EP3508627A1 - A method and a device for removing small particles of impurities from textile machines - Google Patents

A method and a device for removing small particles of impurities from textile machines Download PDF

Info

Publication number
EP3508627A1
EP3508627A1 EP18214370.1A EP18214370A EP3508627A1 EP 3508627 A1 EP3508627 A1 EP 3508627A1 EP 18214370 A EP18214370 A EP 18214370A EP 3508627 A1 EP3508627 A1 EP 3508627A1
Authority
EP
European Patent Office
Prior art keywords
impurities
opening
zone
sliver
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP18214370.1A
Other languages
German (de)
French (fr)
Inventor
Jiri Storek
Martin Rehak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maschinenfabrik Rieter AG
Original Assignee
Maschinenfabrik Rieter AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maschinenfabrik Rieter AG filed Critical Maschinenfabrik Rieter AG
Publication of EP3508627A1 publication Critical patent/EP3508627A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H4/00Open-end spinning machines or arrangements for imparting twist to independently moving fibres separated from slivers; Piecing arrangements therefor; Covering endless core threads with fibres by open-end spinning techniques
    • D01H4/30Arrangements for separating slivers into fibres; Orienting or straightening fibres, e.g. using guide-rolls
    • D01H4/32Arrangements for separating slivers into fibres; Orienting or straightening fibres, e.g. using guide-rolls using opening rollers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H4/00Open-end spinning machines or arrangements for imparting twist to independently moving fibres separated from slivers; Piecing arrangements therefor; Covering endless core threads with fibres by open-end spinning techniques
    • D01H4/30Arrangements for separating slivers into fibres; Orienting or straightening fibres, e.g. using guide-rolls
    • D01H4/36Arrangements for separating slivers into fibres; Orienting or straightening fibres, e.g. using guide-rolls with means for taking away impurities

