EP3516418A2 - Codierte laserlicht-pulssequenzen für lidar - Google Patents
Codierte laserlicht-pulssequenzen für lidarInfo
- Publication number
- EP3516418A2 EP3516418A2 EP17768797.7A EP17768797A EP3516418A2 EP 3516418 A2 EP3516418 A2 EP 3516418A2 EP 17768797 A EP17768797 A EP 17768797A EP 3516418 A2 EP3516418 A2 EP 3516418A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- pulse train
- laser light
- detector
- lidar
- distance value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/08—Systems determining position data of a target for measuring distance only
- G01S17/10—Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/08—Systems determining position data of a target for measuring distance only
- G01S17/10—Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
- G01S17/26—Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves wherein the transmitted pulses use a frequency-modulated or phase-modulated carrier wave, e.g. for pulse compression of received signals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/42—Simultaneous measurement of distance and other co-ordinates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/89—Lidar systems specially adapted for specific applications for mapping or imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/93—Lidar systems specially adapted for specific applications for anti-collision purposes
- G01S17/931—Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4814—Constructional features, e.g. arrangements of optical elements of transmitters alone
- G01S7/4815—Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4817—Constructional features, e.g. arrangements of optical elements relating to scanning
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/483—Details of pulse systems
- G01S7/484—Transmitters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/50—Systems of measurement based on relative movement of target
- G01S17/58—Velocity or trajectory determination systems; Sense-of-movement determination systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4818—Constructional features, e.g. arrangements of optical elements using optical fibres
Definitions
- Distance measurement of objects is desirable in various fields of technology. For example, in the context of autonomous driving applications, it may be desirable to detect objects around vehicles and, in particular, to determine a distance to the objects.
- At least one optical element such as a mirror, a prism, and / or a lens, such as a graded index (GRIN) lens, may be attached to the moveable end of the fiber.
- the optical element it is possible to deflect the laser light from the laser light source.
- the mirror could be implemented by a wafer, such as a silicon wafer, or a glass substrate.
- the seal could have a thickness in the range of 0.05 ⁇ - 0.1 mm.
- Various examples described herein are based on the fact that, for one pixel of a LIDAR image, multiple pulse trains are transmitted and received, each with multiple pulses of laser light. For example, a number of two or three or four or ten pulse trains per pixel could be considered.
- the signal-to-noise ratio can be increased because each pulse train has several pulses.
- the signal-to-noise ratio can be further increased because an even larger number of pulses are used.
- different pulse trains are coded differently. This makes it possible to emit a second pulse train before the first pulse train sent out beforehand is received. In other words, it is possible that more than a single pulse train propagates around the device at a particular time.
- FIG. 2 illustrates aspects relating to the laser scanner 101.
- the laser scanner 101 comprises a laser light source 1 1 1.
- the laser light source 1 1 1 may be a diode laser.
- the laser light source 11 may be a vertical-cavity surface-emitting laser (VCSEL).
- the laser light source 1 1 1 emits laser light 191, which is deflected by the deflection unit 1 12 by a certain deflection angle.
- a collimator optics for the laser light 191 may be disposed in the beam path between the laser light source 11 and the deflector unit 12 (English, pre-scanner optics).
- the collimator optics for the laser light 191 could also be arranged in the beam path behind the deflection unit 112 (English, post-scanner optics).
- each diverter unit may have a corresponding associated degree of freedom of movement corresponding to an associated scan axis.
- a scanner system In order to implement multiple scan axes, in some examples it would be possible to have more than one diverter unit (not shown in FIG. 2). Then, the laser light 191 can sequentially pass through the various deflection units. Each diverter unit may have a corresponding associated degree of freedom of movement corresponding to an associated scan axis. Sometimes such an arrangement is called a scanner system.
- the pixel is determined based on the first distance value from block 5003 and based on the second distance value from block 5004. This is possible because both distance values are associated with the same angular range and therefore with the same object.
- a higher measurement accuracy can be achieved. For example, an average could be formed.
- a standard deviation could be taken into account as measurement inaccuracy.
- FIG. Figure 5 illustrates aspects relating to a LIDAR image 199.
