EP2069787B1 - Rotatable test element - Google Patents
Rotatable test element Download PDFInfo
- Publication number
- EP2069787B1 EP2069787B1 EP07818502.2A EP07818502A EP2069787B1 EP 2069787 B1 EP2069787 B1 EP 2069787B1 EP 07818502 A EP07818502 A EP 07818502A EP 2069787 B1 EP2069787 B1 EP 2069787B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sample
- test element
- capillary
- zone
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012360 testing method Methods 0.000 title claims description 169
- 239000007788 liquid Substances 0.000 claims description 85
- 239000003153 chemical reaction reagent Substances 0.000 claims description 66
- 239000002250 absorbent Substances 0.000 claims description 37
- 230000002745 absorbent Effects 0.000 claims description 36
- 239000011159 matrix material Substances 0.000 claims description 32
- 239000012491 analyte Substances 0.000 claims description 30
- 239000012528 membrane Substances 0.000 claims description 28
- 239000000463 material Substances 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 13
- 230000004888 barrier function Effects 0.000 claims description 12
- 230000002209 hydrophobic effect Effects 0.000 claims description 12
- 230000003287 optical effect Effects 0.000 claims description 12
- 238000005259 measurement Methods 0.000 claims description 10
- 239000004745 nonwoven fabric Substances 0.000 claims description 7
- 230000009870 specific binding Effects 0.000 claims description 7
- 238000011156 evaluation Methods 0.000 claims description 5
- 238000013508 migration Methods 0.000 claims description 4
- 230000005012 migration Effects 0.000 claims description 4
- 230000000007 visual effect Effects 0.000 claims description 3
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 claims 1
- 239000000523 sample Substances 0.000 description 262
- 210000004379 membrane Anatomy 0.000 description 27
- 210000003743 erythrocyte Anatomy 0.000 description 21
- 210000002381 plasma Anatomy 0.000 description 20
- 239000000306 component Substances 0.000 description 19
- 210000002966 serum Anatomy 0.000 description 19
- 210000004369 blood Anatomy 0.000 description 17
- 239000008280 blood Substances 0.000 description 17
- 238000000926 separation method Methods 0.000 description 17
- 238000001514 detection method Methods 0.000 description 16
- 239000000758 substrate Substances 0.000 description 16
- 230000032258 transport Effects 0.000 description 16
- 238000003018 immunoassay Methods 0.000 description 14
- 102000004987 Troponin T Human genes 0.000 description 13
- 108090001108 Troponin T Proteins 0.000 description 13
- 239000011534 wash buffer Substances 0.000 description 13
- 238000011049 filling Methods 0.000 description 11
- 238000009739 binding Methods 0.000 description 10
- 230000001413 cellular effect Effects 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 230000027455 binding Effects 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 238000005406 washing Methods 0.000 description 8
- 239000002699 waste material Substances 0.000 description 8
- 239000000020 Nitrocellulose Substances 0.000 description 7
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 7
- 229920001220 nitrocellulos Polymers 0.000 description 7
- 239000000123 paper Substances 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 6
- 239000000969 carrier Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000004587 chromatography analysis Methods 0.000 description 5
- 108010090804 Streptavidin Proteins 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 238000004090 dissolution Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000000747 cardiac effect Effects 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000000159 protein binding assay Methods 0.000 description 3
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 102000004903 Troponin Human genes 0.000 description 2
- 108090001027 Troponin Proteins 0.000 description 2
- 239000002390 adhesive tape Substances 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000008397 Elecsys Troponin T Methods 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- 241001295925 Gegenes Species 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 102000004856 Lectins Human genes 0.000 description 1
- 108090001090 Lectins Proteins 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 230000004520 agglutination Effects 0.000 description 1
- 239000000538 analytical sample Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012503 blood component Substances 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 238000013375 chromatographic separation Methods 0.000 description 1
- 238000012875 competitive assay Methods 0.000 description 1
- 238000002967 competitive immunoassay Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 229940127121 immunoconjugate Drugs 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000002523 lectin Substances 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000011533 pre-incubation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000007430 reference method Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000012723 sample buffer Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- PWEBUXCTKOWPCW-UHFFFAOYSA-N squaric acid Chemical class OC1=C(O)C(=O)C1=O PWEBUXCTKOWPCW-UHFFFAOYSA-N 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- -1 such as the porous Substances 0.000 description 1
- 238000002562 urinalysis Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502753—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5023—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures with a sample being transported to, and subsequently stored in an absorbent for analysis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/50273—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502738—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/06—Fluid handling related problems
- B01L2200/0605—Metering of fluids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/06—Auxiliary integrated devices, integrated components
- B01L2300/0627—Sensor or part of a sensor is integrated
- B01L2300/0663—Whole sensors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/06—Auxiliary integrated devices, integrated components
- B01L2300/0681—Filter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/06—Auxiliary integrated devices, integrated components
- B01L2300/069—Absorbents; Gels to retain a fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0803—Disc shape
- B01L2300/0806—Standardised forms, e.g. compact disc [CD] format
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0861—Configuration of multiple channels and/or chambers in a single devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/0406—Moving fluids with specific forces or mechanical means specific forces capillary forces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/0409—Moving fluids with specific forces or mechanical means specific forces centrifugal forces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/06—Valves, specific forms thereof
- B01L2400/0688—Valves, specific forms thereof surface tension valves, capillary stop, capillary break
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/08—Regulating or influencing the flow resistance
- B01L2400/082—Active control of flow resistance, e.g. flow controllers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/11—Automated chemical analysis
- Y10T436/110833—Utilizing a moving indicator strip or tape
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/11—Automated chemical analysis
- Y10T436/111666—Utilizing a centrifuge or compartmented rotor
Definitions
- the invention relates to a test element, which is substantially disc-shaped and flat and is rotatable about a central axis which is perpendicular to the disc-shaped test element plane, comprising a sample application port for discharging a liquid sample, a capillary-active zone, which is a porous, absorbent matrix and a sample channel that extends from the sample introduction port to the capillary-active zone. Furthermore, the invention relates to a method for determining an analyte with the aid of the test element.
- test carriers eg. B. Test strips offered. Prominent examples of these are test strips for the determination of the blood glucose value or test strips for urinalysis.
- test carriers usually integrate several functions (eg the storage of reagents in dried form or, albeit less frequently, in solution, the separation of undesired sample constituents, in particular of red blood cells from whole blood, in immunoassays, the so-called Free separation, the dosing of sample volumes, the transport of sample liquid from outside a device into a device, the control of the sequence of individual reaction steps, etc.).
- the function of the sample transport is often accomplished by means of absorbent materials (eg papers or fleeces), by means of capillary channels or by application of external driving forces (such as pressure, suction) or by means of centrifugal force.
- Disc-shaped test carriers so-called LabDiscs or optical BioDiscs, continue the idea of controlled sample transport by means of centrifugal force (centrifugal force).
- Such Disc-shaped, CompactDisc-like test carriers allow miniaturization through the use of microfluidic structures and at the same time the parallelization of processes by repeated application of identical structures for the parallel processing of similar analyzes from a sample or identical analyzes from different samples.
- optical BioDiscs the integration of optically stored digital data for the identification of the test carriers or the control of the analysis systems on the optical BioDiscs is possible.
- BioDiscs In addition to the miniaturization and parallelization of analyzes and the integration of digital data on optical discs, BioDiscs generally have the advantage that they can be manufactured using established manufacturing methods and measured using established evaluation technology. In the chemical and biochemical components of such optical BioDiscs usually a recourse to known chemical and biochemical components is possible.
- a disadvantage of the optical LabDiscs or Biodiscs based purely on centrifugal and capillary forces is that the immobilization of reagents is difficult and the accuracy of detection suffers. Especially in detection systems based on specific binding reactions, such.
- As immunoassays lacks compared to conventional test strip systems, the volume component, especially in the so-called. Bound-Free separation.
- BioDiscs with channels and channel-like structures for liquid transport on the one hand and voluminous absorbent materials in these structures (at least partially) on the other.
- WO 2005/001429 (Phan et al. ) describes optical bio-discs which have membrane pieces as reagent carriers in parts of the channel system. The reagents are dissolved by a liquid supplied to the disc, resulting in buffered reagent solutions, which are then contacted with the sample.
- optical bio-disks which contain absorbent membranes or papers for moving a sample liquid, separating particulate sample components, carrying reagents, and analyzing the sample.
- the sample is first applied to a blood separation membrane near the outer edge of the bio-disk and migrates radially therethrough to a reagent paper located closer to the center of the bio-disk. Thereafter, the sample is again moved radially outward, ie away from the center of the bio-disk, and flows through a so-called Analysis membrane.
- the outward movement takes place via chromatography, which is supported by rotation of the bio-disk and the centrifugal force acting thereon on the sample.
- US 2002/0076354 A1 discloses bio-optical discs having, in addition to a channel system for the transport of a liquid sample, a so-called “capture layer".
- the latter can for example consist of nitrocellulose.
- the "interception layer” is traversed by means of centrifugal forces during rotation of the disk.
- a test element with liquid channels in which sample liquid is transported by means of an interplay of capillary force and centrifugal force.
- a nitrocellulose strip may be provided which carries an agglutination reagent which reacts with the analyte and thus can lead to the formation of so-called bands, which can be optically measured and thus used to determine an analyte concentration in the sample.
- the nitrocellulose strip With the aid of the nitrocellulose strip it is possible to carry the sample liquid in opposite directions both in parallel to the centrifugal force and in the centrifugal force, in particular if another absorbent material, for example a nitrocellulose absorbent paper, is used to support the suction effect.
- WO 99/58245 (Larsson et al. ) describes microfluidic test elements in which the movement of the liquids through different surfaces with different surface properties, such. B. different hydrophilicity is controlled.
- a disadvantage of the concepts of the prior art is that just for specific binding assays, such.
- immunoassays targeted control of the reaction and residence times of the sample liquid after receiving the reagents and after flowing into the porous, absorbent matrix is not possible.
- the object of the invention is to eliminate the disadvantages of the prior art.
- the invention relates to a test element according to claim 1, a system according to claim 11 and a method according to claim 7.
- Advantageous embodiments and preferred embodiments of the invention are the subject of the dependent claims.
- test element is essentially disc-shaped and planar. It is rotatable about a central axis which is perpendicular to the disk-shaped test element plane within the test element.
- the test element is a circular disc, comparable to a compact disc.
- the invention is not limited to this shape of the disc, but can readily be found in non-symmetrical or non-circular discs use.
- the test element first contains a sample introduction opening into which a liquid sample can be pipetted or introduced in another way.
- the sample application port is close to the axis (ie near the center of the disc).
- the sample application opening can open directly into a sample channel.
- the sample introduction opening can first open into a reservoir located behind it, into which the sample flows before it continues to flow into the sample channel.
- a hydrophilization of the surfaces of the fluidic structures may be necessary and / or the use of structures that promote the formation of capillary forces.
- the test element contains a capillary-active zone in the form of a porous, absorbent matrix, which accommodates at least a portion of the liquid sample.
- the capillary active zone has an off-axis first end and an off-axis second end.
- the test element further has a sample channel extending from the sample introduction port to the off-axis first end of the capillary active zone, which is a porous, bibulous matrix. At least once, the sample channel passes through an area close to the axis which is closer to the central axis than the first end of the capillary-active zone, which is remote from the axis.
- the capillary-active zone which is a porous, absorbent matrix
- the off-axis first end of the capillary active zone is in contact with the sample channel, in which the sample can be moved by capillary forces and / or centrifugal forces and / or other external forces, such as overpressure or underpressure.
- capillary forces which in the case of a porous absorbent Matrix can also be referred to as suction
- the capillary-active zone is a porous, absorbent matrix, in particular a paper, a membrane or a fleece.
- the capillary active zone which is a porous, bibulous matrix, contains one or more zones of immobilized reagents.
- the capillary-active zone which is a porous bibulous matrix
- specific binding reagents for example specific binding partners, such as antigens, antibodies, (poly) haptens, streptavidin, polystreptavidin, ligands, receptors, nucleic acid strands ("capture probes") and the like, immobilized. They serve to selectively capture from the sample flowing through the capillary-active zone the analyte or analyte-derived and related species.
- binding partners are immobilized in the form of lines, dots, patterns in or on the material of the capillary-active zone.
- an antibody to the analyte may be immobilized on the surface of the capillary active zone, which is a porous, bibulous matrix, which will then capture the analyte (in this case, an antigen or hapten) from the sample and also in immobilize the capillary-active zone.
- the analyte can be made detectable by further reactions, for example by further contacting with a labeled bindable partner, for example by a label which can be visually, optically or fluorescently detected.
- the capillary-active zone which is a porous, absorbent matrix, adjoins, with the second end close to the axis, another absorbent material or an absorbent structure, so that this or this liquid can absorb from the zone.
- the porous absorbent matrix and other material overlap slightly for this purpose.
- the further material or the further absorbent structure serves on the one hand to support the suction effect of the capillary-active zone, which is a porous absorbent matrix, on the other hand as a receiving zone for liquid that has already passed through the capillary-active zone.
- the further material may consist of the same or different materials as the matrix.
- the matrix may be a membrane and the other absorbent material may be a nonwoven or a paper. Other combinations are of course possible as well.
- the test element according to the invention is characterized in a preferred embodiment in that the sample channel contains zones of different dimensions and / or for different functions.
- the sample channel may contain a zone containing reagents that are soluble in the sample or suspendable in the sample. These can be dissolved or suspended in the liquid sample when it flows in or through it and can react with the analyte in the sample or with other sample components.
- the different zones in the sample channel may also differ in that there are zones with capillary activity and those without.
- zones of high hydrophilicity and low hydrophilicity may be included.
- the individual zones can virtually seamlessly pass into one another or be separated from one another by certain barriers, for example valves, in particular non-closing valves, such as geometric valves or hydrophobic barriers.
- the reagents in the sample channel are preferably in dried or lyophilized form. However, it is also possible that reagents are present in liquid form in the test element according to the invention.
- the reagents can be introduced into the test element in a manner known per se.
- the test element preferably contains at least two layers, a bottom layer into which the fluidic structures are introduced, and a cover layer, which as a rule contains no further structures apart from the inlet openings for liquids and the vent openings.
- the introduction of reagents during the preparation of the test device is usually carried out before the upper part of the test element (cover layer) is applied to the lower part (bottom layer). At this time, the fluidic structures are open in the lower part, so that a dosage of the reagents in liquid or dried form is readily possible.
- the introduction of the reagents can be done for example by printing or dispensing.
- the reagents into the test element by placing them in the test element impregnated in absorbent materials such as papers, nonwovens or membranes. After placing the reagents and inserting the absorbent materials, such as the porous, absorbent matrix (membrane) and optionally other absorbent materials (waste nonwoven, etc.) are Upper and lower part of the test element connected to each other, for example, clipped, welded, glued and the like.
- the bottom layer in addition to the fluidic structures also has the inlet openings for liquids and the vent openings.
- the cover layer may be formed completely without openings, with the possible exception of a central recess for receiving a drive unit.
- the upper part simply consist of a plastic film which is glued or welded to the lower part.
- the sample channel contains a zone for separating particulate matter from the liquid sample.
- that zone serves to separate the cellular sample components. From blood can be obtained by separating in particular the red blood cells (erythrocytes) nearly colorless plasma or serum, which is usually better suited for subsequent visual or optical detection methods than the heavily colored blood.
- the separation of cellular sample components by centrifugation, d. H. by fast rotation of the test element after filling with liquid sample contains suitably dimensioned and geometrically designed channels and / or chambers for this purpose.
- the test element for the separation of cellular blood components contains an erythrocyte collection zone (erythrocyte chamber or erythrocyte trap) and a serum or plasma collection zone (serum or plasma chamber).
- valves In control the flow of the sample liquid in the test element, it can contain valves, in particular so-called non-closing or geometric valves or hydrophobic barriers, especially in the sample channel. These valves serve as capillary stops. It can be ensured that targeted temporal and spatial control of the sample flow through the sample channel and the individual zone of the test element becomes possible.
- the sample channel may have a sample metering zone, which allows a precise measurement of the - initially in excess abandoned - sample.
- the sample metering zone extends from the sample application opening via a corresponding piece of a sample channel to a valve in the fluidic structure, in particular a geometric valve or a hydrophobic barrier.
- the Sample introduction opening can initially receive an excess of sample material. The sample, either driven by capillary forces or by centrifugation, flows from the sample application zone into the channel structure and fills it up to the valve. Excess sample initially remains in the sample application zone.
- a sample excess chamber adjacent to the sample application zone and branching off from the sample channel is filled, for example by capillary forces or by centrifuging the test element. It must be ensured that the sample volume to be measured is initially not transported across the valve by suitably selecting the valve. As soon as excess sample is trapped in the appropriate overflow chamber, a precisely defined sample volume is located between the valve of the sample channel on one side and the inlet to the sample overflow chamber on the other side. By applying external forces, in particular by starting another centrifugation, this defined sample volume is now moved beyond the valve. All fluidic areas that lie after the valve and come into contact with the sample are now filled with a precisely defined sample volume.
