EP3504943B1 - Plasma spray device - Google Patents

Plasma spray device Download PDF

Info

Publication number
EP3504943B1
EP3504943B1 EP17761178.7A EP17761178A EP3504943B1 EP 3504943 B1 EP3504943 B1 EP 3504943B1 EP 17761178 A EP17761178 A EP 17761178A EP 3504943 B1 EP3504943 B1 EP 3504943B1
Authority
EP
European Patent Office
Prior art keywords
anode
neutrode
spraying device
plasma spraying
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17761178.7A
Other languages
German (de)
French (fr)
Other versions
EP3504943A1 (en
Inventor
Silvano Keller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Metco AG
Original Assignee
AMT AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AMT AG filed Critical AMT AG
Publication of EP3504943A1 publication Critical patent/EP3504943A1/en
Application granted granted Critical
Publication of EP3504943B1 publication Critical patent/EP3504943B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3452Supplementary electrodes between cathode and anode, e.g. cascade
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/28Cooling arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/42Plasma torches using an arc with provisions for introducing materials into the plasma, e.g. powder, liquid
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3478Geometrical details

Definitions

  • the invention relates to a plasma spraying device designed according to the preamble of claim 1, an anode designed according to claim 16 and a neutrode designed according to claim 18 for a generic plasma spraying device.
  • Plasma spraying devices are known from the prior art, the torch head of which has a cathode, an anode spaced therefrom and a neutrode arrangement arranged between them, which comprises a plurality of neutrodes which are electrically insulated from one another.
  • the anode is usually designed in the form of a round nozzle.
  • an arc is created between the cathode and the anode.
  • the arc is applied to the anode on the entry side, i.e. the area facing the inside of the torch head. Very high temperatures prevail in this area, which can easily reach 10,000 Kelvin and more. Therefore, in addition to the anode, the parts adjacent to the anode, in particular the adjacent neutrode, are also subject to high thermal loads and high wear.
  • a generic plasma spray gun is known. Its burner head is equipped with a cathode arrangement, a ring-shaped anode and several neutrodes that are electrically isolated from one another. There is a gap between the individual neutrodes, in which annular discs made of insulating material are inserted. These neutrodes form the constricted plasma channel. The inner diameter of the ring disks corresponds to the inner diameter of the plasma channel.
  • a cooling channel (cavity) is arranged on the outside, through which cooling water is conducted.
  • the frontmost of these annular discs which is arranged between the frontmost neutrode and the anode, is thermally very highly stressed together with the frontmost neutrode and is therefore subject to high wear, especially since the anode and the frontmost neutrode are only surrounded by cooling water on the outside.
  • the EP 1 875 785 A1 discloses an interface for a plasma gun.
  • This includes, among other things, a mount on the plasma gun for a nozzle attachment.
  • the plasma channel is formed by a multitude of neutrodes together with the nozzle attachment.
  • both the nozzle attachment and the neutrodes are equipped with cylindrical drilled.
  • the nozzle attachment is fixed to the plasma gun by means of a clamp arrangement.
  • a channel for cooling liquid from the plasma gun leads first through the clamp assembly and then through the nozzle attachment. From the nozzle attachment, the channel leads along the outside of the neutrodes back into the plasma gun.
  • a sealing ring is arranged between the foremost neutrode and the nozzle, which on the inside extends radially up to an insert of the nozzle.
  • An O-ring is arranged outside of this sealing ring.
  • the WO 2006/012165 A2 discloses a conventional plasma gun having a cathode module, an intermediate module, an anode module and a feed module.
  • the intermediate module comprises a plurality of intermediate electrodes which are separated from one another by a radially running gap.
  • ceramic insulating rings and O-rings are accommodated in the respective gap.
  • the plasma torch includes three assemblies, namely a gun body assembly, an anode-equipped nozzle assembly, and a cathode assembly.
  • the cathode group comprises a rod-shaped cathode connected to an axially displaceable piston. The cathode can thus be pushed forwards or backwards in the axial direction.
  • the gun body assembly includes four tubular segments. The foremost of these segments is adjacent to the anode. A gap runs between the foremost segment and the anode, in which an insulating ring is arranged.
  • the object of the invention is to propose a plasma spraying device designed according to the preamble of claim 1, in which the parts of the burner head that are subject to high thermal loads, in particular the anode together with the neutrode adjacent to it, is/are designed in such a way that, with the same nominal power, have a longer service life or allow an increased nominal power with the same service life.
  • the gap in the plasma spraying device running between the foremost neutrode and the anode has at least two sections, with a radial and/or axial distance between the two sections and with an insulating disk being arranged in each of the two sections, the basic requirement is met that the Wearing parts in the thermally most heavily loaded area of the plasma spraying device, in particular the anode together with the adjacent neutrode, have a longer service life with the same rated power or allow an increased rated power with the same service life.
  • the features mentioned according to the invention can also ensure long-term stable electrical insulation between the foremost neutrode and the anode.
  • the second or outer insulating disk i.e. the insulating disk facing away from the plasma channel, is subjected to comparatively little stress.
  • the hydraulic seal is also improved in that no coolant can penetrate into the plasma channel via the mentioned gap, since the seal provided for sealing the gap is thermally less stressed.
  • Preferred embodiments of the plasma spraying device are defined in the dependent claims 2 to 15.
  • said gap has a first inner section, a second middle section and a third has an outer section, the first inner section being offset in the radial and axial direction relative to the third outer section, and one of the said insulating washers being arranged in each of the first and third sections.
  • the middle section acts as a thermal insulator.
  • the middle section of the gap particularly preferably runs at an angle to the inner and/or outer section. This measure brings about even better thermal shielding of the outer section.
  • a further preferred embodiment provides that a sealing ring is arranged radially outside of the outer section. Such a sealing ring is thus arranged in an area that is subjected to less thermal stress.
  • the foremost neutrode is provided with an annular projection facing the anode and the anode is provided with an annular depression facing the foremost neutrode, the gap running between said projection and said depression.
  • the inner section is preferably arranged inside the outer section in the radial direction, with an insulating disk being arranged in the inner section, which is set back in the radial direction in relation to the plasma channel.
  • said insulating pane is somewhat spaced apart from the arc that is present during operation, and the outer section is thermally shielded particularly well.
  • the inside diameter of the foremost neutrode is at least 10%, in particular at least 20%, preferably at least 30% larger than the inside diameter of the anode, at least in the end region facing the anode.
  • the anode is ring-shaped and is provided on the inside with a high-melting insert which, in the direction of the longitudinal axis of the plasma channel, reaches at least approximately to the gap between the foremost neutrode and the anode.
  • the foremost neutrode is provided with an annular collar in which slots are made to form cooling fins.
  • Such cooling ribs have a large surface, so that the neutrode can be cooled very efficiently by means of a cooling liquid.
  • all neutrodes are provided with an annular collar, each collar being provided with a plurality of axial slots so that a plurality of cooling fins are formed, and wherein the cooling fins so formed are in communication with a channel or annulus in which a coolant circulates.
  • each collar being provided with a plurality of axial slots so that a plurality of cooling fins are formed, and wherein the cooling fins so formed are in communication with a channel or annulus in which a coolant circulates.
  • the slits mentioned particularly preferably have a depth which is at least 5% of the circumference of the collar, particularly preferably at least 10% of the circumference of the collar. Slots designed in this way form cooling ribs with a particularly large surface area, which is advantageous with regard to good cooling of the associated neutrode.
  • the plasma spraying device preferably has an annular space, which completely surrounds the neutrodes, for receiving cooling liquid.
  • annular space allows the neutrodes to be cooled along their entire circumference.
  • the annular space is particularly preferably arranged and designed in such a way that the cooling liquid flows in the axial direction along the neutrode as well as the anode. Particularly good heat dissipation can be ensured by an axial flow of the coolant.
  • the first neutrode facing the cathode is provided with a conically tapering section which forms part of the plasma channel. This forms a type of constriction, by means of which the flow of the plasma jet can be influenced in the desired manner.
  • Claims 16 and 17 also claim an anode for a plasma spray device according to claim 1, while claims 18 to 20 claim a neutrode for a plasma spray device according to claim 1.
  • FIG 1 shows a longitudinal section through the torch head 2 of the plasma spraying device, generally designated 1, while the Fig. 1a an enlarged section of the 1 shows. Based on Figures 1 and 1a the structure of a plasma spraying device designed according to the invention and of the associated torch head 2 is explained in more detail.
  • the burner head 2 has a cathode 3, an anode 7 spaced therefrom and a neutrode arrangement which is arranged in between and consists of three neutrodes 4, 5, 6.
  • the neutrodes 4, 5, 6 together with the essentially hollow-cylindrical anode 7 form the plasma channel 10.
  • the anode 7 has a powder feed element 44 which is provided with radial channels 45 through which a coating powder can be fed.
  • a union nut 46 is provided, the clamping lug 47 of which presses axially onto the anode 7 in the region of the powder supply element 44.
  • the anode 7 in turn presses axially on the neutrodes 4, 5, 6 and also fixes them in the axial direction.
  • the first or rearmost neutrode 4 has an interior space 11 with a section 11a that narrows conically towards the front in the direction of flow.
  • This Conical section 11a forms part of plasma channel 10.
  • This conical section 11a forms a constriction, by means of which the flow of the plasma jet is influenced in the desired manner.
  • the first neutrode 4 surrounds the rod-shaped cathode 3 .
  • the middle neutrode 5 is essentially ring-shaped, with its interior 12 expanding slightly in the direction of the anode 7 .
  • the last or foremost neutrode 6 has a substantially cylindrical interior 13. Between the rearmost 4 and the middle neutrode 5, as well as between the middle 5 and the foremost neutrode 6, there is an annular gap 15, 20. These two gaps 15, 20 run essentially radially in a straight line outwards.
  • An annular insulating disc 16, 21 is inserted into each of the two gaps 15, 20 mentioned.
  • the respective insulating disk 16, 21 is relatively thin and is delimited on the outside by a flat, but also annular support ring 17, 22.
  • This outer support ring 17, 22 is followed by an O-ring 18, 23, which serves as a seal for coolant, as will be explained in more detail below.
  • this gap 26 does not run in a straight line, but consists of an inner, essentially radially running first section 27, a central, essentially axially running second section 28, and a outer third section 29, which in turn essentially runs radially.
  • the first inner section 27 is offset both radially and axially with respect to the outer third section 29.
  • the middle section 28 essentially runs at an angle of 90° to the first and the third section 27, 29. Of course, any other angle, for example 30°, 45° or 60°, is also possible.
  • an insulating disk 30, 31 is added in the inner as well as the outer section 27, 29 .
  • the two insulating disks 30, 31 are spaced apart and the part of the middle section 28 lying between them acts as a thermal insulator.
  • the outer insulating disk 31 is in turn followed by an O-ring 32, which serves as a seal for cooling liquid and at the same time also creates a gas-tight seal.
  • the three insulating disks 16, 21, 30 are set back somewhat in relation to the plasma channel 10, which has a positive effect on their service life.
  • the inner insulating disk 31 arranged in the third gap 26 is set back a little further than the other two insulating disks 16 , 21 , to the extent that its inside runs outside the insert 8 .
  • the essentially hollow-cylindrical anode 7 is provided on the inside with an insert 8 made of a high-melting and conductive material such as tungsten.
  • the cooling liquid used to cool elements of the burner head is introduced into the burner head 2 via a front connecting flange 49 . From this flange 49 lead oblique channels, which in the representations according to Figures 1 and 1a are not recognizable, into a first annular space 50.
  • the annular space 50 opens into a second flow space 51, also designed as an annular space, which extends around the three neutrodes 4, 5, 6 and serves to cool them. At the end, the flow space 51 opens into an oblique channel 40 let into the anode 7 and leading to the area of the front end of the anode 7 .
  • the sloping channel 40 traverses an annular channel 41 embedded in the anode 7, from which the cooling liquid can flow upwards into another return chamber 52 designed as an annular space, which finally connects via several channels (not visible) running inside the burner head with a rear connecting flange 53 connected is.
  • the cooling liquid emerges from the burner head via this rear connecting flange 53 .
  • a gas can be supplied to the burner via a central connecting flange 55 .
  • the mentioned O-rings 18, 23, 32 prevent cooling liquid from being able to get into the plasma channel 10 from the supply space 51 via the respective gap 15, 20, 26.
  • the insulating discs 16, 21, 30, 31 serve in particular as electrical but also as thermal insulation.
  • the insulating disks 16, 21, 30, 31 are made of a non-conductive and high-temperature-resistant material such as silicon nitride.
  • these insulating disks 16, 21, 30, 31 also protect the O-rings 18, 23, 32, which are made of an elastic and temperature-resistant material such as Viton® , from thermal overload.
  • An arc is present between the cathode 3 and the anode 7 during operation of the plasma spraying device.
  • This arc extends from the cathode 3 to the starting area 25 of the anode 7 or its insert 8.
  • the insert 8 is preferably rounded, which is advantageous with regard to a long service life.
  • the arc usually wanders around a bit in this initial area 25 .
  • the middle section 28 of the third gap 26 acts as a thermal insulator between the two insulating panes 30, 31.
  • the inner insulating pane 30 is set back somewhat compared to the inside of the anode 7 or the anode insert 8, which has a positive effect on its service life.
  • the three neutrodes 5, 6, 7 and the anode 7 are cooled particularly efficiently, as will be explained in more detail below.
  • the three neutrodes 4, 5, 6 are provided with an annular collar (not visible). In each of these collars, a multiplicity of axially extending recesses—slits—are let in to form cooling fins.
  • the coolant flows from the annular space 50 into the flow space 51 designed as an annular space and flows through it.
  • the flow space 51 is arranged and designed in such a way that the coolant flows in the axial direction along the neutrodes 4 , 5 , 6 as well as the anode 7 .
  • the cooling liquid also flows in the axial direction through the axial slits in the neutrodes 4, 5, 6, which serve to form the cooling ribs.
  • the cooling liquid can circulate in the longitudinal direction along the neutrodes and ensure efficient cooling.
  • the cooling liquid flows into the annular channel 41 of the anode 7 via the oblique bores 40 of the anode 7 .
  • the oblique bores 40 lead behind the ring channel 41 even further forward into the base body of the anode 7 .
  • the cooling liquid enters the return space 52 surrounding the neutrode arrangement, from which it then flows upwards into the rear connection flange 53 and can exit the burner head 2 via this. If necessary, the flow direction of the cooling water can also be reversed.
  • the inner diameter of the flow space 51 is preferably such on the The outer diameter of the circumferential collar of the respective neutrode 4, 5, 6 is adjusted so that the neutrodes 4, 5, 6 are precisely aligned in the radial direction when they are inserted into the advance chamber 51.
  • the figure 2 shows the first neutrode 4 in a perspective and sectional view.
  • this neutrode 4 is provided on the outside with axially inclined recesses 56 in the form of slots, through which the coolant can flow into an annular channel 57 surrounding the neutrode 4 .
  • the annular channel 57 is delimited by an annular peripheral collar 58 on the front side facing the second neutrode.
  • Axially extending recesses in the form of slots 59 are embedded in this collar 58, so that a multiplicity of cooling ribs 60 are formed.
  • a collar 58 designed in this way has a large surface area with a correspondingly large cooling surface area and enables good cooling of the first neutrode.
  • the respective slot 59 preferably has a depth which is at least 5% of the circumference of the collar, particularly preferably at least 10% of the circumference of the respective collar.
  • the first neutrode 4 is provided on the inner side facing the cathode with a conically tapering section forming part of the plasma channel
  • the second neutrode 5 in a perspective and sectional view.
  • the second neutrode 5 in turn has an annular collar 62 in which slots 63 are embedded.
  • the cooling ribs 64 formed in this way enable good cooling of the second neutrode 5.
  • the slots 63 preferably have a depth that corresponds to at least 5% of the circumference of the collar, particularly preferably at least 10% of the circumference of the respective collar.
  • the Figure 4a shows a section through the third or foremost neutrode 6, while the Figure 4b shows the third neutrode 6 in a perspective and sectional view.
  • the foremost neutrode 6 is provided with an annular projection 66 on the front side facing the anode, on the rear side of which a recess 67 is formed.
  • the annular projection 66 together with the recess 67 forms part of the third gap ( 2 ), in which the outer insulating disc 31 ( 2 ) is included.
  • the third neutrode 6 is also provided with a collar 69 running around in the form of a ring, into which slots 70 are embedded.
  • bores 68 lead from the bottom of the respective slot 70 further inwards into the base body of the neutrode 6 .
  • the bores 68 increase the cooling surface of this neutrode 6, which is subject to the greatest thermal stress, and enable particularly efficient cooling of this neutrode 6.
  • the projection 66 is preferably rounded on the inside, since the arc is very close to this area during operation.
  • the respective slot 70 in turn preferably has a depth which corresponds to at least 5% of the circumference of the collar 69, particularly preferably at least 10% of the circumference of the collar 69.
  • the inner diameter of the neutrode 6, denoted by D2 corresponds approximately to the inner diameter of the anode, as will be explained in more detail below.
  • fifteen slots are let into the collars of the respective neutrodes 4, 5, 6, although this number can vary. However, at least eight slots are preferably provided.
  • the shape and size of the slits can also vary, with the number of neutrodes also being able to vary from neutrode to neutrode.
  • the term insulating pane is also representative of any form of insulator that does not necessarily have to be disk-shaped.
  • FIG. 5 a section through the anode 7.
  • the anode is provided on the third neutrode 6 facing back with an annular recess 73 into which the projection 66 of the third neutrode 6 can extend.
  • the inner and central sections 27, 28 of the gap 26 between the anode 7 and the third neutrode 6 are formed between the said projection of the third neutrode 6 and the annular depression 73 of the anode 7.
  • the combination of the projection 66 arranged on the third neutrode 6 together with the annular recess of the anode 7 forms a multi-stage gap with simple features and in a cost-effective manner, which in combination with the insulating discs has the advantages described above.
  • the inner diameter D1 of the insert 8 of the anode 7 corresponds approximately to the inner diameter D2 ( Figure 4a ) of the foremost neutrode 6 adjacent thereto.
  • the anode 7 is provided with axially extending extensions 43 which extend outside of the plasma channel 10 in the radial direction.
  • the powder supply channels 45 for supplying the coating powder are let into these extensions 43 .
  • two powder supply ducts 45 are shown in the present example, three or four powder supply ducts can of course also be provided. If necessary, only a single powder supply duct can also be provided.
  • two of the oblique bores 40 of the anode 7 can also be seen, which open into the annular channel 41.
  • the anode 7 is provided with at least ten such bores 40.
  • the oblique bores 40 are guided beyond the annular channel 41 into the base body of the anode 7 and thus increase the cooling surface of the anode 7 .
  • the three neutrodes 4, 5, 6 as well as the anode 7 are wearing parts which are or must be replaced after the plasma spraying device has been in use for a certain period of time. At the same time, the O-rings and the insulating discs are usually also replaced.
  • the 6 shows a section through a first alternative embodiment of the third or foremost neutrode 6a.
  • This neutrode 6a is provided with a recess 75 on the inside, so that its inner diameter D3 increases towards the anode.
  • the inner diameter D3 is enlarged to a diameter D2, which is larger than the inner diameter D1 ( figure 5 ) the adjoining anode, specifically also the use of the anode.
  • This design is intended to ensure that the arc does not start at this foremost neutrode 6a, but only at the anode. This design therefore also contributes to the temperature in the region of the third gap 26 ( Fig.
  • the inner diameter of this third neutrode 6a in the area adjacent to the anode is preferably at least 10%, in particular at least 20%, particularly preferably at least 30% larger than that of the anode.
  • the inner diameter of this third neutrode 6a in the area adjacent to the anode is at least 1 millimeter, in particular at least 2, particularly preferably at least 3 millimeters larger than that of the anode.
  • Another variant could be that the inner diameter of the third neutrode is consistently larger than that of the anode.
  • the 7 shows a section through a second alternative embodiment of the third or foremost neutrode 6b.
  • the inner diameter of this neutrode 6b increases continuously towards the front, so that the inner diameter D3 in the outlet area facing the anode is at least 10%, in particular at least 20%, particularly preferably at least 30% larger than the inner diameter D1 of the anode 7 ( figure 5 ).
  • This design is intended in turn to ensure that the arc does not start at this foremost neutrode 6b, but only at the anode.
  • the inner diameter D3 of this foremost neutrode 6b increases in that it is rounded off on the outlet side. Instead of a rounding, for example, a chamfer, a conical design or a chamfer or a conical design in combination with a rounding could also be provided.
  • the 8 a section through a third alternative embodiment of the third or foremost neutrode 6c.
  • the inner diameter of this neutrode 6b widens towards the front through two conical sections.
  • the first conical section preferably encloses an acute angle, while the second conical section encloses an acute or obtuse angle.
  • the first conical section encloses an angle between about 20 and 30°, while the second conical section encloses an angle between about 80° and 100°.
  • the first conical section has a diameter D4 which is at least 10% larger than the inner diameter D1 of the anode 7 ( figure 5 ), while the second conical section is at least 20%, in particular at least 30% larger than the inner diameter D1 of the anode.
  • This design is also intended to ensure that the arc first starts at the anode and not at the foremost neutrode 6c.
  • the wearing parts in the area of the plasma spraying device that is subjected to the highest thermal stress, in particular the anode 7 together with the adjacent neutrode 6, have a longer service life with the same rated power or allow an increased rated power with the same service life .
  • the gap 26 between the foremost neutrode 6 and the anode 7 has at least two sections 27, 29, there being a radial and/or axial distance between the two sections 27, 29 and in both sections 27, 29 one insulating disk 30, 31 each is arranged.
  • Tungsten or a tungsten-based composite material such as W/Cu is preferably used as the material for the cathode.
  • the anode is preferably made of THO 2 (thorium dioxide), while the neutrodes are preferably made of copper or a copper alloy.
  • the previous exemplary embodiment only shows a possible or preferred embodiment of the plasma spraying device or of the burner head 2 and embodiments that deviate from this example are definitely possible.
  • two, four or more neutrodes can also be used instead of three neutrodes.
  • the design of the gap between the neutrodes or the foremost neutrode and the anode can also deviate from the illustration shown.
  • the gap 26 between the foremost neutrode 6 and the anode 7 could, for example, contain further steps, for example by the foremost neutrode having two projections and the anode being correspondingly provided with two indentations.
  • the anode could be provided with an annular projection facing the neutrode and the anode, and the neutrode with an annular depression facing the anode.
  • the powder feed element could also be designed as a separate component.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Nozzles (AREA)

