EP3523828A1 - Improved contacts for a photovoltaic cell having two active faces - Google Patents

Improved contacts for a photovoltaic cell having two active faces

Info

Publication number
EP3523828A1
EP3523828A1 EP17780381.4A EP17780381A EP3523828A1 EP 3523828 A1 EP3523828 A1 EP 3523828A1 EP 17780381 A EP17780381 A EP 17780381A EP 3523828 A1 EP3523828 A1 EP 3523828A1
Authority
EP
European Patent Office
Prior art keywords
active face
deposition
active
cell
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17780381.4A
Other languages
German (de)
French (fr)
Other versions
EP3523828B1 (en
Inventor
Pierre-Philippe Grand
Daniel Lincot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electricite de France SA
Centre National de la Recherche Scientifique CNRS
Paris Sciences et Lettres Quartier Latin
Original Assignee
Electricite de France SA
Centre National de la Recherche Scientifique CNRS
Paris Sciences et Lettres Quartier Latin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electricite de France SA, Centre National de la Recherche Scientifique CNRS, Paris Sciences et Lettres Quartier Latin filed Critical Electricite de France SA
Publication of EP3523828A1 publication Critical patent/EP3523828A1/en
Application granted granted Critical
Publication of EP3523828B1 publication Critical patent/EP3523828B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0684Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells double emitter cells, e.g. bifacial solar cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/001Apparatus specially adapted for electrolytic coating of wafers, e.g. semiconductors or solar cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/007Electroplating using magnetic fields, e.g. magnets
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/011Electroplating using electromagnetic wave irradiation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • C25D5/028Electroplating of selected surface areas one side electroplating, e.g. substrate conveyed in a bath with inhibited background plating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • C25D7/123Semiconductors first coated with a seed layer or a conductive layer
    • C25D7/126Semiconductors first coated with a seed layer or a conductive layer for solar cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/06Electrolytic coating other than with metals with inorganic materials by anodic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022475Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of indium tin oxide [ITO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022483Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the invention lies in the field of the manufacture of photo voltaic cells, and is more particularly related to the deposition of contacts on such cells.
  • the cells currently dominating the photovoltaic market are mono-faceted (only one active face receiving the light rays), the rear face being entirely metallized. Nevertheless, for the purpose of increasing photovoltaic conversion efficiencies, the development of so-called "bifacial" cells is currently experiencing a great expansion. Indeed, in these structures with two opposite active faces, the efficiency of the panel is the sum of the yield obtained on the front face (direct radiation) and that obtained on the back side (which receives only the reflected radiation - about 20 % of the light incident on grass, for example).
  • An alternative to screen-printing metallization is the use of electrochemical plating, which is beginning to be industrialized for mono-facial cells.
  • electrochemical plating which is beginning to be industrialized for mono-facial cells.
  • the general interest of the electrochemical veneer compared to the screen printing is:
  • Electrochemical plating is not possible by conventional electrolysis (due to the excessive resistivity of silicon), the most commonly used approach is a so-called ā€œmixedā€ approach to thickening screen-printed contacts.
  • Certain properties of the silicon substrate can also be stimulated and two common electrochemical techniques for direct plating on a silicon substrate are:
  • LIP light induced deposition
  • LIP Light induced deposition
  • the "competition" on the p + side between the formation of holes (linked to photo-generation of the current) and the arrival of electrons to feed the reduction reaction on the n + side is incompatible with the formation of a compound by electrolysis on a bifacial cell.
  • the rear face of the cell is often out of electrolysis bath to prevent problems of corrosion or over-deposit.
  • the polarization diode deposition technique (FBP) is used for the metallization of the p + side . In this case, by connecting an anode to the rear face of the solar cell (n + ), a potential or cathodic current is applied to the back face previously metallized.
  • the only technique of metallization (electro-chemical) for simultaneously depositing a metal on both sides of the silicon (one of the p + type and the other type n) is a so-called electroless electroless method. It nevertheless has disadvantages: complexity of implementation, need for activation of the surface prior to deposition (often using a bath containing palladium, expensive metal), long deposit time ( ā‡ 0, ā‡ m / min), short bath life and delicate bath management, at a high deposition temperature (above 80 Ā° C). Moreover, the deposition rate depends on the type of surface to be covered (with a different selectivity on the faces of the cell).
  • the present invention improves this situation.
  • a method of manufacturing a bifacial photovoltaic cell, with two opposite active faces comprising a step of depositing, on each active face, at least one electrical contact.
  • the deposition step comprises in particular a common deposition operation on each of the active faces, implemented by electrolysis in a common electrolytic cell comprising:
  • a first compartment for the deposition of a metal layer on a first active face of the cell, for the manufacture of a contact comprising said metal layer on the first active face, and
  • the metal of the metal oxide layer may be at least one of Mn, Ni, Mo, Cd, Sn, In, Zn, Pb, Ag, Cu, In, Ga, Co, W, Ta, Ga and TI.
  • electrons are generated in the first compartment, facing the first active face, to promote the deposition of the metal layer, and
  • the first and second compartments are separated by an ion exchange membrane that includes the electrolysis cell.
  • the lighting promotes the generation of electron / hole pairs and therefore the simultaneous deposition of the metal layer and the metal oxide layer.
  • This lighting can be performed on at least one of the two faces.
  • the deposition operation is assisted by applying a potential difference capable of generating at least negative charges on the first active face.
  • the deposition operation may be assisted by applying a potential difference that is capable of generating positive charges on the second active face.
  • the photovoltaic cell is bifacial homo-junction, n + type on the first active face and p + on the second active face.
  • the bulk material (or "bulkā€, also called substrate SUB hereafter) may be for example silicon, n or p type.
  • substrate SUB also called substrate SUB hereafter.
  • the surfaces of the material remain however:
  • the photovoltaic cell may be based on silicon.
  • the metal layer on the first active face may be nickel-based, and the electrical contact deposition step on this first active face may then be continued by the deposition on the metal layer of a layer comprising at least copper, by electrolysis.
  • This solution is very advantageous economically because it comes to replace the deposit of a silver paste, expensive, usually made by screen printing.
  • the step of depositing electrical contact on the second active face can also be continued by the deposition on the metal oxide layer of a layer comprising at least copper, by electrolysis (since the oxide is conductive).
  • the contact deposition step is preceded by a step of etching at least one electrically insulating layer (Si0 2 , SiN x ), deposited on each side active. This etching exposes each active face in a region in which the above-mentioned simultaneous deposition electrolysis operation can then be applied.
  • the present invention also relates to a bifacial photovoltaic cell with two opposite active faces, the cell having on each active face at least one electrical contact.
  • the contact of a first active face comprises a metal layer deposited on the first active face
  • the contact of the second active face comprises a conductive metal oxide layer deposited on the second active face.
  • the cell may be of the homo-junction type, of type n on the first active face and p + on the second active face.
  • FIG. 1 shows an embodiment for the manufacture by electrolysis of a cell within the meaning of the invention
  • FIG. 2 shows an example of a cell within the meaning of the invention
  • FIGS. 3 to 5 show alternative embodiments to that of FIG. 1, for the electrolytic manufacture of a cell within the meaning of the invention
  • the illumination of at least one of the two faces leads to the photo- generation of electron / hole pairs. Electrons are generated on the n + side and "holes" on the p + side . It is therefore possible to carry out an electrochemical reduction reaction on the n + side (and thus to deposit a metal), and in parallel, to promote an electrochemical oxidation reaction on the opposite face p + (thus to deposit a metal oxide typically).
  • the photovoltaic material of the cell for example silicon
  • two suitable electrolytes one per face
  • a metal oxide for example MnO 2 , O, MoO 3 , CdO, SnO 2 , etc.
  • the substrate SUB for example of silicon
  • photovoltaic properties and comprising opposite first and second active faces (doped n + and p + respectively) is immersed in an electrolysis vessel BA.
  • An ion exchange ME membrane anionic or cationic is further provided in the extension of the substrate SUB to close two respective compartments C1 and C2 in the tank.
  • the ECL illumination of at least one of the faces favors the photo-generation of electrons ne- on the first face (in the compartment C1) and holes TR on the second face (in the compartment C2).
  • the electrons in the compartment C1 allow the deposition of the metal (for example nickel Ni) on the free surface of the substrate (between the two silicon nitride masks SiN x ).
  • the electrochemically deposited metal oxide on the p + side preferably has the following properties. This is a:
  • Nickel equivalent electrical conductor 14.10 6 S / m
  • this oxide is transparent and conductive (such as titanium oxide or ITO), it can allow electrical collection and allowing the incident light to pass (reduced shading rate).
  • the solar cell may have a stack of the type illustrated in FIG. 2 (in an exemplary embodiment relating to a bifacial cell here of the N-PERT type, for "Passivated Emitter, Rear Totally Diffused"), in which:
  • the reference MO x generally denotes a metal oxide with M preferentially but not limitatively at least one of the elements: Mn, Cr, Fe, Co,
  • the noble metals can also be considered with, however, a higher manufacturing cost;
  • the reference SiN x denotes silicon nitride (s) (and SiO 2 of the silica).
  • metal-based layers including an oxide
  • connection to an external circuit is not necessary because the oxy-reduction torque on each of the two faces is directly at the photovoltaic substrate / electrolyte interface.
  • an ion exchange membrane (Nafion type, anionic or cationic) can separate the two compartments and maintain the ionic balance.
  • the illumination device may comprise a row of diodes or halogen lamps having a maximum of electromagnetic irradiation in the red near-infrared visible region.
  • the irradiation may preferably include the domain of ultraviolet optical wavelengths to activate and / or catalyze the electrolyte / silicon interface in order to promote the nucleation of the first deposition seeds on the surface of the silicon.
  • the illumination may advantageously be applied on both sides, making it possible to adjust the electrochemical potentials on both sides if necessary.
  • the photo-generated current (of an order of magnitude of a few tens of mA.cm " ), makes it possible to reach deposit rates at least 10 times higher than those obtained by an autocatalytic type process (" electroless "process, the most effective known at present)
  • electroless process the most effective known at present
  • the activation stage of the electroless process startsing of the nucleation of the Nickel Ni contact, for example with Palladium particles
  • the overall process is therefore faster and less expensive than the electroless process, with equivalent photo voltaic performance.
  • the implementation in the sense of the present invention has many advantages over known techniques, such as the screen printing technique, Electr oless and torque LIP / FBP
  • the treatment of the invention is simultaneous, fast and without electrical contact of the two faces of the bifacial solar cells for the formation of electrical collection grids by preferentially using the illumination of one of the two faces .
  • the technique of the invention makes it possible:
  • the invention notably provides an improvement in the performance of photovoltaic devices with:
  • simultaneous deposition of MnO 2 on the p + face and Nickel on the n + side is carried out .
  • a nickel metallization bath is placed in the compartment n + (Cl) and a metallization bath of MnO 2 in the compartment p + (C2).
  • the (Silicon) substrate is illuminated with a row of white LED lamps on one side.
  • a temperature of 60 Ā° C is applied for 2 minutes.
  • Nickel is deposited according to the following general reaction:
  • Mn acetate 0.01 M Mn (C 2 H 3 0 2) 2
  • Mn acetate 0.02 M NH 4 (C 2 H 3 0 2 )
  • C 2 3 ā‡ 4OS dimethyl sulfoxide (DMSO)
  • the ion exchange membrane advantageously allows the protons (H + ) to be balanced between the two compartments.
  • copper can be deposited by direct electrolysis to increase the conductivity of the electrical contacts. Then, a thin layer of silver can be deposited on the copper to protect it from oxidation and improve its weldability in order to manufacture photo voltaic modules. Finally, a heat treatment (range 350 - 550 Ā° C) can be performed to allow the formation of NiSi alloy on the n + side , which has a role of ohmic contact on the silicon and prevention of diffusion of copper.
  • cadmium oxide CdO is deposited on the p + side and nickel is deposited on the n + side .
  • the deposit of CdO can be carried out at ambient temperature in 0.05M of cadmium acetate [Cd (C 2 H 3 O 2 ) 2 ] and 0.1M of Na 2 SO 4 .
  • SnO 2 tin oxide is deposited on the p face and nickel on the n + side , providing in the DMSO, 0.1 M SnCl 2 and 0.5 M NaNO 3 .
  • manganese oxide MnO 2 is deposited on the p + face and nickel on the n + face with a single deposition bath because in this case, the two faces of the substrate are exposed to the same surface.
  • electrolyte which contains at least one nickel salt (for example a sulphate) and a manganese salt Mn (for example an acetate).
  • the nickel salt reduction reaction takes place at the cathode and the formation of the manganese oxide at the anode.
  • the ion exchange membrane is no longer necessary (ionic equilibrium established by the exchange of protons between the reactions at the anode and the cathode).
  • the present invention is not limited to the embodiments presented above as examples; it extends to other variants.
  • the principle of photo-generation of the current for example admits variant embodiments.
  • it can be further assisted by applying a potential between the p + and n + terminals of the substrate (preferential range of 0 to 2V).
  • the direction of polarization is shown in Figure 3.
  • the cathode is preferably insoluble (for example in oxide Ti0 2 / Ir0 2 ).

