EP3499011B1 - Method and control device for determining a target inlet manifold pressure of a combustion engine - Google Patents

Method and control device for determining a target inlet manifold pressure of a combustion engine Download PDF

Info

Publication number
EP3499011B1
EP3499011B1 EP18210308.5A EP18210308A EP3499011B1 EP 3499011 B1 EP3499011 B1 EP 3499011B1 EP 18210308 A EP18210308 A EP 18210308A EP 3499011 B1 EP3499011 B1 EP 3499011B1
Authority
EP
European Patent Office
Prior art keywords
intake manifold
manifold pressure
pressure
determined
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18210308.5A
Other languages
German (de)
French (fr)
Other versions
EP3499011A1 (en
Inventor
Sebastian Heinken
Marco Bunjes
Tim Thaler
Benjamin Frank
Daniel Beese
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP3499011A1 publication Critical patent/EP3499011A1/en
Application granted granted Critical
Publication of EP3499011B1 publication Critical patent/EP3499011B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1406Introducing closed-loop corrections characterised by the control or regulation method with use of a optimisation method, e.g. iteration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/144Sensor in intake manifold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1448Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
    • F02D41/145Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • F02D2200/0408Estimation of intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0411Volumetric efficiency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/34Control of exhaust back pressure, e.g. for turbocharged engines

Definitions

  • the invention relates to a method and a control device for determining a target intake manifold pressure of an internal combustion engine, in particular of a motor vehicle, by means of an iterative method.
  • the invention further relates to a method and a control device for determining a target exhaust back pressure of an internal combustion engine, for example of a motor vehicle, by means of a fixed point iteration.
  • a target intake manifold pressure i.e. a target pressure value in an intake manifold of an internal combustion engine, is usually used to determine target positions of a throttle valve and a turbocharger of the internal combustion engine in order to control the internal combustion engine taking the target positions into account.
  • the DE 199 44 178 A1 discloses a method for controlling a throttle valve, wherein a target intake manifold pressure is determined from a predeterminable target air mass flow and the throttle valve position is derived on the basis of this.
  • a gas exchange model of the internal combustion engine is typically inverted.
  • such an inversion of the gas exchange model can be inaccurate in places, which leads to a slower response and torque irregularity of the internal combustion engine of a vehicle and the vehicle itself.
  • the US6,968,824 B1 describes a method for determining a target boost pressure using an iterative method.
  • a delivery level is determined on the basis of a measured boost pressure and an iterated boost pressure is determined on the basis of the delivery level, which is then evaluated.
  • a decision is made as to whether a further iteration step is carried out or whether the iterated boost pressure is selected as the target boost pressure.
  • the object of the present invention is to provide a method and a control device for determining a target intake manifold pressure, which at least partially overcome the above-mentioned disadvantages.
  • the present invention relates to a method for determining a target intake manifold pressure of an internal combustion engine by means of an iterative method, wherein a cylinder charge is determined for an intake manifold pressure iterated during the iterative method and the target intake manifold pressure is determined as a function of the determined cylinder charge.
  • the present invention relates to a control device comprising a processor configured to carry out a method according to the first aspect.
  • the present invention relates to a method for determining a target intake manifold pressure of an internal combustion engine using an iterative method.
  • the target intake manifold pressure is usually a target pressure that should prevail in an intake manifold of an internal combustion engine that is designed to supply fresh air to a cylinder of the internal combustion engine.
  • a cylinder charge is determined for an intake manifold pressure iterated during the iterative process.
  • the cylinder charge of an internal combustion engine is composed, for example, of various proportions of charge components within the cylinder of the internal combustion engine, such as fresh air, residual gas and/or flushed air.
  • the cylinder charge can represented by so-called intake curves of the internal combustion engine.
  • the cylinder filling can be based on a non-invertible gas exchange model and determined depending on target camshaft positions, a current actual speed at a current operating point of the internal combustion engine, a target exhaust back pressure for the iterated intake manifold pressure and the iterated intake manifold pressure.
  • the target intake manifold pressure is then determined depending on the specific cylinder charge. The determination of the target intake manifold pressure is described in detail below.
  • the method according to the invention allows the target intake manifold pressure to be determined without great effort even for non-invertible gas exchange models.
  • the target intake manifold pressure can thus be determined very precisely, resulting in a high CO 2 saving potential through low ignition angle interventions in near-idling operation, a fast and harmonious torque build-up and torque reduction in the dynamics and stable conditions for leak diagnosis in a pressure section and thus early error detection for unit protection.
  • the iterative method is a secant method. Two starting points are defined and a secant is placed between these starting points. Then an intersection point of the secant with an x-axis, in this case an axis that indicates a target intake manifold pressure, is defined as an iterate, which represents an improved starting value for a subsequent iteration.
  • an iterative inversion of absorption curves that are not differentiable can also be carried out.
  • a cylinder charge is determined for a first starting intake manifold pressure and a second starting intake manifold pressure is determined by comparing the cylinder charge for the first starting intake manifold pressure with a target cylinder charge of the internal combustion engine and determining the second starting intake manifold pressure depending on the comparison result between the cylinder charge for the first starting intake manifold pressure and the target cylinder charge.
  • p S 2 ⁇ p S 2 , Max , if r 0 ⁇ r should p S 2 , min , if r 0 > r should , where ro is the cylinder charge for the first starting intake manifold pressure and r soll is the target cylinder charge of the internal combustion engine.
  • the values p S2,max and p S2,min can be read from characteristic maps.
  • the characteristic maps are preferably dependent on a speed and the target cylinder charge, whereby the characteristic maps are preferably data-rich in such a way that a search area for the target intake manifold pressure is as small as possible, but the target intake manifold pressure sought is always within the search range. A cylinder charge can then also be determined for the second starting intake manifold pressure.
  • the first starting intake manifold pressure can be an actual intake manifold pressure.
  • the actual intake manifold pressure can be a pressure currently prevailing in the intake manifold, which is preferably measured by means of a pressure sensor in the intake manifold or determined based on other measured parameters.
  • the iterated intake manifold pressure can be determined using the secant method based on the first starting intake manifold pressure and the second starting intake manifold pressure.
  • a variable that is dependent on the intake manifold pressure can be plotted against the intake manifold pressure for the first starting intake manifold pressure and for the second starting intake manifold pressure, and a secant can be placed through the variable that is dependent on the intake manifold pressure at the first starting intake manifold pressure and at the second starting intake manifold pressure.
  • the intersection point of the secant with the x-axis (intake manifold pressure axis) can then represent the iterated intake manifold pressure (first iterated intake manifold pressure).
  • further iterated intake manifold pressures can be determined based on the second starting intake manifold pressure and/or the first iterated intake manifold pressure.
  • the iterated intake manifold pressure can also be determined as a function of the cylinder charge for the first starting intake manifold pressure and the cylinder charge for the second starting intake manifold pressure.
  • the cylinder charge for the first starting intake manifold pressure and the cylinder charge for the second starting intake manifold pressure can be plotted against the intake manifold pressure and a secant can be drawn through the cylinder charge at the first starting intake manifold pressure and the cylinder charge at the second starting intake manifold pressure.
  • the intersection point of the secant with the x-axis can then represent the iterated intake manifold pressure (first iterated intake manifold pressure).
  • a cylinder charge for the first iterated intake manifold pressure can be determined, this can be plotted against the intake manifold pressure, a secant can be drawn between the cylinder charge at the second starting intake manifold pressure and the cylinder charge at the first iterated intake manifold pressure, and the intersection point of the secant with the x-axis can be read off as the second iterated intake manifold pressure.
  • further iterated intake manifold pressures can be determined based on the cylinder filling at the first iterated intake manifold pressure and/or the cylinder filling at the second iterated intake manifold pressure.
  • the iteration using the secant method can be terminated after two or three iteration steps, for example.
  • a maximum number of iteration steps, for example two or three iteration steps, can have been specified in advance, for example by an application engineer.
  • the cylinder charge for the iterated intake manifold pressure can be determined depending on a target turbocharger speed.
  • the target turbocharger speed can be determined depending on the intake manifold pressure underlying the iteration step.
  • the turbocharger speed for determining the cylinder charge for the first starting intake manifold pressure can be determined from the first starting intake manifold pressure
  • the turbocharger speed for determining the cylinder charge for the second starting intake manifold pressure can be determined from the second starting intake manifold pressure
  • the turbocharger speed for determining the cylinder charge for the first iterated intake manifold pressure can be determined from the first iterated intake manifold pressure.
  • the turbocharger speed for determining the cylinder charge for a further iterated intake manifold pressure can depend on the respective further iterated intake manifold pressure.
  • the cylinder charge for the iterated intake manifold pressure is determined depending on a target exhaust back pressure, wherein the target exhaust back pressure can be determined depending on the intake manifold pressure underlying the iteration step.
  • the target exhaust back pressure for determining the cylinder charge for the first starting intake manifold pressure can be determined from the first starting intake manifold pressure
  • the target exhaust back pressure for determining the cylinder charge for the second starting intake manifold pressure can be determined from the second starting intake manifold pressure
  • the target exhaust back pressure for determining the cylinder charge for the first iterated intake manifold pressure can be determined from the first iterated intake manifold pressure.
  • the target exhaust back pressures for determining the cylinder charge for a further iterated intake manifold pressure can depend on the respective further iterated intake manifold pressure.
  • the target exhaust back pressure can also be determined depending on the target turbocharger speed determined in the corresponding step.
  • the target exhaust back pressure is therefore unknown and is determined during the process, in particular during each calculation step or iteration step.
  • a target exhaust back pressure is also determined to determine the cylinder charge for the first starting intake manifold pressure and for the second starting intake manifold pressure.
  • the Absorbtion curves for the target camshaft positions, the target exhaust back pressure and the current speed are inverted in order to calculate a target intake manifold pressure from the target charge.
  • the target camshaft positions are preferably known and can be determined, for example, from speed and torque-dependent characteristic maps and/or from speed and charge-dependent characteristic maps.
  • K Abg is the isentropic exponent of the exhaust gas.
  • the target exhaust back pressure can be determined using an iterative method.
  • the iterative method for determining the target exhaust back pressure can be a fixed point iteration.
  • the exhaust back pressure can preferably be determined repeatedly on the basis of equation (3).
  • a starting exhaust back pressure may be the first starting intake manifold pressure, the second starting intake manifold pressure, or the iterated intake manifold pressure.
  • the starting exhaust back pressure may be the first starting intake manifold pressure.
  • the target exhaust back pressure used to determine the cylinder charge for the second starting intake manifold pressure the starting exhaust back pressure may be the second starting intake manifold pressure.
  • the target exhaust back pressure which is used to determine the cylinder charge for the first iterated starting intake manifold pressure
  • the starting exhaust back pressure can be the first iterated intake manifold pressure.
  • further iterated intake manifold pressures can be used as starting exhaust back pressure when determining the respective target exhaust back pressures.
  • a reduced exhaust gas mass flow and a VTG control duty cycle (VTG - variable turbine geometry) of a turbocharger with VTG can be determined depending on the starting exhaust gas back pressure or the iterated exhaust gas back pressure, and the subsequent iterated exhaust gas back pressure can be determined depending on this.
  • the VTG control duty cycle can also be determined using the reduced mass flow.
  • a reduced mass flow can be determined repeatedly starting from a starting exhaust gas back pressure
  • a VTG control duty cycle (VTG control) can be determined on the basis of the reduced mass flow
  • the iterated exhaust gas back pressure can be calculated.
  • a stationary pilot control map can be evaluated, which is preferably dependent on the underlying exhaust gas back pressure and the reduced mass flow.
  • a setting of a wastegate actuator of a turbocharger with wastegate actuator can be determined and taken into account when determining the subsequent iterated exhaust back pressure.
  • the procedure is preferably analogous to that for a turbocharger with VTG.
  • the iteration using the fixed point iteration can be terminated after two or three iteration steps, for example.
  • a maximum number of iteration steps can be set in advance, for example by an application engineer.
  • a target exhaust back pressure assumes the value of an actual exhaust back pressure in a stationary state
  • the target exhaust back pressure can be blended in a stationary manner.
  • the actual exhaust back pressure can then be an exhaust back pressure measured by a sensor.
  • the stationary blending leads to an increase in accuracy.
  • the exhaust back pressure can be calculated in each calculation step or iteration step using equation (3) and a reduced mass flow can be determined.
  • m ⁇ Abg , red m ⁇ Abg T 3 p 3
  • VTG control duty cycle and/or the setting of the actuator of the turbocharger with wastegate can be determined.
  • the exhaust back pressure can alternatively be determined from a target pressure after a turbine and a power balance of the turbine and a compressor. This represents a simplification compared to the evaluation of equation (3), but leads to less accurate results.
  • the present invention is characterized by the type of iterative calculation of the gas exchange model in combination with the inversion of the approximately linear engine consumption characteristic curve, whereby a setpoint calculation of the exhaust gas back pressure is to be carried out at a target point. No directional derivatives of the gas exchange model are necessary, which are used in conventional methods.
  • the quadratic approximation can yield equation (3) above.
  • the target exhaust back pressure can correspond to the iterated exhaust back pressure after two or three iteration steps.
  • the invention further relates to a control device for an internal combustion engine, which has a processor that is designed to carry out a method for determining a target intake manifold pressure of an internal combustion engine by means of an iterative method, wherein a cylinder charge is determined for an intake manifold pressure iterated during the iterative method and the target intake manifold pressure is determined as a function of the determined cylinder charge.
  • the processor is designed to carry out the method described above for determining a target intake manifold pressure.
  • the control device can be, for example, an engine controller.
  • the control device can also have a data memory for storing characteristic maps, calculation rules, iteration rules, defined parameters and/or the like.
  • the control device can have a signal input for receiving data, for example measurement data or other data, and a signal output for outputting control signals to the internal combustion engine, in particular the controllable components of the internal combustion engine.
  • the invention relates to a control device for an internal combustion engine, which has a processor which is designed to carry out a method for determining a desired exhaust back pressure as described above.
  • FIG.1 an internal combustion engine is shown schematically.
  • a cylinder 1 has a combustion chamber 10 in which the combustion of fuel takes place, which is injected via an injection valve 11.
  • the cylinder 1 is coupled via an inlet valve 12 to an intake manifold 13, from which fresh air enters the combustion chamber 10 through the inlet valve 12.
  • the cylinder 1 is coupled via an outlet valve 14 to an exhaust manifold 15, through which exhaust gas or residual gas from the combustion chamber 10 is guided into the exhaust manifold 15.
  • a cylinder piston 16 which is driven by a crankshaft (not shown).
  • an intake manifold pressure sensor 2 is arranged, which is designed to detect an intake manifold pressure.
  • an exhaust back pressure sensor 3 is arranged, which is designed to detect an exhaust back pressure.
  • Cylinder 1 is shown at a time when the intake valve 12 and the exhaust valve 14 are open and valve overlap occurs.
  • Fig.2 shows a schematic representation of a control device 4 for carrying out a method for determining a target intake manifold pressure.
  • the control device 4 has a processor 40 which is connected to a signal input 41 for receiving data and a signal output 42 for outputting control commands to the internal combustion engine. Furthermore, the control device 4 has a data memory 43 which is provided for storing characteristic maps, calculation rules, iteration rules, fixed parameters and the like.
  • the processor 40 is designed to carry out a method for determining a target intake manifold pressure, as described below with reference to Fig. 3 to Fig. 6 described.
  • Fig.3 shows a flow chart of a method 5 for determining a target intake manifold pressure.
  • a first starting intake manifold pressure is determined.
  • the intake manifold pressure sensor is used to measure an actual intake manifold pressure, which serves as the first starting intake manifold pressure.
  • a cylinder charge for the first starting intake manifold pressure is determined at 51.
  • a target turbocharger speed is determined at 60 depending on the first starting intake manifold pressure.
  • a target exhaust back pressure is determined at 61 depending on the first starting intake manifold pressure and the determined target turbocharger speed. The calculation of the target exhaust back pressure is described below with reference to Fig.6 described in detail.
  • the cylinder charge is then determined at 62 depending on the first starting intake manifold pressure and the target exhaust back pressure.
  • a second starting intake manifold pressure is determined depending on the cylinder charge for the first starting intake manifold pressure.
  • the cylinder charge for the first starting intake manifold pressure is compared with a target cylinder charge of the internal combustion engine and, depending on the comparison result according to equation (2) above, an upper limit p S2,max or a lower limit p S2,min is determined as the second starting intake manifold pressure from a map that defines a search range.
  • a cylinder charge for the second starting intake manifold pressure is determined.
  • the cylinder charge for the second starting intake manifold pressure is determined in a similar way to the cylinder charge for the first starting intake manifold pressure.
  • a first intake manifold pressure iteration is determined using a secant method.
  • the cylinder charge r ps1 for the first starting intake manifold pressure p s1 and the cylinder charge r ps2 for the second starting intake manifold pressure p s2 are plotted against the intake manifold pressure p (x-axis) and a secant S1 is placed between the cylinder charges r ps1 , r ps2 .
  • An intersection point of the secant S1 with the x-axis represents the first intake manifold pressure iterated p I1 .
  • a cylinder charge is determined for the determined first intake manifold pressure iterate.
  • the cylinder charge for the first intake manifold pressure iterate is determined analogously to the cylinder charge for the first starting intake manifold pressure.
  • the iteration can be aborted or not. This can be determined depending on the number of iterations already carried out or depending on the cylinder filling for the first intake manifold pressure iteration. For example, the filling for the first intake manifold pressure iteration can be compared with the filling for the second starting intake manifold pressure and depending on the comparison result it can be decided whether the iteration can be aborted or not.
  • the last determined intake manifold pressure iterate is output at 57 as the target intake manifold pressure.
  • steps 54 to 56 are repeated.
  • a second intake manifold pressure iteration is determined at 54 by, as in Fig.5 shown, a secant S2 is placed through the cylinder charge r ps2 for the second starting intake manifold pressure and the cylinder charge r pI1 for the first intake manifold pressure iterate and an intersection point with the x-axis is defined as the second intake manifold pressure iterate p I2 .
  • the cylinder charge for the second intake manifold pressure iterate is then determined and at 56 it is determined whether the iteration can be aborted or not.
  • the charge for the second intake manifold pressure iterate can be compared with the charge for the first intake manifold pressure iterate and depending on the comparison result it can be decided whether the iteration can be aborted or not. If the iteration cannot be aborted, steps 54 to 56 are repeated analogously for further intake manifold pressure iterates.
  • the iteration is repeated a maximum of two times and then aborted.
  • the maximum number of iterations can be set in advance.
  • the target exhaust back pressure for determining a charge is determined at each of the starting intake manifold pressures and the intake manifold pressure iterated according to the method 7 for determining a target exhaust back pressure.
  • a starting exhaust back pressure is determined.
  • the starting exhaust back pressure is the intake manifold pressure that is used as a basis in the respective step of method 5 for determining the target intake manifold pressure. This means that in step 51 of method 5, the starting exhaust back pressure is the first starting intake manifold pressure, in step 53 the second starting intake manifold pressure and in step 55 the intake manifold pressure iterated in step 54.
  • a reduced mass flow is determined depending on the starting exhaust back pressure.
  • a VTG control duty cycle or a setting of an actuator of a turbocharger with wastegate is then determined depending on the starting intake manifold pressure and the reduced mass flow.
  • Step 71 to 73 each represent an iteration step of a fixed point iteration.
  • the last determined exhaust back pressure iterated is output at 75 as the target exhaust back pressure.
  • steps 71 to 74 are repeated.
  • a reduced exhaust gas mass flow, a VTG control duty cycle or a setting of an actuator of a turbocharger with wastegate and a further exhaust gas back pressure iterate are determined depending on the exhaust gas back pressure iterate.
  • the exhaust back pressure is calculated in each calculation step 51, 53, 54 of method 5 using equation (3) above and a reduced mass flow is determined using equation (4) above.
  • the VTG control duty cycle or the setting of the actuator of the turbocharger with wastegate is then determined from this.
  • the target exhaust back pressure is determined in each calculation step 51, 53, 54 of the method 5 from a target pressure after a turbine and a power balance of the turbine and a compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