Description

Die Erfindung betrifft eine gemäss dem Oberbegriff des Anspruchs 1 ausgebildete Plasmaspritzvorrichtung, eine gemäss dem Anspruch 16 ausgebildete Anode sowie eine gemäss dem Anspruch 18 ausgebildete Neutrode für eine gattungsgemässe Plasmaspritzvorrichtung.The invention relates to a plasma spraying device designed according to the preamble of claim 1, an anode designed according to claim 16 and a neutrode designed according to claim 18 for a generic plasma spraying device.

Aus dem Stand der Technik sind Plasmaspritzvorrichtungen bekannt, deren Brennerkopf eine Kathode, eine davon beabstandete Anode sowie eine dazwischen angeordnete Neutrodenanordnung, welche mehrere elektrisch gegeneinander isolierte Neutroden umfasst. Die Anode ist üblicherweise in der Form einer runden Düse gestaltet. Im Betrieb wird zwischen der Kathode und der Anode ein Lichtbogen erzeugt. Der Lichtbogen legt sich dabei am eingangsseitigen, d.h. der Innenseite des Brennerkopfs zugewandten Bereich an der Anode an. In diesem Bereich herrschen sehr hohe Temperaturen, welche durchaus 10'000 Kelvin und mehr erreichen können. Daher sind neben der Anode auch die an die Anode angrenzenden Teile, insbesondere die angrenzende Neutrode, thermisch hoch belastet und einem hohen Verschleiss ausgesetzt.Plasma spraying devices are known from the prior art, the torch head of which has a cathode, an anode spaced therefrom and a neutrode arrangement arranged between them, which comprises a plurality of neutrodes which are electrically insulated from one another. The anode is usually designed in the form of a round nozzle. In operation, an arc is created between the cathode and the anode. The arc is applied to the anode on the entry side, i.e. the area facing the inside of the torch head. Very high temperatures prevail in this area, which can easily reach 10,000 Kelvin and more. Therefore, in addition to the anode, the parts adjacent to the anode, in particular the adjacent neutrode, are also subject to high thermal loads and high wear.

Aus der EP 500 492 A1 ist ein gattungsgemässes Plasmaspritzgerät bekannt. Dessen Brennerkopf ist mit einer Kathodenanordnung, einer ringförmigen Anode und mehreren elektrisch voneinander isolierten Neutroden versehen. Zwischen den einzelnen Neutroden besteht jeweils ein Spalt, in den Ringscheiben aus Isoliermaterial eingefügt sind. Diese Neutroden bilden den mit einer Einschnürung versehenen Plasmakanal. Der Innendurchmesser der Ringscheiben entspricht dem Innendurchmesser des Plasmakanals. Um die Anode und die Neutroden zu kühlen, ist auf deren Aussenseite ein Kühlkanal (Hohlraum) angeordnet, über welchen Kühlwasser geleitet wird. Die vorderste dieser Ringscheiben, welche zwischen der vordersten Neutrode und der Anode angeordnet ist, ist zusammen mit der vordersten Neutrode thermisch sehr hoch belastet und daher einem hohen Verschleiss unterworfen, zumal die Anode wie auch die vorderste Neutrode nur auf der Aussenseite vom Kühlwasser umströmt werden.From the EP 500 492 A1 a generic plasma spray gun is known. Its burner head is equipped with a cathode arrangement, a ring-shaped anode and several neutrodes that are electrically isolated from one another. There is a gap between the individual neutrodes, in which annular discs made of insulating material are inserted. These neutrodes form the constricted plasma channel. The inner diameter of the ring disks corresponds to the inner diameter of the plasma channel. In order to cool the anode and the neutrodes, a cooling channel (cavity) is arranged on the outside, through which cooling water is conducted. The frontmost of these annular discs, which is arranged between the frontmost neutrode and the anode, is thermally very highly stressed together with the frontmost neutrode and is therefore subject to high wear, especially since the anode and the frontmost neutrode are only surrounded by cooling water on the outside.