Abstract

The invention relates in particular to the production of a bifacial photovoltaic cell, with two opposite active faces, comprising a step of depositing, on each active face, at least one electrical contact. The deposition step comprises, in particular, a common deposition operation on each of the active faces, implemented by electrolysis in a common electrolysis tank comprising: - a first compartment (C1) for depositing a metal layer on a first active face of the cell, in order to produce a contact comprising said metal layer on the first active face, and - a second compartment (C2) for depositing, by oxidation, a conductive metal oxide layer on the second active face of the cell, in order to produce a contact comprising said metal oxide layer on the second active face.

Description

Contacts perfectionnĆ©s d'une cellule photo voltaĆÆque Ć  deux faces actives Ā Advanced Contacts of a Photovoltaic Cell with Two Active Faces
L'invention se situe dans le domaine de la fabrication de cellules photo voltaĆÆques, et est plus particuliĆØrement relative au dĆ©pĆ“t de contacts sur de telles cellules. The invention lies in the field of the manufacture of photo voltaic cells, and is more particularly related to the deposition of contacts on such cells.
Dans le cas par exemple oĆ¹ de telles cellules sont Ć  base de silicium, les cellules dominant actuellement le marchĆ© photovoltaĆÆque sont mono-faciales (une seule face active recevant les rayons lumineux), la face arriĆØre Ć©tant entiĆØrement mĆ©tallisĆ©e. NĆ©anmoins, dans un but d'augmentation des rendements de conversion photovoltaĆÆques, le dĆ©veloppement de cellules dites Ā« bifaciales Ā» connaĆ®t actuellement un grand essor. En effet, dans ces structures Ć  deux faces actives opposĆ©es, l'efficacitĆ© du panneau est la somme du rendement obtenu sur la face avant (rayonnement direct) et de celui obtenu sur la face arriĆØre (qui ne reƧoit que le rayonnement rĆ©flĆ©chi - environ 20% de la lumiĆØre incidente sur du gazon par exemple). L'ordre de grandeur de gain de conversion par rapport Ć  une cellule mono-faciale est donc d'environ 3 Ć  4% absolu, en fonction du taux de rĆ©flexion de la surface incidente (gazon, neige, sable, etc.). NĆ©anmoins, le dĆ©veloppement de cellules bifaciales est freinĆ© du fait du coĆ»t Ć©levĆ© de leur production ainsi que des limitations de performances liĆ©es notamment Ć  l'utilisation de la sĆ©rigraphie Ć  base de pĆ¢te d'argent pour la mĆ©tallisation de contacts mĆ©talliques. In the case, for example, where such cells are based on silicon, the cells currently dominating the photovoltaic market are mono-faceted (only one active face receiving the light rays), the rear face being entirely metallized. Nevertheless, for the purpose of increasing photovoltaic conversion efficiencies, the development of so-called "bifacial" cells is currently experiencing a great expansion. Indeed, in these structures with two opposite active faces, the efficiency of the panel is the sum of the yield obtained on the front face (direct radiation) and that obtained on the back side (which receives only the reflected radiation - about 20 % of the light incident on grass, for example). The order of magnitude of conversion gain with respect to a mono-facial cell is therefore about 3 to 4% absolute, depending on the rate of reflection of the incident surface (turf, snow, sand, etc.). Nevertheless, the development of bifacial cells is slowed down because of the high cost of their production as well as the performance limitations related in particular to the use of screen printing based on silver paste for the metallization of metal contacts.
Une alternative Ć  la mĆ©tallisation par sĆ©rigraphie est l'utilisation de placage Ć©lectrochimique, qui commence Ć  ĆŖtre industrialisĆ© pour les cellules mono-faciales. L'intĆ©rĆŖt gĆ©nĆ©ral du placage Ć©lectrochimique par rapport Ć  la sĆ©rigraphie est : An alternative to screen-printing metallization is the use of electrochemical plating, which is beginning to be industrialized for mono-facial cells. The general interest of the electrochemical veneer compared to the screen printing is:
- d'un point de vue performance : - from a performance point of view:
- diminuer le taux d'ombrage de la cellule par diminution de la taille du motif mĆ©tallisĆ© (largeur des doigts de collectes pouvant ĆŖtre rĆ©duit de plus de 50%), - permettre le contactage d'Ć©metteurs trĆØs rĆ©sistifs (>120Ī©), Ā - reduce the shading rate of the cell by reducing the size of the metallized pattern (width of the collecting fingers can be reduced by more than 50%), - allow the contact of highly resistive transmitters (> 120Ī©),
amĆ©liorer la conductivitĆ© Ć©lectrique et diminuer la rĆ©sistance de contact avec l'Ć©metteur, Ā improve the electrical conductivity and decrease the contact resistance with the transmitter,
- d'un point de vue Ć©conomique : - from an economic point of view :
supprimer (ou diminuer trĆØs fortement) la quantitĆ© d'Argent et le remplacer par le Cuivre (avec un gain de facteur 100 sur le coĆ»t du mĆ©tal), remplacer la sĆ©rigraphie par une mĆ©thode Ć©lectrochimique (prĆ©sentant un meilleur taux d'utilisation de matiĆØre premiĆØre). suppress (or decrease very strongly) the quantity of silver and replace it with copper (with a factor gain of 100 on the cost of the metal), replace screen printing with an electrochemical method (with a better rate of use of raw material).
Le placage Ć©lectrochimique n'Ć©tant pas possible par Ć©lectrolyse conventionnelle (du fait de la trop grande rĆ©sistivitĆ© du silicium), l'approche la plus communĆ©ment utilisĆ©e est une approche dite Ā« mixte Ā» d'Ć©paississement de contacts sĆ©rigraphiĆ©s. Electrochemical plating is not possible by conventional electrolysis (due to the excessive resistivity of silicon), the most commonly used approach is a so-called "mixed" approach to thickening screen-printed contacts.
On peut stimuler aussi certaines propriƩtƩs du substrat en silicium et deux techniques Ʃlectrochimiques courantes pour le placage direct sur un substrat de Silicium sont : Certain properties of the silicon substrate can also be stimulated and two common electrochemical techniques for direct plating on a silicon substrate are:
- le dĆ©pĆ“t induit par la lumiĆØre (dit Ā« Light Induced Plating Ā» ou LIP), et light induced deposition (LIP), and
- le dĆ©pĆ“t dans le sens de polarisation de la diode (dit Ā« Forward Bias Plating Ā» ou FBP). Ā - The deposit in the direction of polarization of the diode (called "Forward Bias Plating" or FBP).
Le dĆ©pĆ“t induit par la lumiĆØre (LIP) est utilisĆ© pour la mĆ©tallisation de la face n+. Dans ce cas, en Ć©clairant le semi-conducteur, la jonction p-n gĆ©nĆØre des paires Ć©lectrons-trous. Par application d'un potentiel entre une anode Ć  la face arriĆØre (p ) de la cellule photovoltaĆÆque prĆ©alablement mĆ©tallisĆ©e, les Ć©lectrons gĆ©nĆ©rĆ©s sont utilisĆ©s sur la face n+ pour rĆ©duire les sels mĆ©talliques prĆ©sents dans le bain de dĆ©pĆ“t. Light induced deposition (LIP) is used for the metallization of the n + side . In this case, by illuminating the semiconductor, the pn junction generates electron-hole pairs. By applying a potential between an anode to the rear face (p) of the previously metallized photovoltaic cell, the electrons generated are used on the n + side to reduce the metal salts present in the deposition bath.
Or, la Ā« compĆ©tition Ā» sur la face p+ entre la formation de trous (liĆ© Ć  la photo -gĆ©nĆ©ration du courant) et l'arrivĆ©e d'Ć©lectrons pour alimenter la rĆ©action de rĆ©duction sur la face n+ est incompatible avec la formation d'un composĆ© par Ć©lectrolyse sur une cellule bifaciale. Ainsi, dans une technique de type LIP, la face arriĆØre de la cellule est souvent hors bain d' Ć©lectrolyse pour prĆ©venir les problĆØmes de corrosion ou de sur-dĆ©pĆ“t. La technique de dĆ©pĆ“t dans le sens de polarisation de la diode (FBP) est utilisĆ©e pour la mĆ©tallisation de la face p+. Dans ce cas, par connexion Ć  une anode Ć  la face arriĆØre de la cellule solaire (n+), un potentiel ou courant cathodique est appliquĆ© sur la face arriĆØre prĆ©alablement mĆ©tallisĆ©e. Ce potentiel sert Ć  gĆ©nĆ©rer des Ć©lectrons qui traversent la diode et sont disponibles sur la face p+. Toutefois, lĆ  encore cette technique n'est pas utilisable pour une cellule bifaciale car si les deux faces sont exposĆ©es au bain d' Ć©lectrolyse, l'application du potentiel (ou du courant) conduit Ć  la formation d'un composĆ© par rĆ©duction sur la face n+. La formation de ce composĆ© conducteur Ā« bloque Ā» alors la circulation des Ć©lectrons Ć  travers la diode et seul un dĆ©pĆ“t sur la face n+ est obtenu. Bien entendu, on peut prĆ©voir une combinaison des deux techniques (LIP et FBP) pour rĆ©aliser la mĆ©tallisation de cellules bifaciales mais cette combinaison nĆ©cessite une mise en œuvre lourde et complexe (mĆ©tallisation obligatoirement sĆ©quentielle, gestion de la prise de contact Ć©lectrique et des lignes de champs entre les deux faces, besoin d'un alignement prĆ©cis entre les ouvertures des deux faces). However, the "competition" on the p + side between the formation of holes (linked to photo-generation of the current) and the arrival of electrons to feed the reduction reaction on the n + side is incompatible with the formation of a compound by electrolysis on a bifacial cell. Thus, in a LIP type technique, the rear face of the cell is often out of electrolysis bath to prevent problems of corrosion or over-deposit. The polarization diode deposition technique (FBP) is used for the metallization of the p + side . In this case, by connecting an anode to the rear face of the solar cell (n + ), a potential or cathodic current is applied to the back face previously metallized. This potential is used to generate electrons that pass through the diode and are available on the p + side . However, again this technique is not usable for a bifacial cell because if both sides are exposed to the electrolysis bath, the application of the potential (or current) leads to the formation of a compound by reduction on the face n + . The formation of this conductive compound "blocks" then the flow of electrons through the diode and only a deposit on the n + side is obtained. Of course, it is possible to provide a combination of the two techniques (LIP and FBP) to achieve the metallization of bifacial cells, but this combination requires a heavy and complex implementation (necessarily sequential metallization, management of the electrical contact and transmission lines). fields between the two faces, need a precise alignment between the openings of the two faces).
