behavior should therefore be practically the same . Also in the embodiments according to figure 2 , 4 and 8th the liquid sample is first applied to the test element (1) via the sample application opening (4). The sample is then transported further from the sample application opening (4) into the channel structures by capillary forces and/or centrifugal forces. In the embodiments according to figure 2 and 4 will the sample after transferred to the sample application opening (4) in a sample dosing section (5) and then causes a serum/plasma separation from the whole blood by rotation. The undesired cellular sample components, essentially erythrocytes, collect in the erythrocyte trap (11), while serum or plasma collect in zone (10). The serum is removed from the zone (10) via a capillary and transported further into the channel structure (9), where dried reagents are housed and are dissolved when the sample flows in. By rotating the test element (1) again, the sample-reagent mixture from the channel structure (9) can overcome the capillary stop (14) and thus reach the membrane (12) via the channel (15). When the rotation slows down or stops, the sample-reagent mixture is transported across the membrane (12) into the waste fleece (13).

Die Ausführungsformen gemäß Figur 2 und Figur 4 unterscheiden sich dabei darin, dass in Figur 2 ein Behälter für Probenüberschuss (7) vorgesehen ist, während die Ausführungsform gemäß Figur 4 eine solche Funktion nicht vorsieht. Wie in der Ausführungsform gemäß Figur 3 ist hier ein dosiertes Aufbringen der Probe zweckmäßig.The embodiments according to figure 2 and figure 4 differ in that in figure 2 a container for excess sample (7) is provided, while the embodiment according to figure 4 does not provide such a function. As in the embodiment according to figure 3 a dosed application of the sample is advisable here.

Figur 8 zeigt eine Variante der Ausführungsformen gemäß Figuren 2 und 4. Hier wird die Probe unmittelbar nach der Probenaufgabeöffnung (4) nach Passieren eines ersten geometrischen Ventils (19) durch Zentrifugieren in eine Erythrozytenabtrennstruktur (10, 11) überführt. Der mit (10) bezeichnete Bereich dient dabei als Serum-/Plasmasammelzone (10), aus der von Zellen befreites Serum bzw. Plasma nach dem Zentrifugieren über einen Kapillarkanal (21) weitergeleitet wird. Kammer (20) dient als Auffangreservoir für überschüssiges Serum bzw. Plasma, das nach vollständigem Befüllen des Probendosierabschnitts (5) unter Umständen aus der Serum-/Plasmasammelzone (10) nachfließt. Alle anderen Funktionen und Strukturen sind analog den Figuren 1 bis 7. figure 8 shows a variant of the embodiments according to FIG figures 2 and 4 . Here, the sample is transferred by centrifugation into an erythrocyte separation structure (10, 11) immediately after the sample application opening (4) after passing through a first geometric valve (19). The area marked (10) serves as a serum/plasma collection zone (10) from which serum or plasma freed from cells is passed on via a capillary channel (21) after centrifugation. Chamber (20) serves as a collection reservoir for excess serum or plasma, which may flow out of the serum/plasma collection zone (10) after the sample metering section (5) has been completely filled. All other functions and structures are analogous to the Figures 1 to 7 .

Durch gezieltes Gestalten der hydrophilen bzw. hydrophoben Eigenschaften der Oberflächen des Testelements (1) kann erreicht werden, dass ein Bewegen der Probenflüssigkeit und/oder Waschflüssigkeiten entweder nur mit Hilfe der Rotation und der daraus resultierenden Zentrifugalkräfte erfolgt oder durch eine Kombination von Zentrifugalkräften und Kapillarkräften. Letzteres erfordert zumindest teilweise hydrophilisierte Oberflächen in den fluidischen Strukturen des Testelements (1).By specifically designing the hydrophilic or hydrophobic properties of the surfaces of the test element (1), it can be achieved that the sample liquid and/or Washing liquids either only with the help of rotation and the resulting centrifugal forces or by a combination of centrifugal forces and capillary forces. The latter requires at least partially hydrophilized surfaces in the fluidic structures of the test element (1).

Wie weiter oben im Zusammenhang mit Figur 1 bereits beschrieben, weisen die erfindungsgemäßen Testelemente gemäß den Figuren 6, 7 und, 8 eine automatische Funktionalität auf, die ein verhältnismäßig genaues Abmessen eines Probenaliquots aus einer im Überschuss auf das Testelement aufgegebenen Probe erlaubt (so genanntes "Metering-System"). Es umfasst im Wesentlichen die Elementen 4, 5, 6, und 7 der dargestellten Testelemente (1). Probenflüssigkeit, insbesondere Vollblut, wird dem Testelement (1) über die Probenaufgabeöffnung (4) zugeführt. Angetrieben durch Kapillarkräfte und/oder Zentrifugalkräfte füllt die Probenflüssigkeit die Probendosierzone (5). Die Probendosierzone (5) kann dabei auch die getrockneten Reagenzien beinhalten. Sie wird durch die Kapillarstopps (6 und 8), die beispielsweise als hydrophobe Barriere oder als geometrische/nicht schließende Ventile ausgebildet sein können, begrenzt. Die Begrenzung der Probendosierzone (5) durch die Kapillarstopps (6, 8) gewährleistet dabei, dass ein definiertes Probenvolumen aufgenommen und in die fluidischen Zonen, die stromabwärts der Probendosierzone (5) liegen, weitergegeben wird. Bei Rotation des Testelements (1) wird ein eventueller Probenüberschuss von der Probenaufgabeöffnung (4) und der Probendosierzone (5) in den Behälter für Probenüberschuss (7) überführt, während die abgemessene Menge an Probe aus der Probendosierzone (5) in den Kanal (9) überführt wird. Alternativ ist es auch möglich, anstelle der durch Rotation erzeugten Kraft, die die Probe bewegt, auch andere Kräfte hierzu einzusetzen, z. B. durch Anlegen eines Überdrucks auf der Probeneingangsseite bzw. eines Unterdrucks an der Probenausgangsseite. Das dargestellte Metering-System ist folglich nicht zwingend an rotierbare Testelemente gebunden, sondern kann auch in anderen Testelementen Anwendung finden.As above in connection with figure 1 already described, the test elements according to the invention according to figures 6 , 7 and, 8th an automatic functionality that allows a relatively accurate measurement of a sample aliquot from a sample applied in excess to the test element (so-called "metering system"). It essentially comprises the elements 4, 5, 6 and 7 of the test elements (1) shown. Sample liquid, in particular whole blood, is fed to the test element (1) via the sample application opening (4). Driven by capillary forces and/or centrifugal forces, the sample liquid fills the sample dosing zone (5). The sample dosing zone (5) can also contain the dried reagents. It is delimited by the capillary stops (6 and 8), which can be designed, for example, as a hydrophobic barrier or as geometric/non-closing valves. The delimitation of the sample metering zone (5) by the capillary stops (6, 8) ensures that a defined sample volume is taken up and passed on to the fluidic zones that are downstream of the sample metering zone (5). When the test element (1) rotates, any excess sample is transferred from the sample application opening (4) and the sample dosing zone (5) into the container for excess sample (7), while the measured amount of sample from the sample dosing zone (5) flows into the channel (9 ) is transferred. Alternatively, it is also possible to use other forces instead of the force generated by rotation that moves the sample, e.g. B. by applying an overpressure on the sample inlet side or a negative pressure on the sample outlet side. Consequently, the metering system shown is not necessarily tied to rotatable test elements, but can also be used in other test elements.