Die EP 1 875 785 A1 offenbart eine Schnittstelle für eine Plasmakanone. Diese umfasst u.a. eine Aufnahme an der Plasmakanone für einen Düsenaufsatz. Der Plasmakanal wird durch eine Vielzahl von Neutroden zusammen mit dem Düsenaufsatz gebildet. Dazu sind sowohl der Düsenaufsatz wie auch die Neutroden mit zylindrischen Bohrungen versehen. Der Düsenaufsatz wird mittels einer Klemmanordnung an der Plasmakanone fixiert. Zur Kühlung der Klemmanordnung wie auch des Düsenaufsatzes führt ein Kanal für Kühlflüssigkeit von der Plasmakanone zuerst durch die Klemmanordnung und danach durch den Düsenaufsatz. Von dem Düsenaufsatz führt der Kanal entlang der Aussenseite der Neutroden zurück in die Plasmakanone. Zwischen der vordersten Neutrode und der Düse ist ein Dichtring angeordnet, der auf der Innenseite radial bis an einen Einsatz der Düse heranreicht. Ausserhalb dieses Dichtrings ist ein O-Ring angeordnet.The EP 1 875 785 A1 discloses an interface for a plasma gun. This includes, among other things, a mount on the plasma gun for a nozzle attachment. The plasma channel is formed by a multitude of neutrodes together with the nozzle attachment. For this purpose, both the nozzle attachment and the neutrodes are equipped with cylindrical drilled. The nozzle attachment is fixed to the plasma gun by means of a clamp arrangement. To cool both the clamp assembly and the nozzle attachment, a channel for cooling liquid from the plasma gun leads first through the clamp assembly and then through the nozzle attachment. From the nozzle attachment, the channel leads along the outside of the neutrodes back into the plasma gun. A sealing ring is arranged between the foremost neutrode and the nozzle, which on the inside extends radially up to an insert of the nozzle. An O-ring is arranged outside of this sealing ring.

Die WO 2006/012165 A2 offenbart eine herkömmliche Plasmapistole mit einem Kathodenmodul, einem Zwischenmodul, einem Anodenmodul und einem Zuführmodul. Das Zwischenmodul umfasst mehrere Zwischenelektroden, welche durch einen radial verlaufenden Spalt voneinander getrennt sind. Um die Zwischenelektroden gegeneinader zu isolieren, sind in dem jeweiligen Spalt keramische Isolierringe und O-Ringe aufgenommen.The WO 2006/012165 A2 discloses a conventional plasma gun having a cathode module, an intermediate module, an anode module and a feed module. The intermediate module comprises a plurality of intermediate electrodes which are separated from one another by a radially running gap. In order to insulate the intermediate electrodes from one another, ceramic insulating rings and O-rings are accommodated in the respective gap.

Schliesslich ist in der EP 0 289 961 A2 ein als Lichtbogenvorrichtung mit justierbarer Kathode bezeichneter Plasmabrenner offenbart. Der Plasmabrenner umfasst drei Baugruppen, namentlich eine Pistolenkörpergruppe, eine mit einer Anode versehene Düsengruppe und eine Kathodengruppe. Die Kathodengruppe umfasst eine stabförmige Kathode, die mit einem axial verschiebbaren Kolben in Verbindung steht. Damit kann die Kathode in axialer Richtung vor- bzw. zurückgeschoben werden. Die Pistolenkörpergruppe umfasst vier rohrförmige Segmente, Das vorderste dieser Segmente grenzt an die Anode an. Zwischen dem vordersten Segment und der Anode verläuft ein Spalt, in dem ein Isolierring angeordnet ist.Finally in the EP 0 289 961 A2 discloses a plasma torch referred to as an adjustable cathode arc device. The plasma torch includes three assemblies, namely a gun body assembly, an anode-equipped nozzle assembly, and a cathode assembly. The cathode group comprises a rod-shaped cathode connected to an axially displaceable piston. The cathode can thus be pushed forwards or backwards in the axial direction. The gun body assembly includes four tubular segments. The foremost of these segments is adjacent to the anode. A gap runs between the foremost segment and the anode, in which an insulating ring is arranged.

Die Aufgabe der Erfindung besteht nun darin, eine nach dem Oberbegriff des Anspruchs 1 ausgebildete Plasmaspritzvorrichtung vorzuschlagen, bei der die thermisch hochbelasteten Teile des Brennerkopfs, insbesondere die Anode zusammen mit der daran angrenzende Neutrode, derart gestaltet ist/sind, dass diese bei gleicher Nennleistung eine höhere Lebensdauer aufweisen oder eine erhöhte Nennleistung bei gleicher Lebensdauer zulassen.The object of the invention is to propose a plasma spraying device designed according to the preamble of claim 1, in which the parts of the burner head that are subject to high thermal loads, in particular the anode together with the neutrode adjacent to it, is/are designed in such a way that, with the same nominal power, have a longer service life or allow an increased nominal power with the same service life.

Diese Aufgabe wird durch eine Plasmaspritzvorrichtung gelöst, welche mit den im Kennzeichen des Anspruchs 1 aufgeführten Merkmalen versehen ist.This object is achieved by a plasma spraying device which is provided with the features listed in the characterizing part of claim 1.

Indem der zwischen der vordersten Neutrode und der Anode verlaufende Spalt der Plasmaspritzvorrichtung zumindest zwei Abschnitte aufweist, wobei zwischen den beiden Abschnitten ein radialer und/oder axialer Abstand besteht und wobei in beiden Abschnitten je eine Isolierscheibe angeordnet ist, wird die grundsätzliche Voraussetzung geschaffen, dass die Verschleissteile im thermisch am höchsten belasteten Bereich der Plasmaspritzvorrichtung, insbesondere die Anode zusammen mit der daran angrenzende Neutrode, bei gleicher Nennleistung eine höhere Lebensdauer aufweisen oder eine erhöhte Nennleistung bei gleicher Lebensdauer zulassen.Since the gap in the plasma spraying device running between the foremost neutrode and the anode has at least two sections, with a radial and/or axial distance between the two sections and with an insulating disk being arranged in each of the two sections, the basic requirement is met that the Wearing parts in the thermally most heavily loaded area of the plasma spraying device, in particular the anode together with the adjacent neutrode, have a longer service life with the same rated power or allow an increased rated power with the same service life.

Im Vergleich mit herkömmlichen Plasmaspritzvorrichtungen, deren zwischen der vordersten Neutrode und der Anode verlaufende Spalt zumeist geradlinig verläuft und nur mit einer Isolierscheibe versehen ist, kann durch die erfindungsgemäss genannten Merkmale insbesondere auch eine langzeitstabile elektrische Isolation zwischen der vordersten Neutrode und der Anode gewährleistet werden. Durch die Unterteilung des Spalts in verschiedene Abschnitte und das Vorsehen eines radialen und/oder axialen Abstands zwischen den beiden mit je einer Isolierscheibe versehenen Abschnitten, wird insbesondere die zweite bzw. äussere, d.h. dem Plasmakanal abgewandte Isolierscheibe vergleichsweise wenig belastet. Zudem wird auch die hydraulische Abdichtung verbessert, indem über den genannten Spalt keine Kühlflüssigkeit in den Plasmakanal eindringen kann, da die zur Abdichtung des Spalts vorgesehene Dichtung thermisch weniger belastet wird.In comparison with conventional plasma spraying devices, whose gap between the foremost neutrode and the anode usually runs in a straight line and is only provided with an insulating disk, the features mentioned according to the invention can also ensure long-term stable electrical insulation between the foremost neutrode and the anode. By dividing the gap into different sections and providing a radial and/or axial distance between the two sections each provided with an insulating disk, the second or outer insulating disk, i.e. the insulating disk facing away from the plasma channel, is subjected to comparatively little stress. In addition, the hydraulic seal is also improved in that no coolant can penetrate into the plasma channel via the mentioned gap, since the seal provided for sealing the gap is thermally less stressed.

Bevorzugte Ausführungsformen der Plasmaspritzvorrichtung sind in den abhängigen Ansprüchen 2 bis 15 umschrieben.Preferred embodiments of the plasma spraying device are defined in the dependent claims 2 to 15.

So wird bei einer bevorzugten Weiterbildung vorgeschlagen, dass der genannte Spalt einen ersten inneren Abschnitt, einen zweiten mittleren Abschnitt und einen dritten äusseren Abschnitt aufweist, wobei der erste innere Abschnitt gegenüber dem dritten äusseren Abschnitt in radialer und axialer Richtung versetzt ist und wobei im ersten und dritten Abschnitt je eine der genannten Isolierscheiben angeordnet ist. Durch einen solchen Versatz kann der dritte Abschnitt in einen thermisch weniger belasteten Bereich verlegt werden. Zudem wirkt der mittlere Abschnitt als thermischer Isolator.So it is proposed in a preferred development that said gap has a first inner section, a second middle section and a third has an outer section, the first inner section being offset in the radial and axial direction relative to the third outer section, and one of the said insulating washers being arranged in each of the first and third sections. Such an offset allows the third section to be relocated to an area that is subject to less thermal stress. In addition, the middle section acts as a thermal insulator.

Besonders bevorzugt verläuft der mittlere Abschnitt des Spalts unter einem Winkel zu dem inneren und/oder äusseren Abschnitt. Diese Massnahme bewirkt eine noch bessere thermische Abschirmung des äusseren Abschnitts.The middle section of the gap particularly preferably runs at an angle to the inner and/or outer section. This measure brings about even better thermal shielding of the outer section.

Eine weitere bevorzugte Ausbildung sieht vor, dass radial ausserhalb des äusseren Abschnitts ein Dichtring angeordnet ist. Ein solcher Dichtring ist damit in einem Bereich angeordnet, der thermisch weniger hoch belastet ist.A further preferred embodiment provides that a sealing ring is arranged radially outside of the outer section. Such a sealing ring is thus arranged in an area that is subjected to less thermal stress.

Bei einer weiteren bevorzugten Weiterbildung der Plasmaspritzvorrichtung ist die vorderste Neutrode mit einem der Anode zugewandten, ringförmigen Vorsprung versehen ist und die Anode mit einer der vordersten Neutrode zugewandten, ringförmigen Vertiefung versehen, wobei der Spalt zwischen dem genannten Vorsprung und der genannten Vertiefung verläuft. Durch diese Merkmale kann der in mehrere Abschnitte unterteilte Spalt vergleichsweise einfach realisiert werden.In a further preferred development of the plasma spraying device, the foremost neutrode is provided with an annular projection facing the anode and the anode is provided with an annular depression facing the foremost neutrode, the gap running between said projection and said depression. As a result of these features, the gap divided into several sections can be realized in a comparatively simple manner.

Vorzugsweise ist der innere Abschnitt in radialer Richtung innerhalb des äusseren Abschnitts angeordnet ist, wobei in dem inneren Abschnitt eine Isolierscheibe angeordnet ist, die gegenüber dem Plasmakanal in radialer Richtung zurückversetzt ist. Dadurch ist die genannte Isolierscheibe gegenüber dem im Betrieb anliegenden Lichtbogen etwas beabstandet und der äussere Abschnitt wird thermisch besonders gut abgeschirmt.The inner section is preferably arranged inside the outer section in the radial direction, with an insulating disk being arranged in the inner section, which is set back in the radial direction in relation to the plasma channel. As a result, said insulating pane is somewhat spaced apart from the arc that is present during operation, and the outer section is thermally shielded particularly well.

Eine bevorzugte Weiterbildung sieht vor, dass der Innendurchmesser der vordersten Neutrode zumindest in dem der Anode zuzuwendenden Endbereich um zumindest 10%, insbesondere um zumindest 20%, vorzugsweise um zumindest 30% grösser ist als der Innendurchmesser der Anode. Diese Ausbildung stellt sicher, dass der Lichtbogen nicht schon an vordersten Neutrode ansetzt, sondern erst an der Anode. Diese Ausbildung trägt auch dazu bei, dass die Temperatur im Bereich des Spalts zwischen der vordersten Neutrode und der Anode vergleichsweise niedrig ist, und kein nennenswerter Abbrand an der vordersten Neutrode entsteht, was letztlich zu einer erhöhten Lebensdauer insbesondere der vordersten Neutrode beiträgt.A preferred development provides that the inside diameter of the foremost neutrode is at least 10%, in particular at least 20%, preferably at least 30% larger than the inside diameter of the anode, at least in the end region facing the anode. This training ensures that Arc does not start at the foremost neutrode, but only at the anode. This design also contributes to the fact that the temperature in the region of the gap between the foremost neutrode and the anode is comparatively low, and there is no appreciable burn-off at the foremost neutrode, which ultimately contributes to an increased service life, in particular of the foremost neutrode.