La seule technique de mĆ©tallisation (Ć©lĆ©ctro)chimique permettant de dĆ©poser simultanĆ©ment un mĆ©tal sur les deux faces du Silicium (une de type p+ et l'autre de type n ) est une mĆ©thode dite autocatalytique Ā« electroless Ā». Elle prĆ©sente nĆ©anmoins des inconvĆ©nients : complexitĆ© de mise en œuvre, nĆ©cessitĆ© d'activation de la surface prĆ©alablement au dĆ©pĆ“t (souvent Ć  l'aide d'un bain contenant du palladium, mĆ©tal onĆ©reux), temps de dĆ©pĆ“t long (~0, ^m/minute), durĆ©e de vie du bain courte et gestion du bain dĆ©licate, et ce Ć  une tempĆ©rature de dĆ©pĆ“t Ć©levĆ©e (supĆ©rieure Ć  80Ā°C). Par ailleurs, la vitesse de dĆ©pĆ“t dĆ©pend du type de surface Ć  couvrir (avec une sĆ©lectivitĆ© diffĆ©rente sur les faces de la cellule). The only technique of metallization (electro-chemical) for simultaneously depositing a metal on both sides of the silicon (one of the p + type and the other type n) is a so-called electroless electroless method. It nevertheless has disadvantages: complexity of implementation, need for activation of the surface prior to deposition (often using a bath containing palladium, expensive metal), long deposit time (~ 0, ^ m / min), short bath life and delicate bath management, at a high deposition temperature (above 80 Ā° C). Moreover, the deposition rate depends on the type of surface to be covered (with a different selectivity on the faces of the cell).
Il est souhaitĆ© alors un dĆ©pĆ“t Ć©lectrochimique simultanĆ© des contacts de la face avant et arriĆØre de la cellule bifaciale qui soit plus adaptĆ©e, en termes de facilitĆ© de mise en œuvre, de vitesse de dĆ©pĆ“t, etc. It is then desired simultaneous electrochemical deposition of the contacts of the front and rear face of the bifacial cell which is more suitable, in terms of ease of implementation, deposition rate, etc.
La prƩsente invention vient amƩliorer cette situation. The present invention improves this situation.
Elle propose Ć  cet effet un procĆ©dĆ© de fabrication d'une cellule photovoltaĆÆque bifaciale, Ć  deux faces actives opposĆ©es, comportant une Ć©tape de dĆ©pĆ“t, sur chaque face active, d'au moins un contact Ć©lectrique. L'Ć©tape de dĆ©pĆ“t comporte en particulier une opĆ©ration commune de dĆ©pĆ“t sur chacune des faces actives, mise en œuvre par Ć©lectrolyse dans une cuve commune d' Ć©lectrolyse comportant : To this end, it proposes a method of manufacturing a bifacial photovoltaic cell, with two opposite active faces, comprising a step of depositing, on each active face, at least one electrical contact. The deposition step comprises in particular a common deposition operation on each of the active faces, implemented by electrolysis in a common electrolytic cell comprising:
- un premier compartiment pour le dĆ©pĆ“t d'une couche mĆ©tallique sur une premiĆØre face active de la cellule, pour la fabrication d'un contact comportant ladite couche mĆ©tallique sur la premiĆØre face active, et Ā a first compartment for the deposition of a metal layer on a first active face of the cell, for the manufacture of a contact comprising said metal layer on the first active face, and
- un deuxiĆØme compartiment pour le dĆ©pĆ“t, par oxydation, d'une couche d'oxyde mĆ©tallique conducteur, sur la deuxiĆØme face active de la cellule, pour la fabrication d'un contact comportant ladite couche d'oxyde mĆ©tallique sur la deuxiĆØme face active. Par exemple, le mĆ©tal de la couche d'oxyde mĆ©tallique peut ĆŖtre au moins un Ć©lĆ©ment parmi Mn, Ni, Mo, Cd, Sn, In, Zn, Pb, Ag, Cu, In, Ga, Co, W, Ta, Ga et Ti. a second compartment for depositing, by oxidation, a conductive metal oxide layer on the second active face of the cell, for the manufacture of a contact comprising said metal oxide layer on the second active face. For example, the metal of the metal oxide layer may be at least one of Mn, Ni, Mo, Cd, Sn, In, Zn, Pb, Ag, Cu, In, Ga, Co, W, Ta, Ga and TI.
Plus particuliĆØrement, pendant l'opĆ©ration commune de dĆ©pĆ“t : More particularly, during the joint deposit operation:
- des Ć©lectrons sont gĆ©nĆ©rĆ©s dans le premier compartiment, en regard de la premiĆØre face active, pour favoriser le dĆ©pĆ“t de la couche mĆ©tallique, et electrons are generated in the first compartment, facing the first active face, to promote the deposition of the metal layer, and
- des trous sont gĆ©nĆ©rĆ©s dans le deuxiĆØme compartiment, en regard de la deuxiĆØme face active, pour favoriser le dĆ©pĆ“t par oxydation de la couche d'oxyde mĆ©tallique. Dans une rĆ©alisation, les premier et deuxiĆØme compartiments sont sĆ©parĆ©s par une membrane Ć©changeuse d'ions que comporte la cuve d'Ć©lectrolyse. Ā - Holes are generated in the second compartment, facing the second active face, to promote the oxidation deposition of the metal oxide layer. In one embodiment, the first and second compartments are separated by an ion exchange membrane that includes the electrolysis cell.
PrƩfƩrentiellement, le dƩpƓt: Preferably, the deposit:
- de la couche mĆ©tallique sur la premiĆØre face active, et Ā the metal layer on the first active face, and
- de la couche d'oxyde mĆ©tallique sur la deuxiĆØme face active, the metal oxide layer on the second active face,
est assistĆ© par Ć©clairage de l'une au moins des premiĆØre et deuxiĆØme faces actives. is assisted by illumination of at least one of the first and second active faces.
En effet, l'Ć©clairage favorise la gĆ©nĆ©ration des paires Ć©lectrons/trous et donc le dĆ©pĆ“t simultanĆ© de la couche mĆ©tallique et de la couche d'oxyde mĆ©tallique. Cet Ć©clairage peut donc ĆŖtre rĆ©alisĆ© sur au moins l'une quelconque des deux faces. Indeed, the lighting promotes the generation of electron / hole pairs and therefore the simultaneous deposition of the metal layer and the metal oxide layer. This lighting can be performed on at least one of the two faces.
Optionnellement, l'opĆ©ration de dĆ©pĆ“t est assistĆ©e par application d'une diffĆ©rence de potentiel propre Ć  gĆ©nĆ©rer au moins des charges nĆ©gatives sur la premiĆØre face active. Optionally, the deposition operation is assisted by applying a potential difference capable of generating at least negative charges on the first active face.
Alternativement ou en complĆ©ment, l'opĆ©ration de dĆ©pĆ“t peut ĆŖtre assistĆ©e par application d'une diffĆ©rence de potentiel propre Ć  gĆ©nĆ©rer des charges positives sur la deuxiĆØme face active. Alternatively or in addition, the deposition operation may be assisted by applying a potential difference that is capable of generating positive charges on the second active face.
Dans une rĆ©alisation, la cellule photovoltaĆÆque est bifaciale Ć  homo-jonction, de type n+ sur la premiĆØre face active et p+ sur la deuxiĆØme face active. In one embodiment, the photovoltaic cell is bifacial homo-junction, n + type on the first active face and p + on the second active face.
Le matĆ©riau massique (ou Ā« bulk Ā», appelĆ© encore substrat SUB ci-aprĆØs) peut ĆŖtre par exemple du Silicium, de type n ou p. Les surfaces du matĆ©riau restent toutefois: The bulk material (or "bulk", also called substrate SUB hereafter) may be for example silicon, n or p type. The surfaces of the material remain however:
- de type p+ sur une face, - of type p + on one side,
- et de type n+ sur l'autre face, opposĆ©e. Comme indiquĆ© Ć  titre d'exemple plus haut, la cellule photovoltaĆÆque peut ĆŖtre Ć  base de silicium. and of type n + on the opposite opposite side. As indicated by way of example above, the photovoltaic cell may be based on silicon.
Dans une rĆ©alisation possible, la couche mĆ©tallique sur la premiĆØre face active peut ĆŖtre Ć  base de nickel, et l'Ć©tape de dĆ©pĆ“t de contact Ć©lectrique sur cette premiĆØre face active peut se poursuivre ensuite par le dĆ©pĆ“t sur la couche mĆ©tallique d'une couche comportant au moins du cuivre, par Ć©lectrolyse. Cette solution est trĆØs avantageuse Ć©conomiquement car elle vient remplacer le dĆ©pĆ“t d'une pĆ¢te d'argent, onĆ©reuse, habituellement rĆ©alisĆ© par sĆ©rigraphie. In one possible embodiment, the metal layer on the first active face may be nickel-based, and the electrical contact deposition step on this first active face may then be continued by the deposition on the metal layer of a layer comprising at least copper, by electrolysis. This solution is very advantageous economically because it comes to replace the deposit of a silver paste, expensive, usually made by screen printing.
L'Ć©tape de dĆ©pĆ“t de contact Ć©lectrique sur la deuxiĆØme face active peut se poursuivre aussi par le dĆ©pĆ“t sur la couche d'oxyde mĆ©tallique d'une couche comportant au moins du cuivre, par Ć©lectrolyse (dĆØs lors que l'oxyde est conducteur). Comme on le verra en rĆ©fĆ©rence Ć  la figure 1 commentĆ©e en dĆ©tails plus loin, l'Ć©tape de dĆ©pĆ“t de contact est prĆ©cĆ©dĆ©e par une Ć©tape de gravure d'au moins une couche Ć©lectriquement isolante (Si02, SiNx), dĆ©posĆ©e sur chaque face active. Cette gravure met Ć  nu chaque face active dans une rĆ©gion dans laquelle peut ĆŖtre ensuite appliquĆ©e l'opĆ©ration prĆ©citĆ©e de dĆ©pĆ“t simultanĆ© par Ć©lectrolyse. The step of depositing electrical contact on the second active face can also be continued by the deposition on the metal oxide layer of a layer comprising at least copper, by electrolysis (since the oxide is conductive). As will be seen with reference to Figure 1 commented in detail later, the contact deposition step is preceded by a step of etching at least one electrically insulating layer (Si0 2 , SiN x ), deposited on each side active. This etching exposes each active face in a region in which the above-mentioned simultaneous deposition electrolysis operation can then be applied.
