EP3507831A4 - Memory cells and memory arrays - Google Patents
Memory cells and memory arrays Download PDFInfo
- Publication number
- EP3507831A4 EP3507831A4 EP17847158.7A EP17847158A EP3507831A4 EP 3507831 A4 EP3507831 A4 EP 3507831A4 EP 17847158 A EP17847158 A EP 17847158A EP 3507831 A4 EP3507831 A4 EP 3507831A4
- Authority
- EP
- European Patent Office
- Prior art keywords
- memory
- arrays
- cells
- memory cells
- memory arrays
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003491 array Methods 0.000 title 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/30—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
- H10B12/37—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate
- H10B12/377—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate having a storage electrode extension located over the transistor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L28/00—Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
- H01L28/40—Capacitors
- H01L28/60—Electrodes
- H01L28/82—Electrodes with an enlarged surface, e.g. formed by texturisation
- H01L28/90—Electrodes with an enlarged surface, e.g. formed by texturisation having vertical extensions
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/401—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
- G11C11/403—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42372—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
- H01L29/42376—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7827—Vertical transistors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/01—Manufacture or treatment
- H10B12/02—Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
- H10B12/03—Making the capacitor or connections thereto
- H10B12/033—Making the capacitor or connections thereto the capacitor extending over the transistor
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/01—Manufacture or treatment
- H10B12/02—Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
- H10B12/05—Making the transistor
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/401—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
- G11C11/403—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh
- G11C11/405—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh with three charge-transfer gates, e.g. MOS transistors, per cell
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/401—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
- G11C11/4063—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
- G11C11/407—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
- G11C11/409—Read-write [R-W] circuitsĀ
- G11C11/4097—Bit-line organisation, e.g. bit-line layout, folded bit lines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/528—Geometry or layout of the interconnection structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/06—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
- H01L27/0688—Integrated circuits having a three-dimensional layout
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/08—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/0843—Source or drain regions of field-effect devices
- H01L29/0847—Source or drain regions of field-effect devices of field-effect transistors with insulated gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/1025—Channel region of field-effect devices
- H01L29/1029—Channel region of field-effect devices of field-effect transistors
- H01L29/1033—Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
- H01L29/1037—Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure and non-planar channel
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Semiconductor Memories (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21153826.9A EP3840046A1 (en) | 2016-08-31 | 2017-07-31 | Memory cells and memory arrays |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662381720P | 2016-08-31 | 2016-08-31 | |