Ähnliche Metering-Systeme sind beispielsweise aus US 5,061,381 bekannt. Auch in diesem Dokument wird ein System beschrieben, bei dem Probenflüssigkeit im Überschuss auf ein Testelement aufgegeben werden kann. Das Abmessen eines verhältnismäßig genauen Probenaliquots, das anschließend im Testelement weiterverarbeitet wird, erfolgt hierbei ebenfalls durch das Zusammenspiel einer Dosierzone ("metering chamber") und einer Zone für den Probenüberschuss ("overflow chamber"), wobei diese beiden Zonen - anders als bei der vorliegenden Erfindung - durch einen zwar schmalen, aber zumindest beim Befüllen stets Flüssigkeitsaustausch ermöglichenden Kontakt stehen. Probenflüssigkeit wird hier beim Befüllen des Testelements unmittelbar aufgetrennt in einen Teil, der durch einen breiten Kanal in die "metering chamber" geleitet wird, und einen Teil, der durch einen schmalen Kanal in die "overflow chamber" fließt. Nach dem vollständigen Befüllen der "metering chamber" wird das Testelement in Rotation versetzt und ein eventueller Probenüberschuss in die "overflow chamber" abgeleitet, so dass in der "metering chamber" nur das gewünschte, abgemessene Probenvolumen verbleibt, welches anschließend weiter verarbeitet wird.Similar metering systems are out, for example U.S. 5,061,381 known. This document also describes a system in which excess sample liquid can be applied to a test element. The measuring of a relatively accurate sample aliquot, which is then further processed in the test element, is also carried out here by the interaction of a dosing zone ("metering chamber") and a zone for the excess sample ("overflow chamber"), whereby these two zones - unlike in the present invention - by a contact that is narrow, but always allows liquid exchange at least during filling. When the test element is filled, the sample liquid is immediately separated into a part that is conducted through a wide channel into the "metering chamber" and a part that flows through a narrow channel into the "overflow chamber". After the "metering chamber" has been completely filled, the test element is set in rotation and any excess sample is drained into the "overflow chamber", so that only the desired, measured sample volume remains in the "metering chamber", which is then processed further.

Nachteilig an der Ausgestaltung des Metering-Systems gemäß US 5,061,381 ist, dass bei Probenvolumina, die auf das Testelement aufgegeben werden und die genau dem Mindestvolumen entsprechen oder nur geringfügig größer sind als das Mindestvolumen, die Gefahr besteht, dass die Dosierzone unterdosiert wird, da ja stets ein Anteil der Probe von Anfang an ungehindert in die "overflow chamber" fließt.A disadvantage of the design of the metering system according to U.S. 5,061,381 is that with sample volumes that are applied to the test element and that correspond exactly to the minimum volume or are only slightly larger than the minimum volume, there is a risk that the dosing zone will be underdosed, since a proportion of the sample always flows unhindered into the "overflow chamber" flows.

Dieses Problem wird bei der vorliegend vorgeschlagenen Ausgestaltung des Metering-Systems dadurch gelöst, dass zwischen Dosierzone und der Zone für den Probenüberschuss ein Kapillarstopp (hydrophobe Barriere bzw. ein geometrisches bzw. nicht-schließendes Ventil) angeordnet wird. Beim Befüllen des Testelements mit Probe wird deshalb zunächst die Probe praktisch ausschließlich in die Dosierzone geleitet. Der Kapillarstopp verhindert dabei, dass Probe in die Zone für den Probenüberschuss einfließen kann, bevor die Probendosierzone vollständig gefüllt ist. Auch bei Probenvolumina, die auf das Testelement aufgegeben werden und die genau dem Mindestvolumen entsprechen oder nur geringfügig größer sind als das Mindestvolumen, ist so sichergestellt, dass die Probendosierzone vollständig gefüllt ist.This problem is solved in the configuration of the metering system proposed here in that a capillary stop (hydrophobic barrier or a geometric or non-closing valve) is arranged between the dosing zone and the zone for the excess sample. Therefore, when the test element is filled with sample, the sample is initially fed practically exclusively into the dosing zone. The capillary stop prevents the sample from flowing into the zone for sample excess before the sample dosing zone is completely filled. Even with sample volumes that are applied to the test element and which correspond exactly to the minimum volume or are only slightly larger than the minimum volume, this ensures that the sample dosing zone is completely filled.