Bei einer bevorzugten Weiterbildung ist die Anode ringförmig ausgebildet und auf der Innenseite mit einem hochschmelzenden Einsatz versehen, der in Richtung der Längsachse des Plasmakanals zumindest annähernd bis an den Spalt zwischen der vordersten Neutrode und der Anode heranreicht. Mit dieser Ausbildung kann der Ansatz des Lichtbogens in den Bereich des Spalts verlegt werden.In a preferred further development, the anode is ring-shaped and is provided on the inside with a high-melting insert which, in the direction of the longitudinal axis of the plasma channel, reaches at least approximately to the gap between the foremost neutrode and the anode. With this design, the start of the arc can be relocated to the area of the gap.

Besonders bevorzugt ist die vorderste Neutrode mit einem ringförmigen Kragen versehen, in welchen Schlitze zur Bildung von Kühlrippen eingelassen sind. Derartige Kühlrippen weisen eine grosse Oberfläche auf, so dass die Neutrode mittels einer Kühlflüssigkeit sehr effizient gekühlt werden kann.Particularly preferably, the foremost neutrode is provided with an annular collar in which slots are made to form cooling fins. Such cooling ribs have a large surface, so that the neutrode can be cooled very efficiently by means of a cooling liquid.

Besonders bevorzugt sind sämtliche Neutroden mit einem ringförmigen Kragen versehen, wobei jeder Kragen mit einer Vielzahl von axialen Schlitzen versehen ist, so dass eine Vielzahl von Kühlrippen gebildet werden, und wobei die so gebildeten Kühlrippen mit einem Kanal oder Ringraum in Verbindung stehen, in welchem ein Kühlmittel zirkuliert. Durch diese Ausbildung können sämtliche Neutroden effizient gekühlt werden.Most preferably, all neutrodes are provided with an annular collar, each collar being provided with a plurality of axial slots so that a plurality of cooling fins are formed, and wherein the cooling fins so formed are in communication with a channel or annulus in which a coolant circulates. With this design, all neutrodes can be efficiently cooled.

Die genannten Schlitze weisen besonders bevorzugt eine Tiefe auf, die zumindest 5% des Umfangs des Kragens, besonders bevorzugt zumindest 10% des Umfangs des Kragens beträgt. Derart ausgebildete Schlitze bilden Kühlrippen mit einer besonders grossen Oberfläche, was im Hinblick auf eine gute Kühlung der zugehörigen Neutrode vorteilhaft ist.The slits mentioned particularly preferably have a depth which is at least 5% of the circumference of the collar, particularly preferably at least 10% of the circumference of the collar. Slots designed in this way form cooling ribs with a particularly large surface area, which is advantageous with regard to good cooling of the associated neutrode.

Indem der jeweilige Schlitz im Wesentlichen über die gesamte axiale Länge der jeweiligen Neutrode verläuft, wie dies bei einer bevorzugten Weiterbildung angegeben ist, wir eine besonders gute Kühlung der entsprechenden Neutrode erreicht werden. Vorzugsweise weist die Plasmaspritzvorrichtung einen die Neutroden vollständig umgebenden Ringraum zur Aufnahme von Kühlflüssigkeit auf. Durch einen solchen Ringraum können die Neutroden entlang ihres gesamten Umfangs gekühlt werden. Besonder bevorzugt ist der Ringraum derart angeordnet und ausgebildet, dass die Kühlflüssigkeit in axialer Richtung entlang der Neutroden wie auch der Anode strömt. Durch eine axiale Strömung der Kühlflüssigkeit kann eine besonders gute Wärmeabfuhr gewährleistet werden.Since the respective slot runs essentially over the entire axial length of the respective neutrode, as is indicated in a preferred development, particularly good cooling of the corresponding neutrode can be achieved. The plasma spraying device preferably has an annular space, which completely surrounds the neutrodes, for receiving cooling liquid. Such an annular space allows the neutrodes to be cooled along their entire circumference. The annular space is particularly preferably arranged and designed in such a way that the cooling liquid flows in the axial direction along the neutrode as well as the anode. Particularly good heat dissipation can be ensured by an axial flow of the coolant.

Bei einer weiteren bevorzugten Weiterbildung der Plasmaspritzvorrichtung ist die der Kathode zugewandte erste Neutrode mit einem sich konisch verjüngenden, einen Teil des Plasmakanals bildenden Abschnitt versehen. Dadurch wird eine Art Einschnürung gebildet, mittels welcher die Strömung des Plasmastrahl in gewünschter Weise beeinflusst werden kann.In a further preferred development of the plasma spraying device, the first neutrode facing the cathode is provided with a conically tapering section which forms part of the plasma channel. This forms a type of constriction, by means of which the flow of the plasma jet can be influenced in the desired manner.

In den Ansprüchen 16 und 17 wird zudem eine Anode für eine Plasmaspritzvorrichtung nach Anspruch 1 beansprucht, während in den Ansprüchen 18 bis 20 eine Neutrode für eine Plasmaspritzvorrichtung nach Anspruch 1 beansprucht wird.Claims 16 and 17 also claim an anode for a plasma spray device according to claim 1, while claims 18 to 20 claim a neutrode for a plasma spray device according to claim 1.

Nachfolgend wird ein bevorzugtes Ausführungsbeispiel der Erfindung anhand von Zeichnungen näher erläutert. In diesen Zeichnungen zeigt:

Fig. 1
einen Längsschnitt durch den Brennerkopf der Plasmaspritzvorrichtung;
Fig. 1a
einen vergrösserten Ausschnitt aus der Fig. 1;
Fig. 2
die erste Neutrode in perspektivischer und geschnittener Darstellung;
Fig. 3
die zweite Neutrode in perspektivischer und geschnittener Darstellung;
Fig. 4a
einen Schnitt durch die dritte Neutrode
Fig. 4b
die dritte Neutrode in perspektivischer und geschnittener Darstellung;
Fig. 5
einen Schnitt durch die Anode;
Fig. 6
ein erstes alternatives Ausführungsbeispiel der dritten Neutrode;
Fig. 7
ein zweites alternatives Ausführungsbeispiel der dritten Neutrode;
Fig. 8
ein drittes alternatives Ausführungsbeispiel der dritten Neutrode;
A preferred exemplary embodiment of the invention is explained in more detail below with reference to drawings. In these drawings shows:
1
a longitudinal section through the torch head of the plasma spray device;
Fig. 1a
an enlarged section of the 1 ;
2
the first neutrode in perspective and section;
3
the second neutrode in perspective and section;
Figure 4a
a cut through the third neutrode
Figure 4b
the third neutrode in perspective and section;
figure 5
a cut through the anode;
6
a first alternative embodiment of the third neutrode;
7
a second alternative embodiment of the third neutrode;
8
a third alternative embodiment of the third neutrode;

Da gattungsgemässe Plasmaspritzvorrichtungen bekannt sind, wird nachfolgend insbesondere auf die im Zusammenhang mit der Erfindung wesentlichen Merkmale und Elemente eingegangen.Since plasma spray devices of the generic type are known, the features and elements that are essential in connection with the invention will be discussed below in particular.

Die Figur 1 zeigt einen Längsschnitt durch den Brennerkopf 2 der gesamthaft mit 1 bezeichneten Plasmaspritzvorrichtung, während die Fig. 1a einen vergrösserten Ausschnitt aus der Fig. 1 zeigt. Anhand der Figuren 1 und 1a wird der Aufbau einer erfindungsgemäss gestalteten Plasmaspritzvorrichtung bzw. des zugehörigen Brennerkopfs 2 näher erläutert.The figure 1 shows a longitudinal section through the torch head 2 of the plasma spraying device, generally designated 1, while the Fig. 1a an enlarged section of the 1 shows. Based on Figures 1 and 1a the structure of a plasma spraying device designed according to the invention and of the associated torch head 2 is explained in more detail.

Der Brennerkopf 2 weist eine Kathode 3, eine davon beabstandete Anode 7 sowie eine dazwischen angeordnete, aus drei Neutroden 4, 5, 6 bestehende Neutrodenanordnung auf. Die Neutroden 4, 5, 6 bilden zusammen mit der im Wesentlichen hohlzylindrisch ausgebildeten Anode 7 den Plasmakanal 10. Am auslassseitigen Ende weist die Anode 7 ein Pulverzufuhrelement 44 auf, das mit radial verlaufenden Kanälen 45 versehen ist, über welche ein Beschichtungspulver zugeführt werden kann. Zum Fixieren der Anode 7 mitsamt den drei Neutroden 4, 5, 6 ist eine Überwurfmutter 46 vorgesehen, deren Klemmnase 47 im Bereich des Pulverzufuhrelements 44 axial auf die Anode 7 drückt. Die Anode 7 ihrerseits drückt axial auf die Neutroden 4, 5, 6 und fixiert diese ebenfalls in axialer Richtung.The burner head 2 has a cathode 3, an anode 7 spaced therefrom and a neutrode arrangement which is arranged in between and consists of three neutrodes 4, 5, 6. The neutrodes 4, 5, 6 together with the essentially hollow-cylindrical anode 7 form the plasma channel 10. At the outlet end, the anode 7 has a powder feed element 44 which is provided with radial channels 45 through which a coating powder can be fed. To fix the anode 7 together with the three neutrodes 4, 5, 6, a union nut 46 is provided, the clamping lug 47 of which presses axially onto the anode 7 in the region of the powder supply element 44. The anode 7 in turn presses axially on the neutrodes 4, 5, 6 and also fixes them in the axial direction.

Die erste bzw. hinterste Neutrode 4 weist einen Innenraum 11 mit einem sich in Strömungsrichtung nach vorne hin konisch verengenden Abschnitt 11a auf. Dieser konische Abschnitt 11a bildet einen Teil des Plasmakanals 10. Durch diesen konischen Abschnitt 11a wird eine Einschnürung gebildet, mittels welcher die Strömung des Plasmastrahl in gewünschter Weise beeinflusst wird.The first or rearmost neutrode 4 has an interior space 11 with a section 11a that narrows conically towards the front in the direction of flow. This Conical section 11a forms part of plasma channel 10. This conical section 11a forms a constriction, by means of which the flow of the plasma jet is influenced in the desired manner.

Die erste Neutrode 4 umgibt die stabförmig gestaltete Kathode 3. Die mittlere Neutrode 5 ist im Wesentlichen ringförmig gestaltet, wobei deren Innenraum 12 sich in Richtung der Anode 7 leicht erweitert. Die letzte bzw. vorderste Neutrode 6 besitzt einen im Wesentlichen zylindrischen Innenraum 13. Zwischen der hintersten 4 und der mittleren Neutrode 5, wie auch zwischen der mittleren 5 und der vordersten Neutrode 6 besteht je ein ringförmiger Spalt 15, 20. Diese beiden Spalte 15, 20 verlaufen im Wesentlichen radial geradlinig nach aussen. In die genannten beiden Spalte 15, 20 ist je eine ringförmige Isolierscheibe 16, 21 eingefügt. Die jeweilige Isolierscheibe 16, 21 ist relativ dünn ausgebildet und wird auf der Aussenseite von einem flachen, aber ebenfalls ringförmigen Abstützring 17, 22 begrenzt. Auf diesen äussere Abstützring 17, 22 folgt jeweils ein O-Ring 18, 23, der als Abdichtung für Kühlflüssigkeit dient, wie nachfolgend noch näher erläutert wird.The first neutrode 4 surrounds the rod-shaped cathode 3 . The middle neutrode 5 is essentially ring-shaped, with its interior 12 expanding slightly in the direction of the anode 7 . The last or foremost neutrode 6 has a substantially cylindrical interior 13. Between the rearmost 4 and the middle neutrode 5, as well as between the middle 5 and the foremost neutrode 6, there is an annular gap 15, 20. These two gaps 15, 20 run essentially radially in a straight line outwards. An annular insulating disc 16, 21 is inserted into each of the two gaps 15, 20 mentioned. The respective insulating disk 16, 21 is relatively thin and is delimited on the outside by a flat, but also annular support ring 17, 22. This outer support ring 17, 22 is followed by an O-ring 18, 23, which serves as a seal for coolant, as will be explained in more detail below.