- the sample channel may also have an inflow for other liquids except the sample liquid.
- a second channel open, the z. B. can be filled with a washing or reagent liquid.
- the inventive system of measuring device and test element is used to determine an analyte in a liquid sample.
- the measuring device contains at least one drive for the rotation of the test element and an evaluation optics for evaluating the visual or optical signal of the test element.
- the optics of the measuring device can be used for fluorescence measurement with spatially resolved detection.
- d. H. planar evaluation optics is typically used to illuminate the detection area of the test element and possibly the excitation of optically detectable markers an LED or a laser.
- the detection of the optical signal is by CMOS or CCD (typically 640 x 480 pixels).
- the beam path is direct or folded (eg via mirrors or prisms).
- the illumination or excitation is typically effected by means of an illumination line which illuminates the detection area of the test element, preferably perpendicular to the detection and control lines.
- the detection can be done here via a diode array.
- the rotational movement of the test element can be utilized for the illumination and evaluation of the second dimension in order to scan with the diode array over the area of the test element to be evaluated.
- a DC motor with encoder or a stepper motor can be used as drive for rotating and positioning of the test element.
- the temperature of the test element in the device is made indirectly, for example by heating or cooling the plate on which rests the disc-shaped test element in the device.
- the measurement of the temperature is preferably carried out without contact.
- the method according to the invention serves to detect an analyte in a liquid sample.
- the sample is first placed in the sample application opening of the test element. Subsequently, the test element is rotated about its central axis. In this case, the sample is transported from the sample application opening to the off-axis end of the capillary-active zone, which is a porous, absorbent matrix.
- the rotation of the test element is then slowed down so that the sample or a material recovered from the sample as it flows through the sample (for example, a mixture of the sample with reagents, a sample modified by pre-reactions with reagents from the test element, one of certain components liberated sample such as serum or plasma from whole blood after removal of the erythrocytes, etc.) from the off-axis to the proximal end of the capillary-active zone, which is a porous, absorbent matrix.
- the analyte is finally visually or optically detected in the capillary active zone, which is a porous, bibulous matrix, or a downstream zone.
- the initiation of migration of the sample (or material recovered from the sample) through the capillary active zone can be precisely timed and controlled by selectively slowing down or stopping the rotation of the test element. Only when the amount of capillary force (suction force) in the capillary active zone exceeds the amount of centrifugal force directed counter to it will it be possible to move the sample into and through the capillary active zone.
- the liquid transport in the capillary-active zone can be targeted. For example, a possible pre-reaction or preincubation of the sample or a temperature control of the sample can be awaited before the rotation of the test element is slowed down or stopped so as to allow the sample to flow into the capillary-active zone.
- the transport of the sample (or a material obtained from the sample) through the capillary-active zone can be selectively slowed or stopped by renewed rotation of the test element about its central axis.
- the centrifugal forces occurring during the rotation counteract the capillary force which moves the sample fluid from the end of the capillary-active zone remote from the axis to the end near the axis.
- a targeted control, in particular slowing, the flow velocity of the sample in the capillary-active zone possible, up to the reversal of the flow direction.
- the residence time of the sample in the capillary-active zone can be controlled.
- the detection can be carried out according to the principle of the sandwich assay or in the form of a competitive assay.
- test element after the rotation of the test element, a further liquid is applied to the test element, which is transported after the sample from the off-axis to the near-axis end of the capillary-active zone, which is a porous, absorbent matrix.
- the further liquid may in particular be a buffer, preferably a washing buffer, or a reagent liquid.
- the capillary-active zone which is a porous, absorbent matrix, transports the liquid from an off-axis end to an axis-near end, ie, from the periphery of the disk-shaped test element toward the axis of rotation.
- the centrifugal force which can also be used to move the liquids, counteracts this direction of transport exactly.
- the use of the porous absorbent matrix which serves essentially as a scavenger matrix for bound-free separation in immunoassays, allows efficient capture of sample components during the immunoassay.
- FIGS. 1 to 8 show different preferred embodiments of the test element (1) according to the invention.
- each of the substrate (2) containing the fluidic structures and the central recess (drive hole 3) is shown.
- the disk-shaped test element (1) according to the invention also generally comprises a cover layer, which in the figures provides clarity is not shown half.
- the cover layer can also carry structures, but as a rule it will have no structures other than the openings for the samples and / or further liquids to be dispensed onto the test element.
- the cover layer can also be designed completely without openings, for example in the form of a film, which is connected to the substrate and terminates the structures located therein.
- FIGS. 1 to 9 show fluidic structures that perform largely the same functions, although they differ in detail from embodiment to embodiment.
- the basic structure and the basic function will therefore be described in more detail here with reference to the embodiment according to FIG. 1 be explained.
- the embodiments according to Figure 2 to 9 will then be explained in more detail only on the basis of the specific differences to each other in order to avoid unnecessary repetition.
- FIG. 1 shows a first preferred embodiment of the disc-shaped test element (1) according to the invention.
- the test element (1) contains a substrate (2) containing the fluidic and microfluidic and chromatographic structures.
- the substrate (2) is covered by a corresponding counterpart (cover layer) (not shown) which contains sample feed and vents corresponding to the structures in the substrate (2).
- Both the cover layer and the substrate (2) have a central recess (3) which, in cooperation with a corresponding drive unit in a measuring device, makes it possible to rotate the disk-shaped test element (1).
- the test element (according to one of the FIGS.
- Sample liquid in particular whole blood, is supplied to the test element (1) via the sample application opening (4). Driven by capillary forces and / or centrifugal forces, the sample liquid fills the sample dosing zone (5).
- the sample metering zone (5) can also contain the dried reagents. It is limited by the Kapillarstopps (6 and 8), which may be formed for example as a hydrophobic barrier or as a geometric / non-closing valve.
- the limitation of the sample dosing zone (5) by the capillary stops (6, 8) ensures that a defined sample volume is taken up and passed on into the fluidic zones which lie downstream of the sample dosing zone (5).
- channel (9) is used to start the separation of red blood cells and other cellular sample components.
- the reagents contained in the sample dosing zone (5) are already dissolved in the sample when the sample enters the channel (9).
- the entry of the sample in channel (9) via the capillary stop (8) leads to a mixing of the reagents in the sample.
- the reagent-sample mixture is directed into the fluidic structures (10) (serum / plasma collection zone) and (11) (erythrocyte collection zone). Due to the centrifugal forces acting on the reagent-sample mixture, plasma or serum is separated from red blood cells. The red blood cells collect in the erythrocyte collection zone (11), while the plasma essentially remains in the collection zone (10).
- test elements which use membranes or nonwovens to separate particulate sample components (e.g. glass fiber nonwovens or asymmetrically porous plastic membranes to separate red blood cells from whole blood, generally as blood separating membranes or nonwovens)
- sample volume can be utilized much more effectively with the test elements according to the invention since there are practically no dead volumes (eg volume of the fiber interspaces or pores) from which the sample can not be taken again.
- dead volumes e.g volume of the fiber interspaces or pores
- these prior art blood separation membranes and webs tend in part to undesirably adsorb sample components (e.g., proteins) or destroy (lysate) cells, which is also not observed with the test elements of the present invention.
- the reagent-plasma mixture (which has formed in the presence of the analyte in the case of an immunoassay, for example sandwich complexes of analyte and antibody conjugates) by the suction of the porous-absorbent matrix (12) incorporated into and passed through them.
- the immobilized binding partners contained in the membrane (12) capture the analyte-containing complexes in the detection zone and bound unbound labeled conjugate in the control zone.
- the nonwoven (13) adjoining the porous, absorbent matrix supports the movement of the sample through the membrane (12).
- the fleece (13) also serves to receive the sample after flowing through the membrane (12).
- wash buffer is pipetted into the sample application opening (4).
- the washing buffer flows through the corresponding fluidic structures of the test element (1) and, in particular, washes the membrane (12), where the bound analyte complexes are now located, thus removing excess reagent residues.
- the washing step may be repeated one or more times so as to improve the signal-to-background ratio. This allows an optimization of the detection limit for the analyte and an increase of the dynamic measuring range.
- the sample channel in which the liquid sample in the test element (1) is transported from the sample application opening (4) to the first remote end of the membrane (12), comprises in the present case the sample metering zone (5), the capillary stop (8), the channel (FIG. 9), the serum / plasma collection zone (10) and the erythrocyte chamber (11).
- the sample channel may consist of more or fewer individual zones / chambers.
- FIG. 3 differs from FIG. 1 in that on the one hand to the Sampling opening (4) no container for sample excess (7) connects and at the end of the sample Dosierabitess (5) no capillary stop is present (ie here a metered sample application is required) and on the other hand in that a separate addition port (16) for other liquids such , As washing buffer, and an associated channel (15) are present, which can transport the buffer to the membrane (12).
- the transport of the buffer to the membrane (12) can be based on capillary forces or centrifugal forces.
- the embodiment according to FIG. 5 is largely identical to the embodiment according to FIG. 3 , The two embodiments differ only by the shape of the waste nonwoven fabric (13) and in that the test element according to FIG. 5 a capillary stop (8) at the end of the sample dosing (5).
- the embodiment according to FIG. 6 again is substantially identical to the embodiment according to FIG. 5 and differs therefrom by the additional presence of a sample surplus container (7) in the region between the sample metering orifice (4) and the sample metering zone (5).
- a sample surplus container (7) in the region between the sample metering orifice (4) and the sample metering zone (5).
- no metered application of the sample is required (analog FIG. 1 ).
- FIG. 7 corresponds essentially to the test element (1) of FIG. 6 , Both embodiments have the same fluidic structures and functions. Only the arrangement and geometric design is different. The embodiment according to FIG. 7 has additional vents (17), due to the different dimensions of the fluidic structures compared to FIG. 6 are necessary to allow filling of the structures with samples or washing liquid.
- Channel (9) is designed here as a thin capillary, which is filled only during rotation of the test element (ie overcoming the capillary stop (8) is possible only by means of centrifugal force).
- FIG. 7 possible to remove recovered plasma from the erythrocyte collection zone 11; This is done by the decanter unit 18, which finally discharges into the serum / plasma collection zone 10.
- the embodiment of the non-inventive test element (1) according to FIG. 9 corresponds essentially to the test element (1) of FIG. 6 , Both embodiments have the same fluidic structures and functions. Only the arrangement and geometric design is different.
- the non-inventive embodiment according to FIG. 9 basically has a further outward, that is, away from the axis, sample application opening (4). This can be advantageous if the test element (1) for filling with sample is already introduced in a measuring device. The user can in this Case, the sample application opening (4) are made more accessible than that in the inventive test elements according to Figure 1 to 8 is possible, where the sample application opening (4) in each case close to the axis (ie remote from the outer edge of the test element) is arranged.
- the sample is transferred in a sample metering section (5), and then a serum / plasma separation from the whole blood is effected by rotation.
- the unwanted cellular sample constituents essentially erythrocytes, accumulate in the erythrocyte trap (11), while serum or plasma accumulate in the zone (10).
- the serum is removed from the zone (10) via a capillary and transported further into the channel structure (9), where dried reagents are accommodated and are dissolved when the sample flows in.
- the sample-reagent mixture of channel structure (9) can overcome the capillary stop (14) and thus reach the membrane (12) via the channel (15).
- the sample-reagent mixture is transported via the membrane (12) into the waste nonwoven (13).
- FIG. 2 and FIG. 4 differ in that in FIG. 2 a container for sample surplus (7) is provided, while the embodiment according to FIG. 4 does not provide such a function. As in the embodiment according to FIG. 3 Here is a metered application of the sample appropriate.
- FIG. 8 shows a variant of the embodiments according to Figures 2 and 4 ,
- the sample is transferred by centrifugation into an erythrocyte separation structure (10, 11).
- the area denoted by (10) serves as a serum / plasma collection zone (10), from the freed of cells serum or plasma after centrifuging over a Capillary channel (21) is forwarded.
- Chamber (20) serves as a collecting reservoir for excess serum or plasma, which after complete filling of the sample dosing section (5) possibly flows from the serum / plasma collection zone (10). All other functions and structures are analogous to FIGS. 1 to 7 ,
- the hydrophilic or hydrophobic properties of the surfaces of the test element (1) By deliberately designing the hydrophilic or hydrophobic properties of the surfaces of the test element (1), it can be achieved that the sample liquid and / or washing liquids are moved either only with the aid of rotation and the resulting centrifugal forces or by a combination of centrifugal forces and capillary forces. The latter requires at least partially hydrophilized surfaces in the fluidic structures of the test element (1).
- test elements according to the invention according to the FIGS. 1 . 2 . 6 . 7 . 8th and 9 an automatic functionality that allows a relatively accurate measurement of a sample aliquot from a surrendered in excess of the test element sample (so-called "metering system”). It essentially comprises the elements 4, 5, 6, and 7 of the illustrated test elements (1).
- Sample liquid in particular whole blood, is supplied to the test element (1) via the sample application opening (4). Driven by capillary forces and / or centrifugal forces, the sample liquid fills the sample dosing zone (5).
- the sample metering zone (5) can also contain the dried reagents.
- Kapillarstopps (6 and 8) which may be formed for example as a hydrophobic barrier or as geometric / non-closing valves.
- the limitation of the sample dosing zone (5) by the capillary stops (6, 8) ensures that a defined sample volume is taken up and passed on into the fluidic zones which lie downstream of the sample dosing zone (5).
- any sample excess is transferred from the sample application port (4) and sample dosing zone (5) to the sample overflow container (7) while the measured amount of sample from the sample dosing zone (5) enters the channel (9 ) is transferred.
- sample liquid can be applied in excess to a test element. Measuring a relatively accurate Probenaliquots, which is then further processed in the test element, this also takes place through the interaction of a metering chamber and an overflow chamber, these two zones - unlike in the present invention - by a Although narrow, but at least when filling always fluid exchange enabling contact stand.
- Sample liquid is here directly separated during filling of the test element in a part which is passed through a wide channel in the "metering chamber", and a part which flows through a narrow channel in the "overflow chamber”. After complete filling of the "metering chamber", the test element is set in rotation and any excess sample is diverted into the "overflow chamber” so that only the desired, measured sample volume remains in the "metering chamber", which is subsequently processed further.
- a disadvantage of the embodiment of the metering system according to US 5,061,381 is that for sample volumes that are placed on the test element and which correspond exactly to the minimum volume or only slightly larger than the minimum volume, there is a risk that the dosing is underdosed, since always a portion of the sample from the beginning unhindered in the "overflow chamber" flows.
- a capillary stop hydrophobic barrier or a geometric or non-closing valve
- the capillary stop prevents sample from entering the sample excess zone before the sample dosing zone is completely filled. Even with sample volumes which are applied to the test element and which correspond exactly to the minimum volume or are only slightly larger than the minimum volume, it is ensured that the sample metering zone is completely filled.
- PC Polycarbonate
- PS polystyrene
- PMMA polymethyl methacrylate
- the individual channels and zones (fluidic structures) have the following dimensions (depth of the structures (t) and possibly their volume (V); the numbers refer to FIG.
- a transition from shallower to deeper structures is usually only possible for liquids in the fluidic structures, if external force (eg centrifugal force) acts on them.
- Such transitions act as geometric (non-closing) valves.
- the substrate (2) also has the sample and buffer addition openings (4, 16), ventilation openings (17) and the central recess (3).
- the surface of the substrate (2), which has the fluidic structures, can then be cleaned by means of plasma treatment and hydrophilized.
- reagents required for analyte detection eg biotinylated anti-analyte antibodies and anti-analyte antibodies labeled with a fluorescence label
- sample dosing section (5) eg biotinylated anti-analyte antibodies and anti-analyte antibodies labeled with a fluorescence label
- the reagent solutions are composed as follows: Biotinylated antibody: 50 mM Mes pH 5.6; 100 ⁇ g / ml biotinylated monoclonal anti-troponin T antibody Labeled antibodies 50 mM Hepes pH 7.4, with squaric acid derivative Fluorescent dye JG9 (embedded in polystyrene latex particles) Fluorescently labeled monoclonal anti-troponin T antibodies (0.35 percent solution)
- the porous matrix (12) (nitrocellulose membrane on plastic carrier film 21 x 5 mm 2 ; 100 ⁇ m PE film reinforced cellulose nitrate membrane (type CN 140 of Sartorius, Germany)
- An analyte detection line polystreptavidin
- a control line polyhapten
- aqueous streptavidin solution (4.75 mg / ml) is applied by line dosing to the above-described cellulose nitrate membrane.
- the dosage is selected (dosage 0.12 ml / min, web speed 3 m / min), that a line with a width of about 0.4 mm is formed. This line is used to detect the analyte to be determined and contains about 0.95 ⁇ g streptavidin per membrane.
- an aqueous troponin T polyhapten solution of 0.3 mg / ml is applied under identical dosing conditions. This line serves as a functional check of the test element and contains approx. 0.06 ⁇ g polyhapten per test.
- the cover (film or injection molded part without Fluidik Modellen, which may or may be hydrophilized) is applied and optionally permanently connected to the substrate (2), preferably glued, welded or clipped.