PCT/US2017/044638 WO2018044456A1 (en) | 2016-08-31 | 2017-07-31 | Memory cells and memory arrays |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21153826.9A Division-Into EP3840046A1 (en) | 2016-08-31 | 2017-07-31 | Memory cells and memory arrays |
EP21153826.9A Division EP3840046A1 (en) | 2016-08-31 | 2017-07-31 | Memory cells and memory arrays |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3507831A1 EP3507831A1 (en) | 2019-07-10 |
EP3507831A4 true EP3507831A4 (en) | 2020-06-17 |
EP3507831B1 EP3507831B1 (en) | 2021-03-03 |
Family
ID=61243451
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17847158.7A Active EP3507831B1 (en) | 2016-08-31 | 2017-07-31 | Memory arrays |
EP21153826.9A Pending EP3840046A1 (en) | 2016-08-31 | 2017-07-31 | Memory cells and memory arrays |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21153826.9A Pending EP3840046A1 (en) | 2016-08-31 | 2017-07-31 | Memory cells and memory arrays |
Country Status (5)
Country | Link |
---|---|
US (2) | US10157926B2 (en) |
EP (2) | EP3507831B1 (en) |
KR (2) | KR20180130581A (en) |
CN (1) | CN109219883B (en) |
WO (1) | WO2018044456A1 (en) |
Families Citing this family (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102134532B1 (en) | 2016-08-31 | 2020-07-20 | ė§ģ“ķ¬ė” ķ ķ¬ėė”ģ§, ģøķ¬ | Memory cells and memory arrays |
US10079235B2 (en) | 2016-08-31 | 2018-09-18 | Micron Technology, Inc. | Memory cells and memory arrays |
EP3507808A4 (en) | 2016-08-31 | 2020-05-27 | Micron Technology, Inc. | Memory arrays |
US10355002B2 (en) * | 2016-08-31 | 2019-07-16 | Micron Technology, Inc. | Memory cells, methods of forming an array of two transistor-one capacitor memory cells, and methods used in fabricating integrated circuitry |
WO2018044479A1 (en) | 2016-08-31 | 2018-03-08 | Micron Technology, Inc. | Sense amplifier constructions |
EP3507829B1 (en) | 2016-08-31 | 2022-04-06 | Micron Technology, Inc. | Memory cells and memory arrays |
EP3507831B1 (en) | 2016-08-31 | 2021-03-03 | Micron Technology, Inc. | Memory arrays |
CN110192280A (en) | 2017-01-12 | 2019-08-30 | ē¾å ē§ęå ¬åø | Memory cell, pair transistor single capacitor memory cell array, the method for forming pair transistor single capacitor memory cell array and the method for manufacturing integrated circuit |
US10177159B2 (en) | 2017-04-21 | 2019-01-08 | Micron Technology, Inc. | Memory cells and memory arrays |
US10347635B2 (en) | 2017-06-30 | 2019-07-09 | Micron Technology, Inc. | Apparatuses comprising memory cells, and apparatuses comprising memory arrays |
WO2019045882A1 (en) | 2017-08-29 | 2019-03-07 | Micron Technology, Inc. | Memory circuitry |
CN110785843A (en) * | 2017-08-31 | 2020-02-11 | ē¾å ē§ęå ¬åø | Apparatus having a memory cell with two transistors and one capacitor and having a body region of the transistors coupled to a reference voltage |
US10297290B1 (en) | 2017-12-29 | 2019-05-21 | Micron Technology, Inc. | Semiconductor devices, and related control logic assemblies, control logic devices, electronic systems, and methods |
US10366983B2 (en) | 2017-12-29 | 2019-07-30 | Micron Technology, Inc. | Semiconductor devices including control logic structures, electronic systems, and related methods |
US10340267B1 (en) | 2017-12-29 | 2019-07-02 | Micron Technology, Inc. | Semiconductor devices including control logic levels, and related memory devices, control logic assemblies, electronic systems, and methods |
US10229874B1 (en) | 2018-03-22 | 2019-03-12 | Micron Technology, Inc. | Arrays of memory cells individually comprising a capacitor and a transistor and methods of forming such arrays |
US10748931B2 (en) | 2018-05-08 | 2020-08-18 | Micron Technology, Inc. | Integrated assemblies having ferroelectric transistors with body regions coupled to carrier reservoirs |