Beispiel 1example 1 Herstellung eines Testelements gemäß Figur 6Production of a test element according to FIG 1.1. Herstellung des Substrats (2)1.1. Production of the substrate (2)

Mittels Spritzguss wird aus Polycarbonat (PC) (alternativ ist auch Polystyrol (PS), ABS-Kunststoff oder Polymethylmethacrylat (PMMA) als Material möglich) ein Substrat (2) gemäß Figur 6 gefertigt (Abmessungen ca. 60 × 80 mm2). Die einzelnen Kanäle und Zonen (fluidische Strukturen) haben dabei die folgenden Dimensionen (Tiefe der Strukturen (t) und ggf. deren Volumen (V); die Ziffern verweisen auf Figur 6 und die darin gezeigten Strukturen):

  • Kapillare zwischen 4 und 5: t = 500 µm
  • Nr.7: t= 700 µm
  • Nr.5: t= 150 µm; V= 26,5 mm3
  • Nr.8: t= 500 µm
  • Nr.9: t= 110 µm
  • Nr.10: t= 550 µm
  • Nr.11: t= 130 µm; V= 15 mm3
  • Nr.15: t= 150 µm; V= 11,4 mm3
A substrate (2) according to FIG figure 6 manufactured (dimensions approx. 60 × 80 mm 2 ). The individual channels and zones (fluidic structures) have the following dimensions (depth of the structures (t) and possibly their volume (V); the numbers refer to figure 6 and the structures shown therein):
  • Capillary between 4 and 5: t = 500 µm
  • No.7: t= 700 µm
  • No.5: t= 150 µm; V= 26.5mm 3
  • No.8: t= 500 µm
  • No.9: t= 110 µm
  • No.10: t= 550 µm
  • No.11: t= 130 µm; V= 15mm 3
  • No. 15: t= 150 µm; V= 11.4mm 3

Ein Übergang von weniger tiefen auf tiefere Strukturen ist dabei in der Regel für Flüssigkeiten in den Fluidikstrukturen nur möglich, wenn von außen Kraft (z. B. Zentrifugalkraft) einwirkt. Solche Übergänge wirken als geometrische (nicht-schließende) Ventile.A transition from less deep to deeper structures is generally only possible for liquids in the fluidic structures if an external force (e.g. centrifugal force) acts. Such transitions act as geometric (non-closing) valves.

Das Substrat (2) weist neben den fluidischen Strukturen (s. o.) noch die Proben- und Pufferzugabeöffnungen (4, 16), Entlüftungsöffnungen (17) und die zentrale Aussparung (3) auf.In addition to the fluidic structures (see above), the substrate (2) also has the sample and buffer feed openings (4, 16), ventilation openings (17) and the central recess (3).

Die Oberfläche des Substrats (2), die die fluidischen Strukturen aufweist, kann anschließend mittels Plasmabehandlung gereinigt und hydrophiliert werden.The surface of the substrate (2), which has the fluidic structures, can then be cleaned and rendered hydrophilic by means of plasma treatment.

1.2. Einbringen der Reagenzien1.2. Bringing in the reagents

Ein Teil der für den Analytnachweis erforderlichen Reagenzien (z. B. biotinylierte Anti-Analyt-Antikörper und mit einem Fluoreszenzlabel markierte Anti-Analyt-Antikörper) werden mittels Piezodosierung als Lösung abwechselnd als punktförmige Reagenzienspots in den Probendosierabschnitt (5) eingebracht und anschließend getrocknet, so dass praktisch seine gesamte innere Fläche mit Reagenzien belegt ist.Some of the reagents required for analyte detection (e.g. biotinylated anti-analyte antibodies and anti-analyte antibodies marked with a fluorescent label) are introduced as a solution by means of piezo metering alternately as punctiform reagent spots into the sample metering section (5) and then dried. so that practically its entire inner surface is covered with reagents.

Die Reagenzlösungen sind dabei wie folgt zusammengesetzt: Biotinylierter Antikörper: 50 mM Mes pH 5.6,; 100 µg/ml biotinylierte monoklonale Anti-Troponin T-Antikörper Gelabelte Antikörper 50 mM Hepes pH 7.4, mit Quadratsäurederivat Fluoreszenzfarbstoff JG9(in Polystyrol-Latexpartikel eingebettet) fluoreszenzmarkierte monoklonale Anti-Troponin T-Antikörper (0,35-prozentige Lösung) The reagent solutions are composed as follows: Biotinylated Antibody: 50mM Mes pH 5.6; 100 µg/ml biotinylated monoclonal anti-troponin T antibodies Labeled antibodies 50 mM Hepes pH 7.4, with squaric acid derivative fluorescent dye JG9 (embedded in polystyrene latex particles) fluorescently labeled anti-troponin T monoclonal antibody (0.35 percent solution)

1.3. Einlegen der Membran (12)1.3. Inserting the membrane (12)

In eine entsprechende Aussparung im Substrat (2) wird die poröse Matrix (12) (Nitrocellulosemembran auf Kunststoffträgerfolie; 21 × 5 mm2; mit 100 µm PE-Folie verstärkte Cellulosenitrat-Membran (Typ CN 140 von Sartorius, Deutschland)), in die mittels Strichimprägnierung (s. u.) eine Analytnachweislinie (Polystreptavidin) und eine Kontrolllinie (Polyhapten) eingebracht wurde, eingelegt und ggf. mittels doppelseitigem Klebeband fixiert.In a corresponding recess in the substrate (2), the porous matrix (12) (nitrocellulose membrane on plastic carrier film; 21 × 5 mm 2 ; reinforced with 100 micron PE film cellulose nitrate membrane (type CN 140 from Sartorius, Germany)), in which an analyte detection line (polystreptavidin) and a control line (polyhapten) were introduced by means of line impregnation (see below), inserted and, if necessary, fixed with double-sided adhesive tape.