- the LIDAR image includes pixels 196 (in the example of Figure 5, only nine pixels 196 are shown, however, the LIDAR image could have a larger number of pixels, for example not less than 1000 pixels or not less than 1,000,000 pixels).
- the pulses 205 have a certain length 251 (defined, for example, as the half-width of the pulses 205).
- the pulses 205 of the pulse trains may have a length in the range of 200 ps to 10 ns, optionally in the range of 200 ps to 4 ns, more optionally in the range of 500 ps to 2 ns.
- Such a pulse duration may have advantages in terms of the expected number of photons in the reflected laser light 192 for typical powers of the laser light source 11 and typical measurement distances.
- Block 5014 it is checked whether a new coding should be selected by re-iterating block 501 1; or whether by direct re-iteration of block 5012 directly the pulse train according to the current coding can be sent out.
- Block 5014 thus allows the repeated selection of different encodings - e.g. according to the same coding scheme, if block 5010 is not also repeated (which would be possible, although it is shown differently in FIG. 10).
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Electromagnetism (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102016011299.9A DE102016011299A1 (de) | 2016-09-19 | 2016-09-19 | Codierte Laserlicht-Pulssequenzen für LIDAR |
| PCT/EP2017/073574 WO2018050906A2 (de) | 2016-09-19 | 2017-09-19 | Codierte laserlicht-pulssequenzen für lidar |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP3516418A2 true EP3516418A2 (de) | 2019-07-31 |
Family
ID=59901539
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP17768797.7A Withdrawn EP3516418A2 (de) | 2016-09-19 | 2017-09-19 | Codierte laserlicht-pulssequenzen für lidar |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US20190353787A1 (OSRAM) |
| EP (1) | EP3516418A2 (OSRAM) |
| JP (1) | JP2019529916A (OSRAM) |
| DE (1) | DE102016011299A1 (OSRAM) |
| WO (1) | WO2018050906A2 (OSRAM) |
Families Citing this family (46)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3859396A1 (en) | 2016-09-20 | 2021-08-04 | Innoviz Technologies Ltd. | Lidar systems and methods |
| DE102016222138A1 (de) * | 2016-11-11 | 2018-05-17 | Robert Bosch Gmbh | Lidarsystem |
| EP3460519A1 (en) * | 2017-09-25 | 2019-03-27 | Hexagon Technology Center GmbH | Laser scanner |
| DE102018108340A1 (de) * | 2018-04-09 | 2019-10-10 | Sick Ag | Optoelektronischer Sensor und Verfahren zur Erfassung und Abstandsbestimmung von Objekten |
| US11536805B2 (en) | 2018-06-25 | 2022-12-27 | Silc Technologies, Inc. | Optical switching for tuning direction of LIDAR output signals |
| CN109116331B (zh) | 2018-06-27 | 2020-04-24 | 上海禾赛光电科技有限公司 | 一种编码激光收发装置、测距装置以及激光雷达系统 |
| US10466342B1 (en) | 2018-09-30 | 2019-11-05 | Hesai Photonics Technology Co., Ltd. | Adaptive coding for lidar systems |
| US12498463B2 (en) * | 2018-09-06 | 2025-12-16 | Sony Semiconductor Solutions Corporation | Time of flight apparatus and method |
| US20200088844A1 (en) * | 2018-09-18 | 2020-03-19 | Velodyne Lidar, Inc. | Systems and methods for improving detection of a return signal in a light ranging and detection system with pulse encoding |
| JP7331098B2 (ja) | 2018-10-24 | 2023-08-22 | レッド リーダー テクノロジーズ,インコーポレイテッド | ライダシステムおよび動作方法 |
| DE102018126522A1 (de) | 2018-10-24 | 2020-04-30 | Blickfeld GmbH | Laufzeitbasierte Entfernungsmessung unter Verwendung von modulierten Pulsfolgen von Laserpulsen |