Die Erfindung betrifft ein Verfahren und eine Steuervorrichtung zum Bestimmen eines Soll-Saugrohrdrucks einer Verbrennungskraftmaschine, insbesondere eines Kraftfahrzeugs, mittels eines iterativen Verfahrens. Weiterhin betrifft die Erfindung ein Verfahren und eine Steuervorrichtung zum Bestimmen eines Soll-Abgasgegendrucks einer Verbrennungskraftmaschine, beispielsweise eines Kraftfahrzeugs, mittels einer Fixpunktiteration.The invention relates to a method and a control device for determining a target intake manifold pressure of an internal combustion engine, in particular of a motor vehicle, by means of an iterative method. The invention further relates to a method and a control device for determining a target exhaust back pressure of an internal combustion engine, for example of a motor vehicle, by means of a fixed point iteration.

Ein Soll-Saugrohrdruck, also ein Solldruckwert in einem Saugrohr einer Verbrennungskraftmaschine, wird üblicherweise dazu verwendet, Sollpositionen einer Drosselklappe und eines Turboladers der Verbrennungskraftmaschine zu bestimmen, um die Verbrennungskraftmaschine unter Berücksichtigung der Sollpositionen zu steuern.A target intake manifold pressure, i.e. a target pressure value in an intake manifold of an internal combustion engine, is usually used to determine target positions of a throttle valve and a turbocharger of the internal combustion engine in order to control the internal combustion engine taking the target positions into account.

Die DE 199 44 178 A1 offenbart ein Verfahren zur Steuerung einer Drosselklappe, wobei aus einem vorgebbaren Soll-Luftmassenstrom ein Soll-Saugrohrdruck bestimmt wird und auf Grundlage dieses die Drosselklappenstellung abgeleitet wird.The DE 199 44 178 A1 discloses a method for controlling a throttle valve, wherein a target intake manifold pressure is determined from a predeterminable target air mass flow and the throttle valve position is derived on the basis of this.

Zum Bestimmen des Soll-Saugrohrdrucks wird typischerweise ein Ladungswechselmodell der Verbrennungskraftmaschine invertiert. Eine solche Invertierung des Ladungswechselmodells kann jedoch stellenweise ungenau sein, was zu einem verlangsamten Ansprechverhalten und einer Momentenungleichförmigkeit der Verbrennungskraftmaschine eines Fahrzeugs und des Fahrzeugs selbst führt.To determine the target intake manifold pressure, a gas exchange model of the internal combustion engine is typically inverted. However, such an inversion of the gas exchange model can be inaccurate in places, which leads to a slower response and torque irregularity of the internal combustion engine of a vehicle and the vehicle itself.

Zudem existieren auch nicht-invertierbare Ladungswechselmodelle. Zum Beispiel bedingen Millermotoren auf Grund einer hohen Abhängigkeit der Nockenwellenposition auf eine Zylinderluftfüllung ein erweitertes Ladungswechselmodell. Solche Ladungswechselmodelle sind nicht analytisch invertierbar.In addition, there are also non-invertible gas exchange models. For example, Miller engines require an extended gas exchange model due to the high dependence of the camshaft position on the cylinder air charge. Such gas exchange models are not analytically invertible.

Die US 6,968,824 B1 beschreibt ein Verfahren zum Bestimmen eines Soll-Ladedrucks mittels eines iterativen Verfahrens. Dabei wird ein Liefergrad auf Grundlage eines gemessenen Ladedrucks bestimmt und auf Grundlage des Liefergrads ein iterierter Ladedruck bestimmt, der dann bewertet wird. Abhängig von dem Bewertungsergebnis wird entschieden, ob ein weiterer Iterationsschritt durchgeführt wird oder der iterierte Ladedruck als Soll-Ladedruck ausgewählt wird.The US6,968,824 B1 describes a method for determining a target boost pressure using an iterative method. A delivery level is determined on the basis of a measured boost pressure and an iterated boost pressure is determined on the basis of the delivery level, which is then evaluated. Depending on the evaluation result, a decision is made as to whether a further iteration step is carried out or whether the iterated boost pressure is selected as the target boost pressure.