Definitions

  • a method for removing impurities, particularly dust and/or very small portions of fibers contained in a sliver during the opening of fibers from the sliver in an opening device of an open-end spinning machine in which the sliver is fed by a feeding device to toothed surface of an opening roller, by which the individual fibers of the sliver in the opening zone are pulled out from the grip by the sliver feeding device and are guided in the opening device along a primary removal zone to remove small and very small impurities, and subsequently are guided along a secondary removal zone to remove the other impurities.
  • the invention also relates to a device for removing impurities, particularly dust particles and/or very small portions of fibers from a sliver in a spinning unit of an open-end spinning machine comprising a sliver feeding device associated with an opening device of sliver with a rotating opening roller with toothed surface for opening the fibers from the supplied sliver in an opening zone, whereby the spinning unit further comprises primary impurities removal zone provided with a sieve and a secondary impurities removal zone, the two zones being associated with the toothed surface of the opening roller and connected to an air vacuum system for removing impurities.
  • One of the problems associated with the production of textile goods is the removal of impurities introduced into the machine by the material being processed or arising from the processing of the material.
  • the cleanliness of the machine and its devices is particularly important in the processing of fine materials, for example in the production of yarns.
  • machines are usually equipped with a vacuum suction system, or a gravity system. Their purpose is above all to eliminate hard impurities which are contained in the fibrous material, and, in the case of open-end spinning machines, the principal purpose is to prevent the clogging of a collecting groove of a spinning rotor.
  • document DE102008037000A1 solves the cleaning of a collecting groove of the spinning rotor after interrupting the spinning process and after opening the spinning unit by spraying the interior of the spinning rotor cup with hot pressure steam.
  • a device with an electrically driven rotary brush is clamped to the front of the unit after opening the spinning unit, whereupon the brush cleans the collecting groove and sucks the loose impurities.
  • the spinning process is also interrupted and the lid of the spinning unit is uncovered, whereupon he mouth of a suction tube of an adjoining service robot is brought to the interior of a rotor cup, in the immediate vicinity of a collecting groove.
  • the rotor is rotated by a friction plate, which is also part of the service robot, and accelerated to speeds in which the adhering impurities are affected by centrifugal force and then sucked off by the suction tube.
  • CZ304228B6 solves, among other things, the removal of the maximum possible amount of impurities from the spun fibrous material.
  • this hole serves to remove the impurities from the sliver being opened, and on the other hand, through this hole the air needed for spinning is sucked in by a vacuum system. Obviously, sucking this air in does not hamper the removal of heavier hard particles, but it works against the removal of fine and light particles.
  • CZ262402B2 discloses a solution in which the primary impurities removal zone is arranged directly in the opening zone, i.e. immediately beyond the edge of an inlet for feeding fibers to an opening roller, i.e. in a zone where the rear ends of the fibers are still held by a grip in the nip line by a sliver feeding device.
  • the sieve is moved further from the edge of the inlet opening, on both lateral sides of the opening zone are arranged suction holes covered with sieves for sucking the impurities directly from the opening zone, these holes being connected through channels to a central channel.
  • the disadvantage of this embodiment is the fact that in the opening zone the loosening of the sliver only starts and thus the release of impurities begins only then, and from such an imperfectly loosened sliver in which the rear ends of the fibers are still held by the feeding device, the fine particles of dust and very small portions of the fibers, i.e., the particles having a low weight, are not sufficiently released and subsequently sucked off, which means that such particles are not removed from the fibers with such efficiency as is expected in modern machines.
  • Another drawback is that the discharging channel described herein serves at the same time as an air supply to the spinning rotor, which further worsens the efficiency of the removal of small and very small impurities.
  • the aim of the invention is to prevent clogging and subsequent solid depositing of small and light particles at places from which they cannot easily be removed and to propose a device for the early removal of such particles even without having to stop production process during the operation of the spinning machine.
  • the aim of the invention is achieved by a method for removing impurities, particularly dust particles and/or very small portions of fibers, whose principle consists in that in a primary removal zone, the fibers and impurities are acted upon by the vacuum from the central channel only behind (downstream of) an opening zone, whereupon in the secondary removal zone the fibers and impurities are simultaneously acted upon by centrifugal force and the vacuum from the central channel.
  • This is made possible primarily by placing the primary zone immediately downstream of the opening zone, where the small particles are most easily removed by the vacuum.
  • the size of the impurities sucked off is limited by a sieve through which the particles are sucked off by the vacuum, the individual sieve holes having a cross-section area not exceeding 1 mm 2 .