WO2020181049A1 (en) | 2019-03-06 | 2020-09-10 | Micron Technology, Inc. | Integrated assemblies having transistor body regions coupled to carrier-sink-structures; and methods of forming integrated assemblies |
US11031374B2 (en) * | 2019-03-06 | 2021-06-08 | Micron Technology, Inc. | Methods of compensating for misalignment of bonded semiconductor wafers |
US11038027B2 (en) * | 2019-03-06 | 2021-06-15 | Micron Technology, Inc. | Integrated assemblies having polycrystalline first semiconductor material adjacent conductively-doped second semiconductor material |
US11062763B2 (en) | 2019-04-09 | 2021-07-13 | Micron Technology, Inc. | Memory array with multiplexed digit lines |
US10854617B2 (en) | 2019-04-09 | 2020-12-01 | Micron Technology, Inc. | Integrated components which have both horizontally-oriented transistors and vertically-oriented transistors |
US11049864B2 (en) * | 2019-05-17 | 2021-06-29 | Micron Technology, Inc. | Apparatuses including capacitor structures, and related memory devices, electronic systems, and methods |
KR20210052660A (en) | 2019-10-29 | 2021-05-11 | ģ¼ģ±ģ ģģ£¼ģķģ¬ | Three-dimensional Semiconductor memory device |
US11094699B1 (en) | 2020-05-28 | 2021-08-17 | Micron Technology, Inc. | Apparatuses including stacked horizontal capacitor structures and related methods, memory devices, and electronic systems |
TW202145506A (en) * | 2020-05-29 | 2021-12-01 | å°ē£ē©é«é»č·Æč£½é č”份ęéå ¬åø | Memory cell |
US11569244B2 (en) * | 2020-05-29 | 2023-01-31 | Taiwan Semiconductor Manufacturing Company Limited | Vertical heterostructure semiconductor memory cell and methods for making the same |
KR20220007393A (en) | 2020-07-10 | 2022-01-18 | ģ¼ģ±ģ ģģ£¼ģķģ¬ | Semiconductor memory device |
US11903221B2 (en) * | 2020-08-17 | 2024-02-13 | Taiwan Semiconductor Manufacturing Co., Ltd. | Three dimensional semiconductor device with memory stack |
US11495600B2 (en) * | 2020-11-10 | 2022-11-08 | Micron Technology, Inc. | Vertical three-dimensional memory with vertical channel |
US12120865B2 (en) * | 2020-12-23 | 2024-10-15 | Intel Corporation | Arrays of double-sided dram cells including capacitors on the frontside and backside of a stacked transistor structure |
US11770923B2 (en) * | 2021-03-03 | 2023-09-26 | Micron Technology, Inc. | Thin film transistor random access memory |
JP2022146576A (en) * | 2021-03-22 | 2022-10-05 | ććŖćÆć·ć¢ę Ŗå¼ä¼ē¤¾ | Semiconductor device and semiconductor storage device |
WO2023028821A1 (en) * | 2021-08-31 | 2023-03-09 | Yangtze Memory Technologies Co., Ltd. | Memory devices having vertical transistors and methods for forming thereof |
WO2023028829A1 (en) | 2021-08-31 | 2023-03-09 | Yangtze Memory Technologies Co., Ltd. | Memory devices having vertical transistors and methods for forming the same |
WO2023028890A1 (en) | 2021-08-31 | 2023-03-09 | Yangtze Memory Technologies Co., Ltd. | Memory devices having vertical transistors and methods for forming the same |
CN116097915A (en) * | 2021-08-31 | 2023-05-09 | éæę±ååØē§ęęéč“£ä»»å ¬åø | Memory device with vertical transistor and method of forming the same |
US12114480B2 (en) * | 2021-12-21 | 2024-10-08 | Tokyo Electron Limited | Method of making of plurality of 3D vertical logic elements integrated with 3D memory |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040151020A1 (en) * | 2002-11-27 | 2004-08-05 | Peter Beer | Dynamic memory cell |
US20040232497A1 (en) * | 2001-12-14 | 2004-11-25 | Satoru Akiyama | Semiconductor device and method for manufacturing the same |
US7164595B1 (en) * | 2005-08-25 | 2007-01-16 | Micron Technology, Inc. | Device and method for using dynamic cell plate sensing in a DRAM memory cell |
Family Cites Families (111)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4103342A (en) | 1976-06-17 | 1978-07-25 | International Business Machines Corporation | Two-device memory cell with single floating capacitor |
US4554570A (en) | 1982-06-24 | 1985-11-19 | Rca Corporation | Vertically integrated IGFET device |