| US11467288B2 (en) | 2018-10-24 | 2022-10-11 | Red Leader Technologies, Inc. | Lidar system and method of operation |
| US11486978B2 (en) | 2018-12-26 | 2022-11-01 | Intel Corporation | Technology to support the coexistence of multiple independent lidar sensors |
| US11947041B2 (en) * | 2019-03-05 | 2024-04-02 | Analog Devices, Inc. | Coded optical transmission for optical detection |
| US12429569B2 (en) | 2019-05-17 | 2025-09-30 | Silc Technologies, Inc. | Identification of materials illuminated by LIDAR systems |
| US11650317B2 (en) | 2019-06-28 | 2023-05-16 | Silc Technologies, Inc. | Use of frequency offsets in generation of LIDAR data |
| CN110632578B (zh) * | 2019-08-30 | 2022-12-09 | 深圳奥锐达科技有限公司 | 用于时间编码时间飞行距离测量的系统及方法 |
| US11435444B2 (en) * | 2019-09-27 | 2022-09-06 | Gm Cruise Holdings Llc | Mitigating interference for lidar systems of autonomous vehicles |
| JP7125968B2 (ja) | 2019-10-28 | 2022-08-25 | イベオ オートモーティブ システムズ ゲーエムベーハー | 距離を光学的に測定するための方法およびデバイス |
| US11727582B2 (en) * | 2019-12-16 | 2023-08-15 | Faro Technologies, Inc. | Correction of current scan data using pre-existing data |
| KR20220136336A (ko) * | 2020-02-10 | 2022-10-07 | 헤사이 테크놀로지 씨오., 엘티디. | 라이다 시스템용 적응식 방출기 및 수신기 |
| CN110996102B (zh) * | 2020-03-03 | 2020-05-22 | 眸芯科技(上海)有限公司 | 抑制p/b帧中帧内块呼吸效应的视频编码方法及装置 |
| JP2021162351A (ja) * | 2020-03-30 | 2021-10-11 | 株式会社アイシン | 物体検出システム |
| CN111366944B (zh) * | 2020-04-01 | 2022-06-28 | 浙江光珀智能科技有限公司 | 一种测距装置和测距方法 |
| US12164033B2 (en) | 2020-04-28 | 2024-12-10 | Artilux, Inc. | Lidar projection apparatus |
| DE102020207272A1 (de) | 2020-06-10 | 2021-12-16 | Robert Bosch Gesellschaft mit beschränkter Haftung | Verfahren und Vorrichtung zur Sicherstellung eines Eindeutigkeitsbereichs eines Lidar-Sensors und einen solchen Lidar-Sensor |
| CN111708059B (zh) * | 2020-06-24 | 2023-08-08 | 中国科学院国家天文台长春人造卫星观测站 | 一种激光时间传递处理方法、系统、存储介质、装置及应用 |
| US11747472B2 (en) * | 2020-08-14 | 2023-09-05 | Beijing Voyager Technology Co., Ltd. | Range estimation for LiDAR systems |
| WO2022081636A1 (en) | 2020-10-13 | 2022-04-21 | Red Leader Technologies, Inc. | Lidar system and method of operation |
| CN112346071A (zh) * | 2020-10-30 | 2021-02-09 | 宁波飞芯电子科技有限公司 | 一种距离传感器的测距方法 |
| US12276734B1 (en) * | 2020-12-07 | 2025-04-15 | Amazon Technologies, Inc. | Encrypted LIDAR systems and methods |
| US11782159B2 (en) * | 2020-12-30 | 2023-10-10 | Silc Technologies, Inc. | LIDAR system with encoded output signals |
| WO2022167619A1 (en) * | 2021-02-05 | 2022-08-11 | Tørring Invest As | High speed hybrid scanning |
| DE102021105770A1 (de) | 2021-03-10 | 2022-09-15 | Audi Aktiengesellschaft | Abstandsmessung mittels eines aktiven optischen Sensorsystems |
| US12222424B2 (en) | 2021-03-15 | 2025-02-11 | Lg Innotek Co., Ltd. | Reducing coexistence interference for light detection and ranging |
| WO2022198386A1 (zh) * | 2021-03-22 | 2022-09-29 | 深圳市大疆创新科技有限公司 | 激光测距装置、激光测距方法和可移动平台 |
| CN115508850B (zh) * | 2021-06-07 | 2025-09-16 | 上海禾赛科技有限公司 | 激光雷达的控制方法及激光雷达 |
| CN113376646B (zh) * | 2021-06-22 | 2023-03-28 | 中国科学院光电技术研究所 | 一种激光测距与通信一体化激光雷达 |
| US20230194709A9 (en) * | 2021-06-29 | 2023-06-22 | Seagate Technology Llc | Range information detection using coherent pulse sets with selected waveform characteristics |
| US12411213B2 (en) | 2021-10-11 | 2025-09-09 | Silc Technologies, Inc. | Separation of light signals in a LIDAR system |