Aufgabe der vorliegenden Erfindung ist es, ein Verfahren und eine Steuervorrichtung zum Bestimmen eines Soll-Saugrohrdrucks bereitzustellen, die die oben genannten Nachteile wenigstens teilweise überwinden.The object of the present invention is to provide a method and a control device for determining a target intake manifold pressure, which at least partially overcome the above-mentioned disadvantages.

Diese Aufgabe wird durch das erfindungsgemäße Verfahren zum Bestimmen eines Soll-Saugrohrdrucks nach Anspruch 1 und die Steuervorrichtung nach Anspruch 7 gelöst.This object is achieved by the inventive method for determining a target intake manifold pressure according to claim 1 and the control device according to claim 7.

Nach einem ersten Aspekt betrifft die vorliegende Erfindung ein Verfahren zum Bestimmen eines Soll-Saugrohrdrucks einer Verbrennungskraftmaschine mittels eines iterativen Verfahrens, wobei für einen während des iterativen Verfahrens iterierten Saugrohrdruck eine Zylinderfüllung bestimmt wird und der Soll-Saugrohrdruck in Abhängigkeit der bestimmten Zylinderfüllung bestimmt wird.According to a first aspect, the present invention relates to a method for determining a target intake manifold pressure of an internal combustion engine by means of an iterative method, wherein a cylinder charge is determined for an intake manifold pressure iterated during the iterative method and the target intake manifold pressure is determined as a function of the determined cylinder charge.

Nach einem zweiten Aspekt betrifft die vorliegende Erfindung eine Steuervorrichtung, die einen Prozessor aufweist, der dazu ausgebildet ist, ein Verfahren nach dem ersten Aspekt auszuführen.According to a second aspect, the present invention relates to a control device comprising a processor configured to carry out a method according to the first aspect.

Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen und der folgenden Beschreibung bevorzugter Ausführungsbeispiele der vorliegenden Erfindung. Die vorliegende Erfindung betrifft ein Verfahren zum Bestimmen eines Soll-Saugrohrdrucks einer Verbrennungskraftmaschine mittels eines iterativen Verfahrens. Der Soll-Saugrohrdruck ist üblicherweise ein Soll-Druck, der in einem Saugrohr einer Verbrennungskraftmaschine, das zum Zuführen von Frischluft in einen Zylinder der Verbrennungskraftmaschine ausgebildet ist, herrschen sollte.Further advantageous embodiments of the invention emerge from the subclaims and the following description of preferred embodiments of the present invention. The present invention relates to a method for determining a target intake manifold pressure of an internal combustion engine using an iterative method. The target intake manifold pressure is usually a target pressure that should prevail in an intake manifold of an internal combustion engine that is designed to supply fresh air to a cylinder of the internal combustion engine.

Beim Bestimmen des Soll-Saugrohrdrucks wird für einen während des iterativen Verfahrens iterierten Saugrohrdruck eine Zylinderfüllung bestimmt. Die Zylinderfüllung einer Verbrennungskraftmaschine setzt sich beispielsweise aus verschiedenen Mengenanteilen an Füllungskomponenten innerhalb des Zylinders der Verbrennungskraftmaschine, wie der Frischluft, dem Restgas und/oder der durchgespülten Luft, zusammen. Die Zylinderfüllung kann durch sogenannte Schluckkurven der Verbrennungskraftmaschine repräsentiert werden. Die Zylinderfüllung kann auf einem nicht-invertierbaren Ladungswechselmodell basieren und in Abhängigkeit von Soll-Nockenwellenpositionen, einer aktuellen Ist-Drehzahl in einem aktuellen Betriebspunkt der Verbrennungskraftmaschine, einem Soll-Abgasgegendruck für den iterierten Saugrohrdruck und dem iterierten Saugrohrdruck bestimmt sein.When determining the target intake manifold pressure, a cylinder charge is determined for an intake manifold pressure iterated during the iterative process. The cylinder charge of an internal combustion engine is composed, for example, of various proportions of charge components within the cylinder of the internal combustion engine, such as fresh air, residual gas and/or flushed air. The cylinder charge can represented by so-called intake curves of the internal combustion engine. The cylinder filling can be based on a non-invertible gas exchange model and determined depending on target camshaft positions, a current actual speed at a current operating point of the internal combustion engine, a target exhaust back pressure for the iterated intake manifold pressure and the iterated intake manifold pressure.

Anschließend wird in Abhängigkeit der bestimmten Zylinderfüllung der Soll-Saugrohrdruck bestimmt. Die Bestimmung des Soll-Saugrohrdrucks wird weiter unter im Detail beschrieben.The target intake manifold pressure is then determined depending on the specific cylinder charge. The determination of the target intake manifold pressure is described in detail below.

Durch das erfindungsgemäße Verfahren kann der Soll-Saugrohrdruck auch für nicht-invertierbare Ladungswechselmodelle ohne großen Aufwand bestimmt werden. Der Soll-Saugrohrdruck kann so sehr genau bestimmt werden, so dass sich ein hohes CO2-Einsparpotenzial durch geringe Zündwinkeleingriffe in einem leerlauf-nahen Betrieb, ein schneller und harmonischer Momentenaufbau und Momentenabbau in der Dynamik und stabile Bedingungen für eine Leckagediagnose in einer Druckstrecke und dadurch eine frühzeitige Fehlererkennung zum Aggregateschutz ergeben.The method according to the invention allows the target intake manifold pressure to be determined without great effort even for non-invertible gas exchange models. The target intake manifold pressure can thus be determined very precisely, resulting in a high CO 2 saving potential through low ignition angle interventions in near-idling operation, a fast and harmonious torque build-up and torque reduction in the dynamics and stable conditions for leak diagnosis in a pressure section and thus early error detection for unit protection.

Das iterative Verfahren ist ein Sekantenverfahren. Dabei werden zwei Startpunkte festgelegt und zwischen diese Startpunkte wird eine Sekante gelegt. Anschließend wird ein Schnittpunkt der Sekante mit einer x-Achse, vorliegend einer Achse, die einen Soll-Saugrohrdruck angibt, als Iterierte festgelegt, die einen verbesserten Startwert für eine nachfolgende Iteration darstellt. Mit Hilfe des Sekantenverfahrens kann eine iterative Invertierung auch von Schluckkurven, die nicht differenzierbar sind, durchgeführt werden.The iterative method is a secant method. Two starting points are defined and a secant is placed between these starting points. Then an intersection point of the secant with an x-axis, in this case an axis that indicates a target intake manifold pressure, is defined as an iterate, which represents an improved starting value for a subsequent iteration. Using the secant method, an iterative inversion of absorption curves that are not differentiable can also be carried out.

Für einen ersten Start-Saugrohrdruck wird eine Zylinderfüllung bestimmt und ein zweiter Start-Saugrohrdruck wird bestimmt, indem die Zylinderfüllung für den ersten Start-Saugrohrdruck mit einer Soll-Zylinderfüllung der Verbrennungskraftmaschine verglichen wird und der zweite Start-Saugrohrdruck in Abhängigkeit des Vergleichsergebnisses zwischen der Zylinderfüllung für den ersten Start-Saugrohrdruck und der Soll-Zylinderfüllung bestimmt wird. Zum Bestimmen des zweiten Start-Saugrohrdrucks pS2 kann beispielsweise gelten: p S 2 = { p S 2 , max , falls r 0 r soll p S 2 , min , falls r 0 > r soll ,

Figure imgb0001
wobei ro die Zylinderfüllung für den ersten Start-Saugrohrdruck und rsoll die Soll-Zylinderfüllung der Verbrennungskraftmaschine ist. Die Werte pS2,max und pS2,min können aus Kennfeldern ausgelesen werden. Die Kennfelder sind vorzugsweise von einer Drehzahl und der Soll-Zylinderfüllung abhängig, wobei die Kennfelder bevorzugt so bedatet sind, dass ein SuchBereich für den Soll-Saugrohrdruck möglichst klein ist, aber der gesuchte Soll-Saugrohrdruck immer innerhalb des Such-Bereichs liegt. Für den zweiten Start-Saugrohrdruck kann anschließend ebenfalls eine Zylinderfüllung bestimmt werden.A cylinder charge is determined for a first starting intake manifold pressure and a second starting intake manifold pressure is determined by comparing the cylinder charge for the first starting intake manifold pressure with a target cylinder charge of the internal combustion engine and determining the second starting intake manifold pressure depending on the comparison result between the cylinder charge for the first starting intake manifold pressure and the target cylinder charge. For example, the following can apply to determine the second starting intake manifold pressure p S2 : p S 2 = { p S 2 , Max , if r 0 r should p S 2 , min , if r 0 > r should ,
Figure imgb0001
where ro is the cylinder charge for the first starting intake manifold pressure and r soll is the target cylinder charge of the internal combustion engine. The values p S2,max and p S2,min can be read from characteristic maps. The characteristic maps are preferably dependent on a speed and the target cylinder charge, whereby the characteristic maps are preferably data-rich in such a way that a search area for the target intake manifold pressure is as small as possible, but the target intake manifold pressure sought is always within the search range. A cylinder charge can then also be determined for the second starting intake manifold pressure.

In manchen Ausführungsbeispielen kann der erste Start-Saugrohrdruck ein Ist-Saugrohrdruck sein. Der Ist-Saugrohrdruck kann ein gegenwärtig in dem Saugrohr herrschender Druck sein, der vorzugsweise mittels eines Drucksensors in dem Saugrohr gemessen oder ausgehend von anderen gemessenen Parametern bestimmt wird.In some embodiments, the first starting intake manifold pressure can be an actual intake manifold pressure. The actual intake manifold pressure can be a pressure currently prevailing in the intake manifold, which is preferably measured by means of a pressure sensor in the intake manifold or determined based on other measured parameters.

In manchen Ausführungsbeispielen kann ausgehend von dem ersten Start-Saugrohrdruck und dem zweiten Start-Saugrohrdruck mittels des Sekantenverfahrens der iterierte Saugrohrdruck bestimmt werden. Dazu kann eine von dem Saugrohrdruck abhängige Größe für den ersten Start-Saugrohrdruck und für den zweiten Start-Saugrohrdruck über dem Saugrohrdruck aufgetragen werden und eine Sekante durch die vom Saugrohrdruck abhängige Größe am ersten Start-Saugrohrdruck und am zweiten Start-Saugrohrdruck gelegt werden. Der Schnittpunkt der Sekante mit der x-Achse (Saugrohrdruckachse) kann dann den iterierten Saugrohrdruck (erster iterierter Saugrohrdruck) darstellen. Analog können ausgehend von dem zweiten Start-Saugrohrdruck und/oder dem ersten iterierten Saugrohrdruck weitere iterierte Saugrohrdrücke bestimmt werden.In some embodiments, the iterated intake manifold pressure can be determined using the secant method based on the first starting intake manifold pressure and the second starting intake manifold pressure. To do this, a variable that is dependent on the intake manifold pressure can be plotted against the intake manifold pressure for the first starting intake manifold pressure and for the second starting intake manifold pressure, and a secant can be placed through the variable that is dependent on the intake manifold pressure at the first starting intake manifold pressure and at the second starting intake manifold pressure. The intersection point of the secant with the x-axis (intake manifold pressure axis) can then represent the iterated intake manifold pressure (first iterated intake manifold pressure). Similarly, further iterated intake manifold pressures can be determined based on the second starting intake manifold pressure and/or the first iterated intake manifold pressure.