US5066607A (en) | 1987-11-30 | 1991-11-19 | Texas Instruments Incorporated | Method of making a trench DRAM cell with dynamic gain |
US5146300A (en) | 1989-11-27 | 1992-09-08 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor integrated circuit device having improved stacked capacitor and manufacturing method therefor |
JPH03205867A (en) | 1990-01-08 | 1991-09-09 | Nec Corp | Semiconductor memory |
JP2678094B2 (en) * | 1991-03-01 | 1997-11-17 | ć·ć£ć¼ćę Ŗå¼ä¼ē¤¾ | Dynamic random access memory |
US5398200A (en) | 1992-03-02 | 1995-03-14 | Motorola, Inc. | Vertically formed semiconductor random access memory device |
US5389810A (en) * | 1992-03-27 | 1995-02-14 | Matsushita Electric Industrial Co., Ltd. | Semiconductor device having at least one symmetrical pair of MOSFETs |
US5363327A (en) * | 1993-01-19 | 1994-11-08 | International Business Machines Corporation | Buried-sidewall-strap two transistor one capacitor trench cell |
TW378323B (en) | 1994-09-22 | 2000-01-01 | Matsushita Electric Ind Co Ltd | Ferroelectric memory device |
JP3226433B2 (en) | 1994-09-22 | 2001-11-05 | ę¾äøé»åØē£ę„ę Ŗå¼ä¼ē¤¾ | Ferroelectric memory device |
JP3135795B2 (en) | 1994-09-22 | 2001-02-19 | ę±čćć¤ćÆććØć¬ćÆććććÆć¹ę Ŗå¼ä¼ē¤¾ | Dynamic memory |
JP3549602B2 (en) | 1995-01-12 | 2004-08-04 | ę Ŗå¼ä¼ē¤¾ć«ććµć¹ććÆćććø | Semiconductor storage device |
JPH08264764A (en) | 1995-03-22 | 1996-10-11 | Toshiba Corp | Semiconductor device |
US5830791A (en) * | 1995-09-06 | 1998-11-03 | Lg Semicon Co., Ltd. | Manufacturing process for a DRAM with a buried region |
US8018058B2 (en) | 2004-06-21 | 2011-09-13 | Besang Inc. | Semiconductor memory device |
JP3495905B2 (en) | 1998-02-19 | 2004-02-09 | ć·ć£ć¼ćę Ŗå¼ä¼ē¤¾ | Semiconductor storage device |
US6043527A (en) | 1998-04-14 | 2000-03-28 | Micron Technology, Inc. | Circuits and methods for a memory cell with a trench plate trench capacitor and a vertical bipolar read device |
US6028806A (en) | 1998-05-22 | 2000-02-22 | Micron Technology, Inc. | Semiconductor memory with local phase generation from global phase signals and local isolation signals |
US6141286A (en) | 1998-08-21 | 2000-10-31 | Micron Technology, Inc. | Embedded DRAM architecture with local data drivers and programmable number of data read and data write lines |
US6365453B1 (en) | 1999-06-16 | 2002-04-02 | Micron Technology, Inc. | Method and structure for reducing contact aspect ratios |
US6159818A (en) | 1999-09-02 | 2000-12-12 | Micron Technology, Inc. | Method of forming a container capacitor structure |
JP4047531B2 (en) | 2000-10-17 | 2008-02-13 | ę Ŗå¼ä¼ē¤¾ę±č | Ferroelectric memory device |
JP2002216473A (en) | 2001-01-16 | 2002-08-02 | Matsushita Electric Ind Co Ltd | Semiconductor memory |
US6518610B2 (en) * | 2001-02-20 | 2003-02-11 | Micron Technology, Inc. | Rhodium-rich oxygen barriers |
CA2342496A1 (en) | 2001-03-30 | 2002-09-30 | Atmos Corporation | Twisted wordline straps |
US6528896B2 (en) | 2001-06-21 | 2003-03-04 | Samsung Electronics Co., Ltd. | Scalable two transistor memory device |
US6794238B2 (en) * | 2001-11-07 | 2004-09-21 | Micron Technology, Inc. | Process for forming metallized contacts to periphery transistors |
JP2003263886A (en) | 2002-03-08 | 2003-09-19 | Fujitsu Ltd | Ferroelectric memory in which bit line capacity can be optimized |
JP2003273245A (en) | 2002-03-15 | 2003-09-26 | Hitachi Ltd | Semiconductor memory device |
US6587367B1 (en) | 2002-03-19 | 2003-07-01 | Texas Instruments Incorporated | Dummy cell structure for 1T1C FeRAM cell array |
JP3650077B2 (en) | 2002-03-29 | 2005-05-18 | ę²é»ę°å·„ę„ę Ŗå¼ä¼ē¤¾ | Semiconductor memory device |
JP4290921B2 (en) | 2002-04-08 | 2009-07-08 | ćØć«ćć¼ćć”ć¢ćŖę Ŗå¼ä¼ē¤¾ | Semiconductor integrated circuit device |
ITMI20020793A1 (en) | 2002-04-15 | 2003-10-15 | St Microelectronics Srl | SEMICONDUCTOR MEMORY FERAM |