Zwischen der vordersten Neutrode 6 und der Anode 7 besteht ebenfalls ein Spalt 26. Dieser Spalt 26 verläuft jedoch nicht geradlinig, sondern besteht aus einem inneren, im Wesentlichen radial verlaufenden ersten Abschnitt 27, einem mittleren, im Wesentlichen axial verlaufenden zweiten Abschnitt 28, sowie einem äusseren, im Wesentlichen wiederum radial verlaufenden dritten Abschnitt 29. Der erste innere Abschnitt 27 ist gegenüber dem äusseren dritten Abschnitt 29 sowohl radial wie auch axial versetzt. Der mittlere Abschnitt 28 verläuft im Wesentlichen unter einem Winkel von 90° zu dem ersten und dem dritten Abschnitt 27, 29. Natürlich sind auch beliebig andere Winkel, beispielsweise 30°, 45° oder 60° möglich.There is also a gap 26 between the foremost neutrode 6 and the anode 7. However, this gap 26 does not run in a straight line, but consists of an inner, essentially radially running first section 27, a central, essentially axially running second section 28, and a outer third section 29, which in turn essentially runs radially. The first inner section 27 is offset both radially and axially with respect to the outer third section 29. The middle section 28 essentially runs at an angle of 90° to the first and the third section 27, 29. Of course, any other angle, for example 30°, 45° or 60°, is also possible.

In dem inneren wie auch dem äusseren Abschnitt 27, 29 ist je eine Isolierscheibe 30, 31 aufgenommen. Die beiden Isolierscheiben 30, 31 sind beabstandet und der dazwischen liegende Teil des mittleren Abschnitts 28 wirkt als thermischer Isolator. Auf die äussere Isolierscheibe 31 folgt wiederum ein O-Ring 32, der als Abdichtung für Kühlflüssigkeit dient und zugleich auch eine gasdichte Abdichtung erzeugt. Die drei Isolierscheiben 16, 21, 30 sind gegenüber dem Plasmakanal 10 etwas zurückversetzt, was deren Lebensdauer positiv beeinflusst. Die innere, im dritten Spalt 26 angeordnete Isolierscheibe 31 ist noch etwas weiter als die beiden anderen Isolierscheiben 16, 21 zurückversetzt, und zwar soweit, dass deren Innenseite ausserhalb des Einsatzes 8 verläuft.In the inner as well as the outer section 27, 29 an insulating disk 30, 31 is added. The two insulating disks 30, 31 are spaced apart and the part of the middle section 28 lying between them acts as a thermal insulator. The outer insulating disk 31 is in turn followed by an O-ring 32, which serves as a seal for cooling liquid and at the same time also creates a gas-tight seal. The three insulating disks 16, 21, 30 are set back somewhat in relation to the plasma channel 10, which has a positive effect on their service life. The inner insulating disk 31 arranged in the third gap 26 is set back a little further than the other two insulating disks 16 , 21 , to the extent that its inside runs outside the insert 8 .

Die im Wesentlichen hohlzylindrisch ausgebildete Anode 7 ist auf der Innenseite mit einem Einsatz 8 versehen, der aus einem hochschmelzenden und leitenden Material wie beispielsweise Wolfram besteht.The essentially hollow-cylindrical anode 7 is provided on the inside with an insert 8 made of a high-melting and conductive material such as tungsten.

Die zur Kühlung von Elementen des Brennerkopfs dienende Kühlflüssigkeit wird über einen vorderen Anschlussflansch 49 in den Brennerkopf 2 eingeleitet. Von diesem Anschlussflansch 49 führen schräge Kanäle, welche in den Darstellungen gemäss den Fig. 1 und 1a nicht erkennbar sind, in einen ersten Ringraum 50. Der Ringraum 50 mündet in einen zweiten ebenfalls als Ringraum ausgebildeten Vorlaufraum 51, der sich um die drei Neutroden 4, 5, 6 herum erstreckt und der Kühlung derselben dient. Am Ende mündet der Vorlaufraum 51 in einen schrägen, in die Anode 7 eingelassenen Kanal 40, der bis in den Bereich des vorderen Endes der Anode 7 führt. Der schräge Kanal 40 durchquert einen in die Anode 7 eingelassenen Ringkanal 41, aus dem die Kühlflüssigkeit nach oben in einen weiteren als Ringraum ausgebildeten Rücklaufraum 52 einströmen kann, der schliesslich über mehrere im Innern des Brennerkopfs verlaufenden Kanäle (nicht ersichtlich) mit einem hinteren Anschlussflansch 53 verbunden ist. Über diesen hinteren Anschlussflansch 53 tritt die Kühlflüssigkeit aus dem Brennerkopf aus. Über einen mittleren Anschlussflansch 55 kann dem Brenner ein Gas zugeführt werden.The cooling liquid used to cool elements of the burner head is introduced into the burner head 2 via a front connecting flange 49 . From this flange 49 lead oblique channels, which in the representations according to Figures 1 and 1a are not recognizable, into a first annular space 50. The annular space 50 opens into a second flow space 51, also designed as an annular space, which extends around the three neutrodes 4, 5, 6 and serves to cool them. At the end, the flow space 51 opens into an oblique channel 40 let into the anode 7 and leading to the area of the front end of the anode 7 . The sloping channel 40 traverses an annular channel 41 embedded in the anode 7, from which the cooling liquid can flow upwards into another return chamber 52 designed as an annular space, which finally connects via several channels (not visible) running inside the burner head with a rear connecting flange 53 connected is. The cooling liquid emerges from the burner head via this rear connecting flange 53 . A gas can be supplied to the burner via a central connecting flange 55 .

Durch die genannten O-Ringe 18, 23, 32 wird verhindert, dass Kühlflüssigkeit aus dem Vorlaufraum 51 über den jeweiligen Spalt 15, 20, 26 in den Plasmakanal 10 gelangen kann. Die Isolierscheiben 16, 21, 30, 31 dienen insbesondere als elektrische aber auch als thermische Isolation. Die Isolierscheiben 16, 21, 30, 31 sind aus einem nicht leitenden und hochtemperaturfesten Material wie beispielsweise Siliziumnitrid gefertigt. Zudem schützen diese Isolierscheiben 16, 21, 30, 31 zugleich die aus einem elastischen und temperaturbeständigen Material wie beispielsweise Viton® bestehenden O-Ringe 18, 23, 32 vor thermischer Überbeanspruchung.The mentioned O-rings 18, 23, 32 prevent cooling liquid from being able to get into the plasma channel 10 from the supply space 51 via the respective gap 15, 20, 26. The insulating discs 16, 21, 30, 31 serve in particular as electrical but also as thermal insulation. The insulating disks 16, 21, 30, 31 are made of a non-conductive and high-temperature-resistant material such as silicon nitride. In addition, these insulating disks 16, 21, 30, 31 also protect the O-rings 18, 23, 32, which are made of an elastic and temperature-resistant material such as Viton® , from thermal overload.

Im Betrieb der Plasmaspritzvorrichtung liegt zwischen der Kathode 3 und der Anode 7 ein Lichtbogen an. Dieser Lichtbogen erstreckt sich von der Kathode 3 bis in den Anfangsbereich 25 der Anode 7 bzw. deren Einsatz 8. In diesem Anfangsbereich 25 ist der Einsatz 8 vorzugsweise abgerundet ausgebildet, was im Hinblick auf eine lange Lebensdauer vorteilhaft ist. Der Lichtbogen wandert in diesem Anfangsbereich 25 üblicherweise etwas umher. Jedenfalls ist der Anfangsbereich 25 der Anode 7, und damit auch der Bereich um die angrenzende Isolierscheibe 27, der thermisch am höchsten belastete Bereich der Plasmaspritzvorrichtung. Durch die spezifische Gestaltung des Spalts 26 zwischen der vordersten Neutrode 6 und der Anode 7, sowie der beiden in diesem Spalt 26 angeordneten Isolierscheiben 30, 31, wird dieser Problematik in besonderer Weise Rechnung getragen und auch der im vordersten Spalt 26 angeordnete O-Ring 32 ist thermisch besonders gut abgeschirmt. Der mittlere Abschnitt 28 des dritten Spalts 26 wirkt als thermischer Isolator zwischen den beiden Isolierscheiben 30, 31. Zudem ist die innere Isolierscheibe 30 gegenüber der Innenseite der Anode 7 bzw. des Anodenseinsatzes 8 etwas zurückversetzt, was einen positiven Einfluss auf deren Lebensdauer hat. Gleichzeitig werden die drei Neutroden 5, 6, 7 wie auch die Anode 7 besonders effizient gekühlt, wie nachfolgend noch näher erläutert wird. Jedenfalls haben Versuche mit einem solchen Brennerkopf 2 ergeben, dass auch bei Wegfall bzw. Ausfall oder Abbrand der inneren Isolierscheibe 30 der O-Ring 32 über einen Zeitraum von mehreren hundert bis über tausend Stunden hydraulisch dicht bleibt und damit zuverlässig funktioniert und ein Eindringen von Kühlmittel in den Plasmakanal 10 verhindert. In diesem Zusammenhang sei erwähnt, dass während des Betriebs ein Eindringen von Kühlflüssigkeit in den Plasmakanal 10 einer Zerstörung des Brennerkopfs gleichkommen würde.An arc is present between the cathode 3 and the anode 7 during operation of the plasma spraying device. This arc extends from the cathode 3 to the starting area 25 of the anode 7 or its insert 8. In this starting area 25, the insert 8 is preferably rounded, which is advantageous with regard to a long service life. The arc usually wanders around a bit in this initial area 25 . In any case, the initial area 25 of the anode 7, and thus also the area around the adjacent insulating pane 27, which is thermally at highest stressed area of the plasma spraying device. Due to the specific design of the gap 26 between the foremost neutrode 6 and the anode 7, as well as the two insulating discs 30, 31 arranged in this gap 26, this problem is taken into account in a special way, as is the O-ring 32 arranged in the foremost gap 26 is thermally particularly well shielded. The middle section 28 of the third gap 26 acts as a thermal insulator between the two insulating panes 30, 31. In addition, the inner insulating pane 30 is set back somewhat compared to the inside of the anode 7 or the anode insert 8, which has a positive effect on its service life. At the same time, the three neutrodes 5, 6, 7 and the anode 7 are cooled particularly efficiently, as will be explained in more detail below. In any case, tests with such a burner head 2 have shown that even if the inner insulating disc 30 is lost or fails or burns off, the O-ring 32 remains hydraulically tight over a period of several hundred to over a thousand hours and thus functions reliably and prevents coolant from penetrating into the plasma channel 10 is prevented. In this context, it should be mentioned that penetration of cooling liquid into the plasma channel 10 during operation would be equivalent to destroying the torch head.

Die drei Neutroden 4, 5, 6 sind mit einem ringförmig umlaufenden Kragen (nicht erkennbar) versehen. In jeden dieser Kragen ist eine Vielzahl von axial verlaufenden Ausnehmungen -Schlitzen- zur Bildung von Kühlrippen eingelassen. Die Kühlflüssigkeit gelangt aus dem Ringraum 50 in den als Ringraum ausgebildeten Vorlaufraum 51 und durchströmt diesen. Der Vorlaufraum 51 ist dabei derart angeordnet und ausgebildet, dass die Kühlflüssigkeit in axialer Richtung entlang der Neutroden 4, 5, 6 wie auch der Anode 7 strömt. Die Kühlflüssigkeit strömt in axialer Richtung auch durch die der Bildung der Kühlrippen dienenden axialen Schlitze in den Neutroden 4, 5, 6. Indem die Neutroden 4, 5, 6 mit axial verlaufenden Schlitzen versehen sind, kann die Kühlflüssigkeit in Längsrichtung entlang der Neutroden zirkulieren und eine effiziente Kühlung gewährleisten. Nach der vordersten Neutrode 6 strömt die Kühlflüssigkeit über die schräg verlaufende Bohrungen 40 der Anode 7 in den Ringkanal 41 der Anode 7 ein. Die schräg verlaufenden Bohrungen 40 führen hinter dem Ringkanal 41 noch weiter nach vorne in den Grundkörper der Anode 7 hinein. Von dem Ringkanal 41 tritt die Kühlflüssigkeit nach oben in den die Neutrodenanordnung umgebenden Rücklaufraum 52 ein, von welchem sie dann nach oben in den hinteren Anschlussflansch 53 einströmt und über diesen aus dem Brennerkopf 2 austreten kann. Ggf. kann die Durchflussrichtung des Kühlwassers auch umgekehrt werden. Zudem ist der Innendurchmesser des Vorlaufraums 51 vorzugsweise derart auf den Aussendurchmesser des umlaufenden Kragens der jeweiligen Neutrode 4, 5, 6 abgestimmt, dass die Neutroden 4, 5, 6 beim Einsetzen in den Vorlaufraum 51 in radialer Richtung exakt ausgerichtet werden.The three neutrodes 4, 5, 6 are provided with an annular collar (not visible). In each of these collars, a multiplicity of axially extending recesses—slits—are let in to form cooling fins. The coolant flows from the annular space 50 into the flow space 51 designed as an annular space and flows through it. The flow space 51 is arranged and designed in such a way that the coolant flows in the axial direction along the neutrodes 4 , 5 , 6 as well as the anode 7 . The cooling liquid also flows in the axial direction through the axial slits in the neutrodes 4, 5, 6, which serve to form the cooling ribs. By providing the neutrodes 4, 5, 6 with axially running slits, the cooling liquid can circulate in the longitudinal direction along the neutrodes and ensure efficient cooling. After the foremost neutrode 6 , the cooling liquid flows into the annular channel 41 of the anode 7 via the oblique bores 40 of the anode 7 . The oblique bores 40 lead behind the ring channel 41 even further forward into the base body of the anode 7 . From the annular channel 41, the cooling liquid enters the return space 52 surrounding the neutrode arrangement, from which it then flows upwards into the rear connection flange 53 and can exit the burner head 2 via this. If necessary, the flow direction of the cooling water can also be reversed. In addition, the inner diameter of the flow space 51 is preferably such on the The outer diameter of the circumferential collar of the respective neutrode 4, 5, 6 is adjusted so that the neutrodes 4, 5, 6 are precisely aligned in the radial direction when they are inserted into the advance chamber 51.