Auf die zuvor beschriebene Cellulosenitrat-Membran wird durch Strichdosierung eine wässrige Streptavidinlösung (4,75 mg/ml) aufgebracht. Hierzu wird die Dosierung so gewählt (Dosiermenge 0,12 ml/min, Bahngeschwindigkeit 3 m/min), dass ein Strich mit einer Breite von ca. 0,4 mm entsteht. Dieser Strich dient zum Nachweis des zu bestimmenden Analyts und enthält ca. 0,95 µg Streptavidin pro Membran.An aqueous streptavidin solution (4.75 mg/ml) is applied by line dosing to the cellulose nitrate membrane described above. For this purpose, the dosing is selected (dosing quantity 0.12 ml/min, web speed 3 m/min) that a line with a width of approx. 0.4 mm arises. This line serves to identify the analyte to be determined and contains approx. 0.95 µg streptavidin per membrane.

In einem Abstand von etwa 4 mm flussabwärts vom Streptavidinstrich wird unter identischen Dosierungsbedingungen eine wässrige Troponin T-Polyhapten-Lösung mit 0,3 mg/ml aufgebracht. Dieser Strich dient als Funktionskontrolle des Testelements und enthält ca. 0,06 µg Polyhapten pro Test.At a distance of about 4 mm downstream from the streptavidin line, an aqueous 0.3 mg/ml troponin T polyhapten solution is applied under identical dosing conditions. This line serves as a function control of the test element and contains approx. 0.06 µg polyhapten per test.

1.4. Aufbringen der Abdeckung1.4. Applying the cover

Anschließend wird die Abdeckung (Folie oder Spritzgussteil ohne Fluidikstrukturen, die bzw. das ggf. hydrophiliert sein kann) aufgebracht und gegebenenfalls mit dem Substrat (2) permanent verbunden, vorzugsweise verklebt, verschweißt oder verklipst.The cover (foil or injection-molded part without fluidic structures, which can optionally be made hydrophilic) is then applied and optionally permanently connected to the substrate (2), preferably glued, welded or clipped.

1.5. Einlegen des Waste-Vlieses (13)1.5. Insertion of the waste fleece (13)

Schließlich wird das Substrat gewendet und in die entsprechende Aussparung das Waste-Vlies (13) (13 × 7 × 1,5 mm3 großes Vlies aus 100 Teilen Glasfaser (Durchmesser 0,49 bis 0,58 µm, Länge 1000 µm) und 5 Teilen Polyvinylalkoholfasern (Kuralon VPB 105-2 von Kuraray) mit einem Flächengewicht von ca. 180 g/m2) eingelegt, welches dann mittels eines Klebebandes im Substrat (2) fixiert wird.Finally, the substrate is turned and the waste fleece (13) (13 × 7 × 1.5 mm 3 fleece made of 100 parts glass fiber (diameter 0.49 to 0.58 µm, length 1000 µm) and 5 Parts of polyvinyl alcohol fibers (Kuralon VPB 105-2 from Kuraray) with a basis weight of about 180 g/m 2 ) are inserted, which is then fixed in the substrate (2) by means of an adhesive tape.

Durch die quasi selbstdosierende Probenaufnahmeeinheit (umfassend die Probenaufgabeöffnung (4), den Probendosierabschnitt (5) und den ihn begrenzenden Strukturen (Kapillarstopp (8) und Behälter für Probenüberschuss (7)) wird gewährleistet, dass unabhängig von der auf das Testelement (1) aufgegebenen Probenmenge (sofern sie ein Mindestvolumen (in diesem Beispiel 27 µl) überschreitet) bei Verwendung unterschiedlicher Testelemente reproduzierbar gleiche Probenmengen verwendet werden.The quasi-self-dosing sample receiving unit (comprising the sample application opening (4), the sample dosing section (5) and the structures delimiting it (capillary stop (8) and container for excess sample (7)) ensures that, regardless of the amount applied to the test element (1). sample amount (if it exceeds a minimum volume (in this example 27 µl)) when using different test elements, the same sample amounts can be used reproducibly.

Durch die Verteilung der Reagenzien im gesamten Probendosierabschnitt (5), vorzugsweise in Form sich abwechselnder Reagenzienspots (d. h. kleiner, fast punktförmiger Reagenzienbezirke), in Kombination mit einer raschen Befüllung des Probendosierabschnitt (5) mit Probe wird ein homogenes Lösen der Reagenzien im gesamten Probenvolumen erreicht, insbesondere falls das Befüllen deutlich schneller erfolgt als das Lösen. Darüber hinaus erfolgt ein praktisch vollständiges Lösen der Reagenzien, so dass auch hier wieder eine gesteigerte Reproduzierbarkeit im Vergleich zu herkömmlichen, auf saugfähigen Materialien basierenden Testelementen (Teststreifen, Bio-Disks mit Reagenzienpads etc.) beobachtet wird.By distributing the reagents throughout the sample dosing section (5), preferably in the form of alternating reagent spots (i.e. small, almost punctiform reagent areas), in combination with rapid filling of the sample dosing section (5) with sample, a homogeneous dissolution of the reagents in the entire sample volume is achieved , especially if the filling is much faster than the release. In addition, the reagents are practically completely dissolved, so that here again an increased reproducibility compared to conventional test elements based on absorbent materials (test strips, bio-disks with reagent pads, etc.) is observed.