EP1512150B1 (en) * | 2002-05-28 | 2010-09-01 | Nxp B.V. | Memory array having 2t memory cells |
US6563727B1 (en) | 2002-07-31 | 2003-05-13 | Alan Roth | Method and structure for reducing noise effects in content addressable memories |
KR100456598B1 (en) | 2002-09-09 | 2004-11-09 | ģ¼ģ±ģ ģģ£¼ģķģ¬ | Memory device arranged memory cells having complementary data |
US6744087B2 (en) | 2002-09-27 | 2004-06-01 | International Business Machines Corporation | Non-volatile memory using ferroelectric gate field-effect transistors |
JP4005468B2 (en) * | 2002-09-30 | 2007-11-07 | åÆ士éę Ŗå¼ä¼ē¤¾ | Memory cell arrangement method and semiconductor memory device |
JP3597185B2 (en) | 2002-11-12 | 2004-12-02 | ę²é»ę°å·„ę„ę Ŗå¼ä¼ē¤¾ | Ferroelectric memory |
US6804142B2 (en) | 2002-11-12 | 2004-10-12 | Micron Technology, Inc. | 6F2 3-transistor DRAM gain cell |
US6960796B2 (en) | 2002-11-26 | 2005-11-01 | Micron Technology, Inc. | CMOS imager pixel designs with storage capacitor |
US6845033B2 (en) | 2003-03-05 | 2005-01-18 | International Business Machines Corporation | Structure and system-on-chip integration of a two-transistor and two-capacitor memory cell for trench technology |
US6822891B1 (en) | 2003-06-16 | 2004-11-23 | Kabushiki Kaisha Toshiba | Ferroelectric memory device |
US7867822B2 (en) | 2003-06-24 | 2011-01-11 | Sang-Yun Lee | Semiconductor memory device |
JP3961994B2 (en) | 2003-07-28 | 2007-08-22 | ę Ŗå¼ä¼ē¤¾ę±č | Semiconductor memory device |
DE10344604B4 (en) | 2003-09-25 | 2011-08-11 | Infineon Technologies AG, 81669 | Storage unit with collecting electrodes |
US7262089B2 (en) * | 2004-03-11 | 2007-08-28 | Micron Technology, Inc. | Methods of forming semiconductor structures |
US7378702B2 (en) | 2004-06-21 | 2008-05-27 | Sang-Yun Lee | Vertical memory device structures |
US7122425B2 (en) | 2004-08-24 | 2006-10-17 | Micron Technology, Inc. | Methods of forming semiconductor constructions |
US7241655B2 (en) * | 2004-08-30 | 2007-07-10 | Micron Technology, Inc. | Method of fabricating a vertical wrap-around-gate field-effect-transistor for high density, low voltage logic and memory array |
US7199419B2 (en) * | 2004-12-13 | 2007-04-03 | Micron Technology, Inc. | Memory structure for reduced floating body effect |
KR100585169B1 (en) | 2004-12-23 | 2006-06-02 | ģ¼ģ±ģ ģģ£¼ģķģ¬ | Layout of semiconductor memory device and method of controlling capacitance of dummy cell |
KR100681039B1 (en) * | 2005-07-04 | 2007-02-09 | ģģ§ģ ģ ģ£¼ģķģ¬ | Oled |
US7488664B2 (en) | 2005-08-10 | 2009-02-10 | Micron Technology, Inc. | Capacitor structure for two-transistor DRAM memory cell and method of forming same |
US7330388B1 (en) | 2005-09-23 | 2008-02-12 | Cypress Semiconductor Corporation | Sense amplifier circuit and method of operation |
US7358133B2 (en) | 2005-12-28 | 2008-04-15 | Nanya Technology Corporation | Semiconductor device and method for making the same |
KR100729360B1 (en) | 2006-04-05 | 2007-06-15 | ģ¼ģ±ģ ģģ£¼ģķģ¬ | Capacitor structures of semiconductor device and methods of fabricating the same |
KR100739532B1 (en) | 2006-06-09 | 2007-07-13 | ģ¼ģ±ģ ģģ£¼ģķģ¬ | Method of forming a buried bit line |
US7772632B2 (en) | 2006-08-21 | 2010-08-10 | Micron Technology, Inc. | Memory arrays and methods of fabricating memory arrays |
KR100791339B1 (en) | 2006-08-25 | 2008-01-03 | ģ¼ģ±ģ ģģ£¼ģķģ¬ | An embeded semiconductor device including planarization resistant patterns and method for fabricating the same |
JP5057739B2 (en) | 2006-10-03 | 2012-10-24 | ę Ŗå¼ä¼ē¤¾ę±č | Semiconductor memory device |
JP4901459B2 (en) | 2006-12-26 | 2012-03-21 | ę Ŗå¼ä¼ē¤¾ę±č | Semiconductor memory device |
US7558097B2 (en) | 2006-12-28 | 2009-07-07 | Intel Corporation | Memory having bit line with resistor(s) between memory cells |
TWI349334B (en) | 2007-07-02 | 2011-09-21 | Nanya Technology Corp | Dram structure and method of making the same |