In manchen Ausführungsbeispielen kann der iterierte Saugrohrdruck weiterhin in Abhängigkeit der Zylinderfüllung für den ersten Start-Saugrohrdruck und der Zylinderfüllung für den zweiten Start-Saugrohrdruck bestimmt werden. So kann beispielsweise die Zylinderfüllung für den ersten Start-Saugrohrdruck und die Zylinderfüllung für den zweiten Start-Saugrohrdruck über dem Saugrohrdruck aufgetragen werden und eine Sekante durch die Zylinderfüllung am ersten Start-Saugrohrdruck und die Zylinderfüllung am zweiten Start-Saugrohrdruck gelegt werden. Der Schnittpunkt der Sekante mit der x-Achse (Saugrohrdruckachse) kann dann den iterierten Saugrohrdruck (erster iterierter Saugrohrdruck) darstellen. Nachfolgend kann eine Zylinderfüllung für den ersten iterierten Saugrohrdruck bestimmt werden, diese über dem Saugrohrdruck aufgetragen werden, eine Sekante zwischen die Zylinderfüllung am zweiten Start-Saugrohrdruck und die Zylinderfüllung am ersten iterierten Saugrohrdruck gelegt werden und der Schnittpunkt der Sekante mit der x-Achse als zweiter iterierter Saugrohrdruck abgelesen werden. Analog können ausgehend von der Zylinderfüllung am ersten iterierten Saugrohrdruck und/oder der Zylinderfüllung am zweiten iterierten Saugrohrdruck weitere iterierte Saugrohrdrücke bestimmt werden.In some embodiments, the iterated intake manifold pressure can also be determined as a function of the cylinder charge for the first starting intake manifold pressure and the cylinder charge for the second starting intake manifold pressure. For example, the cylinder charge for the first starting intake manifold pressure and the cylinder charge for the second starting intake manifold pressure can be plotted against the intake manifold pressure and a secant can be drawn through the cylinder charge at the first starting intake manifold pressure and the cylinder charge at the second starting intake manifold pressure. The intersection point of the secant with the x-axis (intake manifold pressure axis) can then represent the iterated intake manifold pressure (first iterated intake manifold pressure). Subsequently, a cylinder charge for the first iterated intake manifold pressure can be determined, this can be plotted against the intake manifold pressure, a secant can be drawn between the cylinder charge at the second starting intake manifold pressure and the cylinder charge at the first iterated intake manifold pressure, and the intersection point of the secant with the x-axis can be read off as the second iterated intake manifold pressure. Analogously, further iterated intake manifold pressures can be determined based on the cylinder filling at the first iterated intake manifold pressure and/or the cylinder filling at the second iterated intake manifold pressure.

Die Iteration mittels des Sekantenverfahrens kann beispielsweise nach zwei oder drei Iterationsschritten beendet werden. Das heißt beispielsweise, zunächst werden zwei Startwertberechnungen für den aktuellen Saugrohrdruck und einen Randwert für den Saugrohrdruck (bestimmt über Max- und Min-Kennfelder) bestimmt und anschließend folgen zwei oder drei Iterationsschritte. Eine maximale Anzahl an Iterationsschritten, beispielsweise zwei oder drei Iterationsschritte, kann vorab beispielsweise von einem Applikateur festgelegt worden sein.The iteration using the secant method can be terminated after two or three iteration steps, for example. This means, for example, that two starting value calculations for the current intake manifold pressure and a boundary value for the intake manifold pressure (determined via max and min maps) are first determined, followed by two or three iteration steps. A maximum number of iteration steps, for example two or three iteration steps, can have been specified in advance, for example by an application engineer.

Die Zylinderfüllung für den iterierten Saugrohrdruck kann in Abhängigkeit einer Soll-Turboladerdrehzahl bestimmt werden. Beispielsweise kann die Soll-Turboladerdrehzahl in Abhängigkeit des dem Iterationsschritt zugrundeliegenden Saugrohrdrucks bestimmt werden. Zum Beispiel kann die Turboladerdrehzahl zum Bestimmen der Zylinderfüllung für den ersten Start-Saugrohrdruck von dem ersten Start-Saugrohrdruck, die Turboladerdrehzahl zum Bestimmen der Zylinderfüllung für den zweiten Start-Saugrohrdruck von dem zweiten Start-Saugrohrdruck und die Turboladerdrehzahl zum Bestimmen der Zylinderfüllung für den ersten iterierten Saugrohrdruck von dem ersten iterierten Saugrohrdruck bestimmt werden. Analog können die Turboladerdrehzahl zum Bestimmen der Zylinderfüllung für einen weiteren iterierten Saugrohrdruck von dem jeweiligen weiteren iterierten Saugrohrdruck abhängen.The cylinder charge for the iterated intake manifold pressure can be determined depending on a target turbocharger speed. For example, the target turbocharger speed can be determined depending on the intake manifold pressure underlying the iteration step. For example, the turbocharger speed for determining the cylinder charge for the first starting intake manifold pressure can be determined from the first starting intake manifold pressure, the turbocharger speed for determining the cylinder charge for the second starting intake manifold pressure can be determined from the second starting intake manifold pressure, and the turbocharger speed for determining the cylinder charge for the first iterated intake manifold pressure can be determined from the first iterated intake manifold pressure. Similarly, the turbocharger speed for determining the cylinder charge for a further iterated intake manifold pressure can depend on the respective further iterated intake manifold pressure.

Die Zylinderfüllung für den iterierten Saugrohrdruck wird in Abhängigkeit eines Soll-Abgasgegendrucks bestimmt, wobei der Soll-Abgasgegendruck in Abhängigkeit des dem Iterationsschritt zugrundeliegenden Saugrohrdrucks bestimmt werden kann. Zum Beispiel kann der Soll-Abgasgegendruck zum Bestimmen der Zylinderfüllung für den ersten Start-Saugrohrdruck von dem ersten Start-Saugrohrdruck, der Soll-Abgasgegendruck zum Bestimmen der Zylinderfüllung für den zweiten Start-Saugrohrdruck von dem zweiten Start-Saugrohrdruck und der Soll-Abgasgegendruck zum Bestimmen der Zylinderfüllung für den ersten iterierten Saugrohrdruck von dem ersten iterierten Saugrohrdruck bestimmt werden. Analog können die Soll-Abgasgegendrücke zum Bestimmen der Zylinderfüllung für einen weiteren iterierten Saugrohrdruck von dem jeweiligen weiteren iterierten Saugrohrdruck abhängen. Vorzugsweise kann der Soll-Abgasgegendruck weiterhin in Abhängigkeit der im entsprechenden Schritt bestimmten Soll-Turboladerdrehzahl bestimmt werden.The cylinder charge for the iterated intake manifold pressure is determined depending on a target exhaust back pressure, wherein the target exhaust back pressure can be determined depending on the intake manifold pressure underlying the iteration step. For example, the target exhaust back pressure for determining the cylinder charge for the first starting intake manifold pressure can be determined from the first starting intake manifold pressure, the target exhaust back pressure for determining the cylinder charge for the second starting intake manifold pressure can be determined from the second starting intake manifold pressure, and the target exhaust back pressure for determining the cylinder charge for the first iterated intake manifold pressure can be determined from the first iterated intake manifold pressure. Similarly, the target exhaust back pressures for determining the cylinder charge for a further iterated intake manifold pressure can depend on the respective further iterated intake manifold pressure. Preferably, the target exhaust back pressure can also be determined depending on the target turbocharger speed determined in the corresponding step.

Der Soll-Abgasgegendruck ist somit unbekannt und wird im Laufe des Verfahrens bestimmt, insbesondere während jedes Berechnungsschritts bzw. Iterationsschritts. Vorzugsweise wird auch zum Bestimmen der Zylinderfüllung für den ersten Start-Saugrohrdruck und für den zweiten Start-Saugrohrdruck ein Soll-Abgasgegendruck bestimmt. Grundsätzlich sollen also die Schluckkurven für die Zielnockenwellenpositionen, der Ziel-Abgasgegendruck und die aktuelle Drehzahl invertiert werden, um aus der Soll-Füllung einen Soll-Saugrohrdruck zu berechnen. Die Zielnockenwellenpositionen sind vorzugsweise bekannt und können zum Beispiel aus drehzahl- und momentenabhängigen Kennfeldern und/oder aus drehzahl- und füllungsabhängigen Kennfeldern bestimmt werden.The target exhaust back pressure is therefore unknown and is determined during the process, in particular during each calculation step or iteration step. Preferably, a target exhaust back pressure is also determined to determine the cylinder charge for the first starting intake manifold pressure and for the second starting intake manifold pressure. In principle, the Absorbtion curves for the target camshaft positions, the target exhaust back pressure and the current speed are inverted in order to calculate a target intake manifold pressure from the target charge. The target camshaft positions are preferably known and can be determined, for example, from speed and torque-dependent characteristic maps and/or from speed and charge-dependent characteristic maps.

In manchen Ausführungsbeispielen kann der Soll-Abgasgegendruck aus einer quadratischen Approximation der Gleichung m ˙ Abg = A eff p 3 2 R s T 3 ψ c d p 4 p 3

Figure imgb0002
bestimmt werden, wobei Abg ein Soll-Abgas-Massenstrom, Aeff eine effektive Öffnungsfläche einer Drossel, p3 ein Soll-Abgasgegendruck, p4 ein Solldruck nach einer Turbine, Rs die spezifische Gaskonstante des Abgases, T3 eine Abgastemperatur vor der Turbine, cd ein Turbinendurchflussfaktor und Ψ(·) eine Durchflussfunktion ist. Die spezifische Gaskonstante des Abgases Rs kann beispielsweise als Rs =288J/kgK oder ähnlicher Wert angenommen werden. Die quadratische Approximation der Gleichung (1) aufgelöst nach dem Abgasgegendruck p3 kann folgende Form besitzen: p 3 = 3 c d 2 2 c d κ Abg p 4 2 c d κ Abg 3 c d 2 ± 3 c c 2 2 c d κ Abg p 4 2 c d κ Abg 3 c d 2 2 + 3 c d 2 p 4 2 A eff 2 + m ˙ Abg 2 R s T 3 κ Abg A eff 2 2 c d κ Abg 3 c d 2
Figure imgb0003
In some embodiments, the target exhaust back pressure may be determined from a quadratic approximation of the equation m ˙ Abg = A eff p 3 2 R s T 3 ψ c d p 4 p 3
Figure imgb0002
where Abg is a target exhaust gas mass flow, A eff is an effective opening area of a throttle, p 3 is a target exhaust gas back pressure, p 4 is a target pressure after a turbine, R s is the specific gas constant of the exhaust gas, T 3 is an exhaust gas temperature before the turbine, c d is a turbine flow factor and Ψ (·) is a flow function. The specific gas constant of the exhaust gas R s can be assumed, for example, to be R s =288J/kgK or a similar value. The quadratic approximation of equation (1) solved for the exhaust gas back pressure p 3 can have the following form: p 3 = 3 c d 2 2 c d κ Abg p 4 2 c d κ Abg 3 c d 2 ± 3 c c 2 2 c d κ Abg p 4 2 c d κ Abg 3 c d 2 2 + 3 c d 2 p 4 2 A eff 2 + m ˙ Abg 2 R s T 3 κ Abg A eff 2 2 c d κ Abg 3 c d 2
Figure imgb0003

Dabei ist KAbg der Isentropenexponent des Abgases. Der Isentropenexponent kann beispielsweise KAbg =1,37 oder einen ähnlichen Wert betragen.Here, K Abg is the isentropic exponent of the exhaust gas. The isentropic exponent can be, for example, K Abg =1.37 or a similar value.

In manchen Ausführungsbeispielen kann der Soll-Abgasgegendruck mittels eines iterativen Verfahrens bestimmt werden. Das iterative Verfahren zum Bestimmen des Soll-Abgasgegendrucks kann eine Fixpunktiteration sein. Dabei kann vorzugsweise wiederholt auf Grundlage der Gleichung (3) der Abgasgegendruck bestimmt werden.In some embodiments, the target exhaust back pressure can be determined using an iterative method. The iterative method for determining the target exhaust back pressure can be a fixed point iteration. The exhaust back pressure can preferably be determined repeatedly on the basis of equation (3).