La prĆ©sente invention vise aussi une cellule photovoltaĆÆque bifaciale, Ć  deux faces actives opposĆ©es, la cellule comportant sur chaque face active au moins un contact Ć©lectrique. En particulier, le contact d'une premiĆØre face active comporte une couche mĆ©tallique dĆ©posĆ©e sur la premiĆØre face active, tandis que le contact de la deuxiĆØme face active comporte une couche d'oxyde mĆ©tallique conducteur dĆ©posĆ©e sur la deuxiĆØme face active. The present invention also relates to a bifacial photovoltaic cell with two opposite active faces, the cell having on each active face at least one electrical contact. In particular, the contact of a first active face comprises a metal layer deposited on the first active face, while the contact of the second active face comprises a conductive metal oxide layer deposited on the second active face.
La diffƩrence du matƩriau de contact entre les deux faces, avec en particulier : The difference of the contact material between the two faces, with in particular:
- l'un en mƩtal, et - one of metal, and
- l'autre en oxyde de mƩtal conducteur, - the other in conductive metal oxide,
marque une trace du procĆ©dĆ© sur la cellule obtenue par la mise en œuvre de ce procĆ©dĆ© de l'invention et ainsi, une telle cellule peut ĆŖtre obtenue par la mise en œuvre du procĆ©dĆ© ci-avant. Comme indiquĆ© ci-avant, la cellule peut ĆŖtre du type homo-jonction, de type n sur la premiĆØre face active et p+ sur la deuxiĆØme face active. mark a trace of the process on the cell obtained by the implementation of this method of the invention and thus, such a cell can be obtained by the implementation of the method above. As indicated above, the cell may be of the homo-junction type, of type n on the first active face and p + on the second active face.
D'autres avantages et caractĆ©ristiques de l'invention apparaĆ®tront Ć  la lecture de la description dĆ©taillĆ©e ci-aprĆØs d'exemples de rĆ©alisation de l'invention, et Ć  l'examen des dessins annexĆ©s sur lesquels : Other advantages and characteristics of the invention will appear on reading the following detailed description of embodiments of the invention, and on examining the appended drawings in which:
- la figure 1 prĆ©sente une rĆ©alisation pour la fabrication par Ć©lectrolyse d'une cellule au sens de l'invention, Ā FIG. 1 shows an embodiment for the manufacture by electrolysis of a cell within the meaning of the invention,
- la figure 2 prĆ©sente un exemple d'une cellule au sens de l'invention, Ā FIG. 2 shows an example of a cell within the meaning of the invention,
- les figures 3 Ơ 5 prƩsentent des rƩalisations alternatives Ơ celle de la figure 1, pour la fabrication par Ʃlectrolyse d'une cellule au sens de l'invention, FIGS. 3 to 5 show alternative embodiments to that of FIG. 1, for the electrolytic manufacture of a cell within the meaning of the invention,
Dans l'exemple de rĆ©alisation exposĆ© ci-aprĆØs, il est proposĆ© d'utiliser la propriĆ©tĆ© semi- conductrice de la jonction P-N de la cellule photovoltaĆÆque bifaciale : l'Ć©clairement d'au moins l'une des deux faces conduit Ć  la photo-gĆ©nĆ©ration de paires Ć©lectrons/trous. Des Ć©lectrons sont gĆ©nĆ©rĆ©s sur la face n+ et des Ā« trous Ā» sur la face p+. Il est donc possible d'effectuer une rĆ©action Ć©lectrochimique de rĆ©duction sur la face n+ (donc de dĆ©poser un mĆ©tal), et en parallĆØle, de favoriser une rĆ©action Ć©lectrochimique d'oxydation sur la face opposĆ©e p+ (donc de dĆ©poser un oxyde mĆ©tallique typiquement). In the embodiment described hereinafter, it is proposed to use the semiconducting property of the PN junction of the bifacial photovoltaic cell: the illumination of at least one of the two faces leads to the photo- generation of electron / hole pairs. Electrons are generated on the n + side and "holes" on the p + side . It is therefore possible to carry out an electrochemical reduction reaction on the n + side (and thus to deposit a metal), and in parallel, to promote an electrochemical oxidation reaction on the opposite face p + (thus to deposit a metal oxide typically).
Ainsi, sans connexion nĆ©cessaire Ć  un circuit extĆ©rieur, si le matĆ©riau photovoltaĆÆque de la cellule (par exemple du silicium) est en contact avec deux Ć©lectrolytes adĆ©quats (un par face), il est donc possible de rĆ©aliser un dĆ©pĆ“t simultanĆ© : Thus, without the necessary connection to an external circuit, if the photovoltaic material of the cell (for example silicon) is in contact with two suitable electrolytes (one per face), it is therefore possible to perform a simultaneous deposition:
- sur la face dopƩe n+ : l'Ʃlectro -dƩpƓt d'un mƩtal (par exemple du Nickel), on the n + doped side: the electro-deposition of a metal (for example nickel),
- sur la face dopƩe p+ : l'Ʃlectro -dƩpƓt d'un oxyde mƩtallique (par exemple Mn02, O, Mo03, CdO, Sn02, etc.). on the p + doped side: the electro-deposition of a metal oxide (for example MnO 2 , O, MoO 3 , CdO, SnO 2 , etc.).
Ainsi, en rĆ©fĆ©rence Ć  la figure 1 , le substrat SUB (par exemple de Silicium), Ć  propriĆ©tĆ©s photovoltaĆÆques et comportant des premiĆØre et deuxiĆØme faces actives opposĆ©es (dopĆ©es n+ et p+ respectivement) est plongĆ© dans une cuve d'Ć©lectrolyse BA. Une membrane ME Ć©changeuse d'ions (anionique ou cationique) est prĆ©vue en outre dans le prolongement du substrat SUB pour fermer deux compartiments respectifs Cl et C2 dans la cuve. L'Ć©clairement ECL de l'une au moins des faces favorise la photo-gĆ©nĆ©ration d'Ć©lectrons ne- sur la premiĆØre face (dans le compartiment Cl) et de trous TR sur la deuxiĆØme face (dans le compartiment C2). Les Ć©lectrons dans le compartiment Cl permettent le dĆ©pĆ“t du mĆ©tal (par exemple du Nickel Ni) sur la surface libre du substrat (entre les deux masques de nitrure de silicium SiNx). ParallĆØlement et simultanĆ©ment en particulier, dans le compartiment C2, il se crĆ©e des Ā« trous Ā» (charges positives) favorisant le dĆ©pĆ“t d'oxyde mĆ©tallique, et notamment le dĆ©pĆ“t d'un oxyde conducteur (par exemple Mn02 ou autre comme prĆ©sentĆ© dans les exemples plus loin). En particulier, l'oxyde mĆ©tallique dĆ©posĆ© par Ć©lectrochimie sur la face p+ a de prĆ©fĆ©rence les propriĆ©tĆ©s suivantes. Il s'agit d'un : Thus, with reference to FIG. 1, the substrate SUB (for example of silicon), with photovoltaic properties, and comprising opposite first and second active faces (doped n + and p + respectively) is immersed in an electrolysis vessel BA. An ion exchange ME membrane (anionic or cationic) is further provided in the extension of the substrate SUB to close two respective compartments C1 and C2 in the tank. The ECL illumination of at least one of the faces favors the photo-generation of electrons ne- on the first face (in the compartment C1) and holes TR on the second face (in the compartment C2). The electrons in the compartment C1 allow the deposition of the metal (for example nickel Ni) on the free surface of the substrate (between the two silicon nitride masks SiN x ). Parallel and simultaneously in particular in the compartment C2, it creates "holes" (positive charges) promoting the deposition of metal oxide, and in particular the deposition of a conductive oxide (e.g., Mn0 2 or other as shown in the examples below). In particular, the electrochemically deposited metal oxide on the p + side preferably has the following properties. This is a:
conducteur Ć©lectrique Ć©quivalent en ordre de grandeur au Nickel (14.106 S/m) formant un contact ohmique avec le Silicium Nickel equivalent electrical conductor (14.10 6 S / m) forming an ohmic contact with silicon
et barriĆØre Ć  la diffusion du Cuivre dans le Silicium Ā and barrier to the diffusion of copper in silicon
- sans se dĆ©grader sous traitement thermique (gamme 350-550Ā°C) pour les Ć©tapes ultĆ©rieures de fabrication de la cellule, Ā - without degrading under heat treatment (range 350-550 Ā° C) for the subsequent steps of manufacture of the cell,
tout en minimisant le taux d'impuretĆ©s (par exemple du carbone) dans la couche rĆ©sultante. De plus, si cet oxyde est transparent et conducteur (comme l'oxyde de titane ou ITO), il peut permettre la collecte Ć©lectrique et ce en laissant passer la lumiĆØre incidente (taux d'ombrage rĆ©duit). Ā while minimizing the level of impurities (eg carbon) in the resulting layer. In addition, if this oxide is transparent and conductive (such as titanium oxide or ITO), it can allow electrical collection and allowing the incident light to pass (reduced shading rate).
De faƧon prĆ©fĆ©rentielle, sur cet oxyde, on peut avantageusement dĆ©poser du cuivre par Ć©lectrolyse pour augmenter la conductivitĆ© des contacts Ć©lectriques. Ensuite, une fine couche d'argent peut ĆŖtre dĆ©posĆ©e sur le cuivre pour le protĆ©ger de l'oxydation et amĆ©liorer sa soudabilitĆ© en vue de fabriquer des modules photo voltaĆÆques assemblĆ©s. Enfin, un traitement thermique peut ĆŖtre rĆ©alisĆ© pour permettre sur la face n+ de former du NiSi, qui a un rĆ“le de contact ohmique sur le silicium et de prĆ©vention de la diffusion du Cuivre. Ainsi, la cellule solaire peut prĆ©senter un empilement du type illustrĆ© sur la figure 2 (dans un exemple de rĆ©alisation relatif Ć  une cellule bifaciale ici de type N-PERT, pour Ā« Passivated Emitter, Rear Totally Diffused Ā»), sur laquelle : Preferably, on this oxide, one can advantageously deposit copper by electrolysis to increase the conductivity of the electrical contacts. Then, a thin layer of silver can be deposited on the copper to protect it from oxidation and improve its weldability in order to manufacture assembled photovoltaic modules. Finally, a heat treatment can be performed to allow the n + side to form NiSi, which has a role of ohmic contact on silicon and prevention of diffusion of copper. Thus, the solar cell may have a stack of the type illustrated in FIG. 2 (in an exemplary embodiment relating to a bifacial cell here of the N-PERT type, for "Passivated Emitter, Rear Totally Diffused"), in which:
- la rĆ©fĆ©rence MOx dĆ©signe de maniĆØre gĆ©nĆ©rale un oxyde mĆ©tallique avec M prĆ©fĆ©rentiellement mais non limitativement au moins l'un des Ć©lĆ©ments : Mn, Cr, Fe, Co,the reference MO x generally denotes a metal oxide with M preferentially but not limitatively at least one of the elements: Mn, Cr, Fe, Co,
Ni, Cu, Zn, Cd, W, Mo, In, Ga, Ta, V. Les mĆ©taux nobles (Pd, Pt, Au, Ag) peuvent ĆŖtre Ć©galement ĆŖtre envisagĆ©s avec toutefois un coĆ»t de fabrication plus Ć©levĆ© ; Ni, Cu, Zn, Cd, W, Mo, In, Ga, Ta, V. The noble metals (Pd, Pt, Au, Ag) can also be considered with, however, a higher manufacturing cost;
- la rƩfƩrence SiNx dƩsigne du ou des nitrures de silicium (et Si02 de la silice). Utiliser une technique Ʃlectrochimique pour la formation des contacts Ʃlectrique prƩsente de nombreux avantages (par rapport Ơ la technique habituelle qui est la sƩrigraphie) :the reference SiN x denotes silicon nitride (s) (and SiO 2 of the silica). Using an electrochemical technique for the formation of electrical contacts has many advantages (compared to the usual technique which is screen printing):
- rƩduction du coƻt de fabrication (notamment par rƩduction de la quantitƩ d'Argent Ơ dƩposer), et - reduction of the manufacturing cost (in particular by reducing the amount of money to be deposited), and
- augmentation des performances (contactage d'Ć©metteurs trĆØs rĆ©sistifs, amĆ©lioration du taux d'ombrage, meilleure conductivitĆ©). Ā - increased performance (contact of highly resistive transmitters, improvement of the shading rate, better conductivity).
En outre, l'utilisation de l'Ć©clairement d'un substrat photovoltaĆÆque pour dĆ©poser par voie humide sur les deux faces, simultanĆ©ment et sans contact Ć  un circuit extĆ©rieur, des couches Ć  base de mĆ©taux (dont un oxyde) prĆ©sente aussi des avantages : In addition, the use of the illumination of a photovoltaic substrate for wet deposition on both sides, simultaneously and without contact with an external circuit, metal-based layers (including an oxide) also has advantages:
- il permet d'utiliser le photo-courant gƩnƩrƩ par la diode pour Ʃlectro-dƩposer le mƩtal et l'oxyde mƩtallique. it makes it possible to use the photocurrent generated by the diode for electro-depositing the metal and the metal oxide.
- la connexion Ć  un circuit extĆ©rieur n'est pas nĆ©cessaire car le couple d'oxy do -rĆ©duction sur chacune des deux faces est directement Ć  l'interface substrat photovoltaĆÆque/Ć©lectrolyte. Ā the connection to an external circuit is not necessary because the oxy-reduction torque on each of the two faces is directly at the photovoltaic substrate / electrolyte interface.
Plus prĆ©cisĆ©ment, en rĆ©fĆ©rence Ć  nouveau Ć  la figure 1, les phĆ©nomĆØnes mis en œuvre sont : More specifically, with reference again to FIG. 1, the phenomena used are:
- la photo -gƩnƩration d'Ʃlectrons sur la face n+ en contact avec un composƩ rƩductible dans le compartiment Cl, avec une rƩaction du type : Oxi + ne" Redi the photo-generation of electrons on the n + side in contact with a reducible compound in the compartment C1, with a reaction of the type: Oxi + ne " Redi
- la photo -gĆ©nĆ©ration de Ā« trous Ā» sur la face p+ en contact avec un composĆ© oxydable dans le compartiment C2, avec une rĆ©action du type : Red2 Ox2 + ne" Pour Ć©viter l'acidification ou l'alcalinisation de l'un des compartiments, une membrane Ć©changeuse d'ions (de type Nafion, anionique ou cationique) peut sĆ©parer les deux compartiments et maintenir l'Ć©quilibre ionique. Le dispositif d'Ć©clairement peut comporter une rangĆ©e de diodes ou de lampes halogĆØnes prĆ©sentant un maximum d'irradiation Ć©lectromagnĆ©tique dans la rĆ©gion visible rouge Ć  infrarouge proche. L'irradiation peut inclure prĆ©fĆ©rablement le domaine des longueurs d'onde optiques ultraviolettes pour activer et/ou catalyser l'interface Ć©lectrolyte/Silicium en vue de favoriser la nuclĆ©ation des premiers germes de dĆ©pĆ“t Ć  la surface du silicium. - -gĆ©nĆ©ration the photo of "holes" on the p + side in contact with an oxidizable compound in the compartment C2, with a reaction of the type: Red 2 Ox 2 + ne " To avoid acidification or alkalinization of one of the compartments, an ion exchange membrane (Nafion type, anionic or cationic) can separate the two compartments and maintain the ionic balance. The illumination device may comprise a row of diodes or halogen lamps having a maximum of electromagnetic irradiation in the red near-infrared visible region. The irradiation may preferably include the domain of ultraviolet optical wavelengths to activate and / or catalyze the electrolyte / silicon interface in order to promote the nucleation of the first deposition seeds on the surface of the silicon.
En fonction des rĆ©actions Ć©lectrochimiques mises en jeu, l'Ć©clairement peut avantageusement ĆŖtre appliquĆ© sur les deux faces, permettant d'ajuster si besoin les potentiels Ć©lectrochimiques sur les deux faces. Le courant photo-gĆ©nĆ©rĆ© (d'un ordre de grandeur de quelques dizaines de mA.cm" ), permet d'atteindre des vitesses de dĆ©pĆ“ts au moins 10 fois supĆ©rieures Ć  celles obtenues par un procĆ©dĆ© de type autocatalytique (procĆ©dĆ© Ā« electroless Ā», le plus performant connu actuellement). L'Ć©tape d'activation du procĆ©dĆ© electroless (dĆ©marrage de la nuclĆ©ation du contact de Nickel Ni par exemple Ć  l'aide de particules de Palladium) n'est pas nĆ©cessaire. Les bains Ć©lectrolytiques mis en œuvres sont plus simples et stables que les bains electroless et permettent de rĆ©aliser des dĆ©pĆ“ts plus purs (moins d'impuretĆ©s de type carbone dans le film rĆ©sultant). Le procĆ©dĆ© global est donc plus rapide et moins onĆ©reux que le procĆ©dĆ© electroless, Ć  performances photo voltaĆÆques Ć©quivalentes. Plus gĆ©nĆ©ralement, la mise en œuvre au sens de la prĆ©sente invention prĆ©sente de nombreux avantages par rapport aux techniques connues, telles que la technique par sĆ©rigraphie, Electroless et couple LIP/FBP. DĆ©jĆ , le traitement de l'invention est simultanĆ©, rapide et sans contact Ć©lectrique des deux faces des cellules solaires bifaciales pour la formation de grilles de collecte Ć©lectrique en utilisant prĆ©fĆ©rentiellement l'Ć©clairement d'une des deux faces. Plus particuliĆØrement, relativement Ć  la mĆ©thode electroless, la technique de l'invention permet : Depending on the electrochemical reactions involved, the illumination may advantageously be applied on both sides, making it possible to adjust the electrochemical potentials on both sides if necessary. The photo-generated current (of an order of magnitude of a few tens of mA.cm " ), makes it possible to reach deposit rates at least 10 times higher than those obtained by an autocatalytic type process (" electroless "process, the most effective known at present) The activation stage of the electroless process (starting of the nucleation of the Nickel Ni contact, for example with Palladium particles) is not necessary. simpler and more stable than electroless baths and allow for purer deposits (less carbon-like impurities in the resulting film) .The overall process is therefore faster and less expensive than the electroless process, with equivalent photo voltaic performance. More generally, the implementation in the sense of the present invention has many advantages over known techniques, such as the screen printing technique, Electr oless and torque LIP / FBP Already, the treatment of the invention is simultaneous, fast and without electrical contact of the two faces of the bifacial solar cells for the formation of electrical collection grids by preferentially using the illumination of one of the two faces . More particularly, with respect to the electroless method, the technique of the invention makes it possible:
- l'incorporation de moins d'impuretĆ©s (telles que le carbone, ou le phosphore) dans les dĆ©pĆ“ts ; Ā - incorporation of less impurities (such as carbon, or phosphorus) into the deposits;
- un gain de temps de fabrication par le traitement simultanĆ© des deux faces et une vitesse de dĆ©pĆ“t Ć©levĆ©e, Ā a saving in manufacturing time by the simultaneous treatment of both faces and a high deposition rate,
- une gestion du bain plus facile en termes de durĆ©e de vie du bain, de recharge, de tempĆ©rature de dĆ©pĆ“t. Relativement Ć  la mĆ©thode par sĆ©rigraphie, l'invention apporte notamment une amĆ©lioration des performances des dispositifs photovoltaĆÆques avec : Ā - Bath management easier in terms of bath life, recharge, deposition temperature. In relation to the screen printing method, the invention notably provides an improvement in the performance of photovoltaic devices with:
- une diminution du taux d'ombrage de la cellule par diminution de la taille du motif mĆ©tallisĆ© (largeur des doigts de collectes pouvant ĆŖtre rĆ©duit de plus de 50%), Ā a decrease in the shading rate of the cell by reducing the size of the metallized pattern (width of the collecting fingers being able to be reduced by more than 50%),
- une amĆ©lioration du contactage d'Ć©metteurs trĆØs rĆ©sistifs (>120Ī©),Ā an improvement in the contact of highly resistive transmitters (> 120Ī©),
- une amƩlioration de la conductivitƩ Ʃlectrique et une diminution de la rƩsistance de contact avec l'Ʃmetteur. an improvement of the electrical conductivity and a reduction of the contact resistance with the emitter.