Die Figur 2 zeigt die erste Neutrode 4 in perspektivischer und geschnittener Darstellung. Im eingangsseitigen Bereich ist diese Neutrode 4 auf der Aussenseite mit axial schräg verlaufenden Vertiefungen 56 in der Form von Schlitzen versehen, über welche das Kühlmittel in einen die Neutrode 4 umgebenden Ringkanal 57 einströmen kann. Der Ringkanal 57 wird auf der der zweiten Neutrode zuzuwendenden Vorderseite von einem ringförmig umlaufenden Kragen 58 begrenzt. In diesen Kragen 58 sind axial verlaufende Ausnehmungen in der Form von Schlitzen 59 eingelassen, so dass eine Vielzahl von Kühlrippen 60 gebildet werden. Ein derart ausgebildeter Kragen 58 weist eine grosse Oberfläche mit einer entsprechend grossen Kühlfläche auf und ermöglicht eine gute Kühlung der ersten Neutrode. Der jeweilige Schlitz 59 weist vorzugsweise eine Tiefe auf, die zumindest 5% des Kragenumfangs, besonders bevorzugt zumindest 10% des Umfangs des jeweiligen Kragens beträgt. Die erste Neutrode 4 ist auf der der Kathode zuzuwendenden Innenseite mit einem sich konisch verjüngenden, einen Teil des Plasmakanals bildenden Abschnitt versehen istThe figure 2 shows the first neutrode 4 in a perspective and sectional view. In the area on the input side, this neutrode 4 is provided on the outside with axially inclined recesses 56 in the form of slots, through which the coolant can flow into an annular channel 57 surrounding the neutrode 4 . The annular channel 57 is delimited by an annular peripheral collar 58 on the front side facing the second neutrode. Axially extending recesses in the form of slots 59 are embedded in this collar 58, so that a multiplicity of cooling ribs 60 are formed. A collar 58 designed in this way has a large surface area with a correspondingly large cooling surface area and enables good cooling of the first neutrode. The respective slot 59 preferably has a depth which is at least 5% of the circumference of the collar, particularly preferably at least 10% of the circumference of the respective collar. The first neutrode 4 is provided on the inner side facing the cathode with a conically tapering section forming part of the plasma channel

Fig. 3 zeigt die zweite Neutrode 5 in perspektivischer und geschnittener Darstellung. Die zweite Neutrode 5 weist wiederum einen ringförmig umlaufenden Kragen 62 auf, in welchen Schlitze 63 eingelassen sind. Die so gebildeten Kühlrippen 64 ermöglichen wiederum eine gute Kühlung der zweiten Neutrode 5. Auch hier weisen die Schlitze 63 vorzugsweise eine Tiefe auf, die zumindest 5% des Kragenumfangs, besonders bevorzugt zumindest 10% des Umfangs des jeweiligen Kragens entspricht. 3 shows the second neutrode 5 in a perspective and sectional view. The second neutrode 5 in turn has an annular collar 62 in which slots 63 are embedded. The cooling ribs 64 formed in this way in turn enable good cooling of the second neutrode 5. Here, too, the slots 63 preferably have a depth that corresponds to at least 5% of the circumference of the collar, particularly preferably at least 10% of the circumference of the respective collar.

Die Fig. 4a zeigt einen Schnitt durch die dritte bzw. vorderste Neutrode 6, während die Fig. 4b die dritte Neutrode 6 in perspektivischer und geschnittener Darstellung zeigt. Die vorderste Neutrode 6 ist auf der der Anode zuzuwendenden Vorderseite mit einem ringförmigen Vorsprung 66 versehen, auf dessen Rückseite eine Vertiefung 67 gebildet wird. Der ringförmige Vorsprung 66 bildet zusammen mit der Vertiefung 67 einen Teil des dritten Spalts (Fig. 2), in welchem die äussere Isolierscheibe 31 (Fig. 2) aufgenommen ist. Auch die dritte Neutrode 6 ist mit einem ringförmig umlaufenden Kragen 69 versehen, in den Schlitze 70 eingelassen sind. Zudem führen Bohrungen 68 vom Boden des jeweiligen Schlitzes 70 weiter in den Grundkörper der Neutrode 6 hinein nach innen. Diese Bohrungen 68 vergrössern die Kühlfläche dieser thermisch am stärksten belasteten Neutrode 6 und ermöglichen eine besonders effiziente Kühlung dieser Neutrode 6. Auf der Innenseite ist der Vorsprung 66 vorzugsweise abgerundet ausgebildet, da im Betrieb der Lichtbogen sehr nahe an diesem Bereich liegt. Der jeweilige Schlitz 70 weist wiederum vorzugsweise eine Tiefe auf, die zumindest 5% des Umfangs des Kragens 69, besonders bevorzugt zumindest 10% des Umfangs des Kragens 69 entspricht. Der mit D2 bezeichnete Innendurchmesser der Neutrode 6 entspricht in etwa dem Innendurchmesser der Anode, wie nachfolgend noch näher erläutert wird.The Figure 4a shows a section through the third or foremost neutrode 6, while the Figure 4b shows the third neutrode 6 in a perspective and sectional view. The foremost neutrode 6 is provided with an annular projection 66 on the front side facing the anode, on the rear side of which a recess 67 is formed. The annular projection 66 together with the recess 67 forms part of the third gap ( 2 ), in which the outer insulating disc 31 ( 2 ) is included. The third neutrode 6 is also provided with a collar 69 running around in the form of a ring, into which slots 70 are embedded. In addition, bores 68 lead from the bottom of the respective slot 70 further inwards into the base body of the neutrode 6 . These bores 68 increase the cooling surface of this neutrode 6, which is subject to the greatest thermal stress, and enable particularly efficient cooling of this neutrode 6. The projection 66 is preferably rounded on the inside, since the arc is very close to this area during operation. The respective slot 70 in turn preferably has a depth which corresponds to at least 5% of the circumference of the collar 69, particularly preferably at least 10% of the circumference of the collar 69. The inner diameter of the neutrode 6, denoted by D2, corresponds approximately to the inner diameter of the anode, as will be explained in more detail below.

Im vorliegenden Beispiel sind in den Kragen der jeweiligen Neutrode 4, 5, 6 jeweils fünfzehn Schlitze eingelassen, wobei diese Zahl durchaus variieren kann. Vorzugsweise sind jedoch zumindest acht Schlitze vorgesehen. Natürlich kann auch die Form und Grösse der Schlitze variieren, wobei ggf. auch die Anzahl von Neutrode zu Neutrode unterschiedlich ausfallen kann. Der Begriff Isolierscheibe steht zudem stellvertretend für jegliche Formen von Isolatoren, welche nicht zwingend scheibenförmig gestaltet sein müssen.In the present example, fifteen slots are let into the collars of the respective neutrodes 4, 5, 6, although this number can vary. However, at least eight slots are preferably provided. Of course, the shape and size of the slits can also vary, with the number of neutrodes also being able to vary from neutrode to neutrode. The term insulating pane is also representative of any form of insulator that does not necessarily have to be disk-shaped.

Schliesslich zeigt die Fig. 5 einen Schnitt durch die Anode 7. Die Anode ist auf der der dritten Neutrode 6 zuzuwendenden Rückseite mit einer ringförmigen Vertiefung 73 versehen, in welche sich der Vorsprung 66 der dritten Neutrode 6 erstrecken kann. Wie in der Fig. 2 erkennbar ist, wird zwischen dem genannten Vorsprung der dritten Neutrode 6 und der ringförmigen Vertiefung 73 der Anode 7 der innere und der mittlere Abschnitt 27, 28 des Spalts 26 zwischen der Anode 7 und der dritten Neutrode 6 gebildet. Durch die Kombination des an der dritten Neutrode 6 angeordneten Vorsprungs 66 zusammen mit der ringförmigen Vertiefung der Anode 7 wird mit einfachen Merkmalen und auf kostengünstige Weise ein mehrstufiger Spalt gebildet, der in Kombination mit den Isolierscheiben die zuvor geschilderten Vorteile aufweist. In diesem Ausführungsbeispiel entspricht der Innendurchmesser D1 des Einsatzes 8 der Anode 7 in etwa dem Innendurchmesser D2 (Fig. 4a) der daran angrenzenden vordersten Neutrode 6. Allerdings sind auch andere Ausführungsbeispiele vorgesehen, wie nachfolgend anhand der Figuren 6 und 7 noch ausgeführt wird. Die Anode 7 ist mit axial verlaufenden Fortsätzen 43 versehen, welche in radialer Richtung ausserhalb des Plasmakanals 10 verlaufen. In diese Fortsätze 43 sind die Pulverzufuhrkanäle 45 zum Zuführen des Beschichtungspulvers eingelassen. Obwohl im vorliegenden Beispiel zwei Pulverzufuhrkanäle 45 eingezeichnet sind, können natürlich auch drei oder vier Pulverzufuhrkanäle vorgesehen werden.. Ggf. kann auch nur ein einziger Pulverzufuhrkanal vorgesehen werden.Finally, the figure 5 a section through the anode 7. The anode is provided on the third neutrode 6 facing back with an annular recess 73 into which the projection 66 of the third neutrode 6 can extend. Like in the 2 As can be seen, the inner and central sections 27, 28 of the gap 26 between the anode 7 and the third neutrode 6 are formed between the said projection of the third neutrode 6 and the annular depression 73 of the anode 7. The combination of the projection 66 arranged on the third neutrode 6 together with the annular recess of the anode 7 forms a multi-stage gap with simple features and in a cost-effective manner, which in combination with the insulating discs has the advantages described above. In this exemplary embodiment, the inner diameter D1 of the insert 8 of the anode 7 corresponds approximately to the inner diameter D2 ( Figure 4a ) of the foremost neutrode 6 adjacent thereto. However, other exemplary embodiments are also provided, as described below with reference to FIG Figures 6 and 7 is still running. The anode 7 is provided with axially extending extensions 43 which extend outside of the plasma channel 10 in the radial direction. The powder supply channels 45 for supplying the coating powder are let into these extensions 43 . Although two powder supply ducts 45 are shown in the present example, three or four powder supply ducts can of course also be provided. If necessary, only a single powder supply duct can also be provided.

In der Darstellung gemäss Fig. 5 sind zudem zwei der schräg verlaufenden Bohrungen 40 der Anode 7 ersichtlich, welche in den Ringkanal 41 münden. Gesamthaft ist die Anode 7 mit zumindest zehn solcher Bohrungen 40 versehen. Zudem ist erkennbar, dass die schräg verlaufenden Bohrungen 40 über den Ringkanal 41 hinaus in den Grundkörper der Anode 7 geführt sind und so die Kühlfläche der Anode 7 vergrössern.In the representation according to figure 5 two of the oblique bores 40 of the anode 7 can also be seen, which open into the annular channel 41. Overall, the anode 7 is provided with at least ten such bores 40. In addition, it can be seen that the oblique bores 40 are guided beyond the annular channel 41 into the base body of the anode 7 and thus increase the cooling surface of the anode 7 .

Hier sei noch angemerkt, dass die drei Neutroden 4, 5, 6 wie auch die Anode 7 Verschleissteile sind, welche nach einer bestimmten Einsatzzeit der Plasmaspritzvorrichtung ausgewechselt werden bzw. ausgewechselt werden müssen. Gleichzeitig werden üblicherweise auch die O-Ringe sowie die Isolierscheiben ersetzt.It should also be noted here that the three neutrodes 4, 5, 6 as well as the anode 7 are wearing parts which are or must be replaced after the plasma spraying device has been in use for a certain period of time. At the same time, the O-rings and the insulating discs are usually also replaced.