In manchen Ausführungsbeispielen kann ein Start-Abgasgegendruck der erste Start-Saugrohrdruck, der zweite Start-Saugrohrdruck oder der iterierte Saugrohrdruck sein. Beim Bestimmen des Soll-Abgasgegendrucks, der zum Bestimmen der Zylinderfüllung für den ersten Start-Saugrohrdruck verwendet wird, kann der Start-Abgasgegendruck der erste Start-Saugrohrdruck sein. Beim Bestimmen des Soll-Abgasgegendrucks, der zum Bestimmen der Zylinderfüllung für den zweiten Start-Saugrohrdruck verwendet wird, kann der Start-Abgasgegendruck der zweite Start-Saugrohrdruck sein. Beim Bestimmen des Soll-Abgasgegendrucks, der zum Bestimmen der Zylinderfüllung für den ersten iterierten Start-Saugrohrdruck verwendet wird, kann der Start-Abgasgegendruck der erste iterierte Saugrohrdruck sein. Analog können weitere iterierte Saugrohrdrücke als Start-Abgasgegendruck beim Bestimmen der jeweiligen Soll-Abgasgegendrücke verwendet werden.In some embodiments, a starting exhaust back pressure may be the first starting intake manifold pressure, the second starting intake manifold pressure, or the iterated intake manifold pressure. When determining the target exhaust back pressure used to determine the cylinder charge for the first starting intake manifold pressure, the starting exhaust back pressure may be the first starting intake manifold pressure. When determining the target exhaust back pressure used to determine the cylinder charge for the second starting intake manifold pressure, the starting exhaust back pressure may be the second starting intake manifold pressure. When determining the target exhaust back pressure, which is used to determine the cylinder charge for the first iterated starting intake manifold pressure, the starting exhaust back pressure can be the first iterated intake manifold pressure. Similarly, further iterated intake manifold pressures can be used as starting exhaust back pressure when determining the respective target exhaust back pressures.

In manchen Ausführungsbeispielen kann in Abhängigkeit des Start-Abgasgegendrucks oder des iterierten Abgasgegendrucks ein reduzierter Abgasmassenstrom und ein VTG-Ansteuer-Tastverhältnis (VTG - variable Turbinengeometrie) eines Turboladers mit VTG bestimmt werden und in Abhängigkeit dieser der nachfolgende iterierte Abgasgegendruck bestimmt werden. Dabei kann weiterhin mittels des reduzieren Massenstroms das VTG-Ansteuer-Tastverhältnis bestimmt werden. Insbesondere kann wiederholt, ausgehend von einem Start-Abgasgegendruck ein reduzierter Massenstrom bestimmt werden, auf Grundlage des reduzierten Massenstroms ein VTG-Ansteuer-Tastverhältnis (VTG-Ansteuerung) bestimmt werden und zuletzt der iterierte Abgasgegendruck berechnet werden. Für die Bestimmung des VTG-Ansteuer-Tastverhältnisses in jeder Iteration kann ein stationäres Vorsteuer-Kennfeld ausgewertet werden, das vorzugsweise abhängig von dem zugrundeliegenden Abgasgegendruck und dem reduziertem Massenstrom ist.In some embodiments, a reduced exhaust gas mass flow and a VTG control duty cycle (VTG - variable turbine geometry) of a turbocharger with VTG can be determined depending on the starting exhaust gas back pressure or the iterated exhaust gas back pressure, and the subsequent iterated exhaust gas back pressure can be determined depending on this. The VTG control duty cycle can also be determined using the reduced mass flow. In particular, a reduced mass flow can be determined repeatedly starting from a starting exhaust gas back pressure, a VTG control duty cycle (VTG control) can be determined on the basis of the reduced mass flow, and finally the iterated exhaust gas back pressure can be calculated. To determine the VTG control duty cycle in each iteration, a stationary pilot control map can be evaluated, which is preferably dependent on the underlying exhaust gas back pressure and the reduced mass flow.

Alternativ oder zusätzlich zu dem VTG-Ansteuer-Tastverhältnis kann eine Einstellung eines Wastegate-Stellers eines Turboladers mit Wastegate-Steller bestimmt werden und bei der Bestimmung des nachfolgenden iterierten Abgasgegendrucks berücksichtigt werden. Das Vorgehen ist vorzugsweise analog zu dem bei einem Turbolader mit VTG.Alternatively or in addition to the VTG control duty cycle, a setting of a wastegate actuator of a turbocharger with wastegate actuator can be determined and taken into account when determining the subsequent iterated exhaust back pressure. The procedure is preferably analogous to that for a turbocharger with VTG.

Die Iteration mittels der Fixpunktiteration kann beispielsweise nach zwei oder drei Iterationsschritten beendet werden. Das heißt, zunächst wird eine Startwertberechnung für den Start-Abgasgegendruck, beispielsweise den aktuellen Saugrohrdruck (Ist-Saugrohrdruck) durchgeführt und anschließend folgen zwei oder drei Iterationsschritte. Eine maximale Anzahl an Iterationsschritten kann vorab beispielsweise von einem Applikateur festgelegt worden sein.The iteration using the fixed point iteration can be terminated after two or three iteration steps, for example. This means that first a starting value calculation is carried out for the starting exhaust back pressure, for example the current intake manifold pressure (actual intake manifold pressure), and then two or three iteration steps follow. A maximum number of iteration steps can be set in advance, for example by an application engineer.

Wenn ein Soll-Abgasgegendruck in einem stationären Zustand den Wert eines Ist-Abgasgegendrucks annimmt, kann der Soll-Abgasgegendruck stationär überblendet werden. Der Ist-Abgasgegendruck kann dann ein mittels eines Sensors gemessener Abgasgegendruck sein. Die stationäre Überblendung führt zu einer Erhöhung der Genauigkeit.If a target exhaust back pressure assumes the value of an actual exhaust back pressure in a stationary state, the target exhaust back pressure can be blended in a stationary manner. The actual exhaust back pressure can then be an exhaust back pressure measured by a sensor. The stationary blending leads to an increase in accuracy.

Alternativ kann der Abgasgegendruck in jedem Berechnungsschritt bzw. Iterationsschritt über die Gleichung (3) berechnet werden und ein reduzierter Massenstrom bestimmt werden. Dazu kann beispielsweise eine Approximation mittels folgender Gleichung erfolgen: m ˙ Abg , red = m ˙ Abg T 3 p 3

Figure imgb0004
Alternatively, the exhaust back pressure can be calculated in each calculation step or iteration step using equation (3) and a reduced mass flow can be determined. For example, an approximation can be made using the following equation: m ˙ Abg , red = m ˙ Abg T 3 p 3
Figure imgb0004

Daraus kann das VTG-Ansteuer-Tastverhältnis und/oder die Einstellung des Stellers des Turboladers mit Wastegate bestimmt werden.From this, the VTG control duty cycle and/or the setting of the actuator of the turbocharger with wastegate can be determined.

In manchen Ausführungsbeispielen kann alternativ der Abgasgegendruck aus einem Soll-Druck nach einer Turbine und einer Leistungsbilanz der Turbine und eines Verdichters bestimmt werden. Dies stellt gegenüber der Auswertung der Gleichung (3) eine Vereinfachung dar, führt jedoch zu ungenaueren Ergebnissen.In some embodiments, the exhaust back pressure can alternatively be determined from a target pressure after a turbine and a power balance of the turbine and a compressor. This represents a simplification compared to the evaluation of equation (3), but leads to less accurate results.

Zusammenfassend zeichnet sich die vorliegende Erfindung durch die Art der iterativen Berechnung des Ladungswechselmodells in Kombination mit der Invertierung der näherungsweise linearen Motorschluckkennlinie aus, wobei eine Sollwertberechnung des Abgasgegendrucks in einem Zielpunkt durchgeführt werden soll. Dabei sind keine Richtungsableitungen des Ladungswechselmodells notwendig, die in herkömmlichen Verfahren zum Einsatz kommen.In summary, the present invention is characterized by the type of iterative calculation of the gas exchange model in combination with the inversion of the approximately linear engine consumption characteristic curve, whereby a setpoint calculation of the exhaust gas back pressure is to be carried out at a target point. No directional derivatives of the gas exchange model are necessary, which are used in conventional methods.

Nachfolgend wird ein Verfahren zum Bestimmen eines Soll-Abgasgegendrucks einer Verbrennungskraftmaschine mittels eines Fixpunktverfahrens beschrieben, das jedoch nicht mit der Erfindung im Einklang steht, wobei ein iterierter Abgasgegendruck aus einer quadratischen Approximation der Gleichung m ˙ Abg = A eff p 3 2 R s T 3 ψ c d p 4 p 3

Figure imgb0005
bestimmt wird, wobei Abg ein Soll-Abgas-Massenstrom, Aeff eine effektive Öffnungsfläche einer Drossel, p3 ein Soll-Abgasgegendruck, p4 ein Solldruck nach einer Turbine, Rs die spezifische Gaskonstante des Abgases, T3 eine Abgastemperatur vor der Turbine, cd ein Turbinendurchflussfaktor und Ψ(·) eine Durchflussfunktion ist, wobei der Soll-Abgasmassenstrom von einem Start-Abgasgegendruck bzw. von einem vorangehend iterierten Abgasgegendruck abhängig ist. Die quadratische Approximation kann die Gleichung (3) oben ergeben.In the following, a method for determining a target exhaust back pressure of an internal combustion engine using a fixed point method is described, which, however, is not in accordance with the invention, wherein an iterated exhaust back pressure is derived from a quadratic approximation of the equation m ˙ Abg = A eff p 3 2 R s T 3 ψ c d p 4 p 3
Figure imgb0005
is determined, where Abg is a target exhaust gas mass flow, A eff is an effective opening area of a throttle, p 3 is a target exhaust gas back pressure, p 4 is a target pressure after a turbine, R s is the specific gas constant of the exhaust gas, T 3 is an exhaust gas temperature before the turbine, c d is a turbine flow factor and Ψ (·) is a flow function, where the target exhaust gas mass flow depends on a starting exhaust gas back pressure or on a previously iterated exhaust gas back pressure. The quadratic approximation can yield equation (3) above.

Der Soll-Abgasgegendruck kann dem iterierten Abgasgegendruck nach zwei oder drei Iterationsschritten entsprechen.The target exhaust back pressure can correspond to the iterated exhaust back pressure after two or three iteration steps.

Weitere Details des Verfahrens zum Bestimmen eines Soll-Abgasgegendrucks wurden weiter oben hinsichtlich des Verfahrens zum Bestimmen des Soll-Saugrohrdrucks im Detail beschrieben. Diese Merkmale treffen analog auf das Verfahren zum Bestimmen eines Soll-Abgasgegendrucks zu.Further details of the method for determining a target exhaust back pressure were described in detail above with regard to the method for determining the target intake manifold pressure. These features apply analogously to the method for determining a target exhaust back pressure.

Weiterhin betrifft die Erfindung eine Steuervorrichtung für eine Verbrennungskraftmaschine, die einen Prozessor aufweist, der dazu ausgebildet ist, ein Verfahren zum Bestimmen eines Soll-Saugrohrdrucks einer Verbrennungskraftmaschine mittels eines iterativen Verfahrens auszuführen, wobei für einen während des iterativen Verfahrens iterierten Saugrohrdruck eine Zylinderfüllung bestimmt wird und der Soll-Saugrohrdruck in Abhängigkeit der bestimmten Zylinderfüllung bestimmt wird. Insbesondere ist der Prozessor dazu ausgebildet, das oben beschriebene Verfahren zum Bestimmen eines Soll-Saugrohrdrucks auszuführen.The invention further relates to a control device for an internal combustion engine, which has a processor that is designed to carry out a method for determining a target intake manifold pressure of an internal combustion engine by means of an iterative method, wherein a cylinder charge is determined for an intake manifold pressure iterated during the iterative method and the target intake manifold pressure is determined as a function of the determined cylinder charge. In particular, the processor is designed to carry out the method described above for determining a target intake manifold pressure.

Die Steuervorrichtung kann beispielsweise eine Motorsteuerung sein. Die Steuervorrichtung kann weiterhin einen Datenspeicher zum Speichern von Kennfeldern, Berechnungsvorschriften, Iterationsvorschriften, festgelegten Parametern und/oder dergleichen aufweisen. Weiterhin kann die Steuervorrichtung einen Signaleingang zum Empfangen von Daten, beispielsweise Messdaten oder anderen Daten, und einen Signalausgang zum Ausgeben von Steuersignalen an die Verbrennungskraftmaschine, insbesondere die steuerbaren Komponenten der Verbrennungskraftmaschine, aufweisen.The control device can be, for example, an engine controller. The control device can also have a data memory for storing characteristic maps, calculation rules, iteration rules, defined parameters and/or the like. Furthermore, the control device can have a signal input for receiving data, for example measurement data or other data, and a signal output for outputting control signals to the internal combustion engine, in particular the controllable components of the internal combustion engine.