US7679405B2 (en) | 2007-10-24 | 2010-03-16 | Agere Systems Inc. | Latch-based sense amplifier |
US7920404B2 (en) | 2007-12-31 | 2011-04-05 | Texas Instruments Incorporated | Ferroelectric memory devices with partitioned platelines |
US7742324B2 (en) | 2008-02-19 | 2010-06-22 | Micron Technology, Inc. | Systems and devices including local data lines and methods of using, making, and operating the same |
US7700469B2 (en) | 2008-02-26 | 2010-04-20 | Micron Technology, Inc. | Methods of forming semiconductor constructions |
US7821039B2 (en) * | 2008-06-23 | 2010-10-26 | Taiwan Semiconductor Manufacturing Company, Ltd. | Layout architecture for improving circuit performance |
US8009459B2 (en) | 2008-12-30 | 2011-08-30 | Taiwan Semiconductor Manufacturing Company, Ltd. | Circuit for high speed dynamic memory |
JP4487221B1 (en) | 2009-04-17 | 2010-06-23 | ę„ę¬ć¦ććµć³ćć£ć¹ćØć¬ćÆććććÆć¹ę Ŗå¼ä¼ē¤¾ | Semiconductor device |
JP5588123B2 (en) | 2009-05-22 | 2014-09-10 | ćć¼ćØć¹ćć©ć¼ ć«ćÆć¹ć³ ćØć¹ćØć¤ć¢ć¼ć«ćØć« | Semiconductor device and manufacturing method thereof |
JP5524547B2 (en) | 2009-09-14 | 2014-06-18 | ć¦ććµć³ćć£ć¹ ćØć¬ćÆććććÆć¹ ć·ć³ć¬ćć¼ć« ćć©ć¤ćć¼ć ćŖćććć | Semiconductor memory device |
JP2011142256A (en) | 2010-01-08 | 2011-07-21 | Elpida Memory Inc | Semiconductor device and method of manufacturing the same |
KR20180043383A (en) * | 2010-01-22 | 2018-04-27 | ź°ė¶ģķ¤ź°ģ“ģ¤ ķėģ¤ė°ģ“ ģė¤ė£Øźø° ģ¼ķģ¼ | Method for manufacturing semiconductor device |
KR101669244B1 (en) | 2010-06-08 | 2016-10-25 | ģ¼ģ±ģ ģģ£¼ģķģ¬ | Sram devices and methods for fabricating the same |
US9454997B2 (en) | 2010-12-02 | 2016-09-27 | Micron Technology, Inc. | Array of nonvolatile memory cells having at least five memory cells per unit cell, having a plurality of the unit cells which individually comprise three elevational regions of programmable material, and/or having a continuous volume having a combination of a plurality of vertically oriented memory cells and a plurality of horizontally oriented memory cells; array of vertically stacked tiers of nonvolatile memory cells |
TWI415247B (en) | 2010-12-15 | 2013-11-11 | Powerchip Technology Corp | Dynamic random access memory cell and array having vertical channel transistor |
EP2555241A1 (en) | 2011-08-02 | 2013-02-06 | Nxp B.V. | IC die, semiconductor package, printed circuit board and IC die manufacturing method |
KR20130042779A (en) * | 2011-10-19 | 2013-04-29 | ģ¼ģ±ģ ģģ£¼ģķģ¬ | Semiconductor devices including a vertical channel transistor and methods of fabricating the same |
US8704221B2 (en) | 2011-12-23 | 2014-04-22 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US8872258B2 (en) | 2012-01-26 | 2014-10-28 | Ps4 Luxco S.A.R.L. | Semiconductor memory device |
US20130193400A1 (en) * | 2012-01-27 | 2013-08-01 | Micron Technology, Inc. | Memory Cell Structures and Memory Arrays |
JP2013168569A (en) | 2012-02-16 | 2013-08-29 | Elpida Memory Inc | Semiconductor device and manufacturing method of the same |
US9312257B2 (en) * | 2012-02-29 | 2016-04-12 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US9036391B2 (en) | 2012-03-06 | 2015-05-19 | Micron Technology, Inc. | Arrays of vertically-oriented transistors, memory arrays including vertically-oriented transistors, and memory cells |
JP2013187223A (en) | 2012-03-06 | 2013-09-19 | Elpida Memory Inc | Semiconductor device |
US8693253B2 (en) * | 2012-04-30 | 2014-04-08 | Design Express Limited | Vertically stackable NAND flash memory |
KR20140017272A (en) | 2012-07-31 | 2014-02-11 | ģģ¤ģ¼ģ“ķģ“ėģ¤ ģ£¼ģķģ¬ | Semiconductor device and method of fabricating the same |
US9478550B2 (en) | 2012-08-27 | 2016-10-25 | Micron Technology, Inc. | Arrays of vertically-oriented transistors, and memory arrays including vertically-oriented transistors |
KR102061694B1 (en) | 2013-10-14 | 2020-01-02 | ģ¼ģ±ģ ģģ£¼ģķģ¬ | Semiconductor memory device having three-dimensional cross point array |