  • the aim of the invention is also achieved by a device for removing impurities, particularly dust particles and/or very small portions of fibers from a sliver in a spinning unit, whose principle consists in that a primary removal zone is arranged downstream of an opening zone and upstream of a secondary removal zone, whereby the width of the primary removal zone corresponds to the working width of an opening roller and the primary and secondary removal zones are connected to a vacuum system for sucking off impurities.
  • FIG. 1 is a view of the respective parts of a spinning unit in the direction of the axis of rotation of an opening roller of an opening device and perpendicularly to the axis of rotation of a spinning rotor
  • Fig. 2 is an oblique view into the inner space of the body of the opening device.
  • Fig. 1 schematically represents a structure of a well-known spinning unit of an open-end spinning machine, which comprises a spinning rotor 1 with a conical cup 11 and a collecting groove 12 near the cup 11 bottom and a canopy 13 entering the cup 11 of the spinning rotor 1 in the axis of rotation of the spinning rotor 1 with an unillustrated draw-off funnel of the spun-out yarn.
  • a channel 14 supplying the rotor 1 with the fibers singled out by an opening device 2 opens into the cup 11 of the spinning rotor 1 obliquely with respect to the collecting groove 12 .
  • a well-known opening roller 22 with an unillustrated toothed surface 23, driven in the direction S1.
  • the sliver (not shown) is fed in the direction S3 by means of a well-known feeding roller 24 driven in the direction S2, towards the circumference of the feeding roller 24 the sliver is pushed by a feeding table 25.
  • the sliver is thus supplied to the toothed surface 23 of the opening roller 22, by which the sliver is singled out into individual fibers which are pulled out from the grip between the feeding roller 24 and the feeding table 25 to the opening zone 26 and further carried through the gap around the toothed surface 23 of the opening roller 22 to the channel 14 through which the individual fibers are fed to the rotor 1.
  • the system of removing impurities according to the invention is divided into two zones, consisting of two successively spaced holes around the circumference of the body 21 of the opening device 2 .
  • a primary removal zone 3 is arranged immediately downstream of the opening zone 26 and is formed by a hole 31, which is joined by a discharging channel 32 which opens into a central channel 6 of the removal of impurities.
  • the impurities are acted upon by the vacuum from the central channel 6 in the radial direction towards the gap around the toothed surface 23 of the opening roller 22, by which the fibers singled out/being singled out are withdrawn together with the impurities, whereby the fibers are dispersed after the start of the opening process in the opening zone 26, and so the air sucked off from the gap around the surface 23 of the opening roller 22 in the primary removal zone 3 passes between them, carrying the small and light particles of impurities which have been released by the opening and which are further carried through the discharging channel 32 to the central channel 6.
  • the width L1 of the primary removal zone 3 corresponds to the working width of the opening roller 22.
  • the hole 31 in the primary removal zone 3 in the wall of the body 21 of the opening device 2 is covered by a sieve formed by a network of circular, square or other shaped through flow holes (not shown), whereby the cross-sectional area of each of these elementary openings does not exceed 1 mm 2 .
  • the opening process in the opening zone 26 is highly effective. Therefore, in the primary removal zone 3 even small and very light impurity particles are reliably sucked off from the sliver.
  • the force acting here upon small and light particles of impurities is practically determined only by the vacuum air in the hole 31, which, due to the loosening of the fibers in the opening zone 26, is sufficient to remove these particles from the sliver.
  • Through the discharging channel 32 assigned to the primary removal zone 3 the air is sucked in only from the space of the opening roller through the opening zone 26.
  • the length of the opening zone 26 is determined by the production technology.
  • the primary removal zone 3, 31 is terminated in the body 21 of the opening device 2 by an edge 27, which constitutes the beginning of the secondary removal zone 5 formed by an open mouth of the discharging channel 51, adjoining in the tangential direction the gap between the toothed surface 23 of the opening roller 22 and the circumference of a cylindrical cavity of the body 21 of the opening device 2.
  • Larger and heavier particles of impurities are withdrawn from the fibers by the discharging channel 51, whereby they are removed primarily by the centrifugal force acting on them during the movement of the fibers.
  • the exhaust of these separated particles to the discharging channel 51 is ensured by the vacuum in this channel.
  • the discharging channel 51 opens into a collection vacuum channel 4, which is in the direction S4 of the air flow connected to the central channel 6 and whose inlet opening is connected to the surrounding atmosphere. The particles are withdrawn together from both the removal zones 3 and 5 through the central channel 6.
  • the device according to the invention substantially reduces the amount of particularly small and light particles of impurities entering the interior space of the spinning unit which in the devices of the background art require difficult and time-consuming cleaning.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Spinning Or Twisting Of Yarns (AREA)
  • Preliminary Treatment Of Fibers (AREA)