- the substrate is turned and in the corresponding recess the waste nonwoven fabric (13) (13 x 7 x 1.5 mm 3 fleece 100 parts of glass fiber (diameter 0.49 to 0.58 microns, length 1000 microns) and 5 Divide polyvinyl alcohol fibers (Kuralon VPB 105-2 from Kuraray) with a basis weight of about 180 g / m 2 ), which is then fixed by means of an adhesive tape in the substrate (2).
- the waste nonwoven fabric 13 x 7 x 1.5 mm 3 fleece 100 parts of glass fiber (diameter 0.49 to 0.58 microns, length 1000 microns) and 5 Divide polyvinyl alcohol fibers (Kuralon VPB 105-2 from Kuraray) with a basis weight of about 180 g / m 2 ), which is then fixed by means of an adhesive tape in the substrate (2).
- the quasi self-dosing sample receiving unit (comprising the sample application opening (4), the sample dosing (5) and the structures limiting it (capillary stop (8) and container for excess sample (7)) ensures that regardless of the on the test element (1) discontinued Amount of sample (if it exceeds a minimum volume (in this example 27 ⁇ l)) if different test elements are used, reproducibly the same amount of samples.
- the reagents in the entire sample metering section (5) preferably in the form of alternating reagent spots (ie smaller, almost punctiform reagent areas), in combination with a rapid filling of the sample metering section (5) with sample, a homogeneous dissolution of the reagents in the entire sample volume is achieved , Especially if the filling is much faster than the release.
- a virtually complete dissolution of the reagents so that here again an increased reproducibility compared to conventional, based on absorbent materials test elements (test strips, bio-discs with reagent pads, etc.) is observed.
- test element On the test element according to Example 1, 27 .mu.l of whole blood to which different amounts of recombinant troponin T were added, abandoned. The test element is then further treated on the basis of the procedure given in Table 1 and finally measured the fluorescence signals for different concentrations.
- Table 1 Measurement procedure Time (min: sec) Duration (min: sec) Rotation at revolutions per minute action 00:00 01:00 0 Add 27 ⁇ l sample; Dissolve the reagents 01:00 02:00 5000 Erythrocyte separation and incubation 03:00 01:00 800 Chromatography (generate signal) 04:00 12:10 0 Add 12 ⁇ l washing buffer 1) 04:10 02:00 800 Wash buffer transport and chromatography 06:10 12:10 0 Add 12 ⁇ l washing buffer 1) 06:20 02:00 800 Wash buffer transport and chromatography 08:20 12:10 0 Add 12 ⁇ l washing buffer 1) 08:30 02:00 800 Wash buffer transport and chromatography 10:30 0 measure up 1) 100 mM Hepes, pH 8.0; 150 mM NaCl; 0.095% sodium azide.
- the measured data are in FIG. 10 played.
- the respective measurement signals (in counts) are plotted against the concentration of recombinant troponin T (c (TnT)) in [ng / ml].
- the actual troponin T concentration in the whole blood samples was determined using the reference method "Roche Diagnostics Elecsys Troponin T Test".
- the detection limit for the quantitatively evaluable measuring range with the test element according to the invention is shifted downwards (Cardiac Troponin T: 0.1 ng / ml, invention: 0.02 ng / ml) and the dynamic measuring range after dilated at the top (Cardiac Troponin T: 2.0 ng / ml, invention: 20 ng / ml).
- the test elements according to the invention show improved precision.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- Molecular Biology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Description
Die Erfindung betrifft ein Testelement, das im Wesentlichen scheibenförmig und eben ist und um eine zentrale Achse, die senkrecht zur scheibenförmigen Testelementebene liegt, rotierbar ist, enthaltend eine Probenaufgabeöffnung zur Aufgabe einer flüssigen Probe, eine kapillaraktive Zone, welche eine poröse, saugfähige Matrix ist und einen Probenkanal, der von der Probenaufgabeöffnung zur kapillaraktiven Zone reicht. Weiterhin betrifft die Erfindung ein Verfahren zur Bestimmung eines Analyten mit Hilfe des Testelements.The invention relates to a test element, which is substantially disc-shaped and flat and is rotatable about a central axis which is perpendicular to the disc-shaped test element plane, comprising a sample application port for discharging a liquid sample, a capillary-active zone, which is a porous, absorbent matrix and a sample channel that extends from the sample introduction port to the capillary-active zone. Furthermore, the invention relates to a method for determining an analyte with the aid of the test element.
Prinzipiell kann man die Systeme, die zur Analyse von flüssigen Probenmaterialien oder von Probenmaterialien, die in flüssige Form überführt werden können, in zwei Klassen unterteilen: zum einen gibt es Analysensysteme, die ausschließlich mit sog. Nassreagenzien arbeiten, zum anderen gibt es Systeme, die mit sog. Trockenreagenzien arbeiten. Insbesondere in der medizinischen Diagnostik, aber auch in der Umwelt- und Prozessanalytik, haben sich im Bereich der fest eingerichteten Labors vor allem die ersteren Systeme durchgesetzt, während letztere Systeme vor allem im Bereich der Analytik "vor Ort" eingesetzt werden.In principle, one can subdivide the systems, which are used for the analysis of liquid sample materials or sample materials, which can be converted into liquid form, into two classes: on the one hand there are analysis systems, which work exclusively with so-called wet reagents, on the other hand there are systems, which work with so-called dry reagents. Particularly in medical diagnostics, but also in environmental and process analysis, the former systems have prevailed in the field of permanently installed laboratories, while the latter systems are used primarily in the field of "on-site" analytics.
Im Bereich der medizinischen Diagnostik werden Analysensysteme mit Trockenreagenzien insbesondere in Form von sog. Testträgern, z. B. Teststreifen angeboten. Prominente Beispiele hierfür sind Teststreifen für die Bestimmung des Blutzuckerwertes oder Teststreifen für Urinuntersuchungen. Solche Testträger integrieren in der Regel mehrere Funktionen (z. B. die Bevorratung von Reagenzien in getrockneter Form oder - wenn auch seltener - in Lösung; die Abtrennung von unerwünschten Probenbestandteilen, insbesondere von roten Blutkörperchen aus Vollblut; bei Immunoassays, die sog. Bound-Free-Trennung; die Dosierung von Probenvolumina; den Transport von Probenflüssigkeit von außerhalb eines Gerätes in ein Gerät hinein; die Steuerung der zeitlichen Abfolge von einzelnen Reaktionsschritten; usw.). Die Funktion des Probentransports wird dabei oft mittels saugfähiger Materialien (z. B. Papiere oder Vliese), mittels Kapillarkanälen oder durch Anwendung äußerer Triebkräfte (wie z. B. Druck; Saugen) oder mittels Zentrifugalkraft bewerkstelligt. Scheibenförmige Testträger, sog. LabDiscs oder optische BioDiscs, führen die Idee des gesteuerten Probentransports mittels Zentrifugalkraft (Fliehkraft) fort. Solche scheibenförmigen, CompactDisc-ähnlichen Testträger ermöglichen die Miniaturisierung durch Nutzung von mikrofluidischen Strukturen und gleichzeitig die Parallelisierung von Vorgängen durch wiederholtes Aufbringen identischer Strukturen für die parallele Abarbeitung ähnlicher Analysen aus einer Probe bzw. identische Analysen aus unterschiedlichen Proben. Gerade im Bereich der optischen BioDiscs ist die Integration von optisch gespeicherten digitalen Daten für die Identifizierung der Testträger oder die Steuerung der Analysensysteme auf den optischen BioDiscs möglich.In the field of medical diagnostics, analysis systems with dry reagents, in particular in the form of so-called test carriers, eg. B. Test strips offered. Prominent examples of these are test strips for the determination of the blood glucose value or test strips for urinalysis. Such test carriers usually integrate several functions (eg the storage of reagents in dried form or, albeit less frequently, in solution, the separation of undesired sample constituents, in particular of red blood cells from whole blood, in immunoassays, the so-called Free separation, the dosing of sample volumes, the transport of sample liquid from outside a device into a device, the control of the sequence of individual reaction steps, etc.). The function of the sample transport is often accomplished by means of absorbent materials (eg papers or fleeces), by means of capillary channels or by application of external driving forces (such as pressure, suction) or by means of centrifugal force. Disc-shaped test carriers, so-called LabDiscs or optical BioDiscs, continue the idea of controlled sample transport by means of centrifugal force (centrifugal force). Such Disc-shaped, CompactDisc-like test carriers allow miniaturization through the use of microfluidic structures and at the same time the parallelization of processes by repeated application of identical structures for the parallel processing of similar analyzes from a sample or identical analyzes from different samples. Especially in the field of optical BioDiscs the integration of optically stored digital data for the identification of the test carriers or the control of the analysis systems on the optical BioDiscs is possible.
Neben der Miniaturisierung und Parallelisierung von Analysen und der Integration von digitalen Daten auf optische Discs haben BioDiscs im Allgemeinen den Vorteil, dass sie mittels etablierter Herstellverfahren hergestellt und mittels etablierter Auswertetechnologie gemessen werden können. Bei den chemischen und biochemischen Komponenten solcher optischen BioDiscs ist meist ein Rückgriff auf bekannte Chemie - und Biochemie-Komponenten - möglich. Nachteilig an den rein auf Zentrifugal- und Kapillarkräften beruhenden optischen LabDiscs oder Biodiscs ist, dass die Immobilisierung von Reagenzien schwer ist und die Nachweisgenauigkeit leidet. Insbesondere bei Nachweissystemen, die auf spezifischen Bindereaktionen beruhen, wie z. B. Immunoassays, fehlt im Vergleich zu herkömmlichen Teststreifensystemen die Volumenkomponente, insbesondere bei der sog. Bound-Free-Trennung.In addition to the miniaturization and parallelization of analyzes and the integration of digital data on optical discs, BioDiscs generally have the advantage that they can be manufactured using established manufacturing methods and measured using established evaluation technology. In the chemical and biochemical components of such optical BioDiscs usually a recourse to known chemical and biochemical components is possible. A disadvantage of the optical LabDiscs or Biodiscs based purely on centrifugal and capillary forces is that the immobilization of reagents is difficult and the accuracy of detection suffers. Especially in detection systems based on specific binding reactions, such. As immunoassays, lacks compared to conventional test strip systems, the volume component, especially in the so-called. Bound-Free separation.
Aus diesem Grund gibt es vor allem im Bereich der Immunoassays seit kurzem Ansätze, Hybride aus herkömmlichen Teststreifen und BioDiscs zu etablieren. Das Ergebnis sind BioDiscs mit Kanälen und kanalartigen Strukturen für den Flüssigkeitstransport einerseits und voluminösen saugfähigen Materialien in diesen Strukturen (zumindest teilweise) andererseits.For this reason, there are recently approaches, especially in the field of immunoassays, to establish hybrids of conventional test strips and BioDiscs. The result is BioDiscs with channels and channel-like structures for liquid transport on the one hand and voluminous absorbent materials in these structures (at least partially) on the other.
Aus
Nachteilig an den Konzepten des Standes der Technik ist, dass gerade für spezifische Bindungsassays, wie z. B. Immunoassays eine gezielte Steuerung der Reaktions- und Verweilzeiten der Probenflüssigkeit nach Aufnahme der Reagenzien und nach dem Einströmen in die poröse, saugfähige Matrix nicht möglich ist.A disadvantage of the concepts of the prior art is that just for specific binding assays, such. As immunoassays targeted control of the reaction and residence times of the sample liquid after receiving the reagents and after flowing into the porous, absorbent matrix is not possible.
Aufgabe der Erfindung ist es, die Nachteile des Standes der Technik zu beseitigen.The object of the invention is to eliminate the disadvantages of the prior art.
Diese Aufgabe wird durch den Gegenstand der Erfindung gelöst.This object is achieved by the subject matter of the invention.
Gegenstand der Erfindung ist ein Testelement gemäß Anspruch 1, ein System gemäß Anspruch 11 sowie ein Verfahren gemäß Anspruch 7. Vorteilhafte Ausgestaltungen und bevorzugte Ausführungsformen der Erfindung sind Gegenstand der abhängigen Patentansprüche.The invention relates to a test element according to
Das erfindungsgemäße Testelement ist im Wesentlichen scheibenförmig und eben. Es ist um eine zentrale Achse, die senkrecht zur scheibenförmigen Testelementebene innerhalb des Testelements liegt, rotierbar. Typischerweise ist das Testelement eine kreisrunde Scheibe, vergleichbar einer Compactdisc. Die Erfindung ist jedoch nicht auf diese Form der Scheibe beschränkt, sondern kann ohne weiteres auch bei nicht-symmetrischen oder nichtkreisförmigen Scheiben Verwendung finden.The test element according to the invention is essentially disc-shaped and planar. It is rotatable about a central axis which is perpendicular to the disk-shaped test element plane within the test element. Typically, the test element is a circular disc, comparable to a compact disc. However, the invention is not limited to this shape of the disc, but can readily be found in non-symmetrical or non-circular discs use.
Als Bestandteile enthält das Testelement zunächst eine Probenaufgabeöffnung, in die eine flüssige Probe pipettiert oder auf andere Weise eingebracht werden kann. Die Probenaufgabeöffnung ist achsennah (d. h. nahe am Zentrum der Scheibe).
Die Probenaufgabeöffnung kann dabei direkt in einen Probenkanal münden. Es ist jedoch auch möglich, dass die Probenaufgabeöffnung zunächst in ein dahinter liegendes Reservoir mündet, in das die Probe einströmt, bevor sie in den Probenkanal weiterfließt. Durch geeignete Dimensionierung kann dafür gesorgt werden, dass die Probe von der Probenaufgabenöffnung ohne weiteres Zutun in den nachfolgenden fluidischen Strukturen hineinströmt. Dazu kann eine Hydrophilisierung der Oberflächen der fluidischen Strukturen notwendig sein und/oder die Verwendung von Strukturen, die das Entstehen von Kapillarkräften fördern. Es ist jedoch auch möglich, das Befüllen der fluidischen Strukturen des erfindungsgemäßen Testelements aus der Probenaufgabeöffnung erst nach Einwirken einer äußeren Kraft, vorzugsweise einer Zentrifugalkraft, zu ermöglichen.As constituents, the test element first contains a sample introduction opening into which a liquid sample can be pipetted or introduced in another way. The sample application port is close to the axis (ie near the center of the disc).
The sample application opening can open directly into a sample channel. However, it is also possible for the sample introduction opening to first open into a reservoir located behind it, into which the sample flows before it continues to flow into the sample channel. By suitable dimensioning, it can be ensured that the sample flows from the sample application opening into the subsequent fluidic structures without any further action. For this purpose, a hydrophilization of the surfaces of the fluidic structures may be necessary and / or the use of structures that promote the formation of capillary forces. However, it is also possible to allow the filling of the fluidic structures of the test element according to the invention from the sample application opening only after the action of an external force, preferably a centrifugal force.
Weiterhin enthält das Testelement eine kapillaraktive Zone in Form einer porösen, saugfähigen Matrix, die zumindest einen Teil der flüssigen Probe aufnimmt. Die kapillaraktive Zone weist ein achsenfernes erstes Ende und ein achsennahes zweites Ende auf.Furthermore, the test element contains a capillary-active zone in the form of a porous, absorbent matrix, which accommodates at least a portion of the liquid sample. The capillary active zone has an off-axis first end and an off-axis second end.
Das Testelement besitzt darüber hinaus einen Probenkanal, der von der Probenaufgabeöffnung zum achsenfernen ersten Ende der kapillaraktiven Zone, welche eine poröse, saugfähige Matrix ist, reicht. Der Probenkanal durchläuft dabei mindestens einmal einen achsennahen Bereich, der näher an der zentralen Achse liegt als das achsenferne erste Ende der kapillaraktiven Zone.The test element further has a sample channel extending from the sample introduction port to the off-axis first end of the capillary active zone, which is a porous, bibulous matrix. At least once, the sample channel passes through an area close to the axis which is closer to the central axis than the first end of the capillary-active zone, which is remote from the axis.
Wesentlich am Testelement der vorliegenden Erfindung ist, dass die kapillaraktive Zone, welche eine poröse, saugfähige Matrix ist, ein achsennahes zweites Ende aufweist. Das achsenferne erste Ende der kapillaraktiven Zone steht dabei mit dem Probenkanal, in dem die Probe durch Kapillarkräfte und/oder Zentrifugalkräfte und/oder andere externe Kräfte, wie Über- oder Unterdruck, bewegt werden kann, in Kontakt. Sobald die flüssige Probe - ggf. nach Aufnahme von Reagenzien und/oder Verdünnungsmedien und/oder dem Ablaufen von Vorreaktionen - das achsenferne erste Ende der kapillaraktiven Zone erreicht, wird sie in die in sie aufgenommen und durch die Kapillarkräfte (die im Falle einer porösen saugfähigen Matrix auch als Saugkräfte bezeichnet werden können) durch sie hindurch transportiert.Essential to the test element of the present invention is that the capillary-active zone, which is a porous, absorbent matrix, has an axis-proximate second end. The off-axis first end of the capillary active zone is in contact with the sample channel, in which the sample can be moved by capillary forces and / or centrifugal forces and / or other external forces, such as overpressure or underpressure. As soon as the liquid sample reaches the off-axis first end of the capillary active zone, possibly after uptake of reagents and / or dilution media and / or precursor reactions, it is taken up in it and by the capillary forces (which in the case of a porous absorbent Matrix can also be referred to as suction) transported through them.