| US11762095B2 (en) | 2022-02-01 | 2023-09-19 | Red Leader Technologies, Inc. | Lidar system and method of operation |
| US12447329B2 (en) * | 2022-02-16 | 2025-10-21 | Advanced Neuromodulation Systems, Inc | Systems and methods for detecting pulse patterns |
| US12422618B2 (en) | 2022-10-13 | 2025-09-23 | Silc Technologies, Inc. | Buried taper with reflecting surface |
| FR3144314A1 (fr) * | 2022-12-23 | 2024-06-28 | Valeo Vision | Système de détection d’un véhicule automobile comportant un module d’émission et un module de réception d’un faisceau lumineux |
| FR3153901A1 (fr) * | 2023-10-06 | 2025-04-11 | Valeo Vision | Système de détection d’un véhicule automobile comportant un module d’émission et un module de réception d’un faisceau lumineux |
| KR20250124376A (ko) * | 2022-12-23 | 2025-08-19 | 발레오 비젼 | 광 빔을 방출하기 위한 모듈과 광 빔을 수신하기 위한 모듈을 포함하는 자동차의 검출 시스템 |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20020071126A1 (en) * | 2000-12-12 | 2002-06-13 | Noriaki Shirai | Distance measurement apparatus |
| US20090135672A1 (en) * | 2007-11-27 | 2009-05-28 | Denso Corporation | Direction detecting device and direction detecting system |
| DE102010033383A1 (de) * | 2010-08-05 | 2012-02-09 | Valeo Schalter Und Sensoren Gmbh | Verfahren und Vorrichtung zu Generierung eines Messsignals zur Fahrzeugumfelderfassung sowie zugehörige Vorrichtung zur Fahrzeugumfelderfassung |
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7202776B2 (en) * | 1997-10-22 | 2007-04-10 | Intelligent Technologies International, Inc. | Method and system for detecting objects external to a vehicle |
| JP2000213931A (ja) * | 1999-01-21 | 2000-08-04 | Hamamatsu Photonics Kk | 測距モジュ―ル |
| DE102008009180A1 (de) * | 2007-07-10 | 2009-01-22 | Sick Ag | Optoelektronischer Sensor |
| EP2626722B1 (de) * | 2012-02-07 | 2016-09-21 | Sick AG | Optoelektronischer Sensor und Verfahren zur Erfassung und Abstandsbestimmung von Objekten |
| US9575184B2 (en) * | 2014-07-03 | 2017-02-21 | Continental Advanced Lidar Solutions Us, Inc. | LADAR sensor for a dense environment |
| JP6424522B2 (ja) * | 2014-09-04 | 2018-11-21 | 株式会社Soken | 車載装置、車載測距システム |
| US10215847B2 (en) * | 2015-05-07 | 2019-02-26 | GM Global Technology Operations LLC | Pseudo random sequences in array lidar systems |
| DE102016114995A1 (de) * | 2016-03-30 | 2017-10-05 | Triple-In Holding Ag | Vorrichtung und Verfahren zur Aufnahme von Entfernungsbildern |
| US10690756B2 (en) * | 2016-05-10 | 2020-06-23 | Texas Instruments Incorporated | Methods and apparatus for LIDAR operation with pulse position modulation |
-
2016
- 2016-09-19 DE DE102016011299.9A patent/DE102016011299A1/de not_active Withdrawn
-
2017
- 2017-09-19 JP JP2019515460A patent/JP2019529916A/ja not_active Ceased
- 2017-09-19 EP EP17768797.7A patent/EP3516418A2/de not_active Withdrawn
- 2017-09-19 US US16/334,209 patent/US20190353787A1/en not_active Abandoned
- 2017-09-19 WO PCT/EP2017/073574 patent/WO2018050906A2/de not_active Ceased
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20020071126A1 (en) * | 2000-12-12 | 2002-06-13 | Noriaki Shirai | Distance measurement apparatus |
| US20090135672A1 (en) * | 2007-11-27 | 2009-05-28 | Denso Corporation | Direction detecting device and direction detecting system |
| DE102010033383A1 (de) * | 2010-08-05 | 2012-02-09 | Valeo Schalter Und Sensoren Gmbh | Verfahren und Vorrichtung zu Generierung eines Messsignals zur Fahrzeugumfelderfassung sowie zugehörige Vorrichtung zur Fahrzeugumfelderfassung |