ainsi qu'une Ć©conomie de fabrication par : Ā as well as a manufacturing economy by:
- suppression (ou forte diminution) de l'Argent en le remplaƧant par du Cuivre, Ā - suppression (or strong decrease) of Silver by replacing it with Copper,
- remplacement de la sĆ©rigraphie par une mĆ©thode Ć©lectrochimique (moins onĆ©reuse). Ā replacement of screen printing by an electrochemical method (less expensive).
On prĆ©sente ci-aprĆØs quelques exemples de rĆ©alisation particuliers. Some specific embodiments are presented hereinafter.
Dans un premier exemple de rĆ©alisation prĆ©sentĆ© ci-aprĆØs, il est procĆ©dĆ© aux dĆ©pĆ“ts simultanĆ©s de Mn02 sur la face p+ et de Nickel sur la face n+. In a first exemplary embodiment presented below, simultaneous deposition of MnO 2 on the p + face and Nickel on the n + side is carried out .
Dans une cuve Ć  deux compartiments sĆ©parĆ©s par une membrane NafĆÆon Ć©changeuses de cations, Ć  l'aide d'un systĆØme de joints garantissant l'Ć©tanchĆ©itĆ© des deux faces, un bain de mĆ©tallisation de nickel est placĆ© dans le compartiment n+ (Cl) et un bain de mĆ©tallisation de Mn02 dans le compartiment p+ (C2). Le substrat (de Silicium) est Ć©clairĆ© avec une rangĆ©e de lampes LED blanches sur une face. Pour le dĆ©pĆ“t de Ni, dans un bain de Watts, une tempĆ©rature de 60 Ā°C est appliquĆ©e pendant 2 minutes. Le nickel se dĆ©pose selon la rĆ©action gĆ©nĆ©rale suivante : In a tank with two compartments separated by a cation exchange membrane Nafion, using a seal system ensuring the sealing of both sides, a nickel metallization bath is placed in the compartment n + (Cl) and a metallization bath of MnO 2 in the compartment p + (C2). The (Silicon) substrate is illuminated with a row of white LED lamps on one side. For Ni deposition, in a Watts bath, a temperature of 60 Ā° C is applied for 2 minutes. Nickel is deposited according to the following general reaction:
Ni2+ + 2e" -> Ni Ni 2+ + 2e " -> Ni
2H+ + 2e" -> H2 2H + + 2e " -> H 2
ParallĆØlement, pour le dĆ©pĆ“t de Mn02 , dans un bain incluant 0,01 M de Mn(C2H302)2 (dit Ā« Mn acĆ©tate Ā»), 0,02 M de NH4(C2H302) (dit Ā« ammonium acĆ©tate Ā») et 10% C2Ā¾OS (dimethyl sulfoxide (DMSO)), on applique une tempĆ©rature de 60Ā°C pendant deux minutes. L'oxyde de manganĆØse se dĆ©pose alors anodiquement selon la rĆ©action gĆ©nĆ©rale suivante : Meanwhile, for the deposition of Mn0 2, in a bath including 0.01 M Mn (C 2 H 3 0 2) 2 (called "Mn acetate"), 0.02 M NH 4 (C 2 H 3 0 2 ) (called "ammonium acetate") and 10% C 2 Ā¾OS (dimethyl sulfoxide (DMSO)), a temperature of 60 Ā° C is applied for two minutes. The manganese oxide is then deposited anodically according to the following general reaction:
Mn2+ + 2H20ā†’ Mn02 + 4H+ + 2e Mn 2+ + 2H 2 0 ā†’ Mn0 2 + 4H + + 2e
La membrane Ć©changeuse d'ions permet avantageusement d'Ć©quilibrer les protons (H+) entre les deux compartiments. The ion exchange membrane advantageously allows the protons (H + ) to be balanced between the two compartments.
Sur les deux faces en simultanĆ©, on peut ensuite dĆ©poser du cuivre par Ć©lectrolyse directe pour augmenter la conductivitĆ© des contacts Ć©lectriques. Ensuite, une fine couche d'argent peut ĆŖtre dĆ©posĆ©e sur le cuivre pour le protĆ©ger de l'oxydation et amĆ©liorer sa soudabilitĆ© en vue de fabriquer des modules photo voltaĆÆques. Enfin, un traitement thermique (gamme 350 - 550 Ā°C) peut ĆŖtre rĆ©alisĆ© pour permettre de former de l'alliage NiSi sur la face n+, qui a un rĆ“le de contact ohmique sur le Silicium et de prĆ©vention de la diffusion du Cuivre. On both sides simultaneously, copper can be deposited by direct electrolysis to increase the conductivity of the electrical contacts. Then, a thin layer of silver can be deposited on the copper to protect it from oxidation and improve its weldability in order to manufacture photo voltaic modules. Finally, a heat treatment (range 350 - 550 Ā° C) can be performed to allow the formation of NiSi alloy on the n + side , which has a role of ohmic contact on the silicon and prevention of diffusion of copper.
Dans un deuxiĆØme mode de rĆ©alisation, de l'oxyde de Cadmium CdO est dĆ©posĆ© sur la face p+ et du nickel est dĆ©posĆ© sur la face n+. In a second embodiment, cadmium oxide CdO is deposited on the p + side and nickel is deposited on the n + side .
Le dĆ©pĆ“t de CdO peut ĆŖtre opĆ©rĆ© Ć  tempĆ©rature ambiante dans 0,05M de cadmium acĆ©tate [Cd(C2H302)2] et 0,1M de Na2S04. The deposit of CdO can be carried out at ambient temperature in 0.05M of cadmium acetate [Cd (C 2 H 3 O 2 ) 2 ] and 0.1M of Na 2 SO 4 .
Le mĆŖme mode opĆ©ratoire que celui dĆ©crit dans le premier mode de rĆ©alisation peut ĆŖtre appliquĆ© ensuite (Nickelage sur la face n+, Cuivrage simultanĆ© sur les deux faces, Argentage puis traitement thermique). Dans un troisiĆØme mode de rĆ©alisation, de l'oxyde d'Ć©tain Sn02 est dĆ©posĆ© sur la face p et du nickel sur la face n+, en prĆ©voyant dans le DMSO, 0,1 M de SnCl2 et 0,5 M de NaN03. Dans un quatriĆØme mode de rĆ©alisation, de l'oxyde de ManganĆØse Mn02 est dĆ©posĆ© sur la face p+ et du nickel sur la face n+ avec un bain unique de dĆ©pĆ“t car dans ce cas, les deux faces du substrat sont exposĆ©es au mĆŖme Ć©lectrolyte qui contient au moins un sel de Nickel (par exemple un sulfate) et un sel de ManganĆØse Mn (par exemple un acĆ©tate). Par application de potentiels standards des rĆ©actions Ć©lectrochimiques, la rĆ©action de rĆ©duction du sel de Nickel a lieu Ć  la cathode et la formation de l'oxyde de manganĆØse Ć  l'anode. Dans le cas d'un bain unique, la membrane Ć©changeuse d'ions n'est plus nĆ©cessaire (Ć©quilibre ionique Ć©tabli par l'Ć©change de protons entre les rĆ©actions Ć  l'anode et Ć  la cathode). Bien entendu, la prĆ©sente invention ne se limite pas aux formes de rĆ©alisation prĆ©sentĆ©es ci-avant Ć  titre d'exemples ; elle s'Ć©tend Ć  d'autres variantes. The same procedure as that described in the first embodiment can then be applied (nickeling on the n + side , simultaneous coppering on both sides, silvering and heat treatment). In a third embodiment, SnO 2 tin oxide is deposited on the p face and nickel on the n + side , providing in the DMSO, 0.1 M SnCl 2 and 0.5 M NaNO 3 . In a fourth embodiment, manganese oxide MnO 2 is deposited on the p + face and nickel on the n + face with a single deposition bath because in this case, the two faces of the substrate are exposed to the same surface. electrolyte which contains at least one nickel salt (for example a sulphate) and a manganese salt Mn (for example an acetate). By application of standard electrochemical reaction potentials, the nickel salt reduction reaction takes place at the cathode and the formation of the manganese oxide at the anode. In the case of a single bath, the ion exchange membrane is no longer necessary (ionic equilibrium established by the exchange of protons between the reactions at the anode and the cathode). Of course, the present invention is not limited to the embodiments presented above as examples; it extends to other variants.
Le principe de photo -gĆ©nĆ©ration du courant par exemple admet des variantes de rĆ©alisation. Typiquement, il peut ĆŖtre assistĆ© en outre par application d'un potentiel entre les bornes p+ et n+ du substrat (gamme prĆ©fĆ©rentielle de 0 Ć  2V). Le sens de polarisation est prĆ©sentĆ© sur la figure 3. The principle of photo-generation of the current for example admits variant embodiments. Typically, it can be further assisted by applying a potential between the p + and n + terminals of the substrate (preferential range of 0 to 2V). The direction of polarization is shown in Figure 3.
Alternativement encore, par rapport Ć  cette rĆ©alisation, il est possible de prĆ©voir une Ć©lectrode spĆ©cifique pour la rĆ©action et diffĆ©rente du substrat. Le principe de photo- gĆ©nĆ©ration du courant reste le mĆŖme mais il est assistĆ© par application d'un potentiel entre la borne n+ du substrat et une anode (gamme prĆ©fĆ©rentielle de 0 Ć  2V). Le sens de polarisation est dĆ©crit sur la figure 4. L'anode peut ĆŖtre so lubie (par exemple en nickel, avantageusement) ou insoluble (par exemple en oxyde Ti02/Ir02). Alternativement encore, le sens de polarisation peut ĆŖtre tel que dĆ©crit sur la figure 5. Dans ce cas, la cathode est prĆ©fĆ©rentiellement insoluble (par exemple en oxyde Ti02/Ir02). Par ailleurs, on a dĆ©crit ci-avant l'usage d'un Ć©clairement pour favoriser les rĆ©actions dans les deux compartiments de la cuve d'Ć©lectrolyse. Cette rĆ©alisation est avantageuse dans le cas d'un substrat silicium notamment. NĆ©anmoins, elle n'est pas forcĆ©ment nĆ©cessaire par exemple pour un substrat autre que silicium. Typiquement, dans certains cas de substrat, la stimulation Ć©lectrique prĆ©sentĆ©e dans l'une des figures 3 Ć  5 pourrait suffire par exemple. Alternatively, with respect to this embodiment, it is possible to provide a specific electrode for the reaction and different from the substrate. The principle of photo-generation of the current remains the same but it is assisted by application of a potential between the n + terminal of the substrate and an anode (preferred range of 0 to 2V). The polarization direction is shown in Figure 4. The anode may be is soluble (e.g. nickel, preferably) or insoluble (e.g. Ti0 2 oxide / IR0 2). Alternatively, the direction of polarization may be as described in FIG. 5. In this case, the cathode is preferably insoluble (for example in oxide Ti0 2 / Ir0 2 ). Furthermore, it has been described above the use of illumination to promote reactions in the two compartments of the electrolysis cell. This embodiment is advantageous in the case of a silicon substrate in particular. Nevertheless, it is not necessarily necessary for example for a substrate other than silicon. Typically, in some cases of substrate, the electrical stimulation presented in one of FIGS. 3 to 5 could suffice, for example.