Beispiel 2 example 2 Nachweis von Troponin T mit Hilfe des Testelements aus Beispiel 1Detection of troponin T using the test element from example 1

Auf das Testelement gemäß Beispiel 1 werden 27 µl Vollblut, dem unterschiedliche Mengen an rekombinantem Troponin T beigemischt wurden, aufgegeben. Das Testelement wird anschließend anhand des in Tabelle 1 angegebenen Ablaufs weiterbehandelt und abschließend die Fluoreszenzsignale für unterschiedliche Konzentrationen gemessen. Tabelle 1: Messablauf Zeit (min:sec) Dauer (min:sec) Rotation mit Umdrehungen pro Minute Aktion 00:00 01:00 0 27 µl Probe aufgeben; Lösen der Reagenzien 01:00 02:00 5000 Erythrozytenseparation und Inkubation 03:00 01:00 800 Chromatographie (Signal generieren) 04:00 00:10 0 12 µl Waschpuffer1) aufgeben 04:10 02:00 800 Waschpuffertransport und Chromatographie 06:10 00:10 0 12 µl Waschpuffer1) aufgeben 06:20 02:00 800 Waschpuffertransport und Chromatographie 08:20 00:10 0 12 µl Waschpuffer1) aufgeben 08:30 02:00 800 Waschpuffertransport und Chromatographie 10:30 0 Messen 1) 100 mM Hepes, pH 8,0; 150 mM NaCl; 0,095 % Natriumazid. 27 μl of whole blood to which different amounts of recombinant troponin T have been added are applied to the test element according to Example 1. The test element is then processed further using the procedure given in Table 1 and finally the fluorescence signals for different concentrations are measured. Table 1: Measurement process Time (min:sec) Duration (min:sec) Rotation with revolutions per minute action 00:00 01:00 0 apply 27 µl sample; dissolving the reagents 01:00 02:00 5000 Erythrocyte Separation and Incubation 03:00 01:00 800 Chromatography (generate signal) 04:00 00:10 0 Add 12 µl wash buffer 1) . 04:10 02:00 800 Wash Buffer Transport and Chromatography 06:10 00:10 0 Add 12 µl wash buffer 1) . 06:20 02:00 800 Wash Buffer Transport and Chromatography 08:20 00:10 0 Add 12 µl wash buffer 1) . 08:30 02:00 800 Wash Buffer Transport and Chromatography 10:30 a.m 0 Measure 1) 100mM Hepes, pH 8.0; 150mM NaCl; 0.095% sodium azide.

Die Messdaten sind in Figur 10 wiedergegeben. Dabei sind die jeweiligen Messsignale (in counts) gegen die Konzentration an rekombinantem Troponin T (c (TnT)) in [ng/ml]) aufgetragen. Die tatsächliche Troponin T-Konzentration in den Vollblutproben wurde mit der Referenzmethode "Roche Diagnostics Elecsys Troponin T Test" bestimmt.The measurement data are in figure 10 played back. The respective measurement signals (in counts) are plotted against the concentration of recombinant troponin T (c(TnT)) in [ng/ml]). The actual troponin T concentration in the whole blood samples was determined using the "Roche Diagnostics Elecsys Troponin T Test" reference method.

Im Vergleich zu herkömmlichen immunochromatographischen Troponin T-Teststreifen, wie z. B. Cardiac Troponin T von Roche Diagnostics, ist die Nachweisgrenze für den quantitativ auswertbaren Messbereich mit dem erfindungsgemäßen Testelement nach unten verschoben (Cardiac Troponin T: 0,1 ng/ml; Erfindung: 0,02 ng/ml) und der dynamische Messbereich nach oben hin erweitert (Cardiac Troponin T: 2,0 ng/ml; Erfindung: 20 ng/ml). Zugleich zeigen die erfindungsgemäßen Testelemente eine verbesserte Präzision.Compared to conventional immunochromatographic troponin T test strips such. B. Cardiac troponin T from Roche Diagnostics, the detection limit for the quantitatively evaluable measuring range with the test element according to the invention is shifted down (cardiac troponin T: 0.1 ng / ml; invention: 0.02 ng / ml) and the dynamic measuring range extended upwards (cardiac troponin T: 2.0 ng/ml; invention: 20 ng/ml). At the same time, the test elements according to the invention show improved precision.

Claims (11)