Abstract

The invention relates to a method for removing impurities, particularly dust and/or very small portions of fibers contained in a sliver during the opening of fibers from the sliver in an opening device (2) of an open-end spinning machine, in which the sliver is fed by a feeding device to toothed surface (23) of an opening roller (22), by which the individual fibers of the sliver in an opening zone (26) are pulled out from the grip by the feeding device and are guided in the opening device along a primary removal zone (3) for removing small and very small impurities and then are guided along a secondary removal zone (5) for removing the remaining impurities, characterized in that in the primary removal zone (3) the fibers are acted upon by the vacuum from a central channel (6) only behind the opening zone (26), whereupon in the secondary impurities removal zone (5) the fibers are acted upon by the centrifugal force and by the vacuum from the central channel (6).
The invention also relates to a device for performing this method in a spinning unit of an open-end spinning machine.

Description

    Technical field
  • A method for removing impurities, particularly dust and/or very small portions of fibers contained in a sliver during the opening of fibers from the sliver in an opening device of an open-end spinning machine, in which the sliver is fed by a feeding device to toothed surface of an opening roller, by which the individual fibers of the sliver in the opening zone are pulled out from the grip by the sliver feeding device and are guided in the opening device along a primary removal zone to remove small and very small impurities, and subsequently are guided along a secondary removal zone to remove the other impurities. The invention also relates to a device for removing impurities, particularly dust particles and/or very small portions of fibers from a sliver in a spinning unit of an open-end spinning machine comprising a sliver feeding device associated with an opening device of sliver with a rotating opening roller with toothed surface for opening the fibers from the supplied sliver in an opening zone, whereby the spinning unit further comprises primary impurities removal zone provided with a sieve and a secondary impurities removal zone, the two zones being associated with the toothed surface of the opening roller and connected to an air vacuum system for removing impurities.
  • Background art
  • One of the problems associated with the production of textile goods is the removal of impurities introduced into the machine by the material being processed or arising from the processing of the material. The cleanliness of the machine and its devices is particularly important in the processing of fine materials, for example in the production of yarns. For removing the impurities, machines are usually equipped with a vacuum suction system, or a gravity system. Their purpose is above all to eliminate hard impurities which are contained in the fibrous material, and, in the case of open-end spinning machines, the principal purpose is to prevent the clogging of a collecting groove of a spinning rotor.
  • Well-known impurities removal systems are capable of removing hard and relatively heavy particles. On the other hand, small and fine dust particles or very short portions of fibers whose weight is very low cannot practically be removed by suction. This applies particularly to those areas where, for technological reasons, there is a high under-pressure close to the value of the vacuum of the suction systems for removing impurities.
  • Thus, for example, document DE102008037000A1 solves the cleaning of a collecting groove of the spinning rotor after interrupting the spinning process and after opening the spinning unit by spraying the interior of the spinning rotor cup with hot pressure steam.
  • According to DE102008026776A1 , a device with an electrically driven rotary brush is clamped to the front of the unit after opening the spinning unit, whereupon the brush cleans the collecting groove and sucks the loose impurities.
  • In the case of US6321521B1 , the spinning process is also interrupted and the lid of the spinning unit is uncovered, whereupon he mouth of a suction tube of an adjoining service robot is brought to the interior of a rotor cup, in the immediate vicinity of a collecting groove. The rotor is rotated by a friction plate, which is also part of the service robot, and accelerated to speeds in which the adhering impurities are affected by centrifugal force and then sucked off by the suction tube.
  • It is apparent that the devices described are complex and, what is more, they require interruption of the manufacturing process of the machine during the removal of the particles adhering to the inner parts of the spinning unit.
  • CZ304228B6 solves, among other things, the removal of the maximum possible amount of impurities from the spun fibrous material. For this purpose, between the point of feeding the sliver to the opening roller and the point of the fiber removal to the spinning rotor, there is a hole for the impurities removal which is connected to the surrounding atmosphere. On the one hand, this hole serves to remove the impurities from the sliver being opened, and on the other hand, through this hole the air needed for spinning is sucked in by a vacuum system. Obviously, sucking this air in does not hamper the removal of heavier hard particles, but it works against the removal of fine and light particles.
  • CZ262402B2 discloses a solution in which the primary impurities removal zone is arranged directly in the opening zone, i.e. immediately beyond the edge of an inlet for feeding fibers to an opening roller, i.e. in a zone where the rear ends of the fibers are still held by a grip in the nip line by a sliver feeding device. In the embodiment of Fig. 2, although the sieve is moved further from the edge of the inlet opening, on both lateral sides of the opening zone are arranged suction holes covered with sieves for sucking the impurities directly from the opening zone, these holes being connected through channels to a central channel. The disadvantage of this embodiment is the fact that in the opening zone the loosening of the sliver only starts and thus the release of impurities begins only then, and from such an imperfectly loosened sliver in which the rear ends of the fibers are still held by the feeding device, the fine particles of dust and very small portions of the fibers, i.e., the particles having a low weight, are not sufficiently released and subsequently sucked off, which means that such particles are not removed from the fibers with such efficiency as is expected in modern machines. Another drawback is that the discharging channel described herein serves at the same time as an air supply to the spinning rotor, which further worsens the efficiency of the removal of small and very small impurities.
  • The aim of the invention is to prevent clogging and subsequent solid depositing of small and light particles at places from which they cannot easily be removed and to propose a device for the early removal of such particles even without having to stop production process during the operation of the spinning machine.
  • Principle of the invention