KR102191215B1 (en) | 2013-12-20 | 2020-12-16 | ģ¼ģ±ģ ģģ£¼ģķģ¬ | Static random access memory (sram) cell and method of manufacturing the same |
US9343507B2 (en) | 2014-03-12 | 2016-05-17 | Sandisk 3D Llc | Dual channel vertical field effect transistor including an embedded electrode |
US10128327B2 (en) | 2014-04-30 | 2018-11-13 | Stmicroelectronics, Inc. | DRAM interconnect structure having ferroelectric capacitors exhibiting negative capacitance |
KR102184355B1 (en) | 2014-09-16 | 2020-11-30 | ģ¼ģ±ģ ģģ£¼ģķģ¬ | Semiconductor device |
US9245893B1 (en) | 2014-11-19 | 2016-01-26 | Micron Technology, Inc. | Semiconductor constructions having grooves dividing active regions |
US9419003B1 (en) | 2015-05-15 | 2016-08-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor devices and methods of manufacture thereof |
US9378780B1 (en) | 2015-06-16 | 2016-06-28 | National Tsing Hua University | Sense amplifier |
US10424671B2 (en) | 2015-07-29 | 2019-09-24 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device, circuit board, and electronic device |
KR102420150B1 (en) | 2015-08-19 | 2022-07-13 | ģ¼ģ±ģ ģģ£¼ģķģ¬ | Method of fabricating semiconductor device |
US20170186782A1 (en) | 2015-12-24 | 2017-06-29 | Innolux Corporation | Pixel circuit of active-matrix light-emitting diode and display panel having the same |
JP6538598B2 (en) | 2016-03-16 | 2019-07-03 | ę Ŗå¼ä¼ē¤¾ę±č | Transistor and semiconductor memory device |
US10355002B2 (en) | 2016-08-31 | 2019-07-16 | Micron Technology, Inc. | Memory cells, methods of forming an array of two transistor-one capacitor memory cells, and methods used in fabricating integrated circuitry |
EP3507831B1 (en) | 2016-08-31 | 2021-03-03 | Micron Technology, Inc. | Memory arrays |
EP3507829B1 (en) | 2016-08-31 | 2022-04-06 | Micron Technology, Inc. | Memory cells and memory arrays |
US10079235B2 (en) | 2016-08-31 | 2018-09-18 | Micron Technology, Inc. | Memory cells and memory arrays |
CN110192280A (en) | 2017-01-12 | 2019-08-30 | ē¾å ē§ęå ¬åø | Memory cell, pair transistor single capacitor memory cell array, the method for forming pair transistor single capacitor memory cell array and the method for manufacturing integrated circuit |
CN110603640B (en) | 2017-07-17 | 2023-06-27 | ē¾å ē§ęå ¬åø | Memory circuit system |
US10020311B1 (en) | 2017-08-02 | 2018-07-10 | Ap Memory Technology Corporation | Semiconductor memory device provided with DRAM cell including two transistors and common capacitor |
CN110785843A (en) | 2017-08-31 | 2020-02-11 | ē¾å ē§ęå ¬åø | Apparatus having a memory cell with two transistors and one capacitor and having a body region of the transistors coupled to a reference voltage |
-
2017
- 2017-07-31 EP EP17847158.7A patent/EP3507831B1/en active Active
- 2017-07-31 CN CN201780030983.5A patent/CN109219883B/en active Active
- 2017-07-31 KR KR1020187033620A patent/KR20180130581A/en active Application Filing
- 2017-07-31 KR KR1020207027194A patent/KR102223551B1/en active IP Right Grant
- 2017-07-31 EP EP21153826.9A patent/EP3840046A1/en active Pending
- 2017-07-31 US US15/664,161 patent/US10157926B2/en active Active
- 2017-07-31 WO PCT/US2017/044638 patent/WO2018044456A1/en unknown
-
2018
- 2018-11-07 US US16/183,468 patent/US11094697B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040232497A1 (en) * | 2001-12-14 | 2004-11-25 | Satoru Akiyama | Semiconductor device and method for manufacturing the same |
US20040151020A1 (en) * | 2002-11-27 | 2004-08-05 | Peter Beer | Dynamic memory cell |
US7164595B1 (en) * | 2005-08-25 | 2007-01-16 | Micron Technology, Inc. | Device and method for using dynamic cell plate sensing in a DRAM memory cell |
Non-Patent Citations (2)
Title |
---|
CHAO-GANG WEI ET AL: "A NEW HIGH-RELIABLE 2T/1C FeRAM CELL", INTEGRATED FERROELECTRICS, vol. 81, no. 1, 17 August 2006 (2006-08-17), US, pages 149 - 155, XP055694118, ISSN: 1058-4587, DOI: 10.1080/10584580600660264 * |