Weiterhin betrifft die Erfindung eine Steuervorrichtung für eine Verbrennungskraftmaschine, die einen Prozessor aufweist, der dazu ausgebildet ist, ein Verfahren zum Bestimmen eines Soll-Abgasgegendrucks, wie es oben beschrieben wurde, auszuführen.Furthermore, the invention relates to a control device for an internal combustion engine, which has a processor which is designed to carry out a method for determining a desired exhaust back pressure as described above.

Ausführungsbeispiele der Erfindung werden nun beispielhaft und unter Bezugnahme auf die beigefügten Zeichnungen beschrieben. Es zeigt:

Fig. 1
schematisch eine Verbrennungskraftmaschine;
Fig. 2
schematisch eine Steuervorrichtung zum Ausführen eines Verfahrens zum Bestimmen eines Soll-Saugrohrdrucks;
Fig. 3
schematisch ein Flussdiagramm eines Ausführungsbeispiels eines Verfahrens zum Bestimmen eines Soll-Saugrohrdrucks;
Fig. 4
schematisch ein Flussdiagramm eines Verfahrens zum Bestimmen der Zylinderfüllung;
Fig. 5
schematisch das Grundprinzip eines Sekantenverfahrens; und
Fig. 6
schematisch ein Flussdiagramm eines iterativen Verfahrens zum Bestimmen eines Soll-Abgasgegendrucks.
Embodiments of the invention will now be described by way of example and with reference to the accompanying drawings, in which:
Fig.1
schematically an internal combustion engine;
Fig.2
schematically a control device for carrying out a method for determining a target intake manifold pressure;
Fig.3
schematically shows a flow chart of an embodiment of a method for determining a target intake manifold pressure;
Fig.4
schematically shows a flow chart of a method for determining the cylinder filling;
Fig.5
schematically the basic principle of a secant method; and
Fig.6
schematically shows a flow chart of an iterative method for determining a target exhaust back pressure.

In Fig. 1 ist schematisch eine Verbrennungskraftmaschine dargestellt. Ein Zylinder 1 hat einen Brennraum 10, in dem die Verbrennung von Kraftstoff stattfindet, der über ein Einspritzventil 11 eingespritzt wird. Der Zylinder 1 ist über ein Einlassventil 12 mit einem Saugrohr 13 gekoppelt, aus dem durch das Einlassventil 12 Frischluft in den Brennraum 10 gelangt. Außerdem ist der Zylinder 1 über ein Auslassventil 14 mit einem Abgaskrümmer 15 gekoppelt, durch das Abgas bzw. Restgas aus dem Brennraum 10 in den Abgaskrümmer 15 geleitet wird. Ferner ist ein Zylinderkolben 16 vorhanden, der von einer Kurbelwelle (nicht dargestellt) angetrieben wird. In dem Saugrohr 13 direkt vor dem Einlassventil 12 ist ein Saugrohrdrucksensor 2 angeordnet, der dazu ausgebildet ist, einen Saugrohrdruck zu detektieren. In dem Abgaskrümmer 15 direkt hinter dem Auslassventil 14 ist ein Abgasgegendrucksensor 3 angeordnet, der dazu ausgebildet ist, einen Abgasgegendruck zu detektieren. In der Fig. 1 ist der Zylinder 1 zu einem Zeitpunkt, in dem das Einlassventil 12 und das Auslassventil 14 geöffnet sind und eine Ventilüberschneidung vorliegt, dargestellt.In Fig.1 an internal combustion engine is shown schematically. A cylinder 1 has a combustion chamber 10 in which the combustion of fuel takes place, which is injected via an injection valve 11. The cylinder 1 is coupled via an inlet valve 12 to an intake manifold 13, from which fresh air enters the combustion chamber 10 through the inlet valve 12. In addition, the cylinder 1 is coupled via an outlet valve 14 to an exhaust manifold 15, through which exhaust gas or residual gas from the combustion chamber 10 is guided into the exhaust manifold 15. Furthermore, there is a cylinder piston 16 which is driven by a crankshaft (not shown). In the intake manifold 13 directly in front of the inlet valve 12, an intake manifold pressure sensor 2 is arranged, which is designed to detect an intake manifold pressure. In the exhaust manifold 15 directly behind the outlet valve 14, an exhaust back pressure sensor 3 is arranged, which is designed to detect an exhaust back pressure. In the Fig.1 Cylinder 1 is shown at a time when the intake valve 12 and the exhaust valve 14 are open and valve overlap occurs.

Fig. 2 zeigt eine schematische Darstellung einer Steuervorrichtung 4 zum Ausführen eines Verfahrens zum Bestimmen eines Soll-Saugrohrdrucks. Die Steuervorrichtung 4 weist einen Prozessor 40 auf, der mit einem Signaleingang 41 zum Empfangen von Daten und einem Signalausgang 42 zum Ausgeben von Steuerbefehlen an die Verbrennungskraftmaschine verbunden ist. Weiterhin weist die Steuervorrichtung 4 einen Datenspeicher 43 auf, der zum Speichern von Kennfeldern, Berechnungsvorschriften, Iterationsvorschriften, festgelegten Parametern und dergleichen vorgesehen ist. Der Prozessor 40 ist dazu ausgebildet, ein Verfahren zum Bestimmen eines Soll-Saugrohrdrucks, wie es nachfolgend mit Bezug auf Fig. 3 bis Fig. 6 beschrieben wird, auszuführen. Fig.2 shows a schematic representation of a control device 4 for carrying out a method for determining a target intake manifold pressure. The control device 4 has a processor 40 which is connected to a signal input 41 for receiving data and a signal output 42 for outputting control commands to the internal combustion engine. Furthermore, the control device 4 has a data memory 43 which is provided for storing characteristic maps, calculation rules, iteration rules, fixed parameters and the like. The processor 40 is designed to carry out a method for determining a target intake manifold pressure, as described below with reference to Fig. 3 to Fig. 6 described.

Fig. 3 zeigt ein Flussdiagramm eines Verfahrens 5 zum Bestimmen eines Soll-Saugrohrdruck. Fig.3 shows a flow chart of a method 5 for determining a target intake manifold pressure.

Bei 50 wird zunächst ein erster Start-Saugrohrdruck bestimmt. Dazu wird mittels des Saugrohrdrucksensors ein Ist-Saugrohrdruck gemessen, der als erster Start-Saugrohrdruck dient.At 50, a first starting intake manifold pressure is determined. To do this, the intake manifold pressure sensor is used to measure an actual intake manifold pressure, which serves as the first starting intake manifold pressure.

Anschließend wird bei 51 eine Zylinderfüllung für den ersten Start-Saugrohrdruck bestimmt.Subsequently, a cylinder charge for the first starting intake manifold pressure is determined at 51.

Dazu wird, wie in dem Diagramm in Fig. 4 dargestellt, bei 60 abhängig von dem ersten Start-Saugrohrdruck eine Soll-Turboladerdrehzahl bestimmt. In Abhängigkeit des ersten Start-Saugrohrdrucks und der bestimmten Soll-Turboladerdrehzahl wird bei 61 ein Soll-Abgasgegendruck ermittelt werden. Das Berechnen des Soll-Abgasgegendrucks wird weiter unten mit Bezug auf Fig. 6 im Detail beschrieben. Anschließend wird bei 62 in Abhängigkeit des ersten Start-Saugrohrdrucks und des Soll-Abgasgegendrucks die Zylinderfüllung ermittelt.For this purpose, as shown in the diagram in Fig.4 shown, a target turbocharger speed is determined at 60 depending on the first starting intake manifold pressure. Depending on the first starting intake manifold pressure and the determined target turbocharger speed, a target exhaust back pressure is determined at 61. The calculation of the target exhaust back pressure is described below with reference to Fig.6 described in detail. The cylinder charge is then determined at 62 depending on the first starting intake manifold pressure and the target exhaust back pressure.

Bei 52 in Fig. 3 wird in Abhängigkeit der Zylinderfüllung für den ersten Start-Saugrohrdruck ein zweiter Start-Saugrohrdruck bestimmt. Dazu wird die Zylinderfüllung für den ersten Start-Saugrohrdruck mit einer Soll-Zylinderfüllung der Verbrennungskraftmaschine verglichen und abhängig vom Vergleichsergebnis gemäß Gleichung (2) oben aus einem Kennfeld, das einen Suchbereich festlegt, ein oberer Grenzwert pS2,max oder ein unterer Grenzwert pS2,min als zweiter Start-Saugrohrdruck festgelegt.At 52 in Fig.3 a second starting intake manifold pressure is determined depending on the cylinder charge for the first starting intake manifold pressure. To do this, the cylinder charge for the first starting intake manifold pressure is compared with a target cylinder charge of the internal combustion engine and, depending on the comparison result according to equation (2) above, an upper limit p S2,max or a lower limit p S2,min is determined as the second starting intake manifold pressure from a map that defines a search range.

Bei 53 wird eine Zylinderfüllung für den zweiten Start-Saugrohrdruck bestimmt. Das Bestimmen der Zylinderfüllung für den zweiten Start-Saugrohrdruck erfolgt analog zum Bestimmen der Zylinderfüllung für den ersten Start-Saugrohrdruck.At 53, a cylinder charge for the second starting intake manifold pressure is determined. The cylinder charge for the second starting intake manifold pressure is determined in a similar way to the cylinder charge for the first starting intake manifold pressure.

Bei 54 wird mittels eines Sekantenverfahrens eine erste Saugrohrdruck-iterierte bestimmt. Dazu werden, wie in Fig. 5 gezeigt, die Zylinderfüllung rps1 für den ersten Start-Saugrohrdruck ps1 und die Zylinderfüllung rps2 für den zweiten Start-Saugrohrdruck ps2 über dem Saugrohrdruck p (x-Achse) aufgetragen und eine Sekante S1 zwischen die Zylinderfüllungen rps1, rps2 gelegt. Ein Schnittpunkt der Sekante S1 mit der x-Achse repräsentiert die erste Saugrohrdruck-iterierte pI1.At 54, a first intake manifold pressure iteration is determined using a secant method. For this purpose, as in Fig.5 shown, the cylinder charge r ps1 for the first starting intake manifold pressure p s1 and the cylinder charge r ps2 for the second starting intake manifold pressure p s2 are plotted against the intake manifold pressure p (x-axis) and a secant S1 is placed between the cylinder charges r ps1 , r ps2 . An intersection point of the secant S1 with the x-axis represents the first intake manifold pressure iterated p I1 .

Bei 55 wird eine Zylinderfüllung für die bestimmte erste Saugrohrdruck-iterierte bestimmt. Das Bestimmen der Zylinderfüllung für die erste Saugrohrdruck-Iterierte erfolgt analog zum Bestimmen der Zylinderfüllung für den ersten Start-Saugrohrdruck.At 55, a cylinder charge is determined for the determined first intake manifold pressure iterate. The cylinder charge for the first intake manifold pressure iterate is determined analogously to the cylinder charge for the first starting intake manifold pressure.

Bei 56 wird bestimmt, ob die Iteration abgebrochen werden kann oder nicht. Dies kann in Abhängigkeit einer Anzahl der bereits durchgeführten Iterationen bzw. in Abhängigkeit der Zylinderfüllung für die erste Saugrohrdruck-iterierte bestimmt werden. Beispielsweise kann die Füllung für die erste Saugrohrdruck-Iterierte mit der Füllung für den zweiten Start-Saugrohrdruck verglichen werden und in Abhängigkeit des Vergleichsergebnisses entschieden werden, ob die Iteration abgebrochen werden kann oder nicht.At 56 it is determined whether the iteration can be aborted or not. This can be determined depending on the number of iterations already carried out or depending on the cylinder filling for the first intake manifold pressure iteration. For example, the filling for the first intake manifold pressure iteration can be compared with the filling for the second starting intake manifold pressure and depending on the comparison result it can be decided whether the iteration can be aborted or not.