Die kapillaraktive Zone ist eine poröse, saugfähige Matrix, insbesondere ein Papier, eine Membran oder ein Vlies.The capillary-active zone is a porous, absorbent matrix, in particular a paper, a membrane or a fleece.
Die kapillaraktive Zone, welche eine poröse, saugfähige Matrix ist, enthält eine oder mehrere Zonen mit immobilisierten Reagenzien.The capillary active zone, which is a porous, bibulous matrix, contains one or more zones of immobilized reagents.
In der kapillaraktiven Zone, welche eine poröse saugfähige Matrix ist, sind spezifische Bindereagenzien, beispielsweise spezifische Bindepartner, wie Antigene, Antikörper, (Poly-)Haptene, Streptavidin, Polystreptavidin, Liganden, Rezeptoren, Nukleinsäurestränge ("capture probes") und dergleichen mehr, immobilisiert. Sie dienen dazu, aus der durch die kapillaraktive Zone fließenden Probe gezielt den Analyten oder vom Analyten abgeleitete und mit diesem in Beziehung stehende Spezies abzufangen. Diese Bindepartner liegen in Form von Linien, Punkten, Mustern in oder auf dem Material der kapillaraktiven Zone immobilisiert vor. So kann beispielsweise im Fall von Immunoassays ein Antikörper gegen den Analyten auf der Oberfläche der kapillaraktiven Zone, welche eine poröse, saugfähige Matrix ist, immobilisiert vorliegen, der dann den Analyten (in diesem Fall ein Antigen oder Hapten) aus der Probe abfangen und ebenfalls in der kapillaraktiven Zone immobilisieren. Der Analyt kann dabei durch weitere Reaktionen, beispielsweise durch weiteres Inkontaktbringen mit einem markierten bindefähigen Partner, detektierbar gemacht werden, beispielsweise durch ein visuell, optisch oder fluoreszenzoptisch nachweisbares Label.In the capillary-active zone, which is a porous bibulous matrix, are specific binding reagents, for example specific binding partners, such as antigens, antibodies, (poly) haptens, streptavidin, polystreptavidin, ligands, receptors, nucleic acid strands ("capture probes") and the like, immobilized. They serve to selectively capture from the sample flowing through the capillary-active zone the analyte or analyte-derived and related species. These binding partners are immobilized in the form of lines, dots, patterns in or on the material of the capillary-active zone. For example, in the case of immunoassays, an antibody to the analyte may be immobilized on the surface of the capillary active zone, which is a porous, bibulous matrix, which will then capture the analyte (in this case, an antigen or hapten) from the sample and also in immobilize the capillary-active zone. The analyte can be made detectable by further reactions, for example by further contacting with a labeled bindable partner, for example by a label which can be visually, optically or fluorescently detected.
In einer bevorzugten Ausgestaltung des erfindungsgemäßen Testelements grenzt die kapillaraktive Zone, welche eine poröse, saugfähige Matrix ist, mit dem achsennahen zweiten Ende an ein weiteres saugfähiges Material oder eine saugfähige Struktur, so dass dieses bzw. diese Flüssigkeit aus der Zone aufnehmen kann. Typischerweise überlappen die poröse saugfähige Matrix und das weitere Material sich zu diesem Zweck geringfügig. Das weitere Material bzw. die weitere saugfähige Struktur dient dabei einerseits zur Unterstützung der Saugwirkung der kapillaraktiven Zone, welche eine poröse saugfähige Matrix ist, andererseits als Aufnahmezone für Flüssigkeit, die bereits die kapillaraktive Zone durchlaufen hat. Das weitere Material kann dabei aus denselben oder unterschiedlichen Materialien wie die Matrix bestehen. Beispielsweise kann die Matrix eine Membran sein und das weitere saugfähige Material ein Vlies oder ein Papier. Andere Kombinationen sind natürlich ebenso möglich.In a preferred embodiment of the test element according to the invention, the capillary-active zone, which is a porous, absorbent matrix, adjoins, with the second end close to the axis, another absorbent material or an absorbent structure, so that this or this liquid can absorb from the zone. Typically, the porous absorbent matrix and other material overlap slightly for this purpose. The further material or the further absorbent structure serves on the one hand to support the suction effect of the capillary-active zone, which is a porous absorbent matrix, on the other hand as a receiving zone for liquid that has already passed through the capillary-active zone. The further material may consist of the same or different materials as the matrix. For example, the matrix may be a membrane and the other absorbent material may be a nonwoven or a paper. Other combinations are of course possible as well.
Das erfindungsgemäße Testelement zeichnet sich in einer bevorzugten Ausführungsform dadurch aus, dass der Probenkanal Zonen unterschiedlicher Dimensionen und/oder für unterschiedliche Funktionen enthält. Beispielsweise kann der Probenkanal eine Zone enthalten, die in der Probe lösliche oder in der Probe suspendierbare Reagenzien enthält. Diese können beim Ein- oder Durchströmen der flüssigen Probe in dieser gelöst oder suspendiert werden und eine Reaktion mit dem Analyten in der Probe oder mit anderen Probenbestandteilen eingehen.The test element according to the invention is characterized in a preferred embodiment in that the sample channel contains zones of different dimensions and / or for different functions. For example, the sample channel may contain a zone containing reagents that are soluble in the sample or suspendable in the sample. These can be dissolved or suspended in the liquid sample when it flows in or through it and can react with the analyte in the sample or with other sample components.
Die unterschiedlichen Zonen im Probenkanal können sich auch dadurch unterscheiden, dass es Zonen mit Kapillaraktivität gibt und solche ohne. Darüber hinaus können Zonen mit hoher Hydrophilie und niedriger Hydrophilie enthalten sein. Die einzelnen Zonen können quasi nahtlos ineinander übergeben oder durch gewisse Barrieren, beispielsweise Ventile, insbesondere nicht schließende Ventile, wie geometrische Ventile oder Hydrophobsperren voneinander getrennt sein.The different zones in the sample channel may also differ in that there are zones with capillary activity and those without. In addition, zones of high hydrophilicity and low hydrophilicity may be included. The individual zones can virtually seamlessly pass into one another or be separated from one another by certain barriers, for example valves, in particular non-closing valves, such as geometric valves or hydrophobic barriers.
Die Reagenzien im Probenkanal liegen bevorzugt in getrockneter oder lyophilisierter Form vor. Es ist jedoch auch möglich, dass Reagenzien in flüssiger Form im erfindungsgemäßen Testelement vorliegen.The reagents in the sample channel are preferably in dried or lyophilized form. However, it is also possible that reagents are present in liquid form in the test element according to the invention.
Die Reagenzien können in an sich bekannter Weise in das Testelement eingebracht werden. Bevorzugt enthält das Testelement mindestens zwei Schichten, eine Bodenschicht, in die die fluidischen Strukturen eingebracht sind und eine Deckschicht, die in der Regel außer den Einlassöffnungen für Flüssigkeiten und den Entlüftungsöffnungen keine weiteren Strukturen enthält. Das Einbringen von Reagenzien während der Herstellung des Testdevices erfolgt in der Regel bevor das Oberteil des Testelements (Deckschicht) auf das Unterteil (Bodenschicht) aufgebracht wird. Zu diesem Zeitpunkt liegen die fluidischen Strukturen im Unterteil offen, so dass eine Dosierung der Reagenzien in flüssiger oder getrockneter Form ohne weiteres möglich ist. Das Einbringen der Reagenzien kann dabei beispielsweise durch Drucken oder Dispensieren erfolgen. Es ist auch möglich, die Reagenzien dadurch in das Testelement einzubringen, dass sie in saugfähigen Materialien, wie Papieren, Vliesen oder Membranen imprägniert in das Testelement eingelegt werden. Nach dem Platzieren der Reagenzien und dem Einlegen der saugfähigen Materialien, beispielsweise der porösen, saugfähigen Matrix (Membran) und gegebenenfalls weiterer saugfähiger Materialien (Waste-Vlies etc.) werden Ober- und Unterteil des Testelements miteinander verbunden, beispielsweise verklipst, verschweißt, verklebt und dergleichen mehr.The reagents can be introduced into the test element in a manner known per se. The test element preferably contains at least two layers, a bottom layer into which the fluidic structures are introduced, and a cover layer, which as a rule contains no further structures apart from the inlet openings for liquids and the vent openings. The introduction of reagents during the preparation of the test device is usually carried out before the upper part of the test element (cover layer) is applied to the lower part (bottom layer). At this time, the fluidic structures are open in the lower part, so that a dosage of the reagents in liquid or dried form is readily possible. The introduction of the reagents can be done for example by printing or dispensing. It is also possible to incorporate the reagents into the test element by placing them in the test element impregnated in absorbent materials such as papers, nonwovens or membranes. After placing the reagents and inserting the absorbent materials, such as the porous, absorbent matrix (membrane) and optionally other absorbent materials (waste nonwoven, etc.) are Upper and lower part of the test element connected to each other, for example, clipped, welded, glued and the like.
Alternativ ist es möglich, dass die Bodenschicht neben den fluidischen Strukturen auch die Einlassöffnungen für Flüssigkeiten und die Entlüftungsöffnungen aufweist. In diesem Fall kann die Deckschicht völlig ohne Öffnungen ausgebildet sein, gegebenenfalls mit Ausnahme einer zentralen Aussparung zur Aufnahme einer Antriebseinheit. Besonders in diesem Fall kann das Oberteil einfach aus einer Kunststofffolie bestehen, die auf das Unterteil aufgeklebt oder mit diesem verschweißt wird.Alternatively, it is possible that the bottom layer in addition to the fluidic structures also has the inlet openings for liquids and the vent openings. In this case, the cover layer may be formed completely without openings, with the possible exception of a central recess for receiving a drive unit. Especially in this case, the upper part simply consist of a plastic film which is glued or welded to the lower part.
Der Probenkanal enthält eine Zone zum Abtrennen partikulärer Bestandteile aus der flüssigen Probe. Insbesondere falls als Probenmaterial Blut oder andere Körperflüssigkeiten mit zellulären Bestandteilen verwendet werden, dient diese Zone dem Abtrennen der zellulären Probenbestandteile. Aus Blut kann so durch Abtrennen insbesondere der roten Blutkörperchen (Erythrozyten) nahezu farbloses Plasma oder Serum gewonnen werden, das sich für nachfolgende visuelle oder optische Nachweismethoden in der Regel besser eignet als das stark gefärbte Blut.The sample channel contains a zone for separating particulate matter from the liquid sample. In particular, if blood or other bodily fluids containing cellular components are used as the sample material, that zone serves to separate the cellular sample components. From blood can be obtained by separating in particular the red blood cells (erythrocytes) nearly colorless plasma or serum, which is usually better suited for subsequent visual or optical detection methods than the heavily colored blood.
Vorzugsweise erfolgt das Abtrennen zellulärer Probenbestandteile durch Zentrifugation, d. h. durch schnelles Rotieren des Testelements nach Befüllen mit flüssiger Probe. Das erfindungsgemäße Testelement enthält zu diesem Zweck geeignet dimensionierte und geometrisch gestaltete Kanäle und/oder Kammern. Insbesondere enthält das Testelement für die Abtrennung von zellulären Blutbestandteilen eine Erythrozytensammelzone (Erythrozytenkammer oder Erythrozytenfalle) und eine Serum- bzw. Plasmasammelzone (Serum- bzw. Plasmakammer).Preferably, the separation of cellular sample components by centrifugation, d. H. by fast rotation of the test element after filling with liquid sample. The test element according to the invention contains suitably dimensioned and geometrically designed channels and / or chambers for this purpose. In particular, the test element for the separation of cellular blood components contains an erythrocyte collection zone (erythrocyte chamber or erythrocyte trap) and a serum or plasma collection zone (serum or plasma chamber).
Zur Steuerung des Fließens der Probenflüssigkeit im Testelement kann dieses vor allem im Probenkanal Ventile, insbesondere sogenannte nicht-schließende (non-closing) oder geometrische Ventile oder Hydrophobsperren, enthalten. Diese Ventile dienen als Kapillarstopps. Durch sie kann sichergestellt werden, dass eine gezielte zeitliche und räumliche Steuerung des Probenflusses durch den Probenkanal und die einzelne Zone des Testelements möglich wird.To control the flow of the sample liquid in the test element, it can contain valves, in particular so-called non-closing or geometric valves or hydrophobic barriers, especially in the sample channel. These valves serve as capillary stops. It can be ensured that targeted temporal and spatial control of the sample flow through the sample channel and the individual zone of the test element becomes possible.
Insbesondere kann der Probenkanal eine Probendosierzone aufweisen, die ein genaues Abmessen der - zunächst im Überschuss aufgegebenen - Probe erlaubt. In einer bevorzugten Ausführungsform reicht die Probendosierzone von der Probenaufgabeöffnung über ein entsprechendes Stück eines Probenkanals bis zu einem Ventil in der Fluidikstruktur, insbesondere einem geometrischen Ventil oder einer Hydrophobsperre. Die Probenaufgabeöffnung kann dabei zunächst einen Überschuss an Probenmaterial aufnehmen. Die Probe fließt entweder getrieben durch Kapillarkräfte oder durch Zentrifugation angetrieben von der Probenaufgabenzone in die Kanalstruktur und füllt diese bis zum Ventil. Überschüssige Probe bleibt dabei zunächst in der Probenaufgabezone. Erst wenn die Kanalstruktur bis zum Ventil gefüllt ist, wird eine an die Probenaufgabezone angrenzende und vom Probenkanal abzweigende Probenüberschusskammer befüllt, beispielsweise durch Kapillarkräfte oder durch Zentrifugieren des Testelements. Dabei muss sichergestellt werden, dass durch geeignete Wahl des Ventils das abzumessende Probenvolumen vorerst nicht über das Ventil hinweg transportiert wird. Sobald überschüssige Probe in der entsprechenden Überlaufkammer abgefangen ist, befindet sich zwischen dem Ventil des Probenkanals auf der einen Seite und dem Eingang zur Probenüberlaufkammer auf der anderen Seite ein genau definiertes Probenvolumen. Durch Anlegen externer Kräfte, insbesondere durch Starten einer weiteren Zentrifugation wird dieses definierte Probenvolumen nun über das Ventil hinaus bewegt. Alle fluidischen Bereiche, die nach dem Ventil liegen und mit der Probe in Kontakt kommen, werden nun zunächst mit einem genau definierten Probenvolumen befüllt.In particular, the sample channel may have a sample metering zone, which allows a precise measurement of the - initially in excess abandoned - sample. In a preferred embodiment, the sample metering zone extends from the sample application opening via a corresponding piece of a sample channel to a valve in the fluidic structure, in particular a geometric valve or a hydrophobic barrier. The Sample introduction opening can initially receive an excess of sample material. The sample, either driven by capillary forces or by centrifugation, flows from the sample application zone into the channel structure and fills it up to the valve. Excess sample initially remains in the sample application zone. Only when the channel structure is filled to the valve, a sample excess chamber adjacent to the sample application zone and branching off from the sample channel is filled, for example by capillary forces or by centrifuging the test element. It must be ensured that the sample volume to be measured is initially not transported across the valve by suitably selecting the valve. As soon as excess sample is trapped in the appropriate overflow chamber, a precisely defined sample volume is located between the valve of the sample channel on one side and the inlet to the sample overflow chamber on the other side. By applying external forces, in particular by starting another centrifugation, this defined sample volume is now moved beyond the valve. All fluidic areas that lie after the valve and come into contact with the sample are now filled with a precisely defined sample volume.
Der Probenkanal kann weiterhin einen Zufluss für weitere Flüssigkeiten außer der Probenflüssigkeit aufweisen. Beispielsweise kann in den Probenkanal ein zweiter Kanal münden, der z. B. mit einer Wasch- oder Reagenzflüssigkeit befüllbar ist.The sample channel may also have an inflow for other liquids except the sample liquid. For example, in the sample channel, a second channel open, the z. B. can be filled with a washing or reagent liquid.
Das erfindungsgemäße System aus Messgerät und Testelement dient zur Bestimmung eines Analyten in einer flüssigen Probe. Das Messgerät enthält dabei unter anderem zumindest einen Antrieb für die Rotation des Testelements und eine Auswerteoptik zum Auswerten des visuellen oder optischen Signals des Testelements.The inventive system of measuring device and test element is used to determine an analyte in a liquid sample. Among other things, the measuring device contains at least one drive for the rotation of the test element and an evaluation optics for evaluating the visual or optical signal of the test element.