Claims

REVENDICATIONS
1. ProcĆ©dĆ© de fabrication d'une cellule photovoltaĆÆque bifaciale, Ć  deux faces actives opposĆ©es, comportant une Ć©tape de dĆ©pĆ“t, sur chaque face active, d'au moins un contact Ć©lectrique, caractĆ©risĆ© en ce que l'Ć©tape de dĆ©pĆ“t comporte une opĆ©ration commune de dĆ©pĆ“t sur chacune des faces actives, mise en œuvre par Ć©lectrolyse dans une cuve commune d' Ć©lectrolyse comportant : 1. A method for manufacturing a bifacial photovoltaic cell, with two opposite active faces, comprising a deposition step, on each active face, of at least one electrical contact, characterized in that the deposition step comprises a common operation deposition on each of the active faces, implemented by electrolysis in a common electrolytic cell comprising:
- un premier compartiment pour le dĆ©pĆ“t d'une couche mĆ©tallique sur une premiĆØre face active de la cellule, pour la fabrication d'un contact comportant ladite couche mĆ©tallique sur la premiĆØre face active, et Ā a first compartment for the deposition of a metal layer on a first active face of the cell, for the manufacture of a contact comprising said metal layer on the first active face, and
- un deuxiĆØme compartiment pour le dĆ©pĆ“t, par oxydation, d'une couche d'oxyde mĆ©tallique conducteur, sur la deuxiĆØme face active de la cellule, pour la fabrication d'un contact comportant ladite couche d'oxyde mĆ©tallique sur la deuxiĆØme face active. Ā a second compartment for depositing, by oxidation, a conductive metal oxide layer on the second active face of the cell, for the manufacture of a contact comprising said metal oxide layer on the second active face.
2. ProcƩdƩ selon la revendication 1, caractƩrisƩ en ce que le mƩtal de la couche d'oxyde mƩtallique est au moins un ƩlƩment parmi Mn, Ni, Mo, Cd, Sn, In, Zn, Pb, Ag, Cu, W, Ta, Ga, Fe, Co, Cr et Ti. 2. Method according to claim 1, characterized in that the metal of the metal oxide layer is at least one of Mn, Ni, Mo, Cd, Sn, In, Zn, Pb, Ag, Cu, W, Ta , Ga, Fe, Co, Cr and Ti.
3. ProcƩdƩ selon l'une des revendications prƩcƩdentes, caractƩrisƩ en ce que, pendant l'opƩration commune de dƩpƓt : 3. Method according to one of the preceding claims, characterized in that, during the common deposition operation:
- des Ć©lectrons sont gĆ©nĆ©rĆ©s dans le premier compartiment, en regard de la premiĆØre face active, pour favoriser le dĆ©pĆ“t de la couche mĆ©tallique, et Ā electrons are generated in the first compartment, facing the first active face, to promote the deposition of the metal layer, and
- des trous sont gĆ©nĆ©rĆ©s dans le deuxiĆØme compartiment, en regard de la deuxiĆØme face active, pour favoriser le dĆ©pĆ“t par oxydation de la couche d'oxyde mĆ©tallique. Ā - Holes are generated in the second compartment, facing the second active face, to promote the oxidation deposition of the metal oxide layer.
4. ProcĆ©dĆ© selon l'une des revendications prĆ©cĆ©dentes, caractĆ©risĆ© en ce que les premier et deuxiĆØme compartiments sont sĆ©parĆ©s par une membrane Ć©changeuse d'ions que comporte la cuve d' Ć©lectrolyse. 4. Method according to one of the preceding claims, characterized in that the first and second compartments are separated by an ion exchange membrane that includes the electrolytic cell.
5. ProcƩdƩ selon l'une des revendications prƩcƩdentes, caractƩrisƩ en ce que le dƩpƓt :5. Method according to one of the preceding claims, characterized in that the deposit:
- de la couche mĆ©tallique sur la premiĆØre face active, et the metal layer on the first active face, and
- de la couche d'oxyde mĆ©tallique sur la deuxiĆØme face active, Ā the metal oxide layer on the second active face,
est assistĆ© par Ć©clairage de l'une au moins des premiĆØre et deuxiĆØme faces actives. is assisted by illumination of at least one of the first and second active faces.
6. ProcĆ©dĆ© selon l'une des revendications prĆ©cĆ©dentes, caractĆ©risĆ© en ce que l'opĆ©ration de dĆ©pĆ“t est assistĆ©e par application d'une diffĆ©rence de potentiel propre Ć  gĆ©nĆ©rer des charges nĆ©gatives sur la premiĆØre face active. 6. Method according to one of the preceding claims, characterized in that the deposition operation is assisted by applying a potential difference to generate negative charges on the first active face.
7. ProcĆ©dĆ© selon l'une des revendications prĆ©cĆ©dentes, caractĆ©risĆ© en ce que l'opĆ©ration de dĆ©pĆ“t est assistĆ©e par application d'une diffĆ©rence de potentiel propre Ć  gĆ©nĆ©rer des charges positives sur la deuxiĆØme face active. 7. Method according to one of the preceding claims, characterized in that the deposition operation is assisted by applying a potential difference to generate positive charges on the second active face.
8. ProcĆ©dĆ© selon l'une des revendications prĆ©cĆ©dentes, caractĆ©risĆ© en ce que la cellule photovoltaĆÆque est bifaciale Ć  homo -jonction, de type n+ sur la premiĆØre face active et p+ sur la deuxiĆØme face active. 8. Method according to one of the preceding claims, characterized in that the photovoltaic cell is bifacial homo-junction, n + type on the first active face and p + on the second active face.
9. ProcĆ©dĆ© selon l'une des revendications prĆ©cĆ©dentes, caractĆ©risĆ© en ce que la cellule photovoltaĆÆque est Ć  base de silicium. 9. Method according to one of the preceding claims, characterized in that the photovoltaic cell is based on silicon.
10. ProcĆ©dĆ© selon l'une des revendications prĆ©cĆ©dentes, caractĆ©risĆ© en ce que la couche mĆ©tallique sur la premiĆØre face active est Ć  base de nickel, et en ce que l'Ć©tape de dĆ©pĆ“t de contact Ć©lectrique sur la premiĆØre face active se poursuit par le dĆ©pĆ“t sur la couche mĆ©tallique d'une couche comportant au moins du cuivre, par Ć©lectrolyse. 10. Method according to one of the preceding claims, characterized in that the metal layer on the first active face is nickel-based, and in that the step of depositing electrical contact on the first active face continues with the depositing on the metal layer a layer comprising at least copper, by electrolysis.
11. ProcĆ©dĆ© selon l'une des revendications prĆ©cĆ©dentes, caractĆ©risĆ© en ce que l'Ć©tape de dĆ©pĆ“t de contact Ć©lectrique sur la deuxiĆØme face active se poursuit par le dĆ©pĆ“t sur la couche d'oxyde mĆ©tallique d'une couche comportant au moins du cuivre, par Ć©lectrolyse. 11. Method according to one of the preceding claims, characterized in that the step of depositing electrical contact on the second active face continues with the deposition on the metal oxide layer of a layer comprising at least copper, by electrolysis.
12. ProcƩdƩ selon l'une des revendications prƩcƩdentes, caractƩrisƩ en ce que l'Ʃtape de dƩpƓt de contact est prƩcƩdƩe par une Ʃtape de gravure d'au moins une couche Ʃlectriquement isolante (Si02, SiNx), dƩposƩe sur chaque face active, ladite gravure mettant Ơ nu chaque face active dans une rƩgion dans laquelle est appliquƩe l'opƩration de dƩpƓt par Ʃlectrolyse. 12. Method according to one of the preceding claims, characterized in that the contact deposition step is preceded by a step of etching at least one electrically insulating layer (Si0 2 , SiN x ), deposited on each active face. said etching exposing each active face in a region in which the electrolysis deposition operation is applied.
13. Cellule photovoltaĆÆque bifaciale, Ć  deux faces actives opposĆ©es, la cellule comportant sur chaque face active au moins un contact Ć©lectrique, caractĆ©risĆ©e en ce que le contact d'une premiĆØre face active comporte une couche mĆ©tallique dĆ©posĆ©e sur la premiĆØre face active, et en ce que le contact de la deuxiĆØme face active comporte une couche d'oxyde mĆ©tallique conducteur dĆ©posĆ©e sur la deuxiĆØme face active. 13. Bifacial photovoltaic cell, with two opposite active faces, the cell having on each active face at least one electrical contact, characterized in that the contact of a first active face comprises a metal layer deposited on the first face active, and in that the contact of the second active face comprises a conductive metal oxide layer deposited on the second active face.
14. Cellule selon la revendication 13, caractĆ©risĆ©e en ce qu'elle comporte une homo- jonction, de type n+ sur la premiĆØre face active et p+ sur la deuxiĆØme face active. 14. Cell according to claim 13, characterized in that it comprises a homojunction of n + type on the first active face and p + on the second active face.
15. Cellule selon l'une des revendications 13 et 14, caractĆ©risĆ©e en ce qu'elle est obtenue par la mise en œuvre du procĆ©dĆ© selon l'une des revendications 1 Ć  12. 15. Cell according to one of claims 13 and 14, characterized in that it is obtained by the implementation of the method according to one of claims 1 to 12.
EP17780381.4A 2016-10-05 2017-10-04 Improved contacts for a photovoltaic cell having two active faces Active EP3523828B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1659624A FR3057106B1 (en) 2016-10-05 2016-10-05 IMPROVED CONTACTS OF A PHOTOVOLTAIC CELL WITH TWO ACTIVE SIDES
PCT/EP2017/075242 WO2018065478A1 (en) 2016-10-05 2017-10-04 Improved contacts for a photovoltaic cell having two active faces