  1. A test element (1) for detecting an analyte in a liquid sample which is substantially disk-shaped and rotatable about an axis perpendicular to the plane of the disk-shaped test element, containing
    - a sample application opening (4) for applying a liquid sample,
    - a capillary-active zone (12) which is a porous, absorbent matrix (12), wherein the capillary-active zone (12) contains one or more zones with immobilized reagents, wherein the immobilized reagents are specific binding reagents which are suitable to selectively capture the analyte or species derived from and related to the analyte from the sample flowing through the capillary-active zone (12) and which are present in the form of lines, dots, patterns immobilized in or on the material of the capillary-active zone (12), having a first end remote from the axis and a second end near to the axis, and
    - a sample channel (9) extending from the sample application opening (4) via an area near to the axis to the first end of the capillary-active zone (12) that is remote from the axis;
    characterized in that
    the first end of the capillary-active zone (12) that is remote from the axis is in contact with the sample channel (9); and
    the sample application opening (4) is near to the axis and the sample channel (9) extends from the sample application opening (4) near to the axis to the first end of the capillary-active zone (12) that is remote from the axis; and
    the sample channel has an inlet for further liquids except for the sample liquid; and wherein said inlet has a separate addition opening (16) for further liquids, preferably washing buffer, and an associated channel (15) capable of transporting the buffer to the capillary-active zone (12), wherein
    the separate addition opening (16) is arranged closer to the axis about which the test element is rotatable than the area of the sample channel (9) which is directly connected to the first end of the capillary-active zone (12) that is remote from the axis; and
    the associated channel (15) directly connects the separate addition opening (16) to the area of the sample channel (9) which is directly connected to the first end of the capillary-active zone (12) that is remote from the axis.
  2. The test element (1) according to claim 1, characterized in that the porous, absorbent matrix (12) is a paper, a membrane, or a fleece.
  3. The test element (1) according to one of the preceding claims, characterized in that the capillary-active zone (12) with the second end near to the axis is in contact with a further absorbent material (13) or an absorbent structure capable of taking up liquid from the capillary-active zone (12).
  4. The test element (1) according to one of the preceding claims, characterized in that the sample channel (9) contains zones of different dimensions and/or for different functions, in particular a zone with soluble reagents and/or a sample dosing zone (5) and/or a zone for separating particulate components from the liquid sample.
  5. The test element (1) according to one of the preceding claims, characterized in that the sample channel (9) contains geometric valves or hydrophobic barriers (6, 8, 14, 19).
  6. The test element (1) according to one of claims 1 to 5, characterized in that the sample application opening (4) is in contact with a sample dosing zone (5) and a zone (7) for sample excess, wherein a capillary stop (6) is present between the sample dosing zone (5) and the zone (7) for sample excess.
  7. A method for detecting an analyte in a liquid sample, wherein
    - the sample is applied into the sample application opening (4) of the test element (1) according to one of claims 1 to 6,
    - the test element (1) is rotated such that the sample is transported to the end of the capillary-active zone (12) that is remote from the axis;
    - the rotation of the test element (1) is decelerated or stopped, respectively such that the sample or a material recovered from the sample when flowing through the test element (1) is sucked from the end remote from the axis to the end near to the axis of the capillary-active zone (12); and
    - the analyte is visually or optically detected in the capillary-active zone (12) or a zone downstream thereof.
  8. The method according to claim 7, characterized in that
    after rotation of the test element (1) a further liquid is applied to the test element (1) which is sucked after the sample from the end remote from the axis to the end near to the axis of the capillary-active zone (12).
  9. The method according to claim 7 or 8, characterized in that migration of the liquid sample and/or the further liquid through the capillary-active zone (12) is selectively decelerated or stopped by the rotation of the test element (1).
  10. The method according to one of claims 7 to 9, characterized in that the migration direction of the liquid sample and/or the further liquid through the capillary-active zone (12) is reversed by the rotation of the test element (1).
  11. A system for determining an analyte in a liquid sample containing a test element (1) according to one of claims 1 to 6 and a measuring device, wherein the measuring device has
    - at least one drive for the rotation of the test element (1); and
    - an evaluation optics for evaluating the visual or optical signal of the test element (1).
EP19160587.2A 2006-09-27 2007-09-27 Rotatable test element Active EP3524982B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP06020219A EP1916524A1 (en) 2006-09-27 2006-09-27 Rotatable test element
EP07818502.2A EP2069787B1 (en) 2006-09-27 2007-09-27 Rotatable test element
PCT/EP2007/008419 WO2008037469A1 (en) 2006-09-27 2007-09-27 Rotatable test element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP07818502.2A Division EP2069787B1 (en) 2006-09-27 2007-09-27 Rotatable test element

Publications (2)

Publication Number Publication Date
EP3524982A1 EP3524982A1 (en) 2019-08-14
EP3524982B1 true EP3524982B1 (en) 2022-10-19

Family

ID=37719401

Family Applications (3)

Application Number Title Priority Date Filing Date
EP06020219A Ceased EP1916524A1 (en) 2006-09-27 2006-09-27 Rotatable test element
EP19160587.2A Active EP3524982B1 (en) 2006-09-27 2007-09-27 Rotatable test element
EP07818502.2A Active EP2069787B1 (en) 2006-09-27 2007-09-27 Rotatable test element

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP06020219A Ceased EP1916524A1 (en) 2006-09-27 2006-09-27 Rotatable test element

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP07818502.2A Active EP2069787B1 (en) 2006-09-27 2007-09-27 Rotatable test element

Country Status (8)