Non-Patent Citations (1)
| Title |
|---|
| See also references of WO2018050906A2 * |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2018050906A3 (de) | 2018-05-11 |
| JP2019529916A (ja) | 2019-10-17 |
| DE102016011299A1 (de) | 2018-03-22 |
| WO2018050906A2 (de) | 2018-03-22 |
| US20190353787A1 (en) | 2019-11-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP3516418A2 (de) | Codierte laserlicht-pulssequenzen für lidar | |
| EP3279685B2 (de) | Optoelektronischer sensor und verfahren zur erfassung eines objekts | |
| EP3593169B1 (de) | Lidar-system mit flexiblen scanparametern | |
| EP2686703B1 (de) | Messvorrichtung und messgerät zur mehrdimensionalen vermessung eines zielobjektes | |
| EP1933167B1 (de) | Optoelektronischer Sensor sowie Verfahren zur Erfassung und Abstandsbestimmung eines Objekts | |
| EP3345017B1 (de) | Laser-scanner zur abstandsmessung bei kraftfahrzeugen | |
| EP3049823B1 (de) | Verfahren zur steuerung eines mikrospiegelscanners und mikrospiegelscanner | |
| EP3557284A2 (de) | Optoelektronischer sensor und verfahren zur abstandsbestimmung | |
| DE102018108340A1 (de) | Optoelektronischer Sensor und Verfahren zur Erfassung und Abstandsbestimmung von Objekten | |
| DE102019215136A1 (de) | LIDAR-2D-Empfängerarrayarchitektur | |
| DE112016001187T5 (de) | Strahllenkungs-Ladarsensor | |
| DE102019105478A1 (de) | LIDAR-Sensoren und Verfahren für dieselben | |
| DE102018222629A1 (de) | Verfahren und Vorrichtung zur Bestimmung von mindestens einer räumlichen Position und Orientierung mindestens eines Objekts | |
| DE102018222718A1 (de) | Optoelektronischer Sensor, Verfahren und Fahrzeug | |
| DE102018129972A1 (de) | Optoelektronischer Sensor und Verfahren zur Erfassung von Objekten | |
| WO2016091625A1 (de) | Sendeeinrichtung, empfangseinrichtung und objekterfassungsvorrichtung für ein kraftfahrzeug sowie verfahren dafür | |
| WO2016189149A1 (de) | Optoelektronische anordnung und tiefenerfassungssystem | |
| DE102019107957A1 (de) | Optoelektronische vorrichtung und lidar-system | |
| DE102019220289A1 (de) | Echtzeit-gating und signal wegleitung in laser- und detektorarrays für lidar-anwendung | |
| DE102019100929A1 (de) | Langstreckendetektor für LIDAR | |
| WO2018060408A1 (de) | Abtasteinheit einer optischen sende- und empfangseinrichtung einer optischen detektionsvorrichtung eines fahrzeugs | |
| DE102018116957B4 (de) | Heterogene integration der gebogenen spiegelstruktur zur passiven ausrichtung in chip-scale lidar | |
| US20240045068A1 (en) | LiDAR SYSTEM AND RESOLUSION IMPROVEMENT METHOD THEREOF | |
| WO2015003833A1 (de) | Bestimmung eines abstands und eines winkels in bezug auf eine ebene mittels mehrerer entfernungsmessungen | |
| EP3650888B1 (de) | Optoelektronischer sensor und verfahren zur erfassung und abstandsbestimmung von objekten |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
| 17P | Request for examination filed |
Effective date: 20190417 |
|
| AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| AX | Request for extension of the european patent |
Extension state: BA ME |
|
| DAV | Request for validation of the european patent (deleted) | ||
| DAX | Request for extension of the european patent (deleted) | ||
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
| 17Q | First examination report despatched |
Effective date: 20210604 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 20231116 |