Die Fig. 6 zeigt einen Schnitt durch eine erste alternative Ausbildung der dritten bzw. vordersten Neutrode 6a. Diese Neutrode 6a ist auf der Innenseite mit einer Ausnehmung 75 versehen, so dass sich deren Innendurchmesser D3 zu der Anode hin vergrössert. Durch diese Ausnehmung wird der Innendurchmesser D3 auf einen Durchmesser D2 vergrössert, der grösser ist als der Innendurchmesser D1 (Fig. 5) der angrenzenden Anode, namentlich auch des Einsatzes der Anode. Durch diese Ausbildung soll sichergestellt werden, dass der Lichtbogen nicht schon an dieser vordersten Neutrode 6a ansetzt, sondern erst an der Anode. Diese Ausbildung trägt daher auch dazu bei, dass die Temperatur im Bereich des dritten Spalts 26 (Fig. 1a) vergleichsweise niedrig ist, und kein nennenswerter Abbrand an der vordersten Neutrode 6a entsteht, was letztlich zu einer erhöhten Lebensdauer insbesondere der vordersten Neutrode 6a beiträgt. Vorzugsweise ist der Innendurchmesser dieser dritten Neutrode 6a in dem an die Anode angrenzenden Bereich um zumindest 10%, insbesondere um zumindest 20%, besonders bevorzugt um zumindest 30% grösser ist als derjenige der Anode. Geht man beispielsweise von einem Innendurchmesser der Anode von 10 Millimetern aus, so ist der Innendurchmesser dieser dritten Neutrode 6a in dem an die Anode angrenzenden Bereich um zumindest 1 Millimeter, insbesondere um zumindest 2 besonders bevorzugt um zumindest 3 Millimeter grösser als derjenige der Anode. Eine andere Variante könnte darin bestehen, dass der Innendurchmesser der dritten Neutrode durchgehend grösser ist als derjenige der Anode.The 6 shows a section through a first alternative embodiment of the third or foremost neutrode 6a. This neutrode 6a is provided with a recess 75 on the inside, so that its inner diameter D3 increases towards the anode. Through this recess, the inner diameter D3 is enlarged to a diameter D2, which is larger than the inner diameter D1 ( figure 5 ) the adjoining anode, specifically also the use of the anode. This design is intended to ensure that the arc does not start at this foremost neutrode 6a, but only at the anode. This design therefore also contributes to the temperature in the region of the third gap 26 ( Fig. 1a ) is comparatively low, and no appreciable burn-off occurs at the foremost neutrode 6a, which ultimately contributes to an increased service life, in particular of the foremost neutrode 6a. The inner diameter of this third neutrode 6a in the area adjacent to the anode is preferably at least 10%, in particular at least 20%, particularly preferably at least 30% larger than that of the anode. For example, assuming an inner diameter of the anode of 10 millimeters, the inner diameter of this third neutrode 6a in the area adjacent to the anode is at least 1 millimeter, in particular at least 2, particularly preferably at least 3 millimeters larger than that of the anode. Another variant could be that the inner diameter of the third neutrode is consistently larger than that of the anode.

Die Fig. 7 zeigt einen Schnitt durch eine zweite alternative Ausbildung der dritten bzw. vordersten Neutrode 6b. Der Innendurchmesser dieser Neutrode 6b erweitert sich nach vorne hin kontinuierlich, so dass der Innendurchmesser D3 in dem der Anode zuzuwendenden Auslassbereich um zumindest 10%, insbesondere um zumindest 20%, besonders bevorzugt um zumindest 30% grösser ist als der Innendurchmesser D1 der Anode 7 (Fig. 5). Durch diese Ausbildung soll wiederum sichergestellt werden, dass der Lichtbogen nicht schon an dieser vordersten Neutrode 6b ansetzt, sondern erst an der Anode. Wie in der Fig. 7 ersichtlich ist, vergrösserst sich der Innendurchmesser D3 dieser vordersten Neutrode 6b, indem diese auslassseitig mit einer Abrundung versehen ist. Anstelle einer Abrundung könnte beispielsweise auch eine Anfasung, eine konische Ausbildung oder eine Anfasung oder konische Ausbildung in Kombination mit einer Abrundung vorgesehen werden.The 7 shows a section through a second alternative embodiment of the third or foremost neutrode 6b. The inner diameter of this neutrode 6b increases continuously towards the front, so that the inner diameter D3 in the outlet area facing the anode is at least 10%, in particular at least 20%, particularly preferably at least 30% larger than the inner diameter D1 of the anode 7 ( figure 5 ). This design is intended in turn to ensure that the arc does not start at this foremost neutrode 6b, but only at the anode. Like in the 7 As can be seen, the inner diameter D3 of this foremost neutrode 6b increases in that it is rounded off on the outlet side. Instead of a rounding, for example, a chamfer, a conical design or a chamfer or a conical design in combination with a rounding could also be provided.

Schliesslich zeigt die Fig. 8 einen Schnitt durch eine dritte alternative Ausbildung der dritten bzw. vordersten Neutrode 6c. Der Innendurchmesser dieser Neutrode 6b erweitert sich nach vorne hin durch zwei konische Abschnitte. Der erste konische Abschnitt schliesst vorzugsweise einen spitzen Winkel ein, während der zweite konische Abschnitt einen spitzen oder stumpfen Winkel einschliesst. Vorzugsweise schliesst der erste konische Abschnitt einen Winkel zwischen ca. 20 und 30° ein, während der zweite konische Abschnitt einen Winkel zwischen ca. 80° und 100° einschliesst. Der erste konische Abschnitt weist an seinem auslassseitigen Ende einen Durchmesser D4 auf, der um zumindest 10% grösser ist als der Innendurchmesser D1 der Anode 7 (Fig. 5), während der zweite konische Abschnitt um zumindest 20%, insbesondere um zumindest 30% grösser ist als der Innendurchmesser D1 der Anode. Auch diese Ausbildung soll wiederum sicherstellen, dass der Lichtbogen erst an der Anode und nicht schon an der vordersten Neutrode 6c ansetzt.Finally, the 8 a section through a third alternative embodiment of the third or foremost neutrode 6c. The inner diameter of this neutrode 6b widens towards the front through two conical sections. The first conical section preferably encloses an acute angle, while the second conical section encloses an acute or obtuse angle. Preferably, the first conical section encloses an angle between about 20 and 30°, while the second conical section encloses an angle between about 80° and 100°. At its outlet end, the first conical section has a diameter D4 which is at least 10% larger than the inner diameter D1 of the anode 7 ( figure 5 ), while the second conical section is at least 20%, in particular at least 30% larger than the inner diameter D1 of the anode. This design is also intended to ensure that the arc first starts at the anode and not at the foremost neutrode 6c.

Zusammenfassend kann festgehalten werden, dass mit der erfindungsgemäss gestalteten Plasmaspritzvorrichtung, die Verschleissteile im thermisch am höchsten belasteten Bereich der Plasmaspritzvorrichtung, insbesondere die Anode 7 zusammen mit der daran angrenzende Neutrode 6, bei gleicher Nennleistung eine höhere Lebensdauer aufweisen oder eine erhöhte Nennleistung bei gleicher Lebensdauer zulassen. Dies wird insbesondere dadurch erreicht, dass der Spalt 26 zwischen der vordersten Neutrode 6 und der Anode 7 zumindest zwei Abschnitte 27, 29 aufweist, wobei zwischen den beiden Abschnitten 27, 29 ein radialer und/oder axialer Abstand besteht und wobei in beiden Abschnitten 27, 29 je eine Isolierscheibe 30, 31 angeordnet ist. Durch die genannten Merkmale insbesondere auch in Kombination mit den eine effiziente Kühlung der vordersten Neutrode und der Anode bewirkenden Merkmalen, wird gegenüber den bekannten Plasmaspritzvorrichtungen eine höhere Lebensdauer der Verschleissteile bzw. eine erhöhte Nennleistung bei gleicher Lebensdauer erreicht. Als Material für die Kathode wird vorzugsweise Wolfram oder ein Verbundwerkstoff auf Wolframbasis wie beispielsweise W/Cu eingesetzt. Die Anode wird vorzugsweise aus THO2 (Thoriumdioxid) gefertigt, während die Neutroden vorzugsweise aus Kupfer oder einer Kupferlegierung bestehen.In summary, it can be stated that with the plasma spraying device designed according to the invention, the wearing parts in the area of the plasma spraying device that is subjected to the highest thermal stress, in particular the anode 7 together with the adjacent neutrode 6, have a longer service life with the same rated power or allow an increased rated power with the same service life . This is achieved in particular in that the gap 26 between the foremost neutrode 6 and the anode 7 has at least two sections 27, 29, there being a radial and/or axial distance between the two sections 27, 29 and in both sections 27, 29 one insulating disk 30, 31 each is arranged. The features mentioned, in particular also in combination with the features causing efficient cooling of the foremost neutrode and the anode, result in a longer service life of the wearing parts or an increased rated output with the same service life as compared to the known plasma spraying devices. Tungsten or a tungsten-based composite material such as W/Cu is preferably used as the material for the cathode. the anode is preferably made of THO 2 (thorium dioxide), while the neutrodes are preferably made of copper or a copper alloy.

Nachfolgend werden nochmals einige Vorteile der erfindungsgemäss gestalteten Plasmaspritzvorrichtung zusammengefasst:

  • langzeitstabile elektrische Isolation zwischen der vordersten Neutrode und der angrenzenden Anode;
  • zuverlässige, langzeitstabile hydraulische Abdichtung des Spalts zwischen vordersten Neutrode und der angrenzenden Anode;
  • besonders effiziente Kühlung der Neutroden insbesondere auch der vordersten Neutrode;
  • effiziente Kühlung der Anode;
  • hohe Lebensdauer der Anode wie auch der Neutroden;
  • sehr stabiler Lichtbogen;
  • im Vergleich mit gattungsgemässen Plasmaspritzvorrichtungen kann eine erhöhte Nennleistung bei vergleichbarer Lebensdauer der Verschleissteile erreicht werden;
  • im Vergleich mit gattungsgemässen Plasmaspritzvorrichtungen kann eine erhöhte Lebensdauer der Verschleissteile bei vergleichbarer Nennleistung erreicht werden;
  • der Brennerkopf ist einfach aufgebaut und die Verschleissteile können einfach und schnell ausgewechselt werden;
  • der Brennerkopf kann kostengünstig gefertigt werden;
  • der Brennerkopf besitzt in Bezug auf die zugeführte elektrische Energie einen hohen Wirkungsgrad;
Some advantages of the plasma spraying device designed according to the invention are summarized again below:
  • long-term stable electrical insulation between the foremost neutrode and the adjacent anode;
  • reliable, long-term stable hydraulic sealing of the gap between the foremost neutrode and the adjacent anode;
  • particularly efficient cooling of the neutrodes, especially the foremost neutrode;
  • efficient cooling of the anode;
  • long service life of the anode as well as the neutrodes;
  • very stable arc;
  • in comparison with generic plasma spraying devices, an increased rated output can be achieved with a comparable service life of the wearing parts;
  • in comparison with generic plasma spraying devices, an increased service life of the wearing parts can be achieved with a comparable nominal output;
  • the torch head is simple and the wear parts can be replaced quickly and easily;
  • the burner head can be manufactured inexpensively;
  • the burner head has a high efficiency in relation to the electrical energy supplied;

Es versteht sich, dass das vorgängige Ausführungsbeispiel lediglich eine mögliche bzw. bevorzugte Ausbildung der Plasmaspritzvorrichtung bzw. des Brennerkopfs 2 zeigt und durchaus von diesem Beispiel abweichende Ausbildungen möglich sind. So können beispielsweise anstelle von drei Neutroden auch zwei, vier oder mehr Neutroden eingesetzt werden. Auch die Gestaltung des Spalts zwischen den Neutroden bzw. der vordersten Neutrode und der Anode kann von der gezeigten Darstellung abweichen. Der Spalt 26 zwischen der vordersten Neutrode 6 und der Anode 7 könnte beispielsweise noch weitere Stufen beinhalten, indem beispielsweise die vorderste Neutrode zwei Vorsprünge aufweist und die Anode entsprechend mit zwei Vertiefungen versehen ist. Zur Bildung eines Spalts der genannten Art zwischen der vordersten Neutrode und der Anode könnte alternativ auch die Anode mit einem der vordersten Neutrode zugewandten, ringförmigen Vorsprung versehen werden und die vorderste Neutrode entsprechend mit einer der Anode zugewandten, ringförmigen Vertiefung. Anstelle einer Anode 7 mit angeformtem Pulverzufuhrelement 44 könnte das Pulverzufuhrelement auch als separates Bauteil ausgebildet sein.It goes without saying that the previous exemplary embodiment only shows a possible or preferred embodiment of the plasma spraying device or of the burner head 2 and embodiments that deviate from this example are definitely possible. For example, instead of three neutrodes, two, four or more neutrodes can also be used. The design of the gap between the neutrodes or the foremost neutrode and the anode can also deviate from the illustration shown. The gap 26 between the foremost neutrode 6 and the anode 7 could, for example, contain further steps, for example by the foremost neutrode having two projections and the anode being correspondingly provided with two indentations. To form a gap of the kind mentioned between the foremost Alternatively, the anode could be provided with an annular projection facing the neutrode and the anode, and the neutrode with an annular depression facing the anode. Instead of an anode 7 with a molded powder feed element 44, the powder feed element could also be designed as a separate component.