  • The aim of the invention is achieved by a method for removing impurities, particularly dust particles and/or very small portions of fibers, whose principle consists in that in a primary removal zone, the fibers and impurities are acted upon by the vacuum from the central channel only behind (downstream of) an opening zone, whereupon in the secondary removal zone the fibers and impurities are simultaneously acted upon by centrifugal force and the vacuum from the central channel. This is made possible primarily by placing the primary zone immediately downstream of the opening zone, where the small particles are most easily removed by the vacuum.
  • Preferably, the size of the impurities sucked off is limited by a sieve through which the particles are sucked off by the vacuum, the individual sieve holes having a cross-section area not exceeding 1 mm2.
  • The aim of the invention is also achieved by a device for removing impurities, particularly dust particles and/or very small portions of fibers from a sliver in a spinning unit, whose principle consists in that a primary removal zone is arranged downstream of an opening zone and upstream of a secondary removal zone, whereby the width of the primary removal zone corresponds to the working width of an opening roller and the primary and secondary removal zones are connected to a vacuum system for sucking off impurities.
  • Description of drawings
  • An exemplary embodiment according to the invention is schematically represented in the drawing, wherein Fig. 1 is a view of the respective parts of a spinning unit in the direction of the axis of rotation of an opening roller of an opening device and perpendicularly to the axis of rotation of a spinning rotor, Fig. 2 is an oblique view into the inner space of the body of the opening device.
  • Examples of embodiment
  • Fig. 1 schematically represents a structure of a well-known spinning unit of an open-end spinning machine, which comprises a spinning rotor 1 with a conical cup 11 and a collecting groove 12 near the cup 11 bottom and a canopy 13 entering the cup 11 of the spinning rotor 1 in the axis of rotation of the spinning rotor 1 with an unillustrated draw-off funnel of the spun-out yarn. A channel 14 supplying the rotor 1 with the fibers singled out by an opening device 2 opens into the cup 11 of the spinning rotor 1 obliquely with respect to the collecting groove 12 . In the body 21 of the opening device 2 is provided a well-known opening roller 22 with an unillustrated toothed surface 23, driven in the direction S1. The sliver (not shown) is fed in the direction S3 by means of a well-known feeding roller 24 driven in the direction S2, towards the circumference of the feeding roller 24 the sliver is pushed by a feeding table 25. The sliver is thus supplied to the toothed surface 23 of the opening roller 22, by which the sliver is singled out into individual fibers which are pulled out from the grip between the feeding roller 24 and the feeding table 25 to the opening zone 26 and further carried through the gap around the toothed surface 23 of the opening roller 22 to the channel 14 through which the individual fibers are fed to the rotor 1.
  • The system of removing impurities according to the invention is divided into two zones, consisting of two successively spaced holes around the circumference of the body 21 of the opening device 2 . A primary removal zone 3 is arranged immediately downstream of the opening zone 26 and is formed by a hole 31, which is joined by a discharging channel 32 which opens into a central channel 6 of the removal of impurities. This means that in the primary removal zone 3 the impurities are acted upon by the vacuum from the central channel 6 in the radial direction towards the gap around the toothed surface 23 of the opening roller 22, by which the fibers singled out/being singled out are withdrawn together with the impurities, whereby the fibers are dispersed after the start of the opening process in the opening zone 26, and so the air sucked off from the gap around the surface 23 of the opening roller 22 in the primary removal zone 3 passes between them, carrying the small and light particles of impurities which have been released by the opening and which are further carried through the discharging channel 32 to the central channel 6. The width L1 of the primary removal zone 3 corresponds to the working width of the opening roller 22. The hole 31 in the primary removal zone 3 in the wall of the body 21 of the opening device 2 is covered by a sieve formed by a network of circular, square or other shaped through flow holes (not shown), whereby the cross-sectional area of each of these elementary openings does not exceed 1 mm2. The opening process in the opening zone 26 is highly effective. Therefore, in the primary removal zone 3 even small and very light impurity particles are reliably sucked off from the sliver. The force acting here upon small and light particles of impurities is practically determined only by the vacuum air in the hole 31, which, due to the loosening of the fibers in the opening zone 26, is sufficient to remove these particles from the sliver. Through the discharging channel 32 assigned to the primary removal zone 3 the air is sucked in only from the space of the opening roller through the opening zone 26. The length of the opening zone 26 is determined by the production technology.
  • The primary removal zone 3, 31 is terminated in the body 21 of the opening device 2 by an edge 27, which constitutes the beginning of the secondary removal zone 5 formed by an open mouth of the discharging channel 51, adjoining in the tangential direction the gap between the toothed surface 23 of the opening roller 22 and the circumference of a cylindrical cavity of the body 21 of the opening device 2. Larger and heavier particles of impurities are withdrawn from the fibers by the discharging channel 51, whereby they are removed primarily by the centrifugal force acting on them during the movement of the fibers. The exhaust of these separated particles to the discharging channel 51 is ensured by the vacuum in this channel. The discharging channel 51 opens into a collection vacuum channel 4, which is in the direction S4 of the air flow connected to the central channel 6 and whose inlet opening is connected to the surrounding atmosphere. The particles are withdrawn together from both the removal zones 3 and 5 through the central channel 6.
  • The device according to the invention substantially reduces the amount of particularly small and light particles of impurities entering the interior space of the spinning unit which in the devices of the background art require difficult and time-consuming cleaning.
  • List of references
  • 1
    spinning rotor
    11
    cup of the spinning rotor
    12
    collecting groove of the spinning rotor
    13
    canopy of the draw-off funnel
    14
    fiber feeding channel to the spinning rotor
    2
    opening device
    21
    body of the opening device
    22
    opening roller
    23
    toothed surface of the opening roller
    24
    feeding roller
    25
    feeding table
    26
    opening zone
    27
    edge of the end of the primary and the beginning of the secondary removal zone
    3
    primary removal zone (of impurity particles)
    31
    outlet hole of the primary removal zone
    32
    discharging channel (of the primary removal zone)
    4
    collection vacuum channel
    5
    secondary removal zone (of impurity particles)
    51
    discharging channel (of the secondary removal zone)
    6
    central channel of impurities removal
    L1
    width of the primary removal zone
    S1
    direction of rotation of the opening roller
    S2
    direction of feeding sliver (to the opening roller)
    S3
    direction of rotation of the feeding roller
    S4
    direction of air flow in the collection vacuum channel