Wenn bei 56 bestimmt wird, dass die Iteration abgebrochen werden kann, wird bei 57 die zuletzt bestimmte Saugrohrdruck-Iterierte als Soll-Saugrohrdruck ausgegeben.If it is determined at 56 that the iteration can be aborted, the last determined intake manifold pressure iterate is output at 57 as the target intake manifold pressure.

Wenn bei 56 bestimmt wird, dass die Iteration nicht abgebrochen werden kann, werden die Schritte 54 bis 56 wiederholt. Dabei wird bei 54 eine zweite Saugrohrdruck-iterierte bestimmt, indem, wie in Fig. 5 dargestellt, eine Sekante S2 durch die Zylinderfüllung rps2 für den zweiten Start-Saugrohrdruck und die Zylinderfüllung rpI1 für die erste Saugrohrdruck-Iterierte gelegt wird und ein Schnittpunkt mit der x-Achse als zweite Saugrohrdruck-Iterierte pI2 festgelegt wird. Bei 55 wird dann die Zylinderfüllung für die zweite Saugrohrdruck-Iterierte bestimmt und bei 56 wird bestimmt, ob die Iteration abgebrochen werden kann oder nicht. Dazu kann die Füllung für die zweite Saugrohrdruck-iterierte mit der Füllung für die erste Saugrohrdruck-iterierte verglichen werden und in Abhängigkeit des Vergleichsergebnisses entschieden werden, ob die Iteration abgebrochen werden kann oder nicht. Wenn die Iteration nicht abgebrochen werden kann, werden die Schritte 54 bis 56 analog für weitere Saugrohrdruck-iterierte wiederholt.If it is determined at 56 that the iteration cannot be aborted, steps 54 to 56 are repeated. In doing so, a second intake manifold pressure iteration is determined at 54 by, as in Fig.5 shown, a secant S2 is placed through the cylinder charge r ps2 for the second starting intake manifold pressure and the cylinder charge r pI1 for the first intake manifold pressure iterate and an intersection point with the x-axis is defined as the second intake manifold pressure iterate p I2 . At 55 the cylinder charge for the second intake manifold pressure iterate is then determined and at 56 it is determined whether the iteration can be aborted or not. To do this, the charge for the second intake manifold pressure iterate can be compared with the charge for the first intake manifold pressure iterate and depending on the comparison result it can be decided whether the iteration can be aborted or not. If the iteration cannot be aborted, steps 54 to 56 are repeated analogously for further intake manifold pressure iterates.

Die Iteration wird zum Beispiel maximal zwei Mal wiederholt und dann abgebrochen. Die maximale Anzahl an Iterationen kann jedoch vorab festgelegt werden.For example, the iteration is repeated a maximum of two times and then aborted. However, the maximum number of iterations can be set in advance.

In dem ersten Ausführungsbeispiel wird der Soll-Abgasgegendruck für die Bestimmung einer Füllung zu jedem der Start-Saugrohrdrücke und der Saugrohrdruck-iterierten gemäß dem Verfahren 7 zum Bestimmen eines Soll-Abgasgegendrucks bestimmt.In the first embodiment, the target exhaust back pressure for determining a charge is determined at each of the starting intake manifold pressures and the intake manifold pressure iterated according to the method 7 for determining a target exhaust back pressure.

Bei 70 wird ein Start-Abgasgegendruck festgelegt. Der Start-Abgasgegendruck ist der Saugrohrdruck, von dem in dem jeweiligen Schritt des Verfahrens 5 zum Bestimmen des Soll-Saugrohrdrucks ausgegangen wird. D.h. in Schritt 51 des Verfahrens 5 ist der Start-Abgasgegendruck der erste Start-Saugrohrdruck, in Schritt 53 der zweite Start-Saugrohrdruck und in Schritt 55 die in Schritt 54 iterierte Saugrohrdruck-Iterierte.At 70, a starting exhaust back pressure is determined. The starting exhaust back pressure is the intake manifold pressure that is used as a basis in the respective step of method 5 for determining the target intake manifold pressure. This means that in step 51 of method 5, the starting exhaust back pressure is the first starting intake manifold pressure, in step 53 the second starting intake manifold pressure and in step 55 the intake manifold pressure iterated in step 54.

Bei 71 wird in Abhängigkeit des Start-Abgasgegendrucks ein reduzierter Massenstrom bestimmt.At 71, a reduced mass flow is determined depending on the starting exhaust back pressure.

Bei 72 wird dann in Abhängigkeit des Start-Saugrohrdrucks und des reduzierten Massenstroms ein VTG-Ansteuer-Tastverhältnis oder eine Einstellung eines Stellers eines Turboladers mit Wastegate bestimmt.At 72, a VTG control duty cycle or a setting of an actuator of a turbocharger with wastegate is then determined depending on the starting intake manifold pressure and the reduced mass flow.

Bei 73 wird mittels der Gleichung (3) oben eine Abgasgegendruck-iterierte bestimmt. Die Schritte 71 bis 73 stellen jeweils einen Iterationsschritt einer Fixpunktiteration dar.At 73, an exhaust back pressure iteration is determined using equation (3) above. Steps 71 to 73 each represent an iteration step of a fixed point iteration.

Bei 74 wird geprüft, ob die Iteration abgebrochen werden kann oder nicht. Dies wird in Abhängigkeit einer Anzahl der bereits durchgeführten Iterationen bestimmt. Die maximale Anzahl an Iterationen beträgt hier 2.At 74, it is checked whether the iteration can be aborted or not. This is determined depending on the number of iterations already performed. The maximum number of iterations here is 2.

Wenn bei 74 bestimmt wird, dass die Iteration abgebrochen werden kann, wird bei 75 die zuletzt bestimmte Abgasgegendruck-iterierte als Soll-Abgasgegendruck ausgegeben.If it is determined at 74 that the iteration can be aborted, the last determined exhaust back pressure iterated is output at 75 as the target exhaust back pressure.

Wenn bei 74 bestimmt wird, dass die Iteration nicht abgebrochen werden kann, werden die Schritte 71 bis 74 wiederholt. Dabei wird jeweils in Abhängigkeit der Abgasgegendruck-Iterierten ein reduzierter Abgasmassenstrom, ein VTG-Ansteuer-Tastverhältnis bzw. eine Einstellung eines Stellers eines Turboladers mit Wastegate und eine weitere Abgasgegendruck-Iterierte bestimmt.If it is determined at 74 that the iteration cannot be aborted, steps 71 to 74 are repeated. In each case, a reduced exhaust gas mass flow, a VTG control duty cycle or a setting of an actuator of a turbocharger with wastegate and a further exhaust gas back pressure iterate are determined depending on the exhaust gas back pressure iterate.

In einem zweiten Ausführungsbeispiel wird der Abgasgegendruck in jedem Berechnungsschritt 51, 53, 54 des Verfahrens 5 über die Gleichung (3) oben berechnet werden und ein reduzierter Massenstrom nach Gleichung (4) oben bestimmt werden. Daraus wird dann das VTG-Ansteuer-Tastverhältnis oder die Einstellung des Stellers des Turboladers mit Wastegate bestimmt.In a second embodiment, the exhaust back pressure is calculated in each calculation step 51, 53, 54 of method 5 using equation (3) above and a reduced mass flow is determined using equation (4) above. The VTG control duty cycle or the setting of the actuator of the turbocharger with wastegate is then determined from this.

In einem dritten Ausführungsbeispiel wird der Soll-Abgasgegendruck in jedem Berechnungsschritt 51, 53, 54 des Verfahrens 5 aus einem Soll-Druck nach einer Turbine und einer Leistungsbilanz der Turbine und eines Verdichters bestimmt.In a third embodiment, the target exhaust back pressure is determined in each calculation step 51, 53, 54 of the method 5 from a target pressure after a turbine and a power balance of the turbine and a compressor.

BezugszeichenlisteList of reference symbols

11
Zylinder einer VerbrennungskraftmaschineCylinder of an internal combustion engine
1010
BrennraumCombustion chamber
1111
EinspritzventilInjector
1212
EinlassventilInlet valve
1313
SaugrohrIntake manifold
1414
Auslassventiloutlet valve
1515
AbgaskrümmerExhaust manifold
1616
ZylinderkolbenCylinder piston
22
SaugrohrdrucksensorIntake manifold pressure sensor
33
AbgasgegendrucksensorExhaust back pressure sensor
44
SteuervorrichtungControl device
4040
Prozessorprocessor
4141
SignaleingangSignal input
4242
SignalausgangSignal output
4343
DatenspeicherData storage
55
Verfahren zum Bestimmen eines Soll-SaugrohrdrucksMethod for determining a target intake manifold pressure
5050
Bestimmen eines ersten Start-SaugrohrdrucksDetermining a first starting intake manifold pressure
5151
Bestimmen einer Zylinderfüllung für den ersten Start-SaugrohrdruckDetermining a cylinder charge for the first starting intake manifold pressure
5252
Bestimmen eines zweiten Start-SaugrohrdrucksDetermining a second starting intake manifold pressure
5353
Bestimmen einer Zylinderfüllung für den zweiten Start-SaugrohrdruckDetermining a cylinder charge for the second starting intake manifold pressure
5454
Bestimmen einer Saugrohrdruck-Iterierten mittels eines SekantenverfahrensDetermining an intake manifold pressure iterate using a secant method
5555
Bestimmen einer Zylinderfüllung für die Saugrohrdruck-iterierteDetermining a cylinder charge for the intake manifold pressure iterated
5656
Bestimmen, ob die Iteration abgebrochen werden kannDetermine whether the iteration can be aborted
5757
Festlegen der zuletzt bestimmten Saugrohrdruck-Iterierten als Soll-SaugrohrdruckSetting the last determined intake manifold pressure iterate as target intake manifold pressure
6060
Berechnen einer TurboladerdrehzahlCalculating a turbocharger speed
6161
Bestimmen eines Soll-AbgasgegendrucksDetermining a target exhaust back pressure
6262
Bestimmen einer ZylinderfüllungDetermining a cylinder filling
7070
Festlegen eines Start-AbgasgegendrucksSetting a starting exhaust back pressure
7171
Bestimmen eines reduzierten MassenstromsDetermining a reduced mass flow
7272
Bestimmen eines VTG-Ansteuer-TastverhältnissesDetermining a VTG drive duty cycle
7373
Bestimmen einer Abgasgegendruck-IteriertenDetermining an exhaust back pressure iterate
7474
Bestimmen, ob die Iteration abgebrochen werden kannDetermine whether the iteration can be aborted
7575
Festlegen der zuletzt bestimmten Abgasgegendruck-iterierten als Soll-AbgasgegendruckSpecify the last determined exhaust back pressure iterated as the target exhaust back pressure
ps1ps1
erster Start-Saugrohrdruckfirst start intake manifold pressure
ps2ps2
zweiter Start-Saugrohrdrucksecond starting intake manifold pressure
pI1pI1
erste Saugrohrdruck-Iteriertefirst intake manifold pressure iteration
pI2pI2
zweite Saugrohrdruck-Iteriertesecond intake manifold pressure iterate
rps1rps1
Zylinderfüllung für den ersten Start-SaugrohrdruckCylinder filling for the first start-up intake manifold pressure
rps2rps2
Zylinderfüllung für den zweiten Start-SaugrohrdruckCylinder filling for the second starting intake manifold pressure
rpI1rpI1
Zylinderfüllung für die erste Saugrohrdruck-IterierteCylinder filling for the first intake manifold pressure iteration
S1S1
Sekantesecant
S2S2
Sekantesecant

Claims (7)