Claims (20)

  1. A plasma spraying device (1) comprising at least one cathode (3), an anode (7), a plasma channel (10) extending between the cathode (3) and the anode (7) and a plurality of neutrodes (4, 5, 6) bounding the plasma channel (10), wherein the neutrodes (4, 5, 6) are electrically insulated from one another and wherein a gap (26) extends between the frontmost neutrode (6) facing the anode (7) and the anode (7), in which a first insulating disc (30) is arranged, wherein the gap (26) between the frontmost neutrode (6) and the anode (7) has at least a first inner section (27) and a third outer section (29), and wherein a radial and/or axial distance exists between the two sections (27, 29), characterised in that the first insulating disc (30) is arranged in the first inner section (27) and a second insulating disc (31), which is separate from the first insulating disc (30), is arranged in the third outer section (29).
  2. The plasma spraying device according to claim 1, characterised in that said gap (26) comprises a second middle section (28), the first inner portion (27) being offset with respect to the third outer section (29) in a radial and axial direction
  3. The plasma spraying device according to claim 2, characterised in that the second middle section (28) of the gap (26) extends at an angle to the inner and/or outer section (27, 29).
  4. The plasma spraying device according to any one of the preceding claims, characterised in that the plasma spraying device comprises a sealing ring (32) arranged radially outside the third outermost section (29).
  5. The plasma spraying device according to one of the preceding claims, characterised in that the frontmost neutrode (6) is provided with a ring-shaped projection (66) facing the anode (7) and the anode (7) is provided with a ring-shaped indentation (73) facing the frontmost neutrode (6), and wherein the gap (26) extends between said projection (66) and said indentation (73).
  6. A plasma spraying device according to any one of the preceding claims, characterised in that said first inner section (27) is arranged inside said third outer section (29) in a radial direction, and said first inner portion (27) has said first insulating disc (30) arranged therein which is set back in a radial direction from said plasma channel (10).
  7. The plasma spraying device according to any one of the preceding claims, characterised in that the inner diameter (D2, D3, D5) of the frontmost neutrode (6, 6a, 6b, 6c) is larger than the inner diameter (D1) of the anode (7) by at least 10%, especially by at least 20% and preferably by at least 30%, at least in the end region facing the anode (7).
  8. The plasma spraying device according to one of the preceding claims, characterised in that the anode (7) is ring-shaped and is provided with a high melting point insert (8) on the inside which, in the direction of the longitudinal axis of the plasma channel (10), reaches at least approximately as far as the gap (26) between the frontmost neutrode (6) and the anode (7).
  9. The plasma spraying device according to one of the preceding claims, characterised in that the frontmost neutrode (6) is provided with a ring-shaped collar (69), in which axial slots (70) are embedded for forming cooling ribs (71).
  10. The plasma spraying device according to any one of the preceding claims, characterised in that all neutrodes (4, 5, 6) are provided with an ring-shaped collar (58, 62, 69), each collar (58, 62, 69) being provided with a plurality of axial slots (59, 63, 70) so that a plurality of cooling ribs (60, 64, 71) are formed, and wherein the thus formed cooling ribs (60, 64, 71) are connected to a channel or ring-shaped space (52) in which a coolant circulates.
  11. The plasma spraying device according to claim 10, characterised in that the respective slot (59, 63, 70) has a depth which is at least 5% of the circumference of the respective collar (58, 62, 69), and in a particularly preferable embodiment, at least 10% of the circumference of the respective collar (58, 62, 69).
  12. The plasma spraying device according to any one of claims 9 to 11, characterised in that, with the exception of the first neutrode (4) facing the cathode (3), the respective slot (63, 70) essentially extends over the entire axial length of the respective neutrode (5, 6).
  13. The plasma spraying device according to any one of the preceding claims, characterised in that the plasma spraying device (1) has an annular space (51) completely surrounding the neutrodes (4, 5, 6) for receiving coolant.
  14. The plasma spraying device according to claim 13, characterised in that the annular space (51) is arranged and formed in such a way that the coolant flows in an axial direction along the neutrodes (4, 5, 6) as well as the anode (7).
  15. The plasma spraying device according to any one of the preceding claims, characterised in that the first neutrode (4) facing the cathode (3) is provided with a conically tapering section (11a) forming part of the plasma channel (10).
  16. An anode (7) for a plasma spraying device (1) according to claim 1, characterised in that the anode (7) is provided with a ring-shaped elevation or a ring-shaped indentation (73) on the rear side facing the frontmost neutrode (6) for forming the gap (26) having at least first inner and third outer sections (27, 29).
  17. The anode (7) according to claim 16, characterised in that the anode (7) is provided with a ring-shaped channel (41) for introducing a coolant, wherein a plurality of inclined channels (40) lead into the ring-shaped channel (41) for supplying or discharging the coolant.
  18. The frontmost neutrode (6) for a plasma spraying device (1) according to claim 1, characterised in that the frontmost neutrode (6) is provided with a ring-shaped projection (66) or a ring-shaped indentation on the front side facing the anode for forming the gap (26) comprising at least first inner and third outer sections (27, 29).
  19. The neutrode according to claim 18, characterised in that the inner diameter (D2, D3, D5) of the frontmost neutrode (6a, 6b, 6c) is larger than the inner diameter (D1) of the anode (7) by at least 10%, especially by at least 20%, and preferably by at least 30%, at least in the end region facing the anode (7).
  20. The neutrode according to claim 18 or 19, characterised in that the frontmost neutrode (6) has a ring-shaped collar (69) in which at least eight, in particular at least twelve, axial slots (70) are formed, wherein the respective slot (70) comprises a depth which corresponds to at least 5% of the circumference of the collar (69), and in a particularly preferable embodiment, at least 10% of the circumference of the collar (69).
EP17761178.7A 2016-08-26 2017-08-21 Plasma spray device Active EP3504943B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH01092/16A CH712835A1 (en) 2016-08-26 2016-08-26 Plasma injector.
PCT/CH2017/000075 WO2018035619A1 (en) 2016-08-26 2017-08-21 Plasma spraying device

Publications (2)

Publication Number Publication Date
EP3504943A1 EP3504943A1 (en) 2019-07-03
EP3504943B1 true EP3504943B1 (en) 2023-06-07

Family

ID=59761736

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17761178.7A Active EP3504943B1 (en) 2016-08-26 2017-08-21 Plasma spray device

Country Status (7)

Country Link
US (1) US10945330B2 (en)
EP (1) EP3504943B1 (en)
JP (1) JP6963569B2 (en)
CH (1) CH712835A1 (en)
ES (1) ES2953155T3 (en)
PL (1) PL3504943T3 (en)
WO (1) WO2018035619A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3057456A1 (en) * 2017-03-16 2018-09-20 Oerlikon Metco (Us) Inc. Optimized neutrode stack cooling for a plasma gun
CA3088556A1 (en) * 2018-02-20 2019-08-29 Oerlikon Metco (Us) Inc. Single arc cascaded low pressure coating gun utilizing a neutrode stack as a method of plasma arc control
EP3742869A1 (en) * 2019-05-22 2020-11-25 Gulhfi Consulting AG Miniaturised plasma torch

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4430546A (en) * 1981-08-14 1984-02-07 Metco, Inc. Plasma spray gun nozzle
US4788408A (en) * 1987-05-08 1988-11-29 The Perkin-Elmer Corporation Arc device with adjustable cathode
DE4105407A1 (en) * 1991-02-21 1992-08-27 Plasma Technik Ag PLASMA SPRAYER FOR SPRAYING SOLID, POWDER-SHAPED OR GAS-SHAPED MATERIAL
DE4105408C1 (en) * 1991-02-21 1992-09-17 Plasma-Technik Ag, Wohlen, Ch
DE9215133U1 (en) * 1992-11-06 1993-01-28 Plasma-Technik Ag, Wohlen, Ch
EP0851720B1 (en) * 1996-12-23 1999-10-06 Sulzer Metco AG Non-transferred arc plasmatron
US6114649A (en) * 1999-07-13 2000-09-05 Duran Technologies Inc. Anode electrode for plasmatron structure
US7030336B1 (en) * 2003-12-11 2006-04-18 Sulzer Metco (Us) Inc. Method of fixing anodic arc attachments of a multiple arc plasma gun and nozzle device for same
WO2006012165A2 (en) * 2004-06-25 2006-02-02 H.C. Starck Inc. Plasma jet generating apparatus and method of use thereof
US7759599B2 (en) 2005-04-29 2010-07-20 Sulzer Metco (Us), Inc. Interchangeable plasma nozzle interface
JP4641014B2 (en) * 2006-09-11 2011-03-02 新明和工業株式会社 Mounting structure of plasma gun to chamber
US7671294B2 (en) * 2006-11-28 2010-03-02 Vladimir Belashchenko Plasma apparatus and system
MX2014009643A (en) * 2012-02-28 2014-11-10 Sulzer Metco Inc Extended cascade plasma gun.
US9150949B2 (en) * 2012-03-08 2015-10-06 Vladmir E. BELASHCHENKO Plasma systems and methods including high enthalpy and high stability plasmas
CN104602432A (en) * 2015-02-05 2015-05-06 成都真火科技有限公司 Self-cooled anode plasma source

Also Published As

Publication number Publication date
EP3504943A1 (en) 2019-07-03
CH712835A1 (en) 2018-02-28
JP6963569B2 (en) 2021-11-10
ES2953155T3 (en) 2023-11-08
JP2019533077A (en) 2019-11-14
WO2018035619A1 (en) 2018-03-01
PL3504943T3 (en) 2024-03-25
US10945330B2 (en) 2021-03-09
US20190141828A1 (en) 2019-05-09

Similar Documents

Publication Publication Date Title
EP3504943B1 (en) Plasma spray device
EP0500492B1 (en) Plasma spray gun for spraying powdered or gaseous materials
EP0585203B1 (en) Plasma spray gun
EP1222984B1 (en) Clamping chuck for clamping tools by shrink fit
DE102009016932A1 (en) Cooling tubes, electrode holders and electrode for an arc plasma burner and arrangements of the same and arc plasma torch with the same
WO2012175068A1 (en) Tilting-segment bearing
DE102016112782B4 (en) Insert for connecting an electrical connection to a wall
DE202015005846U1 (en) Multi-component electrode for a plasma cutting torch and cutting torch with such a multi-component electrode
EP2364070B1 (en) Electrode with cooling pipe for a plasma cutting device
DE1195872B (en) Cathode control electrode arrangement for a beam generation system of a cathode ray tube
EP1283575B2 (en) Electric component protected against arc interference
EP3963235B1 (en) Mechanical face seal assembly, in particular for hot media, and pump assembly
EP0401637B1 (en) Electric lamp
DE2135439A1 (en) Device with a hnienformigem electron beam
DE19506057B4 (en) Extinguishing spark gap arrangement
EP0849026A1 (en) Welding torch using protective gas
DE202017103766U1 (en) High-voltage circuit breakers
DE102013112806B4 (en) Method for producing a glow plug
DE2420996A1 (en) DEVICE FOR CURRENT LIMITING
EP3127199B1 (en) Surge arrester
EP1022758A2 (en) Vacuum switch
EP3235079B1 (en) Spark plugs with central electrode
DE102016209664B4 (en) Rotating anode bearing
DE19926741A1 (en) Liquid-metal plain bearing with cooling lance e.g. for X-ray tube
EP2640167B1 (en) Plasma electrode for a plasma cutting device

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181130

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20211103

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502017014863

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H05H0001340000

Ipc: H05H0001420000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H05H 1/34 20060101ALI20221208BHEP

Ipc: H05H 1/42 20060101AFI20221208BHEP

INTG Intention to grant announced

Effective date: 20230104

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1578469

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230615

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017014863

Country of ref document: DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: OERLIKON METCO AG, WOHLEN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20230817 AND 20230823

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

Ref country code: DE

Ref legal event code: R081

Ref document number: 502017014863

Country of ref document: DE

Owner name: OERLIKON METCO AG, WOHLEN, CH

Free format text: FORMER OWNER: AMT AG, DOETTINGEN, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230825

Year of fee payment: 7

REG Reference to a national code

Ref country code: BE

Ref legal event code: PD

Owner name: OERLIKON METCO AG, WOHLEN; CH

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: AMT AG

Effective date: 20230822

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: OERLIKON METCO AG, WOHLEN; CH

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: AMT AG

Effective date: 20230914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230907

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230831

Year of fee payment: 7

Ref country code: GB

Payment date: 20230822

Year of fee payment: 7

Ref country code: ES

Payment date: 20230914

Year of fee payment: 7

Ref country code: CH

Payment date: 20230902

Year of fee payment: 7

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2953155

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20231108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230908

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230823

Year of fee payment: 7

Ref country code: FR

Payment date: 20230824

Year of fee payment: 7

Ref country code: DE

Payment date: 20230828

Year of fee payment: 7

Ref country code: BE

Payment date: 20230825

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231009

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231007

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017014863

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230821

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

26N No opposition filed

Effective date: 20240308

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A