Vorzugsweise kann die Optik des Messgeräts zur Fluoreszenzmessung mit ortsaufgelöster Detektion eingesetzt werden. Bei zweidimensionaler, d. h. flächiger Auswerteoptik, wird typischerweise zur Beleuchtung des Nachweisbereichs des Testelements und ggf. der Anregung von optisch detektierbaren Markierungen eine LED oder ein Laser eingesetzt. Die Detektion des optischen Signals erfolgt mittels CMOS oder CCD (typischerweise mit 640 x 480 Pixel). Der Strahlengang ist direkt oder gefaltet (z. B. über Spiegel bzw. Prismen).Preferably, the optics of the measuring device can be used for fluorescence measurement with spatially resolved detection. For two-dimensional, d. H. planar evaluation optics, is typically used to illuminate the detection area of the test element and possibly the excitation of optically detectable markers an LED or a laser. The detection of the optical signal is by CMOS or CCD (typically 640 x 480 pixels). The beam path is direct or folded (eg via mirrors or prisms).
Bei anamorphotischer Optik wird typischerweise die Beleuchtung bzw. Anregung mittels Beleuchtungsstrich, der den Nachweisbereich des Testelements vorzugsweise senkrecht zu den Nachweis- und Kontrollstrichen beleuchtet, bewirkt. Die Detektion kann hier über eine Diodenzeile erfolgen. Für die Beleuchtung und Auswertung der 2. Dimension kann in diesem Fall die Drehbewegung des Testelements ausgenutzt werden, um so mit der Diodenzeile über den auszuwertenden flächigen Bereich des Testelements zu scannen.In the case of anamorphic optics, the illumination or excitation is typically effected by means of an illumination line which illuminates the detection area of the test element, preferably perpendicular to the detection and control lines. The detection can be done here via a diode array. In this case, the rotational movement of the test element can be utilized for the illumination and evaluation of the second dimension in order to scan with the diode array over the area of the test element to be evaluated.
Als Antrieb zum Rotieren und Positionieren des Testelements kann ein DC-Motor mit Encoder oder ein Schrittmotor eingesetzt werden.As drive for rotating and positioning of the test element, a DC motor with encoder or a stepper motor can be used.
Vorzugsweise wird die Temperierung des Testelements im Gerät indirekt vorgenommen, beispielsweise durch Heizen oder Kühlen der Platte, auf die das scheibenförmige Testelement im Gerät aufliegt. Die Messung der Temperatur erfolgt vorzugsweise kontaktlos.Preferably, the temperature of the test element in the device is made indirectly, for example by heating or cooling the plate on which rests the disc-shaped test element in the device. The measurement of the temperature is preferably carried out without contact.
Das erfindungsgemäße Verfahren dient zum Nachweis eines Analyten in einer flüssigen Probe. Dabei wird die Probe zunächst in die Probenaufgabeöffnung des Testelements aufgegeben. Anschließend wird das Testelement um seine zentrale Achse rotiert. Dabei wird die Probe von der Probenaufgabeöffnung zum achsenfernen Ende der kapillaraktiven Zone, welche eine poröse, saugfähige Matrix ist, transportiert. Die Rotation des Testelements wird dann soweit verlangsamt bzw. gestoppt, dass die Probe oder ein beim Durchströmen des Testelements aus der Probe gewonnenes Material (beispielsweise ein Gemisch der Probe mit Reagenzien, eine durch Vorreaktionen mit Reagenzien aus dem Testelement veränderte Probe, eine von bestimmten Bestandteilen befreite Probe wie Serum oder Plasma aus Vollblut nach Abtrennen der Erythrozyten, etc.) vom achsenfernen zum achsennahen Ende der kapillaraktiven Zone, welche eine poröse, saugfähige Matrix ist, transportiert wird. Der Analyt wird schließlich in der kapillaraktiven Zone, welche eine poröse, saugfähige Matrix ist, oder einer ihr nachgelagerten Zone visuell oder optisch nachgewiesen.The method according to the invention serves to detect an analyte in a liquid sample. The sample is first placed in the sample application opening of the test element. Subsequently, the test element is rotated about its central axis. In this case, the sample is transported from the sample application opening to the off-axis end of the capillary-active zone, which is a porous, absorbent matrix. The rotation of the test element is then slowed down so that the sample or a material recovered from the sample as it flows through the sample (for example, a mixture of the sample with reagents, a sample modified by pre-reactions with reagents from the test element, one of certain components liberated sample such as serum or plasma from whole blood after removal of the erythrocytes, etc.) from the off-axis to the proximal end of the capillary-active zone, which is a porous, absorbent matrix. The analyte is finally visually or optically detected in the capillary active zone, which is a porous, bibulous matrix, or a downstream zone.
Der Start der Wanderung der Probe (oder eines aus der Probe gewonnen Materials) durch die kapillaraktive Zone kann durch gezieltes Verlangsamen bzw. Stoppen der Rotation des Testelements zeitlich genau festgelegt und gesteuert werden. Nur wenn der Betrag Kapillarkraft (Saugkraft) in der kapillaraktiven Zone den Betrag der ihr entgegengesetzt gerichteten Zentrifugalkraft übersteigt, ist ein Bewegen der Probe in und durch kapillaraktive Zone möglich. Der Flüssigkeitstransport in der kapillaraktiven Zone lässt sich so gezielt starten. Beispielsweise kann so eine eventuelle Vorreaktion oder Vorinkubation der Probe oder eine Temperierung der Probe abgewartet werden, bevor die Rotation des Testelements so weit verlangsamt bzw. gestoppt wird, dass ein Einströmen der Probe in die kapillaraktive Zone ermöglicht wird.The initiation of migration of the sample (or material recovered from the sample) through the capillary active zone can be precisely timed and controlled by selectively slowing down or stopping the rotation of the test element. Only when the amount of capillary force (suction force) in the capillary active zone exceeds the amount of centrifugal force directed counter to it will it be possible to move the sample into and through the capillary active zone. The liquid transport in the capillary-active zone can be targeted. For example, a possible pre-reaction or preincubation of the sample or a temperature control of the sample can be awaited before the rotation of the test element is slowed down or stopped so as to allow the sample to flow into the capillary-active zone.
Der Transport der Probe (oder eines aus der Probe gewonnen Materials) durch die kapillaraktive Zone kann durch erneute Rotation des Testelementes um seine zentrale Achse gezielt verlangsamt oder gestoppt werden. Die bei der Rotation auftretenden Zentrifugalkräfte wirken der Kapillarkraft, die die Probenflüssigkeit vom achsenfernen Ende der kapillaraktiven Zone hin zum achsennahen Ende bewegen, entgegen. So ist eine gezielte Steuerung, insbesondere Verlangsamung, der Flussgeschwindigkeit der Probe in der kapillaraktiven Zone möglich, bis hin zur Umkehrung der Flussrichtung. Auf diese Weise kann beispielweise die Verweildauer der Probe in der kapillaraktiven Zone gesteuert werden.The transport of the sample (or a material obtained from the sample) through the capillary-active zone can be selectively slowed or stopped by renewed rotation of the test element about its central axis. The centrifugal forces occurring during the rotation counteract the capillary force which moves the sample fluid from the end of the capillary-active zone remote from the axis to the end near the axis. Thus, a targeted control, in particular slowing, the flow velocity of the sample in the capillary-active zone possible, up to the reversal of the flow direction. In this way, for example, the residence time of the sample in the capillary-active zone can be controlled.
Insbesondere ist es also möglich, die mit dem erfindungsgemäßen Testelement und Verfahren die Wanderungsrichtung der flüssigen Probe und/oder der weiteren Flüssigkeit durch die kapillaraktive Zone durch die Rotation des Testelements umzukehren, wobei dies auch mehrfach möglich ist, um so ein Hin- und Herbewegen der Flüssigkeit zu erreichen. Durch ein gezieltes Wechselspiel von Kapillarkräften, die die Flüssigkeit in der kapillaraktiven Zone von außen (d. h. vom achsenfernen Ende) nach innen (d. h. zum achsennahen Ende) transportieren, und entgegengesetzt gerichteten Zentrifugalkräften ist es unter anderem möglich, die Bindungseffizienz der Bindereaktionen in der kapillaraktiven Zone zu steigern, lösliche Reagenzien besser zu lösen und mit der Probe oder anderen Flüssigkeiten zu durchmischen, oder die Wascheffizienz ("bound-free separation") bei Affinitätsassays zu erhöhen.In particular, it is thus possible to reverse the migration direction of the liquid sample and / or the further liquid through the capillary-active zone by the rotation of the test element with the test element and method according to the invention, which is also possible several times, so as to move the back and forth To reach liquid. By a deliberate interplay of capillary forces, which transport the liquid in the capillary active zone from the outside (ie from the off-axis end) inwards (ie to the near-axis end), and oppositely directed centrifugal forces, it is possible inter alia, the binding efficiency of the binding reactions in the capillary active zone to better dissolve soluble reagents and to mix with the sample or other liquids, or to increase the bound-free separation in affinity assays.
Insbesondere im Zusammenhang mit Immunoassays kann der Nachweis nach dem Prinzip des Sandwichassays oder in Form eines kompetitiven Tests durchgeführt werden.In particular in connection with immunoassays, the detection can be carried out according to the principle of the sandwich assay or in the form of a competitive assay.
Es ist auch möglich, dass nach der Rotation des Testelements eine weitere Flüssigkeit auf das Testelement aufgegeben wird, die nach der Probe vom achsenfernen zum achsennahen Ende der kapillaraktiven Zone, welche eine poröse, saugfähige Matrix ist, transportiert wird.It is also possible that after the rotation of the test element, a further liquid is applied to the test element, which is transported after the sample from the off-axis to the near-axis end of the capillary-active zone, which is a porous, absorbent matrix.
Die weitere Flüssigkeit kann insbesondere ein Puffer, bevorzugt ein Waschpuffer, oder eine Reagenzflüssigkeit sein. Durch die Zugabe der weiteren Flüssigkeit kann insbesondere im Zusammenhang mit Immunoassays ein im Vergleich zu herkömmlichen Teststreifen verbessertes Signal-zu-Hintergrund-Verhältnis erzielt werden, da die Zugabe der Flüssigkeit quasi als Waschschritt nach der Bound-Free-Trennung eingesetzt werden kann.The further liquid may in particular be a buffer, preferably a washing buffer, or a reagent liquid. By adding the further liquid, in particular in connection with immunoassays, a signal-to-background ratio which is improved compared to conventional test strips can be achieved, since the addition of the liquid can be used virtually as a washing step after the bound-free separation.
Die Kombination des Flüssigkeitstransports mittels Zentrifugalkräften und mittels Saugkräften in kapillaraktiven Zonen, insbesondere in porösen, saugfähigen Matrixmaterialien, erlaubt eine präzise Steuerung von Flüssigkeitsströmen. Erfindungsgemäß transportiert die kapillaraktive Zone, welche eine poröse, saugfähige Matrix ist, die Flüssigkeit von einem achsenfernen Ende hin zu einem achsennahen Ende, d. h. von der Peripherie des scheibenförmigen Testelements hin in Richtung der Drehachse. Die Zentrifugalkraft, die ebenfalls zum Bewegen der Flüssigkeiten benutzt werden kann, wirkt dieser Transportrichtung genau entgegen. Durch gezielte Steuerung der Rotation des Testelements (wie z. B. schnelleres/langsameres Rotieren, An- und Abschalten der Rotationsbewegung) ist es deshalb möglich, den Fluss der Probenflüssigkeit in der kapillaraktiven Zone, welche eine poröse, saugfähige Matrix ist, zu verlangsamen oder zu stoppen, so dass gezielte und definierte Reaktionsbedingungen eingehalten werden können. Gleichzeitig erlaubt die Verwendung der porösen, saugfähigen Matrix, die im Wesentlichen als Abfangmatrix für die Bound-Free-Separation in Immunoassays dient, ein effizientes Abfangen von Probenbestandteilen im Verlauf des Immunoassays. Insbesondere ist es durch das Wechselspiel von Zentrifugal- und Kapillarkräften (Saugkräften) möglich, ohne gesteigerten technischen Aufwand ein Hin- und Herbewegen der Probe über eine Reagenzienzone, insbesondere eine Zone mit immobilisierten Reagenzien (v. a. Abfangzone für heterogene Immunoassays), zu ermöglichen und so ein effektiveres Auflösen der Reagenzien, Mischen der Probe mit Reagenzien bzw. ein Abfangen von Probenbestandteilen an immobilisierten Bindepartnern zu gewährleisten. Gleichzeitig ist es möglich, Verarmungseffekte bei der Bindung von Probenbestandteilen (v. a. Analyt) an immobilisierte Bindepartner auszuschalten und so die Bindeeffizienz zu steigern (d. h. an Analyt verarmte Probenteile können beim Hin- und Herbewegen der Probe über die Abfangzone und/oder durch effizientes Durchmischen durch analytreiche Probenteile ersetzt werden). Darüber hinaus kann durch das Hin- und Herbewegen von Flüssigkeiten in der kapillaraktiven Zone ein möglichst effizientes Ausnutzen der kleinen Flüssigkeitsvolumina nicht nur für Reaktionszwecke (hier wird insbesondere das Probenvolumen ausgenutzt) sondern auch für Waschzwecke, beispielsweise zur besseren Diskriminierung von gebundenem und freiem Label in der Abfangzone, bewirkt werden. Dadurch lassen sich effektiv die Proben- und Flüssigreagenzienmenge sowie Waschpuffermengen minimieren.The combination of liquid transport by means of centrifugal forces and by suction forces in capillary-active zones, in particular in porous, absorbent matrix materials, permits precise control of liquid flows. According to the invention, the capillary-active zone, which is a porous, absorbent matrix, transports the liquid from an off-axis end to an axis-near end, ie, from the periphery of the disk-shaped test element toward the axis of rotation. The centrifugal force, which can also be used to move the liquids, counteracts this direction of transport exactly. By selectively controlling the rotation of the test element (such as faster / slower rotation, turning on and off of the rotational movement) Therefore, it is possible to slow down or stop the flow of the sample liquid in the capillary-active zone, which is a porous, absorbent matrix, so that targeted and defined reaction conditions can be maintained. At the same time, the use of the porous absorbent matrix, which serves essentially as a scavenger matrix for bound-free separation in immunoassays, allows efficient capture of sample components during the immunoassay. In particular, it is possible by the interplay of centrifugal and capillary forces (suction forces), without increased technical effort, a reciprocation of the sample via a reagent zone, in particular a zone with immobilized reagents (va capture zone for heterogeneous immunoassays) to allow, and so on more effective dissolution of the reagents, mixing of the sample with reagents or capture of sample components on immobilized binding partners. At the same time it is possible to eliminate depletion effects in the binding of sample components (especially analyte) to immobilized binding partners and thus to increase binding efficiency (ie analyte-depleted sample portions can be moved back and forth over the capture zone and / or through efficient mixing by analytical Sample parts are replaced). In addition, by the reciprocation of liquids in the capillary active zone as efficient as possible exploiting the small volumes of liquid not only for reaction purposes (in particular, the sample volume is used) but also for washing purposes, for example, to better discrimination of bound and free label in the Capture zone, be effected. This will effectively minimize sample and liquid reagents as well as wash buffer volumes.