Publications (2)

Publication Number Publication Date
EP3523828A1 true EP3523828A1 (en) 2019-08-14
EP3523828B1 EP3523828B1 (en) 2020-08-12

Family

ID=57286725

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17780381.4A Active EP3523828B1 (en) 2016-10-05 2017-10-04 Improved contacts for a photovoltaic cell having two active faces

Country Status (5)

Country Link
US (1) US10998457B2 (en)
EP (1) EP3523828B1 (en)
CN (1) CN110168740B (en)
FR (1) FR3057106B1 (en)
WO (1) WO2018065478A1 (en)

Families Citing this family (2)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
CN110528042B (en) * 2019-08-28 2021-02-09 ę·±åœ³čµ›ę„ę³•å¾®ē”µå­ęœ‰é™å…¬åø Semiconductor device electroplating method and activation tank for electroplating
EP3869568A1 (en) * 2020-02-20 2021-08-25 NICE Solar Energy GmbH Method of patterning a thin-film photovoltaic layer stack

Family Cites Families (9)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
US20070068571A1 (en) * 2005-09-29 2007-03-29 Terra Solar Global Shunt Passivation Method for Amorphous Silicon Thin Film Photovoltaic Modules
EP2009143B1 (en) * 2007-05-08 2017-08-09 Imec Bipolar electroless deposition method
KR101661768B1 (en) * 2010-09-03 2016-09-30 ģ—˜ģ§€ģ „ģž ģ£¼ģ‹ķšŒģ‚¬ Solar cell and manufacturing method thereof
TWI453938B (en) * 2010-11-30 2014-09-21 Ind Tech Res Inst Solar cell and method for fabricating the same
US9269851B2 (en) * 2011-11-15 2016-02-23 Newsouth Innovations Pty Limited Metal contact scheme for solar cells
US20140109967A1 (en) * 2012-10-24 2014-04-24 Korea Institute Of Science And Technology Thin film solar cells for windows based on low cost solution process and fabrication method thereof
TWI643351B (en) * 2013-01-31 2018-12-01 ę¾³ę“²å•†ę–°å—å‰µę–°ęœ‰é™å…¬åø Solar cell metallisation and interconnection method
US20140261666A1 (en) * 2013-03-13 2014-09-18 Applied Materials, Inc. Methods of manufacturing a low cost solar cell device
CN105590987B (en) 2014-10-20 2022-06-14 č‹å·žę˜“ē›Šę–°čƒ½ęŗē§‘ęŠ€ęœ‰é™å…¬åø Method for horizontal electrochemical deposition of metal

Also Published As

Publication number Publication date
WO2018065478A1 (en) 2018-04-12
CN110168740A (en) 2019-08-23
US10998457B2 (en) 2021-05-04
US20190296162A1 (en) 2019-09-26
EP3523828B1 (en) 2020-08-12
FR3057106B1 (en) 2018-11-09
FR3057106A1 (en) 2018-04-06
CN110168740B (en) 2022-10-18

Similar Documents

Publication Publication Date Title
KR100993511B1 (en) Solar cell and manufacturing method of the same
US9666749B2 (en) Low resistance, low reflection, and low cost contact grids for photovoltaic cells
CN103703574B (en) Photoinduction coating metal on silicon photovoltaic cell
US20150004744A1 (en) Formation of metal structures in solar cells
CA2732559C (en) Formation of a transparent conductive oxide film for use in a photovoltaic structure
JP2010129872A (en) Solar battery element
EP3523828B1 (en) Improved contacts for a photovoltaic cell having two active faces
US9391215B2 (en) Device for generating photovoltaic power and method for manufacturing same
TW201340361A (en) Solar cell and method of manufacturing a solar cell
US9837557B2 (en) Solar cell apparatus and method of fabricating the same
EP1576209B1 (en) Method for regeneration of an electrolysis bath for the production of a compound i-iii-vi sb 2 /sb in thin layers
JP2007265636A (en) Current collecting wire forming method of dye-sensitized solar cell and dye-sensitized solar cell
CA2791373C (en) Method for preparing an absorber thin film for photovoltaic cells
US20140130858A1 (en) Solar cell
EP3304603B1 (en) Fabrication of a thin-film photovoltaic cell comprising advanced metal contacts
EP1451875B1 (en) Method for producing an imaging device
BE1020130A3 (en) STRUCTURE COMPRISING A PLURALITY OF OPTOELECTRONIC MODULES.
JP2013533637A (en) Photovoltaic power generation apparatus and manufacturing method thereof
JP7073341B2 (en) Manufacturing method of photovoltaic device and photovoltaic device
WO2022047057A1 (en) A solar energy absorbing device and module implementing metallic copper grid lines with a black coating on its surface
WO2018181499A1 (en) Photoelectric conversion element and photoelectric conversion element manufacturing method
US20140374266A1 (en) Method and apparatus for forming a cadmium zinc telluride layer in a photovoltaic device

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190405

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200309

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017021627

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1302403

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201112

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201113

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201112

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1302403

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017021627

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201004

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201031

26N No opposition filed

Effective date: 20210514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201004

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602017021627

Country of ref document: DE

Owner name: PARIS SCIENCES ET LETTRES, FR

Free format text: FORMER OWNERS: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS, PARIS, FR; ELECTRICITE DE FRANCE, PARIS, FR; PARIS SCIENCES ET LETTRES - QUARTIER LATIN, PARIS, FR

Ref country code: DE

Ref legal event code: R081

Ref document number: 602017021627

Country of ref document: DE

Owner name: ELECTRICITE DE FRANCE, FR

Free format text: FORMER OWNERS: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS, PARIS, FR; ELECTRICITE DE FRANCE, PARIS, FR; PARIS SCIENCES ET LETTRES - QUARTIER LATIN, PARIS, FR

Ref country code: DE

Ref legal event code: R081

Ref document number: 602017021627

Country of ref document: DE

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE C, FR

Free format text: FORMER OWNERS: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS, PARIS, FR; ELECTRICITE DE FRANCE, PARIS, FR; PARIS SCIENCES ET LETTRES - QUARTIER LATIN, PARIS, FR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211004

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230921

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231011

Year of fee payment: 7