Claims (7)

  1. A method for removing impurities, particularly dust and/or very small portions of fibers contained in a sliver during the opening of fibers from the sliver in an opening device (2) of an open-end spinning machine, during which the sliver is fed by a feeding device to toothed surface (23) of an opening roller (22), by which the individual fibers from the sliver in an opening zone (26) are opened and pulled out from the nip of the feeding device and are guided downstream along a primary removal zone (3) for removing small and very small impurities and then are guided along a secondary removal zone (5) for removing the rest of the impurities, characterized in that in the primary removal zone (3) the fibers are acted upon by the vacuum from a central channel (6) only behind the opening zone (26) whereupon the fibers are acted upon by both centrifugal forces and by the vacuum from the central channel (6) in the secondary impurities removal zone (5).
  2. The method for removing impurities according to claim 1, characterized in that the particles removed in the primary removal zone (3) and the particles removed in the secondary removal zone (6) are separately taken to a common collection channel (4) and through it together to the central channel (6) of impurities removal.
  3. The method for removing impurities according to claim 1 or 2, characterized in that the particles being removed are acted upon by a vacuum in the range from 100 to 1000 Pa.
  4. The method for removing impurities according to any of the preceding claims, characterized in that all the air required to remove impurities from the primary removal zone (3) is sucked in through a sieve whose holes limit the size of the particles being removed by their flow cross-sectional area having a maximum size of 1 mm2.
  5. A device for removing impurities, especially particles of dust and/or very small fiber portions from a sliver in a spinning unit of an open-end spinning machine comprising a feeding device of sliver assigned to an opening device (2) of the sliver with a rotating opening roller (22) with toothed surface (23) for opening fibers from the supplied sliver in an opening zone (26), whereby the spinning unit further contains a primary impurities removal zone (3) with a sieve and also contains a secondary impurities removal zone (5) both assigned to the toothed surface (23) of the opening roller (22) and both being connected to a vacuum system for impurities removal, characterized in that the primary impurities removal zone (3) is situated behind the opening zone (26) and before the secondary impurities removal zone (5), whereby the width of the primary impurities removal zone (3) corresponds to the working width of the opening roller (22), both impurities removal zones (3, 5) being connected to the vacuum system for impurities removal.
  6. The device according to claim 5, characterized in that the separate discharging channels (32, 51) of the primary and secondary impurities removal zones (3, 5) are guided into a common central channel (6) of the vacuum system for impurities removal, which is provided with a source of vacuum in the range from 100 to 1000 Pa.
  7. The device according to claim 5 or 6, characterized in that the primary impurities removal zone (3) is equipped with a sieve, whereby the maximum size of the individual elementary flow cross-sectional areas of the sieve holes is 1 mm2.
EP18214370.1A 2018-01-04 2018-12-20 A method and a device for removing small particles of impurities from textile machines Withdrawn EP3508627A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CZ2018-3A CZ20183A3 (en) 2018-01-04 2018-01-04 Method and equipment for removing small particles of dirt from textile machines