Durch die zentrale Lage der Drehachse innerhalb des Testelements ist es möglich, sowohl das Testelement selbst als auch das dazugehörige Messgerät möglichst kompakt zu gestalten. Bei chipförmigen Testelementen, wie sie beispielsweise in
Die Erfindung wird durch die nachfolgenden Beispiele und Figuren näher erläutert. Hierbei wird jeweils auf immunologische Sandwich-Assays Bezug genommen. Die Erfindung ist jedoch nicht hierauf beschränkt. Sie kann auf andere Arten der Immunoassays, insbesondere auch auf kompetitive Immunoassays, oder andere Arten von spezifischen Bindeassays (beispielsweise solche, die als Bindepartner Zucker und Lectine, Hormone und deren Rezeptoren, oder auch komplementäre Nukleinsäurepaare verwenden) ebenfalls angewandt werden. Typische Vertreter dieser spezifischen Bindeassays sind dem Fachmann an sich bekannt (im Zusammenhang mit Immunoassays wird hier ausdrücklich auf die
-
zeigt in schematischer Darstellung eine Aufsicht auf eine bevorzugte Ausführungsform des erfindungsgemäßen Testelements. Der Klarheit halber ist dabei lediglich die Schicht des Testelements dargestellt, die die fluidischen Strukturen enthält. Die gezeigte Ausführungsform enthält dabei nur eine Öffnung zum Einbringen von Proben- und/oder Waschflüssigkeit. Die Abtrennung störender Probenbestandteile erfolgt in dieser Ausführungsform, nach dem die Probe mit Reagenzien kontaktiert wurde.Figur 1 -
zeigt schematisch eine weitere bevorzugte Ausführungsform des erfindungsgemäßen Testelements. Auch hier wurde lediglich die Struktur abgebildet, die die fluidischen Elemente des Testelements aufweist. In dieser Ausführungsform des Testelements gibt es zwei separate Proben- und Waschpufferaufgabeöffnungen. Eine Abtrennung der zellulären Probenbestandteile erfolgt hier bereits, bevor die Probe mit Reagenzien in Kontakt gebracht wird.Figur 2 -
zeigt eine Variante der Ausführungsform gemäßFigur 3Figur 1 in schematischer Darstellung. Auch hier erfolgt die Abtrennung zellulärer Probenbestandteile, nach dem die Probe mit Reagenzien in Kontakt gebracht wurde. Allerdings weist dieStruktur gemäß Figur 3 eine separate Zuführung für Waschflüssigkeit auf. -
zeigt eine weitere bevorzugte Ausführungsform des erfindungsgemäßen Testelements in schematischerFigur 4Ansicht analog Figur 2 . -
stellt eine geringfügige Weiterentwicklung des Testelements gemäßFigur 5Figur 3 dar. Im Unterschied zur Ausführungsform gemäßFigur 3 enthält Figur 5 eine andere geometrische Anordnung des Waste-Vlieses und eine andere Art von Ventil am Ende des Probendosierabschnittes. -
zeigt schematisch eine Aufsicht auf eine Weiterentwicklung des Testelements gemäßFigur 6 . Im Unterschied zu der Ausführungsform gemäßFigur 5Figur 5 enthält dieAusführungsform gemäß Figur 6 eine fluidische Struktur zur Aufnahme eines Probenüberschusses. -
ist eine schematische Darstellung einer weiteren Variante des Testelements gemäßFigur 7 . Funktional sind die fluidischen Strukturen im Wesentlichen analog denenFigur 3von Figur 3 . Allerdings sind sie geometrisch anders ausgerichtet und gestaltet. -
zeigt schematisch eine weitere bevorzugte Ausführungsform des erfindungsgemäßen Testelements. Die Strukturen inFigur 8 entsprechen dabei im Wesentlichen den Funktionen, die durch dasFigur 8Testelement gemäß Figur 4 bereits bekannt sind. -
zeigt schematisch eine Aufsicht auf eine nicht erfindungsgemäße Alternative zum Testelement gemäßFigur 9 . Im Unterschied zu der erfindungsgemäßen Ausführungsform gemäßFigur 6Figur 6 enthält dieAusführungsform gemäß Figur 9 eine achsenferne Probenaufgabeöffnung, die die Probe über eine Kapillare zunächst näher ans Zentrum des Testelements heranführt, das heißt in einen achsennahen Bereich. -
zeigt den typischen Kurvenverlauf für Troponin T-Messungen in Vollblutproben (Konzentration an Troponin T in ng/ml aufgetragen gegen die Signalstärke (counts)). Die Proben wurden mit rekombinantem Troponin T auf die jeweilige Konzentration aufgestockt. Die Daten gehören zu Beispiel 2 und wurden mit Hilfe vonFigur 10Testelementen gemäß Figur 6 /Beispiel 1 erhalten.
-
FIG. 1 shows a schematic representation of a plan view of a preferred embodiment of the test element according to the invention. For the sake of clarity, only the layer of the test element which contains the fluidic structures is shown. The embodiment shown here contains only one opening for introducing sample and / or washing liquid. The separation of interfering sample components is carried out in this embodiment, after which the sample has been contacted with reagents. -
FIG. 2 schematically shows a further preferred embodiment of the test element according to the invention. Again, only the structure has been shown, which has the fluidic elements of the test element. In this embodiment of the test element, there are two separate sample and wash buffer feed openings. A separation of the cellular sample components takes place here already before the sample is brought into contact with reagents. -
FIG. 3 shows a variant of the embodiment according toFIG. 1 in a schematic representation. Again, the separation of cellular sample components, after which the sample was brought into contact with reagents. However, the structure according toFIG. 3 a separate feeder for washing liquid. -
FIG. 4 shows a further preferred embodiment of the test element according to the invention in a schematic view analogouslyFIG. 2 , -
FIG. 5 represents a minor evolution of the test element according toFIG. 3 dar. In contrast to the embodiment according toFIG. 3 containsFIG. 5 another geometric arrangement of the waste web and another type of valve at the end of the sample metering section. -
FIG. 6 schematically shows a plan view of a further development of the test element according toFIG. 5 , Unlike the embodiment according toFIG. 5 contains the embodiment according toFIG. 6 a fluidic structure for receiving a sample excess. -
FIG. 7 is a schematic representation of another variant of the test element according toFIG. 3 , Functionally, the fluidic structures are essentially analogous to those ofFIG. 3 , However, they are geometrically differently aligned and designed. -
FIG. 8 schematically shows a further preferred embodiment of the test element according to the invention. The structures inFIG. 8 essentially correspond to the functions performed by the test element according to FIGFIG. 4 already known. -
FIG. 9 schematically shows a plan view of a non-inventive alternative to the test element according toFIG. 6 , In contrast to the embodiment according to the invention according to FIGFIG. 6 contains the embodiment according toFIG. 9 an off-axis sample application opening, which brings the sample via a capillary first closer to the center of the test element, ie in an area near the axis. -
FIG. 10 shows the typical curve for troponin T measurements in whole blood samples (concentration of troponin T in ng / ml plotted against the signal strength (counts)). The samples were supplemented with recombinant troponin T to the respective concentration. The data belong to example 2 and were determined with the help of test elements according toFIG. 6 / Example 1 received.
Die Ziffern und Abkürzungen in den Figuren haben die folgende Bedeutung:
- 1
- scheibenförmiges Testelement (Disk)
- 2
- Substrat (z. B. ein- oder mehrteilig, Spritzguss, gefräst, aus Schichten aufgebaut etc.)
- 3
- zentrale Aussparung (Antriebsloch)
- 4
- Probenaufgabeöffnung
- 5
- Probendosierzone (Dosierabschnitt des Kanals)
- 6
- Kapillarstopp (z. B. hydrophobe Barriere, geometrisches/nicht-schließendes Ventil)
- 7
- Behälter für Probenüberschuss
- 8
- Kapillarstopp (z. B. hydrophobe Barriere, geometrisches/nicht-schließendes Ventil)
- 9
- Kanal
- 10
- Serum-/Plasmasammelzone (Serum-/Plasmakammer)
- 11
- Erythrozytensammelzone (Erythrozytenkammer)
- 12
- poröse, saugfähige Matrix (Membran)
- 13
- Waste (Vlies)
- 14
- Kapillarstopp (z. B. hydrophobe Barriere, geometrisches/nicht-schließendes Ventil)
- 15
- Kanal
- 16
- Zugabeöffnung für weitere Flüssigkeiten, z. B. Waschpuffer
- 17
- Entlüftungsöffnung
- 18
- Dekantierkanal
- 19
- Kapillarstopp (z. B. hydrophobe Barriere, geometrisches/nicht-schließendes Ventil)
- 20
- Auffangreservoir
- 21
- Kapillarkanal
- 1
- disk-shaped test element (disk)
- 2
- Substrate (eg one or more parts, injection molding, milled, built up from layers, etc.)
- 3
- central recess (drive hole)
- 4
- Sample application opening
- 5
- Sample dosing zone (dosing section of the channel)
- 6
- Capillary stop (eg hydrophobic barrier, geometric / non-closing valve)
- 7
- Container for sample surplus
- 8th
- Capillary stop (eg hydrophobic barrier, geometric / non-closing valve)
- 9
- channel
- 10
- Serum / plasma collection zone (serum / plasma chamber)
- 11
- Erythrocyte collection zone (erythrocyte chamber)
- 12
- porous, absorbent matrix (membrane)
- 13
- Waste (fleece)
- 14
- Capillary stop (eg hydrophobic barrier, geometric / non-closing valve)
- 15
- channel
- 16
- Addition opening for other liquids, eg. B. wash buffer
- 17
- vent
- 18
- Decanting channel
- 19
- Capillary stop (eg hydrophobic barrier, geometric / non-closing valve)
- 20
- collection reservoir
- 21
- capillary
Die
Die Ausführungsformen, die in den
Probenflüssigkeit, insbesondere Vollblut, wird dem Testelement (1) über die Probenaufgabeöffnung (4) zugeführt. Angetrieben durch Kapillarkräfte und/oder Zentrifugalkräfte füllt die Probenflüssigkeit die Probendosierzone (5). Die Probendosierzone (5) kann dabei auch die getrockneten Reagenzien beinhalten. Sie wird durch die Kapillarstopps (6 und 8), die beispielsweise als hydrophobe Barriere oder als geometrisches/nicht schließendes Ventil ausgebildet sein können, begrenzt. Die Begrenzung der Probendosierzone (5) durch die Kapillarstopps (6, 8) gewährleistet dabei, dass ein definiertes Probenvolumen aufgenommen und in die fluidischen Zonen, die stromabwärts der Probendosierzone (5) liegen, weitergegeben wird. Bei Rotation des Testelements (1) wird ein eventueller Probenüberschuss von der Probenaufgabeöffnung (4) und der Probendosierzone (5) in den Behälter für Probenüberschuss (7) überführt, während die abgemessene Menge an Probe aus der Probendosierzone (5) in den Kanal (9) überführt wird.Sample liquid, in particular whole blood, is supplied to the test element (1) via the sample application opening (4). Driven by capillary forces and / or centrifugal forces, the sample liquid fills the sample dosing zone (5). The sample metering zone (5) can also contain the dried reagents. It is limited by the Kapillarstopps (6 and 8), which may be formed for example as a hydrophobic barrier or as a geometric / non-closing valve. The limitation of the sample dosing zone (5) by the capillary stops (6, 8) ensures that a defined sample volume is taken up and passed on into the fluidic zones which lie downstream of the sample dosing zone (5). Upon rotation of the test element (1), any sample excess is transferred from the sample application port (4) and sample dosing zone (5) to the sample overflow container (7) while the measured amount of sample from the sample dosing zone (5) enters the channel (9 ) is transferred.
Bei entsprechenden Rotationsgeschwindigkeiten wird in Kanal (9) die Abtrennung roter Blutkörperchen und anderer zellulärer Probenbestandteile gestartet. Die in der Probendosierzone (5) enthaltenen Reagenzien sind beim Eintritt der Probe in den Kanal (9) bereits gelöst in der Probe vorhanden. Der Eintritt der Probe in Kanal (9) über den Kapillarstopp (8) führt dabei zu einer Durchmischung der Reagenzien in der Probe.At appropriate rotational speeds, channel (9) is used to start the separation of red blood cells and other cellular sample components. The reagents contained in the sample dosing zone (5) are already dissolved in the sample when the sample enters the channel (9). The entry of the sample in channel (9) via the capillary stop (8) leads to a mixing of the reagents in the sample.
Die Möglichkeit der zeitlichen Steuerung der Rotationsvorgänge, die mit dem erfindungsgemäßen Testelement möglich sind, erlaubt dabei eine gezielte Steuerung der Verweilzeiten und damit der Inkubationszeit der Probe mit Reagenzien und der Reaktionszeiten.The possibility of temporal control of the rotation processes that are possible with the test element according to the invention, thereby allowing a targeted control of the residence times and thus the incubation time of the sample with reagents and the reaction times.
Während der Rotation wird die Reagenz-Proben-Mischung in die fluidischen Strukturen (10) (Serum-/Plasmasammelzone) und (11) (Erythrozytensammelzone) geleitet. Aufgrund der Zentrifugalkräfte, die auf die Reagenz-Proben-Mischung wirken, wird Plasma bzw. Serum von roten Blutkörperchen getrennt. Die roten Blutkörperchen sammeln sich dabei in der Erythrozytensammelzone (11), während das Plasma im Wesentlichen in der Sammelzone (10) verbleibt.During rotation, the reagent-sample mixture is directed into the fluidic structures (10) (serum / plasma collection zone) and (11) (erythrocyte collection zone). Due to the centrifugal forces acting on the reagent-sample mixture, plasma or serum is separated from red blood cells. The red blood cells collect in the erythrocyte collection zone (11), while the plasma essentially remains in the collection zone (10).
Im Gegensatz zu Testelementen, die Membranen oder Vliese zum Abtrennen partikulärer Probenbestandteile nutzen (beispielsweise Glasfaservliese oder asymmetrisch poröse Kunststoffmembranen zum Abtrennen roter Blutkörperchen aus Vollblut, allgemein als Blut abtrennende Membranen oder Vliese bezeichnet) kann das Probenvolumen mit den erfindungsgemäßen Testelementen wesentlich effektiver ausgenutzt werden, da praktisch keine Totvolumina (z. B. Volumen der Faserzwischenräume oder Poren) vorhanden sind, aus denen die Probe nicht wieder entnommen werden kann. Außerdem neigen diese Blut abtrennenden Membranen und Vliese des Standes der Technik teilweise zur unerwünschten Adsorption von Probenbestandteilen (z. B. Proteinen) oder zur Zerstörung (Lyse) von Zellen, was mit den erfindungsgemäßen Testelementen ebenfalls nicht beobachtet wird.In contrast to test elements which use membranes or nonwovens to separate particulate sample components (e.g. glass fiber nonwovens or asymmetrically porous plastic membranes to separate red blood cells from whole blood, generally as blood separating membranes or nonwovens), the sample volume can be utilized much more effectively with the test elements according to the invention since there are practically no dead volumes (eg volume of the fiber interspaces or pores) from which the sample can not be taken again. In addition, these prior art blood separation membranes and webs tend in part to undesirably adsorb sample components (e.g., proteins) or destroy (lysate) cells, which is also not observed with the test elements of the present invention.
Wird die Rotation des Testelements (1) angehalten oder verlangsamt, wird das Reagenz-Plasma-Gemisch (in dem sich bei Anwesenheit des Analyten im Falle eines Immunoassays, beispielsweise Sandwichkomplexe aus Analyt- und Antikörperkonjugaten gebildet haben) durch die Saugwirkung der porös-saugfähigen Matrix (12) in diese aufgenommen und durch diese hindurchgeleitet. Im Fall von Immunoassays werden durch die immobilisierten Bindepartner, die in der Membran (12) enthalten sind, die analythaltigen Komplexe in der Nachweiszone abgefangen und in der Kontrollzone ungebundenes, gelabeltes Konjugat gebunden. Das an die poröse, saugfähige Matrix angrenzende Vlies (13) unterstützt dabei die Bewegung der Probe durch die Membran (12). Das Vlies (13) dient darüber hinaus der Aufnahme der Probe nach dem Durchströmen der Membran (12).If the rotation of the test element (1) is stopped or slowed down, the reagent-plasma mixture (which has formed in the presence of the analyte in the case of an immunoassay, for example sandwich complexes of analyte and antibody conjugates) by the suction of the porous-absorbent matrix (12) incorporated into and passed through them. In the case of immunoassays, the immobilized binding partners contained in the membrane (12) capture the analyte-containing complexes in the detection zone and bound unbound labeled conjugate in the control zone. The nonwoven (13) adjoining the porous, absorbent matrix supports the movement of the sample through the membrane (12). The fleece (13) also serves to receive the sample after flowing through the membrane (12).
Nachdem die flüssige Probe die fluidische Struktur des Testelements (1) von der Probenaufgabeöffnung (4) bis zum Vlies (13) durchströmt hat, wird in einem nachfolgenden Schritt Waschpuffer in die Probenaufgabeöffnung (4) pipettiert. Durch dieselbe Kombination von Kapillar-, Zentrifugal- und chromatographischen Kräften durchströmt der Waschpuffer die entsprechenden fluidischen Strukturen des Testelements (1) und wäscht insbesondere die Membran (12), wo sich nunmehr die gebundenen Analytkomplexe befinden und entfernt so überschüssige Reagenzreste. Der Waschschritt kann ein oder mehrmals wiederholt werden, um so das Signal-zu-Hintergrund-Verhältnis zu verbessern. Das erlaubt eine Optimierung der Nachweisgrenze für den Analyten und eine Erhöhung des dynamischen Messbereichs.After the liquid sample has flowed through the fluidic structure of the test element (1) from the sample application opening (4) to the fleece (13), in a subsequent step, wash buffer is pipetted into the sample application opening (4). By means of the same combination of capillary, centrifugal and chromatographic forces, the washing buffer flows through the corresponding fluidic structures of the test element (1) and, in particular, washes the membrane (12), where the bound analyte complexes are now located, thus removing excess reagent residues. The washing step may be repeated one or more times so as to improve the signal-to-background ratio. This allows an optimization of the detection limit for the analyte and an increase of the dynamic measuring range.
Der Probenkanal, in dem die flüssige Probe im Testelement (1) von der Probenaufgabeöffnung (4) zum achsenfernen ersten Ende der Membran (12) transportiert wird, umfasst im vorliegenden Fall die Probendosierzone (5), den Kapillarstopp (8), den Kanal (9), die Serum-/Plasmasammelzone (10) und die Erythrozytenkammer (11). In anderen Ausführungsformen kann der Probenkanal aus mehr oder weniger Einzelzonen/-breichen/- kammern bestehen.The sample channel, in which the liquid sample in the test element (1) is transported from the sample application opening (4) to the first remote end of the membrane (12), comprises in the present case the sample metering zone (5), the capillary stop (8), the channel (FIG. 9), the serum / plasma collection zone (10) and the erythrocyte chamber (11). In other embodiments, the sample channel may consist of more or fewer individual zones / chambers.