  1. Method for determining a desired intake manifold pressure of an internal combustion engine (1) by means of an iterative method, wherein the method is carried out by means of a control device for an internal combustion engine (1), which control device has a processor (40), wherein a cylinder filling (rpI1) is determined (55) for an intake manifold pressure (pI1) iterated during the iterative method, and the desired intake manifold pressure is determined (57) depending on the determined cylinder filling (rpI1),
    characterized in that the iterative method is a secant method (54), wherein two starting points are defined and a secant is placed between these starting points, wherein an intersection of the secant having an axis which indicates a desired intake manifold pressure is defined as an iteration which represents an improved starting value for the subsequent iteration,
    wherein a cylinder filling (rps1) is determined for a first start intake manifold pressure (ps1) and a second start intake manifold pressure (ps2) is determined by comparing the cylinder filling (rps1) for the first start intake manifold pressure with a desired cylinder filling of the internal combustion engine (1), and the second start intake manifold pressure (ps2) is determined depending on the comparison result between the cylinder filling (rps1) for the first start intake manifold pressure (ps1) and the desired cylinder filling,
    wherein the cylinder filling (rpI1) for the iterated intake manifold pressure (pI1) is determined depending on a desired exhaust gas back pressure, wherein the desired exhaust gas back pressure is determined depending on the iterated intake manifold pressure (pI1),
    wherein the last determined intake manifold pressure iteration is defined as desired intake manifold pressure.
  2. Method according to claim 1, wherein the first start intake manifold pressure (ps1) is an actual intake manifold pressure.
  3. Method according to either of the preceding claims, wherein the desired exhaust gas back pressure is determined from a quadratic approximation of the equation m ˙ Abg = A eff p 3 2 R s T 3 ψ c d p 4 p 3
    Figure imgb0007
    wherein Abg is a desired exhaust gas mass flow, Aeff is an effective opening area of a throttle, p3 is a desired exhaust gas back pressure, p4 is a desired pressure after a turbine, Rs is the specific gas constant of the exhaust gas, T3 is an exhaust gas temperature before the turbine, cd is a turbine flow factor and Ψ(·) is a flow function.
  4. Method according to any of the preceding claims, wherein the desired exhaust back gas pressure is determined by means of an iterative method (70-75), and wherein a starting exhaust gas back pressure is the iterated intake manifold pressure (pI1).
  5. Method according to claim 4, wherein a reduced exhaust gas mass flow and a VTG drive duty cycle are determined depending on the start exhaust gas back pressure and the iterated exhaust gas back pressure is determined depending thereon.
  6. Method according to claim 1, wherein the desired intake manifold pressure is determined from a desired pressure after a turbine and from a power balance of the turbine and a compressor.
  7. Control device for an internal combustion engine (1), which control device has a processor (40) that is designed to carry out a method according to any of the preceding claims.
EP18210308.5A 2017-12-13 2018-12-05 Method and control device for determining a target inlet manifold pressure of a combustion engine Active EP3499011B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017222593.9A DE102017222593A1 (en) 2017-12-13 2017-12-13 Method and control device for determining a target intake manifold pressure of an internal combustion engine

Publications (2)

Publication Number Publication Date
EP3499011A1 EP3499011A1 (en) 2019-06-19
EP3499011B1 true EP3499011B1 (en) 2024-06-05

Family

ID=64606797

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18210308.5A Active EP3499011B1 (en) 2017-12-13 2018-12-05 Method and control device for determining a target inlet manifold pressure of a combustion engine

Country Status (5)

Country Link
US (1) US11208965B2 (en)
EP (1) EP3499011B1 (en)
KR (1) KR102095336B1 (en)
CN (1) CN109944708B (en)
DE (1) DE102017222593A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019214703A1 (en) * 2019-09-25 2021-03-25 Volkswagen Aktiengesellschaft Hybrid vehicle with internal combustion engine with pre-chamber ignition device
DE102019132770B3 (en) * 2019-12-03 2021-01-14 Schaeffler Technologies AG & Co. KG Double-flow pump unit and method of controlling it
CN111287856A (en) * 2020-02-22 2020-06-16 东风汽车集团有限公司 Method for determining target intake pressure of exhaust gas turbocharged engine, control method, and storage medium
DE102023113312B3 (en) 2023-05-22 2024-10-17 Volkswagen Aktiengesellschaft Compressor protection function to maintain the compressor outlet temperature, control device, internal combustion engine and vehicle

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19944178C2 (en) 1999-09-15 2003-03-20 Daimler Chrysler Ag Method for controlling the throttle valve in the intake manifold of an internal combustion engine as a function of a predefinable desired air mass flow
DE10064651A1 (en) * 2000-12-22 2002-07-04 Bosch Gmbh Robert Electronic inlet and exhaust valve control system for internal combustion engine includes flow sensor in induction tract connected to valve timing control computer
US7200486B2 (en) * 2001-10-15 2007-04-03 Toyota Jidosha Kabushiki Kaisha Apparatus for estimating quantity of intake air for internal combustion engine
DE10241884B4 (en) * 2002-09-10 2013-04-11 Volkswagen Ag Method for operating an internal combustion engine
DE10306903B4 (en) * 2003-02-17 2013-06-20 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Method for determining the timing of an internal combustion engine
FR2861805B1 (en) 2003-11-04 2006-02-10 Peugeot Citroen Automobiles Sa METHOD OF ESTIMATING THE CONCENTRATION OF CERTAIN CHEMICAL SPECIES WITHIN A COMBUSTION ENGINE CYLINDER AND APPLICATION TO INJECTION ENGINE CONTROL
US6968824B1 (en) * 2004-06-15 2005-11-29 General Motors Corporation Determining manifold pressure based on engine torque control
DE102004046056A1 (en) * 2004-09-21 2006-03-23 Robert Bosch Gmbh Internal combustion engine e.g. diesel engine, controlling method for vehicle, involves detecting positions of actuating unit such that deviation between measured pressure and calculated pressure in inlet line presents minimum amplitude
JP4703170B2 (en) * 2004-11-16 2011-06-15 トヨタ自動車株式会社 Control device for internal combustion engine
DE102007030233A1 (en) * 2007-06-29 2009-01-08 Ford Global Technologies, LLC, Dearborn Charged-air mass flow calculating method for intake pipe of e.g. diesel engine, involves detecting speed of turbine using speed sensor, and calculating effective charge-air mass flow in intake pipe using speed and compression ratio
US7801665B2 (en) * 2007-07-13 2010-09-21 Ford Global Technologies, Llc Controlling cylinder mixture and turbocharger operation
US7472013B1 (en) 2007-07-20 2008-12-30 Gm Global Technology Operations, Inc. System and method for estimating volumetric efficiency for engines with intake and exhaust cam phasers
US7831378B2 (en) 2007-10-30 2010-11-09 Cummins Inc. System and method for estimating NOx produced by an internal combustion engine
US8010276B2 (en) 2009-08-31 2011-08-30 International Engine Intellectual Property Company, Llc Intake manifold oxygen control
JP5668763B2 (en) 2011-02-07 2015-02-12 日産自動車株式会社 Control device for multi-cylinder internal combustion engine
US9399962B2 (en) * 2011-11-09 2016-07-26 Ford Global Technologies, Llc Method for determining and compensating engine blow-through air
JP5776530B2 (en) 2011-12-12 2015-09-09 三菱自動車工業株式会社 Engine control device
US9453469B2 (en) * 2012-05-30 2016-09-27 Ford Global Technologies, Llc Method and system for adjusting engine throttles
DE102012014713A1 (en) 2012-07-25 2014-01-30 Volkswagen Aktiengesellschaft Method for operating an internal combustion engine
DE102013113157A1 (en) 2013-11-28 2015-05-28 Daimler Ag Method and device for regulating a charge in a cylinder of an internal combustion engine
US9810171B2 (en) * 2013-12-03 2017-11-07 Ford Global Technologies, Llc Method for determining an offset of a manifold pressure sensor
DE102014001790A1 (en) 2014-02-12 2015-08-13 Fev Gmbh Determination of the degree of delivery of turbocharged gasoline engines in scavenging
DE102014211162B4 (en) 2014-06-11 2021-09-02 Volkswagen Aktiengesellschaft Method and device for filling detection in a cylinder of an internal combustion engine
JP6252450B2 (en) 2014-11-28 2017-12-27 トヨタ自動車株式会社 Control device for internal combustion engine
JP6115580B2 (en) 2015-02-20 2017-04-19 トヨタ自動車株式会社 Control device for internal combustion engine
JP6361534B2 (en) 2015-03-16 2018-07-25 株式会社デンソー Control device for internal combustion engine
DE102015210761A1 (en) * 2015-06-12 2016-12-15 Volkswagen Aktiengesellschaft Air charge determination, engine control unit and internal combustion engine
CN105041493B (en) 2015-06-17 2017-11-10 威伯科汽车控制系统(中国)有限公司 Moment of torsion modification method of the diesel engine under low air-fuel ratio state
JP5963927B1 (en) 2015-08-21 2016-08-03 三菱電機株式会社 Control device and method for internal combustion engine with supercharger
DE102016200710A1 (en) 2016-01-20 2017-07-20 Robert Bosch Gmbh Method and device for operating an engine system with a supercharged combustion engine
US10132260B2 (en) 2016-02-26 2018-11-20 GM Global Technology Operations LLC Method of continuously calculating trapped and scavenged air per cylinder
US10280875B2 (en) * 2017-08-01 2019-05-07 Ford Global Technologies, Llc Methods and system for controlling engine airflow with an auxiliary throttle arranged in series with a venturi and in parallel with a main intake throttle

Also Published As

Publication number Publication date
US11208965B2 (en) 2021-12-28
US20190178186A1 (en) 2019-06-13
CN109944708B (en) 2022-01-25
DE102017222593A1 (en) 2019-06-13
KR20190070865A (en) 2019-06-21
KR102095336B1 (en) 2020-03-31
CN109944708A (en) 2019-06-28
EP3499011A1 (en) 2019-06-19

Similar Documents

Publication Publication Date Title
EP3499011B1 (en) Method and control device for determining a target inlet manifold pressure of a combustion engine
DE102014201947B3 (en) Method and device for determining a charge air mass flow
AT510912B1 (en) Method for optimizing the emission of internal combustion engines
WO2006069853A1 (en) Method for the operation of an internal combustion engine
EP3308007B1 (en) Air charge determination, engine control unit and internal combustion engine
DE102015211808A1 (en) Control device for internal combustion engine
DE112010001481T5 (en) Control device and control method for an internal combustion engine
DE102007039691A1 (en) Modeling method and control unit for an internal combustion engine
WO2014015974A2 (en) Improved performance of experiments
DE102009054015A1 (en) Method for calculating the mass fraction burned in an internal combustion engine on the basis of a Rassweiler-Withrow method for real-time applications
DE102008032935B4 (en) Method for calculating a combustion chamber pressure in real time
EP3436681B1 (en) Method and device for operating an internal combustion engine with a variable injection profile
EP2162802B1 (en) Method and device for operating an internal combustion engine
DE102004026006B4 (en) Control device and control method for an internal combustion engine
DE102019213092A1 (en) Method for diagnosing misfires in an internal combustion engine
DE102008043315A1 (en) Method for operating internal combustion engine, particularly for motor vehicle, involves detecting combustion chamber pressure within combustion chamber of combustion engine
DE102009055120A1 (en) Method and device for carrying out an on-board diagnosis
DE102018120393B4 (en) SYSTEMS AND METHODS FOR CONTROLLING FUEL SUPPLY TO AN ENGINE
DE102005055952A1 (en) Method for operating internal-combustion engine, involves detection and determination of residual gas partial pressure of residual gas in combustion chamber
DE10314677A1 (en) Method for operating an internal combustion engine
EP2458185A1 (en) Method for operating a combustion engine, control element, combustion engine
DE102011075875A1 (en) Method for calculating nitrogen oxide exhaust emission before catalytic converter phase of exhaust system for e.g. diesel engine of car, involves performing correcting function dependent on calculated exhaust emission by boost pressure
DE102010043966A1 (en) Method and device for controlling a gasoline engine in auto-ignition operation
DE102017219175A1 (en) Method for determining a cylinder charge of an internal combustion engine with a variable valve lift
DE102011086613A1 (en) Method for operating combustion engine in motor car, involves comparing deviation between cylinder pressure value and model value with threshold value, and activating or deactivating functionality of engine based on comparison result

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191219

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220210

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240103

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240214

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20240417

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018014702

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D