See also references of WO2018044456A1 * |
Also Published As
Publication number | Publication date |
---|---|
CN109219883B (en) | 2023-03-21 |
KR20200113006A (en) | 2020-10-05 |
US11094697B2 (en) | 2021-08-17 |
EP3507831B1 (en) | 2021-03-03 |
EP3507831A1 (en) | 2019-07-10 |
WO2018044456A1 (en) | 2018-03-08 |
US20180061835A1 (en) | 2018-03-01 |
US20190088652A1 (en) | 2019-03-21 |
EP3840046A1 (en) | 2021-06-23 |
US10157926B2 (en) | 2018-12-18 |
CN109219883A (en) | 2019-01-15 |
KR102223551B1 (en) | 2021-03-08 |
KR20180130581A (en) | 2018-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3507831A4 (en) | Memory cells and memory arrays | |
EP3507830A4 (en) | Memory cells and memory arrays | |
EP3507832A4 (en) | Memory cells and memory arrays | |
EP3507829A4 (en) | Memory cells and memory arrays | |
EP3571720A4 (en) | Memory cells, integrated structures and memory arrays | |
EP3635782A4 (en) | Memory arrays | |
EP3635783A4 (en) | Memory arrays | |
EP3711093A4 (en) | Memory cells, memory arrays, and methods of forming memory arrays | |
EP3507804A4 (en) | Ferroelectric memory cells | |
EP3729437A4 (en) | Auto-referenced memory cell read techniques | |
EP3729429A4 (en) | Auto-referenced memory cell read techniques | |
EP3718110A4 (en) | Operations on memory cells | |
EP3259757A4 (en) | Memory cells | |
EP3577690A4 (en) | Nand memory arrays, and methods of forming nand memory arrays | |
EP3155620A4 (en) | Memory cell and an array of memory cells | |
EP3888127A4 (en) | Memory arrays | |
EP3577688A4 (en) | Memory arrays, and methods of forming memory arrays | |
EP3281225A4 (en) | Constructions comprising stacked memory arrays | |
EP3616240A4 (en) | Arrays of elevationally-extending strings of memory cells and methods of forming memory arrays | |
EP3380117A4 (en) | Genetically modified cells and uses thereof | |
EP3430626A4 (en) | Ferroelectric memory cell sensing | |
EP3440673A4 (en) | Supply-switched dual cell memory bitcell | |
EP3612568B8 (en) | Cell | |
EP3459079A4 (en) | Improved flash memory cell associated decoders | |
EP3180430A4 (en) | Genomically-encoded memory in live cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20181107 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01L 27/108 20060101AFI20200220BHEP |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20200520 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01L 27/108 20060101AFI20200514BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200928 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1368150 Country of ref document: AT Kind code of ref document: T Effective date: 20210315 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602017034058 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210603 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210603 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210604 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210303 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1368150 Country of ref document: AT Kind code of ref document: T Effective date: 20210303 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210705 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210703 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602017034058 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 |
|
26N | No opposition filed |
Effective date: 20211206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210703 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602017034058 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: H01L0027108000 Ipc: H10B0012000000 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20170731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240730 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240724 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240725 Year of fee payment: 8 |