Die
Die Ausführungsform gemäß
Die Ausführungsform gemäß
Die Ausführungsform des erfindungsgemäßen Testelements (1) gemäß
Die Ausführungsform des nicht erfindungsgemäßen Testelements (1) gemäß
Im Gegensatz zur Ausführungsform gemäß
Die Ausführungsformen gemäß
Durch gezieltes Gestalten der hydrophilen bzw. hydrophoben Eigenschaften der Oberflächen des Testelements (1) kann erreicht werden, dass ein Bewegen der Probenflüssigkeit und/oder Waschflüssigkeiten entweder nur mit Hilfe der Rotation und der daraus resultierenden Zentrifugalkräfte erfolgt oder durch eine Kombination von Zentrifugalkräften und Kapillarkräften. Letzteres erfordert zumindest teilweise hydrophilisierte Oberflächen in den fluidischen Strukturen des Testelements (1).By deliberately designing the hydrophilic or hydrophobic properties of the surfaces of the test element (1), it can be achieved that the sample liquid and / or washing liquids are moved either only with the aid of rotation and the resulting centrifugal forces or by a combination of centrifugal forces and capillary forces. The latter requires at least partially hydrophilized surfaces in the fluidic structures of the test element (1).
Wie weiter oben im Zusammenhang mit
Ähnliche Metering-Systeme sind beispielsweise aus
Nachteilig an der Ausgestaltung des Metering-Systems gemäß
Dieses Problem wird bei der vorliegend vorgeschlagenen Ausgestaltung des Metering-Systems dadurch gelöst, dass zwischen Dosierzone und der Zone für den Probenüberschuss ein Kapillarstopp (hydrophobe Barriere bzw. ein geometrisches bzw. nicht-schließendes Ventil) angeordnet wird. Beim Befüllen des Testelements mit Probe wird deshalb zunächst die Probe praktisch ausschließlich in die Dosierzone geleitet. Der Kapillarstopp verhindert dabei, dass Probe in die Zone für den Probenüberschuss einfließen kann, bevor die Probendosierzone vollständig gefüllt ist. Auch bei Probenvolumina, die auf das Testelement aufgegeben werden und die genau dem Mindestvolumen entsprechen oder nur geringfügig größer sind als das Mindestvolumen, ist so sichergestellt, dass die Probendosierzone vollständig gefüllt ist.This problem is solved in the presently proposed embodiment of the metering system in that a capillary stop (hydrophobic barrier or a geometric or non-closing valve) is arranged between the metering zone and the zone for the sample excess. When filling the test element with sample, therefore, the sample is first conducted almost exclusively in the dosing. The capillary stop prevents sample from entering the sample excess zone before the sample dosing zone is completely filled. Even with sample volumes which are applied to the test element and which correspond exactly to the minimum volume or are only slightly larger than the minimum volume, it is ensured that the sample metering zone is completely filled.
Mittels Spritzguss wird aus Polycarbonat (PC) (alternativ ist auch Polystyrol (PS), ABS-Kunststoff oder Polymethylmethacrylat (PMMA) als Material möglich) ein Substrat (2) gemäß
Ein Übergang von weniger tiefen auf tiefere Strukturen ist dabei in der Regel für Flüssigkeiten in den Fluidikstrukturen nur möglich, wenn von außen Kraft (z. B. Zentrifugalkraft) einwirkt. Solche Übergänge wirken als geometrische (nicht-schließende) Ventile.A transition from shallower to deeper structures is usually only possible for liquids in the fluidic structures, if external force (eg centrifugal force) acts on them. Such transitions act as geometric (non-closing) valves.
Das Substrat (2) weist neben den fluidischen Strukturen (s. o.) noch die Proben- und Pufferzugabeöffnungen (4, 16), Entlüftungsöffnungen (17) und die zentrale Aussparung (3) auf.In addition to the fluidic structures (see above), the substrate (2) also has the sample and buffer addition openings (4, 16), ventilation openings (17) and the central recess (3).
Die Oberfläche des Substrats (2), die die fluidischen Strukturen aufweist, kann anschließend mittels Plasmabehandlung gereinigt und hydrophiliert werden.The surface of the substrate (2), which has the fluidic structures, can then be cleaned by means of plasma treatment and hydrophilized.
Ein Teil der für den Analytnachweis erforderlichen Reagenzien (z. B. biotinylierte Anti-Analyt-Antikörper und mit einem Fluoreszenzlabel markierte Anti-Analyt-Antikörper) werden mittels Piezodosierung als Lösung abwechselnd als punktförmige Reagenzienspots in den Probendosierabschnitt (5) eingebracht und anschließend getrocknet, so dass praktisch seine gesamte innere Fläche mit Reagenzien belegt ist.Part of the reagents required for analyte detection (eg biotinylated anti-analyte antibodies and anti-analyte antibodies labeled with a fluorescence label) are introduced into the sample dosing section (5) alternately as a solution by means of piezo-dosing as a solution and then dried, so that virtually its entire inner surface is occupied with reagents.
Die Reagenzlösungen sind dabei wie folgt zusammengesetzt:
In eine entsprechende Aussparung im Substrat (2) wird die poröse Matrix (12) (Nitrocellulosemembran auf Kunststoffträgerfolie; 21 x 5 mm2; mit 100 µm PE-Folie verstärkte Cellulosenitrat-Membran (Typ CN 140 von Sartorius, Deutschland)), in die mittels Strichimprägnierung (s. u.) eine Analytnachweislinie (Polystreptavidin) und eine Kontrolllinie (Polyhapten) eingebracht wurde, eingelegt und ggf. mittels doppelseitigem Klebeband fixiert.In a corresponding recess in the substrate (2), the porous matrix (12) (nitrocellulose membrane on plastic carrier film 21 x 5 mm 2 ; 100 μm PE film reinforced cellulose nitrate membrane (type CN 140 of Sartorius, Germany)), in the An analyte detection line (polystreptavidin) and a control line (polyhapten) were introduced by means of line impregnation (see below), inserted and, if necessary, fixed by means of double-sided adhesive tape.
Auf die zuvor beschriebene Cellulosenitrat-Membran wird durch Strichdosierung eine wässrige Streptavidinlösung (4,75 mg/ml) aufgebracht. Hierzu wird die Dosierung so gewählt (Dosiermenge 0,12 ml/min, Bahngeschwindigkeit 3 m/min), dass ein Strich mit einer Breite von ca. 0,4 mm entsteht. Dieser Strich dient zum Nachweis des zu bestimmenden Analyts und enthält ca. 0,95 µg Streptavidin pro Membran.An aqueous streptavidin solution (4.75 mg / ml) is applied by line dosing to the above-described cellulose nitrate membrane. For this purpose, the dosage is selected (dosage 0.12 ml / min, web speed 3 m / min), that a line with a width of about 0.4 mm is formed. This line is used to detect the analyte to be determined and contains about 0.95 μg streptavidin per membrane.
In einem Abstand von etwa 4 mm flussabwärts vom Streptavidinstrich wird unter identischen Dosierungsbedingungen eine wässrige Troponin T-Polyhapten-Lösung mit 0,3 mg/ml aufgebracht. Dieser Strich dient als Funktionskontrolle des Testelements und enthält ca. 0,06 µg Polyhapten pro Test.At a distance of about 4 mm downstream of the streptavidin streak, an aqueous troponin T polyhapten solution of 0.3 mg / ml is applied under identical dosing conditions. This line serves as a functional check of the test element and contains approx. 0.06 μg polyhapten per test.
Anschließend wird die Abdeckung (Folie oder Spritzgussteil ohne Fluidikstrukturen, die bzw. das ggf. hydrophiliert sein kann) aufgebracht und gegebenenfalls mit dem Substrat (2) permanent verbunden, vorzugsweise verklebt, verschweißt oder verklipst.Subsequently, the cover (film or injection molded part without Fluidikstrukturen, which may or may be hydrophilized) is applied and optionally permanently connected to the substrate (2), preferably glued, welded or clipped.
Schließlich wird das Substrat gewendet und in die entsprechende Aussparung das Waste-Vlies (13) (13 x 7 x 1,5 mm3 großes Vlies aus 100 Teilen Glasfaser (Durchmesser 0,49 bis 0,58 µm, Länge 1000 µm) und 5 Teilen Polyvinylalkoholfasern (Kuralon VPB 105-2 von Kuraray) mit einem Flächengewicht von ca. 180 g/m2) eingelegt, welches dann mittels eines Klebebandes im Substrat (2) fixiert wird.Finally, the substrate is turned and in the corresponding recess the waste nonwoven fabric (13) (13 x 7 x 1.5 mm 3 fleece 100 parts of glass fiber (diameter 0.49 to 0.58 microns,
Durch die quasi selbstdosierende Probenaufnahmeeinheit (umfassend die Probenaufgabeöffnung (4), den Probendosierabschnitt (5) und den ihn begrenzenden Strukturen (Kapillarstopp (8) und Behälter für Probenüberschuss (7)) wird gewährleistet, dass unabhängig von der auf das Testelement (1) aufgegebenen Probenmenge (sofern sie ein Mindestvolumen (in diesem Beispiel 27 µl) überschreitet) bei Verwendung unterschiedlicher Testelemente reproduzierbar gleiche Probenmengen verwendet werden.By the quasi self-dosing sample receiving unit (comprising the sample application opening (4), the sample dosing (5) and the structures limiting it (capillary stop (8) and container for excess sample (7)) ensures that regardless of the on the test element (1) discontinued Amount of sample (if it exceeds a minimum volume (in this example 27 μl)) if different test elements are used, reproducibly the same amount of samples.
Durch die Verteilung der Reagenzien im gesamten Probendosierabschnitt (5), vorzugsweise in Form sich abwechselnder Reagenzienspots (d. h. kleiner, fast punktförmiger Reagenzienbezirke), in Kombination mit einer raschen Befüllung des Probendosierabschnitts (5) mit Probe wird ein homogenes Lösen der Reagenzien im gesamten Probenvolumen erreicht, insbesondere falls das Befüllen deutlich schneller erfolgt als das Lösen. Darüber hinaus erfolgt ein praktisch vollständiges Lösen der Reagenzien, so dass auch hier wieder eine gesteigerte Reproduzierbarkeit im Vergleich zu herkömmlichen, auf saugfähigen Materialien basierenden Testelementen (Teststreifen, Bio-Disks mit Reagenzienpads etc.) beobachtet wird.By the distribution of the reagents in the entire sample metering section (5), preferably in the form of alternating reagent spots (ie smaller, almost punctiform reagent areas), in combination with a rapid filling of the sample metering section (5) with sample, a homogeneous dissolution of the reagents in the entire sample volume is achieved , Especially if the filling is much faster than the release. In addition, a virtually complete dissolution of the reagents, so that here again an increased reproducibility compared to conventional, based on absorbent materials test elements (test strips, bio-discs with reagent pads, etc.) is observed.
Auf das Testelement gemäß Beispiel 1 werden 27 µl Vollblut, dem unterschiedliche Mengen an rekombinantem Troponin T beigemischt wurden, aufgegeben. Das Testelement wird anschließend anhand des in Tabelle 1 angegebenen Ablaufs weiterbehandelt und abschließend die Fluoreszenzsignale für unterschiedliche Konzentrationen gemessen.
Die Messdaten sind in
Im Vergleich zu herkömmlichen immunochromatographischen Troponin T-Teststreifen, wie z. B. Cardiac Troponin T von Roche Diagnostics, ist die Nachweisgrenze für den quantitativ auswertbaren Messbereich mit dem erfindungsgemäßen Testelement nach unten verschoben (Cardiac Troponin T: 0,1 ng/ml; Erfindung: 0,02 ng/ml) und der dynamische Messbereich nach oben hin erweitert (Cardiac Troponin T: 2,0 ng/ml; Erfindung: 20 ng/ml). Zugleich zeigen die erfindungsgemäßen Testelemente eine verbesserte Präzision.Compared to conventional immunochromatographic troponin T-test strips, such as. Cardiac Troponin T from Roche Diagnostics, the detection limit for the quantitatively evaluable measuring range with the test element according to the invention is shifted downwards (Cardiac Troponin T: 0.1 ng / ml, invention: 0.02 ng / ml) and the dynamic measuring range after dilated at the top (Cardiac Troponin T: 2.0 ng / ml, invention: 20 ng / ml). At the same time, the test elements according to the invention show improved precision.
Claims (11)
- A test element (1), which is substantially discoid, for detecting an analyte in a liquid sample, comprising- a central axis within the test element, which axis is perpendicular to the test element plane and about which the test element (1) can rotate,- a sample feed opening (4) for feeding a liquid sample,- a capillary-action zone (12), which is a porous, absorbent matrix (12), the capillary-action zone (12) comprising one or more zones comprising immobilised reagents, the immobilised reagents being specific binding reagents that are capable of capture, in a targeted manner, the analyte or species derived from or related to the analyte out of the sample flowing through the capillary-action zone (12), and are provided in an immobilised manner in the form of lines, dots or patterns in or on the material of the capillary-action zone (12) having a first end remote from the axis and a second end close to the axis, and- a sample duct (9), which extends from the sample feed opening (4) over a region close to the axis to the first end, remote from the axis, of the capillary-action zone (12) and comprises a zone for separating particulate components out of the liquid sample (10, 11), characterised in thatthe first end, remote from the axis, of the capillary-action zone (12) is in contact with the sample duct (9) and
the sample feed opening (4) is close to the axis and the sample duct (9) extends from the sample feed opening (4) close to the axis to the first end, remote from the axis, of the capillary-action zone (12). - The test element (1) according to claim 1, characterised in that the porous, absorbent matrix (12) is a paper, a membrane or a nonwoven fabric.
- The test element (1) according to any of the preceding claims, characterised in that, by means of the second end close to the axis, the capillary-action zone (12) is in contact with an additional absorbent material (13) or an absorbent structure that can absorb the liquid from the capillary-action zone (12).
- The test element (1) according to any of the preceding claims, characterised in that the sample duct (9) comprises zones of different dimensions and/or for different functions, in particular comprises a zone having soluble reagents and/or a sample metering zone (5) and/or an inlet for additional liquids (16) apart from the sample liquid.
- The test element (1) according to any of the preceding claims, characterised in that the sample duct (9) comprises geometric valves or hydrophobic barriers (6, 8, 14, 19).
- The test element (1) according to any of claims 1 to 5, characterised in that the sample feed opening (4) is in contact with a sample metering zone (5) and a zone (7) for sample excess, a capillary stop (6) being provided between the sample metering zone (5) and the zone (7) for sample excess.
- A method for detecting an analyte in a liquid sample, wherein- the sample is fed into the sample feed opening (4) of the test element (1) according to any of claims 1 to 6,- the test element (1) is rotated such that the sample is conveyed to the end, remote from the axis, of the capillary-action zone (12),- the rotation of the test element (1) is slowed down or stopped to such an extent that the sample or a material obtained from the sample as it flows through the test element (1) is drawn from the end of the capillary-action zone (12) remote from the axis to the end thereof close to the axis, and- the analyte is detected visually or optically in the capillary-action zone (12) or a zone downstream thereof.
- The method according to claim 7, characterised in that, after the test element (1) has been rotated, an additional liquid is fed onto the test element (1) and is drawn, after the sample, from the end of the capillary-action zone (12) remote from the axis to the end thereof close to the axis.
- The method according to either claim 7 or claim 8, characterised in that the migration of the liquid sample and/or the additional liquid through the capillary-action zone (12) is slowed down or stopped in a targeted manner by the rotation of the test element (1).
- The method according to any of claims 7 to 9, characterised in that the direction of migration of the liquid sample and/or the additional liquid through the capillary-action zone (12) is reversed by the rotation of the test element (1).
- A system for determining an analyte in a liquid sample, comprising a test element (1) according to any of claims 1 to 6 and a measurement device, wherein the measurement device includes- at least one drive for the rotation of the test element (1) and- an evaluation optics for evaluating the visual or optical signals of the test element (1).