Publications (1)

Publication Number Publication Date
EP3508627A1 true EP3508627A1 (en) 2019-07-10

Family

ID=67141284

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18214370.1A Withdrawn EP3508627A1 (en) 2018-01-04 2018-12-20 A method and a device for removing small particles of impurities from textile machines

Country Status (3)

Country Link
EP (1) EP3508627A1 (en)
CN (1) CN110004530A (en)
CZ (1) CZ20183A3 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4201037A (en) * 1976-10-27 1980-05-06 Schubert & Salzer Method and apparatus for cleaning fibrous material
US4700431A (en) * 1984-08-07 1987-10-20 Schubert & Salzer Process and apparatus for eliminating dust from fiber material
US5365640A (en) * 1992-03-06 1994-11-22 Shlomo Sterin Apparatus for sorting fibers
DE19851321A1 (en) * 1997-11-25 1999-05-27 Rieter Elitex As Open end spinner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CS162152B1 (en) * 1972-06-07 1975-07-15

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4201037A (en) * 1976-10-27 1980-05-06 Schubert & Salzer Method and apparatus for cleaning fibrous material
US4700431A (en) * 1984-08-07 1987-10-20 Schubert & Salzer Process and apparatus for eliminating dust from fiber material
US5365640A (en) * 1992-03-06 1994-11-22 Shlomo Sterin Apparatus for sorting fibers
DE19851321A1 (en) * 1997-11-25 1999-05-27 Rieter Elitex As Open end spinner

Also Published As

Publication number Publication date
CZ307870B6 (en) 2019-07-10
CN110004530A (en) 2019-07-12
CZ20183A3 (en) 2019-07-10

Similar Documents

Publication Publication Date Title
US4135276A (en) Apparatus for removing impurities from fibrous material
USRE30709E (en) Method of removing impurities and similar matter from staple fibres in ringless spinning and device for performing said method
US3834145A (en) Open-end spinning of textile yarns
EP2295620A1 (en) Feeding device of a fibre preparation line for carding
US6212738B1 (en) Method and device for fibre production
US4009562A (en) Method and apparatus for eliminating impurities from an open-end spinning machine
US4040948A (en) Device for cleaning flock formed by natural fibers, especially cotton flock, of dirt particles
JPS6052216B2 (en) Fiber material clearing method and equipment
US20040025487A1 (en) Method and device for producing a yarn with ring-spun characteristics
US6449804B1 (en) Rigid cage cotton gin
WO2009084056A1 (en) Axial opener for the treatment of fiber tufts
US4984334A (en) Method and apparatus for removing a fiber fraction from seed cotton
EP3508627A1 (en) A method and a device for removing small particles of impurities from textile machines
US5809766A (en) Device for cleaning fiber material in an open-end spinning aggregate
US4142356A (en) Open-end spinning apparatus
US3624995A (en) Method and device for spindleless spinning
CZ386291A3 (en) Rotor spinning apparatus
JP6985111B2 (en) Open-end spinning equipment with dust remover
US4884395A (en) Fibre opening devices
CN111850755A (en) Open-end spinning device
CN110528125A (en) For the stretching device of woven web, air-flow spinning apparatus and relevant method
US4711083A (en) Friction spinning apparatus
CS199339B1 (en) Apparatus for separating coarse impurities in fibre feed region of spinning rotor of open-end spinning machines
EP0546644A1 (en) Suction system for textile machinery and in particular for a ring spinning machine
JPS5827034Y2 (en) Separating roller in open-end spinning machine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191231

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210701