Country Link
US (1) US8470588B2 (en)
EP (3) EP1916524A1 (en)
JP (1) JP5502482B2 (en)
CN (1) CN101517413B (en)
CA (1) CA2664565C (en)
ES (2) ES2724734T3 (en)
HK (1) HK1136626A1 (en)
WO (1) WO2008037469A1 (en)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8632243B2 (en) * 2008-03-10 2014-01-21 The Hong Kong Polytechnic University Microfluidic mixing using continuous acceleration/deceleration methodology
EP2133149A1 (en) * 2008-06-13 2009-12-16 F.Hoffmann-La Roche Ag Lab-on-disc device
EP2145682A1 (en) * 2008-07-18 2010-01-20 Roche Diagnostics GmbH Test element for analysing a bodily fluid sample for an analyte contained therein, analysis system and method for controlling the movement of a fluid contained in a channel of a test element
EP2198964B8 (en) 2008-11-06 2013-04-24 F. Hoffmann-La Roche AG Method of providing a dry reagent in a micro-fluid system
EP2194381B1 (en) * 2008-12-03 2015-12-02 Roche Diagnostics GmbH Testing element with combined control and calibration zone
GB2473425A (en) * 2009-09-03 2011-03-16 Vivacta Ltd Fluid Sample Collection Device
EP2329877A1 (en) * 2009-12-04 2011-06-08 Roche Diagnostics GmbH Microfluidic element for analysing a fluid sample
KR101722548B1 (en) * 2010-01-29 2017-04-03 삼성전자주식회사 Centrifugal Micro-fluidic Device and Method for detecting analytes from liquid specimen
EP2369324A1 (en) 2010-03-23 2011-09-28 F. Hoffmann-La Roche AG Method for producing an analytical test element, analytical test element, use of an analytical test element and analytical test system
DE102010013752A1 (en) 2010-03-31 2011-10-06 Roche Diagnostics Gmbh Multifunctional detection cuvette
JP5728217B2 (en) 2010-12-14 2015-06-03 ローム株式会社 Microchip and inspection or analysis method using the same
US9604213B2 (en) 2012-02-13 2017-03-28 Neumodx Molecular, Inc. System and method for processing and detecting nucleic acids
AU2013221701B2 (en) 2012-02-13 2017-02-02 Molecular Systems Corporation Microfluidic cartridge for processing and detecting nucleic acids
US9637775B2 (en) 2012-02-13 2017-05-02 Neumodx Molecular, Inc. System and method for processing biological samples
US11648561B2 (en) 2012-02-13 2023-05-16 Neumodx Molecular, Inc. System and method for processing and detecting nucleic acids
US11485968B2 (en) 2012-02-13 2022-11-01 Neumodx Molecular, Inc. Microfluidic cartridge for processing and detecting nucleic acids
WO2014059134A1 (en) * 2012-10-11 2014-04-17 Siemens Healthcare Diagnostics Inc. Automation maintenance carrier
DK2912174T3 (en) 2012-10-25 2019-08-26 Neumodx Molecular Inc METHOD AND MATERIALS FOR INSULATING NUCLEIC ACID MATERIALS
EP2777499B1 (en) 2013-03-15 2015-09-16 Ortho-Clinical Diagnostics Inc Rotatable fluid sample collection device
CA3026548C (en) 2013-04-15 2022-01-04 Becton, Dickinson And Company Medical device for collection of a biological sample
CA2909355C (en) 2013-04-15 2018-07-10 Becton, Dickinson And Company Biological fluid collection device and biological fluid separation and testing system
AP2016009089A0 (en) * 2013-08-23 2016-03-31 Daktari Diagnostics Inc Microfluidic metering of fluids
CA2932269C (en) * 2013-12-06 2022-01-25 Ortho Clinical Diagnostics, Inc. Assay device having a wash port
EP2944965A1 (en) 2014-05-13 2015-11-18 Roche Diagnostics GmbH Rotatable cartridge for measuring a property of a biological sample
EP2952257A1 (en) * 2014-06-06 2015-12-09 Roche Diagnostics GmbH Rotatable cartridge for processing and analyzing a biological sample
EP2952258A1 (en) 2014-06-06 2015-12-09 Roche Diagnostics GmbH Rotatable cartridge for analyzing a biological sample
KR101859860B1 (en) 2014-06-06 2018-05-18 에프. 호프만-라 로슈 아게 Rotatable cartridge with a metering chamber for analyzing a biological sample
EP2957890A1 (en) 2014-06-16 2015-12-23 Roche Diagnostics GmbH Cartridge with a rotatable lid
US11255852B2 (en) 2014-10-30 2022-02-22 Cytiva Sweden Ab Method to determine solvent correction curves
JP6600861B2 (en) * 2015-04-08 2019-11-06 株式会社パートナーファーム Solid phase reaction chip and measurement method using the same
WO2017044732A1 (en) * 2015-09-09 2017-03-16 Northwestern University Devices, systems, and methods for specimen preparation using capillary and centrifugal forces
EP3173149A1 (en) * 2015-11-26 2017-05-31 Roche Diagnostics GmbH Determining a quantity of an analyte in a blood sample
EP3184158B1 (en) 2015-12-21 2019-01-16 Roche Diagniostics GmbH Blood collector with capillary structure
WO2017156910A1 (en) * 2016-03-14 2017-09-21 北京康华源科技发展有限公司 Centrifugation detection method and device
CN107192819A (en) * 2016-03-14 2017-09-22 北京康华源科技发展有限公司 One kind centrifuges detection method
EP3231513B1 (en) * 2016-04-14 2022-03-02 Roche Diagnostics GmbH Cartridge and optical measurement of an analyte with said cartridge
KR101868961B1 (en) * 2016-06-21 2018-06-19 울산과학기술원 Microfluidic devices
EP3324189B1 (en) 2016-11-16 2021-01-06 Roche Diagnostics GmbH Rotatable cartridge with multiple metering chambers
US20190346461A1 (en) * 2017-01-20 2019-11-14 Université Libre de Bruxelles Immunoassay methods and devices
EP3580565A4 (en) * 2017-02-09 2021-04-21 Essenlix Corporation Assay using different spacing heights
US20200238279A1 (en) * 2017-03-08 2020-07-30 Northwestern University Devices, systems, and methods for specimen preparation and analysis using capillary and centrifugal forces
WO2018177445A1 (en) * 2017-04-01 2018-10-04 北京康华源科技发展有限公司 Centrifugation immunochromatography detection method and apparatus
CN107525923A (en) * 2017-04-01 2017-12-29 北京康华源科技发展有限公司 One kind centrifuges immunochromatography detection method and device
KR102140371B1 (en) 2017-11-20 2020-07-31 주식회사 엘지화학 A device and method for qualitative and quantitative analysis of heavy metals using a rotary disc system
US11433390B2 (en) * 2017-12-07 2022-09-06 Ion Llc Methods and systems for a capillary device
JP6846388B2 (en) * 2018-06-26 2021-03-24 シスメックス株式会社 Measurement cartridge and liquid feeding method
CN110614126B (en) * 2018-06-28 2021-04-09 北京中科生仪科技有限公司 Micro-fluidic chip for realizing optical detection and manufacturing method thereof
SE542462C2 (en) * 2018-09-20 2020-05-12 Astrego Diagnostics Ab Sample loading cartridge for a microfluidic device
CN111207242B (en) 2020-04-18 2020-09-01 博奥生物集团有限公司 Fluid actuated control valve and method of use
KR102433675B1 (en) * 2020-07-02 2022-08-18 주식회사 클리노믹스 Pa rticle filtration device and method of particle filtration
BE1029228B1 (en) * 2021-03-22 2022-10-18 Unisensor Microfluidic device