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19160587.2A EP3524982B1 (en) | 2006-09-27 | 2007-09-27 | Rotatable test element |
EP07818502.2A EP2069787B1 (en) | 2006-09-27 | 2007-09-27 | Rotatable test element |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06020219A EP1916524A1 (en) | 2006-09-27 | 2006-09-27 | Rotatable test element |
PCT/EP2007/008419 WO2008037469A1 (en) | 2006-09-27 | 2007-09-27 | Rotatable test element |
EP07818502.2A EP2069787B1 (en) | 2006-09-27 | 2007-09-27 | Rotatable test element |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19160587.2A Division EP3524982B1 (en) | 2006-09-27 | 2007-09-27 | Rotatable test element |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2069787A1 EP2069787A1 (en) | 2009-06-17 |
EP2069787B1 true EP2069787B1 (en) | 2019-03-06 |
Family
ID=37719401
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06020219A Ceased EP1916524A1 (en) | 2006-09-27 | 2006-09-27 | Rotatable test element |
EP19160587.2A Active EP3524982B1 (en) | 2006-09-27 | 2007-09-27 | Rotatable test element |
EP07818502.2A Active EP2069787B1 (en) | 2006-09-27 | 2007-09-27 | Rotatable test element |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06020219A Ceased EP1916524A1 (en) | 2006-09-27 | 2006-09-27 | Rotatable test element |
EP19160587.2A Active EP3524982B1 (en) | 2006-09-27 | 2007-09-27 | Rotatable test element |
Country Status (8)
Country | Link |
---|---|
US (1) | US8470588B2 (en) |
EP (3) | EP1916524A1 (en) |
JP (1) | JP5502482B2 (en) |
CN (1) | CN101517413B (en) |
CA (1) | CA2664565C (en) |
ES (2) | ES2724734T3 (en) |
HK (1) | HK1136626A1 (en) |
WO (1) | WO2008037469A1 (en) |
Families Citing this family (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8632243B2 (en) * | 2008-03-10 | 2014-01-21 | The Hong Kong Polytechnic University | Microfluidic mixing using continuous acceleration/deceleration methodology |
EP2133149A1 (en) * | 2008-06-13 | 2009-12-16 | F.Hoffmann-La Roche Ag | Lab-on-disc device |
EP2145682A1 (en) * | 2008-07-18 | 2010-01-20 | Roche Diagnostics GmbH | Test element for analysing a bodily fluid sample for an analyte contained therein, analysis system and method for controlling the movement of a fluid contained in a channel of a test element |
EP2198964B8 (en) | 2008-11-06 | 2013-04-24 | F. Hoffmann-La Roche AG | Method of providing a dry reagent in a micro-fluid system |
EP2194381B1 (en) * | 2008-12-03 | 2015-12-02 | Roche Diagnostics GmbH | Testing element with combined control and calibration zone |
GB2473425A (en) * | 2009-09-03 | 2011-03-16 | Vivacta Ltd | Fluid Sample Collection Device |
EP2329877A1 (en) * | 2009-12-04 | 2011-06-08 | Roche Diagnostics GmbH | Microfluidic element for analysing a fluid sample |
KR101722548B1 (en) * | 2010-01-29 | 2017-04-03 | 삼성전자주식회사 | Centrifugal Micro-fluidic Device and Method for detecting analytes from liquid specimen |
EP2369324A1 (en) | 2010-03-23 | 2011-09-28 | F. Hoffmann-La Roche AG | Method for producing an analytical test element, analytical test element, use of an analytical test element and analytical test system |
DE102010013752A1 (en) | 2010-03-31 | 2011-10-06 | Roche Diagnostics Gmbh | Multifunctional detection cuvette |
JP5728217B2 (en) * | 2010-12-14 | 2015-06-03 | ローム株式会社 | Microchip and inspection or analysis method using the same |
US11648561B2 (en) | 2012-02-13 | 2023-05-16 | Neumodx Molecular, Inc. | System and method for processing and detecting nucleic acids |
US11485968B2 (en) | 2012-02-13 | 2022-11-01 | Neumodx Molecular, Inc. | Microfluidic cartridge for processing and detecting nucleic acids |
US9738887B2 (en) | 2012-02-13 | 2017-08-22 | Neumodx Molecular, Inc. | Microfluidic cartridge for processing and detecting nucleic acids |
US9637775B2 (en) | 2012-02-13 | 2017-05-02 | Neumodx Molecular, Inc. | System and method for processing biological samples |
US9604213B2 (en) | 2012-02-13 | 2017-03-28 | Neumodx Molecular, Inc. | System and method for processing and detecting nucleic acids |
WO2014059134A1 (en) * | 2012-10-11 | 2014-04-17 | Siemens Healthcare Diagnostics Inc. | Automation maintenance carrier |
ES2741749T3 (en) | 2012-10-25 | 2020-02-12 | Neumodx Molecular Inc | Method and materials for the isolation of nucleic acid materials |
EP2777499B1 (en) | 2013-03-15 | 2015-09-16 | Ortho-Clinical Diagnostics Inc | Rotatable fluid sample collection device |
ES2661100T3 (en) | 2013-04-15 | 2018-03-27 | Becton, Dickinson And Company | Biological fluid collection device and biological fluid separation and analysis system |
CA3005826C (en) | 2013-04-15 | 2021-11-23 | Becton, Dickinson And Company | Biological fluid collection device and biological fluid separation and testing system |
WO2015026911A1 (en) * | 2013-08-23 | 2015-02-26 | Daktari Diagnostics, Inc. | Microfluidic metering of fluids |
JP6651448B2 (en) * | 2013-12-06 | 2020-02-19 | オーソ−クリニカル・ダイアグノスティックス・インコーポレイテッドOrtho−Clinical Diagnostics, Inc. | Assay device with wash port |
EP2944965A1 (en) | 2014-05-13 | 2015-11-18 | Roche Diagnostics GmbH | Rotatable cartridge for measuring a property of a biological sample |
EP2952257A1 (en) | 2014-06-06 | 2015-12-09 | Roche Diagnostics GmbH | Rotatable cartridge for processing and analyzing a biological sample |
KR101859860B1 (en) * | 2014-06-06 | 2018-05-18 | 에프. 호프만-라 로슈 아게 | Rotatable cartridge with a metering chamber for analyzing a biological sample |
EP2952258A1 (en) * | 2014-06-06 | 2015-12-09 | Roche Diagnostics GmbH | Rotatable cartridge for analyzing a biological sample |
EP2957890A1 (en) | 2014-06-16 | 2015-12-23 | Roche Diagnostics GmbH | Cartridge with a rotatable lid |
EP3213071B1 (en) | 2014-10-30 | 2019-07-10 | GE Healthcare Bio-Sciences AB | Method to determine solvent correction curves |
JP6600861B2 (en) * | 2015-04-08 | 2019-11-06 | 株式会社パートナーファーム | Solid phase reaction chip and measurement method using the same |
WO2017044732A1 (en) * | 2015-09-09 | 2017-03-16 | Northwestern University | Devices, systems, and methods for specimen preparation using capillary and centrifugal forces |
EP3173149A1 (en) * | 2015-11-26 | 2017-05-31 | Roche Diagnostics GmbH | Determining a quantity of an analyte in a blood sample |
EP3184158B1 (en) | 2015-12-21 | 2019-01-16 | Roche Diagniostics GmbH | Blood collector with capillary structure |
CN109387628A (en) * | 2016-03-14 | 2019-02-26 | 北京康华源科技发展有限公司 | It is centrifugated detection method |
EP3431990A4 (en) * | 2016-03-14 | 2019-12-04 | Beijing Kanghuayuan Sci-Tech Company Ltd | Centrifugation detection method and device |
EP4023338B1 (en) | 2016-04-14 | 2024-10-02 | Roche Diagnostics GmbH | Cartridge and optical measurement of an analyte with said cartridge |
US11815440B2 (en) * | 2016-05-02 | 2023-11-14 | Danmarks Tekniske Universitet | Method for preparing a substrate by applying a sample to be analysed |
KR101868961B1 (en) | 2016-06-21 | 2018-06-19 | 울산과학기술원 | Microfluidic devices |
ES2857735T3 (en) | 2016-11-16 | 2021-09-29 | Hoffmann La Roche | Rotating cartridge with multiple metering chambers |
US20190346461A1 (en) * | 2017-01-20 | 2019-11-14 | Université Libre de Bruxelles | Immunoassay methods and devices |
CA3053114A1 (en) * | 2017-02-09 | 2018-08-16 | Essenlix Corporation | Assay using different spacing heights |
WO2018165440A1 (en) * | 2017-03-08 | 2018-09-13 | Northwestern University | Devices, systems, and methods for specimen preparation and analysis using capillary and centrifugal forces |
WO2018177445A1 (en) * | 2017-04-01 | 2018-10-04 | 北京康华源科技发展有限公司 | Centrifugation immunochromatography detection method and apparatus |
CN107525923A (en) * | 2017-04-01 | 2017-12-29 | 北京康华源科技发展有限公司 | One kind centrifuges immunochromatography detection method and device |
KR102137306B1 (en) | 2017-11-20 | 2020-07-23 | 주식회사 엘지화학 | A device and method for qualitative and quantitative analysis of heavy metals using a rotary disc system |
US11433390B2 (en) * | 2017-12-07 | 2022-09-06 | Ion Llc | Methods and systems for a capillary device |
JP6846388B2 (en) * | 2018-06-26 | 2021-03-24 | シスメックス株式会社 | Measurement cartridge and liquid feeding method |
CN110614126B (en) * | 2018-06-28 | 2021-04-09 | 北京中科生仪科技有限公司 | Micro-fluidic chip for realizing optical detection and manufacturing method thereof |
SE542462C2 (en) * | 2018-09-20 | 2020-05-12 | Astrego Diagnostics Ab | Sample loading cartridge for a microfluidic device |
CN111207242B (en) | 2020-04-18 | 2020-09-01 | 博奥生物集团有限公司 | Fluid actuated control valve and method of use |
KR102433675B1 (en) * | 2020-07-02 | 2022-08-18 | 주식회사 클리노믹스 | Pa rticle filtration device and method of particle filtration |
BE1029228B1 (en) * | 2021-03-22 | 2022-10-18 | Unisensor | Microfluidic device |
DE202024001130U1 (en) | 2024-06-12 | 2024-07-22 | Axel Hochstetter | Microfluidic device for passive separation of particles and cells |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3445816C1 (en) | 1984-12-15 | 1986-06-12 | Behringwerke Ag, 3550 Marburg | Flat diagnostic agent |
US5160702A (en) * | 1989-01-17 | 1992-11-03 | Molecular Devices Corporation | Analyzer with improved rotor structure |
US5061381A (en) | 1990-06-04 | 1991-10-29 | Abaxis, Inc. | Apparatus and method for separating cells from biological fluids |
US5242606A (en) * | 1990-06-04 | 1993-09-07 | Abaxis, Incorporated | Sample metering port for analytical rotor having overflow chamber |
US5591643A (en) * | 1993-09-01 | 1997-01-07 | Abaxis, Inc. | Simplified inlet channels |
US6235531B1 (en) * | 1993-09-01 | 2001-05-22 | Abaxis, Inc. | Modified siphons for improved metering precision |
IL108159A (en) * | 1993-12-23 | 1998-02-08 | Orgenics Ltd | Apparatus for separation, concentration and detection of target molecules in liquid sample |
GB9809943D0 (en) * | 1998-05-08 | 1998-07-08 | Amersham Pharm Biotech Ab | Microfluidic device |
AU2002219979A1 (en) | 2000-12-01 | 2002-06-11 | Burstein Technologies, Inc. | Apparatus and methods for separating components of particulate suspension |
EP1390144A2 (en) * | 2001-03-19 | 2004-02-25 | Gyros AB | Structural units that define fluidic functions |
US7152616B2 (en) * | 2002-12-04 | 2006-12-26 | Spinx, Inc. | Devices and methods for programmable microscale manipulation of fluids |
US20050014249A1 (en) | 2003-02-21 | 2005-01-20 | Norbert Staimer | Chromatographic analysis on optical bio-discs and methods relating thereto |
WO2004095034A1 (en) | 2003-04-23 | 2004-11-04 | Nagaoka & Co., Ltd. | Optical bio-discs including spiral fluidic circuits for performing assays |
US7390464B2 (en) * | 2003-06-19 | 2008-06-24 | Burstein Technologies, Inc. | Fluidic circuits for sample preparation including bio-discs and methods relating thereto |
US20070166721A1 (en) | 2003-06-27 | 2007-07-19 | Phan Brigitte C | Fluidic circuits, methods and apparatus for use of whole blood samples in colorimetric assays |
US20040265171A1 (en) * | 2003-06-27 | 2004-12-30 | Pugia Michael J. | Method for uniform application of fluid into a reactive reagent area |
WO2005009581A2 (en) * | 2003-07-15 | 2005-02-03 | Nagaoka & Co. Ltd. | Methods and apparatus for blood separation and analysis using membranes on an optical bio-disc |
JP4646204B2 (en) * | 2005-01-27 | 2011-03-09 | ブラザー工業株式会社 | Receiving target, sorting device, and sorting method |
-
2006
- 2006-09-27 EP EP06020219A patent/EP1916524A1/en not_active Ceased
-
2007
- 2007-09-27 CN CN2007800357229A patent/CN101517413B/en active Active
- 2007-09-27 CA CA2664565A patent/CA2664565C/en active Active
- 2007-09-27 ES ES07818502T patent/ES2724734T3/en active Active
- 2007-09-27 ES ES19160587T patent/ES2933349T3/en active Active
- 2007-09-27 EP EP19160587.2A patent/EP3524982B1/en active Active
- 2007-09-27 JP JP2009529607A patent/JP5502482B2/en active Active
- 2007-09-27 WO PCT/EP2007/008419 patent/WO2008037469A1/en active Application Filing
- 2007-09-27 EP EP07818502.2A patent/EP2069787B1/en active Active
-
2009
- 2009-03-19 US US12/407,419 patent/US8470588B2/en active Active
-
2010
- 2010-02-23 HK HK10101882.7A patent/HK1136626A1/en unknown
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP2069787A1 (en) | 2009-06-17 |
HK1136626A1 (en) | 2010-07-02 |
CA2664565A1 (en) | 2008-04-03 |
CN101517413B (en) | 2013-11-06 |
EP3524982B1 (en) | 2022-10-19 |
ES2933349T3 (en) | 2023-02-06 |
US8470588B2 (en) | 2013-06-25 |
EP3524982A1 (en) | 2019-08-14 |
CA2664565C (en) | 2014-04-01 |
ES2724734T3 (en) | 2019-09-13 |
WO2008037469A1 (en) | 2008-04-03 |
CN101517413A (en) | 2009-08-26 |
JP5502482B2 (en) | 2014-05-28 |
EP1916524A1 (en) | 2008-04-30 |
JP2010505096A (en) | 2010-02-18 |
US20090191643A1 (en) | 2009-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2069787B1 (en) | Rotatable test element | |
DE602005005485T2 (en) | ASSAY DEVICE AND METHOD WITH CONTROLLED RIVER | |
EP0989407B1 (en) | Method for the determination of glycosylated haemoglobin | |
DE3880531T2 (en) | INTEGRATED IMMUNO ASSAY ELEMENT. | |
DE3887941T2 (en) | Test device with multiple openings. | |
DE60036420T2 (en) | Microfluidic article | |
EP0052769B1 (en) | Method for analytical assays and rotor element for carrying out the method | |
DE69406537T2 (en) | IMPROVED DEVICE FOR AUTOMATED CHEMILUMINESCENCE IMMUNITY TEST PROCEDURE | |
DE69229478T2 (en) | DEVICE AND METHOD FOR DOSING LIQUID SAMPLES | |
DE69906986T2 (en) | ANALYTICAL TEST APPARATUS AND METHOD | |
DE60218695T2 (en) | BIOSENSORS AND MEASURING PROCEDURES | |
US10983119B2 (en) | Device for rapid diagnostic tests to detect antigens with improved sensitivity | |
EP1944078B1 (en) | Device for determining an analyte in a liquid and method | |
EP1495799A2 (en) | Device for the treatment of limited liquid portions | |
EP3829767B1 (en) | Device and method for guiding a liquid through a porous medium | |
EP1522343B1 (en) | Analytical testelement including a hydrophilic network for forming a capillary channel, its use and method for determining an analyte in a liquid. | |
DE3134611A1 (en) | METHOD FOR CARRYING OUT ANALYTICAL PROVISIONS AND MEANS SUITABLE FOR THIS | |
EP0167171A2 (en) | Method and device for performing analytical determinations | |
EP1353181B1 (en) | Biosensor and method for analyzing blood components using it | |
EP2194381B1 (en) | Testing element with combined control and calibration zone | |
DE69719737T2 (en) | IMMUNOASSAY OF WHOLE BLOOD SAMPLES | |
DE60025758T2 (en) | ANALYSIS DEVICE AND ITS USE | |
DE3912901A1 (en) | VESSEL FOR AGGLUTINATION ANALYSIS | |
DE69129452T2 (en) | Assay using an absorbent material | |
DE69024936T2 (en) | Device for the determination and semi-quantitative measurement of components |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20090427 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20150526 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502007016611 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: G01N0033543000 Ipc: B01L0003000000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B01L 3/00 20060101AFI20180828BHEP |
|
INTG | Intention to grant announced |
Effective date: 20180917 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: F. HOFFMANN-LA ROCHE AG Owner name: ROCHE DIAGNOSTICS GMBH |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1103819 Country of ref document: AT Kind code of ref document: T Effective date: 20190315 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502007016611 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190306 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190606 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190607 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2724734 Country of ref document: ES Kind code of ref document: T3 Effective date: 20190913 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190706 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502007016611 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190706 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 |
|
26N | No opposition filed |
Effective date: 20191209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190927 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190927 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190930 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1103819 Country of ref document: AT Kind code of ref document: T Effective date: 20190927 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190927 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20070927 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20231002 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20231001 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240820 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240820 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240820 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240820 Year of fee payment: 18 |