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3445816C1 (en) 1984-12-15 1986-06-12 Behringwerke Ag, 3550 Marburg Flat diagnostic agent
US5160702A (en) * 1989-01-17 1992-11-03 Molecular Devices Corporation Analyzer with improved rotor structure
US5061381A (en) 1990-06-04 1991-10-29 Abaxis, Inc. Apparatus and method for separating cells from biological fluids
US5242606A (en) * 1990-06-04 1993-09-07 Abaxis, Incorporated Sample metering port for analytical rotor having overflow chamber
US5591643A (en) * 1993-09-01 1997-01-07 Abaxis, Inc. Simplified inlet channels
US6235531B1 (en) * 1993-09-01 2001-05-22 Abaxis, Inc. Modified siphons for improved metering precision
IL108159A (en) * 1993-12-23 1998-02-08 Orgenics Ltd Apparatus for separation, concentration and detection of target molecules in liquid sample
GB9809943D0 (en) * 1998-05-08 1998-07-08 Amersham Pharm Biotech Ab Microfluidic device
US20020076354A1 (en) 2000-12-01 2002-06-20 Cohen David Samuel Apparatus and methods for separating components of particulate suspension
EP1390144A2 (en) * 2001-03-19 2004-02-25 Gyros AB Structural units that define fluidic functions
AU2003293399A1 (en) * 2002-12-04 2004-06-23 Spinx, Inc. Devices and methods for programmable microscale manipulation of fluids
US20050014249A1 (en) 2003-02-21 2005-01-20 Norbert Staimer Chromatographic analysis on optical bio-discs and methods relating thereto
WO2004095034A1 (en) 2003-04-23 2004-11-04 Nagaoka & Co., Ltd. Optical bio-discs including spiral fluidic circuits for performing assays
US7390464B2 (en) * 2003-06-19 2008-06-24 Burstein Technologies, Inc. Fluidic circuits for sample preparation including bio-discs and methods relating thereto
WO2005001429A2 (en) 2003-06-27 2005-01-06 Nagaoka & Co., Ltd. Fluidic circuits, methods and apparatus for use of whole blood samples in colorimetric assays
US20040265171A1 (en) * 2003-06-27 2004-12-30 Pugia Michael J. Method for uniform application of fluid into a reactive reagent area
US7077996B2 (en) * 2003-07-15 2006-07-18 Randall Brandon L Methods and apparatus for blood separation and analysis using membranes on an optical bio-disc
JP4646204B2 (en) * 2005-01-27 2011-03-09 ブラザー工業株式会社 Receiving target, sorting device, and sorting method

Also Published As

Publication number Publication date
HK1136626A1 (en) 2010-07-02
EP2069787A1 (en) 2009-06-17
CA2664565C (en) 2014-04-01
ES2933349T3 (en) 2023-02-06
JP2010505096A (en) 2010-02-18
CN101517413B (en) 2013-11-06
EP2069787B1 (en) 2019-03-06
WO2008037469A1 (en) 2008-04-03
JP5502482B2 (en) 2014-05-28
US20090191643A1 (en) 2009-07-30
ES2724734T3 (en) 2019-09-13
US8470588B2 (en) 2013-06-25
CN101517413A (en) 2009-08-26
EP1916524A1 (en) 2008-04-30
EP3524982A1 (en) 2019-08-14
CA2664565A1 (en) 2008-04-03

Similar Documents

Publication Publication Date Title
EP3524982B1 (en) Rotatable test element
DE602005005485T2 (en) ASSAY DEVICE AND METHOD WITH CONTROLLED RIVER
EP0989407B1 (en) Method for the determination of glycosylated haemoglobin
EP0073513B2 (en) Method of carrying out an analytical determination, and suitable means therefor
EP1944078B1 (en) Device for determining an analyte in a liquid and method
DE69906986T2 (en) ANALYTICAL TEST APPARATUS AND METHOD
DE60037268T2 (en) METHOD FOR IMPLEMENTING MAGNETIC CHROMATOGRAPHIC ASSAYS
DE60218695T2 (en) BIOSENSORS AND MEASURING PROCEDURES
US10983119B2 (en) Device for rapid diagnostic tests to detect antigens with improved sensitivity
EP0167171B1 (en) Method and device for performing analytical determinations
EP0052769A1 (en) Method for analytical assays and rotor element for carrying out the method
EP1495799A2 (en) Device for the treatment of limited liquid portions
EP3829767B1 (en) Device and method for guiding a liquid through a porous medium
DE2332760B2 (en) MATERIAL FOR THE QUANTITATIVE SPECTROPHOTOMETRIC ANALYSIS OF A LIQUID
EP1808696A1 (en) Immunological test element with improved control zone
EP1522343B1 (en) Analytical testelement including a hydrophilic network for forming a capillary channel, its use and method for determining an analyte in a liquid.
DE102007019695B4 (en) Cuvette for the optical analysis of small volumes
US20030190690A1 (en) Biosensor and method for analyzing blood components using it
EP2194381B1 (en) Testing element with combined control and calibration zone
DE10001116C2 (en) Device and method for the optical or electrochemical quantitative determination of chemical or biochemical substances in liquid samples
DE60025758T2 (en) ANALYSIS DEVICE AND ITS USE
DE3912901A1 (en) VESSEL FOR AGGLUTINATION ANALYSIS
DE102005010096B3 (en) Assay with osmotically induced separation and enrichment of high molecular weight substances to be detected and fluidic microsystem for its implementation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AC Divisional application: reference to earlier application

Ref document number: 2069787

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200214

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200707

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502007016985

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: G01N0033543000

Ipc: B01L0003000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: G01N 33/543 20060101ALN20220425BHEP

Ipc: B01L 3/00 20060101AFI20220425BHEP

INTG Intention to grant announced

Effective date: 20220520

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 2069787

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007016985

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1525232

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221115

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2933349

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20230206

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20221019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230220

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230219

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230120

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007016985

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

26N No opposition filed

Effective date: 20230720

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230822

Year of fee payment: 17

Ref country code: GB

Payment date: 20230823

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230822

Year of fee payment: 17

Ref country code: DE

Payment date: 20230822

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231002

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20231001

Year of fee payment: 17