EP3497750B1 - Empilement d'antennes - Google Patents
Empilement d'antennes Download PDFInfo
- Publication number
- EP3497750B1 EP3497750B1 EP17751976.6A EP17751976A EP3497750B1 EP 3497750 B1 EP3497750 B1 EP 3497750B1 EP 17751976 A EP17751976 A EP 17751976A EP 3497750 B1 EP3497750 B1 EP 3497750B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- antenna
- switch
- feed
- coupled
- state
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 claims description 16
- 230000007774 longterm Effects 0.000 claims description 8
- 239000007787 solid Substances 0.000 claims description 3
- 230000008878 coupling Effects 0.000 description 15
- 238000010168 coupling process Methods 0.000 description 15
- 238000005859 coupling reaction Methods 0.000 description 15
- WAZUWHGJMMZVHH-UHFFFAOYSA-N 1,2,3-trichloro-5-(2,6-dichlorophenyl)benzene Chemical compound ClC1=C(Cl)C(Cl)=CC(C=2C(=CC=CC=2Cl)Cl)=C1 WAZUWHGJMMZVHH-UHFFFAOYSA-N 0.000 description 12
- 238000004891 communication Methods 0.000 description 10
- 230000008901 benefit Effects 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 101000822695 Clostridium perfringens (strain 13 / Type A) Small, acid-soluble spore protein C1 Proteins 0.000 description 1
- 101000655262 Clostridium perfringens (strain 13 / Type A) Small, acid-soluble spore protein C2 Proteins 0.000 description 1
- 101000655256 Paraclostridium bifermentans Small, acid-soluble spore protein alpha Proteins 0.000 description 1
- 101000655264 Paraclostridium bifermentans Small, acid-soluble spore protein beta Proteins 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 230000008821 health effect Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/241—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
- H01Q1/242—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
- H01Q1/243—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/2291—Supports; Mounting means by structural association with other equipment or articles used in bluetooth or WI-FI devices of Wireless Local Area Networks [WLAN]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/48—Earthing means; Earth screens; Counterpoises
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/50—Structural association of antennas with earthing switches, lead-in devices or lightning protectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/28—Combinations of substantially independent non-interacting antenna units or systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/30—Arrangements for providing operation on different wavebands
- H01Q5/307—Individual or coupled radiating elements, each element being fed in an unspecified way
- H01Q5/342—Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
- H01Q5/35—Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using two or more simultaneously fed points
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/50—Feeding or matching arrangements for broad-band or multi-band operation
Definitions
- Different types of mobile communication devices may have multiple radios, for example, cellular, Wireless Local Area Network (WLAN), Bluetooth, Near Field Communication (NFC), and hence multiple antennas. Further a single radio may use multiple antennas for antenna diversity and/or Multiple Input Multiple Output (MIMO) operation. This may offer increased capacity and enhanced performance for communication systems, possibly even without the need for increased transmission power. Limited space in a device, however, may need to be considered in designing such devices and compact antennas may be needed to fit the form factors of portable devices. Such antennas may be located in close proximity to each other due the small form factor of such devices.
- WLAN Wireless Local Area Network
- NFC Near Field Communication
- MIMO Multiple Input Multiple Output
- US 2012/242558 A1 discloses a reconfigurable antenna that comprises two or more mutually coupled radiating elements and two or more impedance-matching circuits configured for independent tuning of the frequency band of each radiating element.
- each radiating element is arranged for selective operation in each of the following states: a driven state, a floating state and a ground state.
- EP 2 117 075 A1 discloses an array antenna that includes a group of antenna elements and a switching section.
- the group of antenna elements has a configuration in which a plurality of antenna elements is arranged.
- the switching section has a plurality of switch elements capable of individually switching the feeding points of the antenna elements included in the group of antenna elements. By switching of the switch elements, the group of antenna elements is converted into an antenna for MIMO communication to transmit and receive a plurality of signals in parallel, or into a directional array antenna to control the directivity towards the direction at which the signals arrive.
- US 2008/174508 A1 discloses an array antenna apparatus that includes a first feeding element having a first feed point, a second feeding element having a second feed point, and a first parasitic element electrically connected to the respective first and second feeding elements.
- a first frequency band respective resonances in the feeding elements occur independent of each other, by eliminating electromagnetic mutual coupling between the feeding elements, and exciting the first feeding element through the first feed point as well as exciting the second feeding element through the second feed point.
- a loop antenna having a certain electrical length is formed by the first and second feeding elements and the first parasitic element, and a resonance of the loop antenna substantially occurs by exciting the first feeding element through the first feed point.
- US 6 757 267 B1 discloses an antenna diversity system that includes at least two antennas. Each antenna may be connected via a common connection point to a receiver by a respective switch which presents a low impedance connection between the antenna and receiver in the on state and a substantially reactive load to the antenna in the off state. Selection of appropriate impedances for the off state load enables the antennas to function as an array with a variety of beam patterns depending on the state of the switches. Cycling through a sequence of switch states steers the antenna beam providing improved resistance to fading and multipath effects.
- the antennas may be connected to a hybrid coupler, which enables two beam patterns to be available simultaneously for signal quality measurement and comparison.
- WO 2013/014458 A1 discloses a reconfigurable multi-output antenna comprising: one or more radiating elements, at least two matching circuits coupled to the or each radiating element via e.g. a splitter or a diplxer; and wherein each matching circuit is associated with a separate port arranged to drive a separate resonant frequency so that the or each radiating element is operable to provide multiple outputs simultaneously.
- the resonant frequency of each output is independently controllable by each matching circuit, with good isolation with each other port, thereby offering very wide operating frequency range with simultaneous multi- independent output operations.
- a multi-output antenna control module for coupling to one or more radiating elements, an antenna structure and an antenna interface module.
- the embodiments may be described and illustrated herein as being implemented in a smartphone, this is only an example implementation and not a limitation. As those skilled in the art will appreciate, the present embodiments are suitable for application in a variety of different types of devices comprising wireless communication capabilities having antenna stack, for example mobile phones (including smartphones), tablet computers, phablets, laptops, table-laptop hybrids, potable game consoles, portable media players, etc.
- a radio frequency (RF) switch may be configured in an assembly of two or more co-located antenna elements, the pole of the RF switch being connected to an electrical ground. In one state the switch grounds a first feed. In another state the switch grounds a second feed. In yet another state, the switch does not ground any of the feeds. According to an embodiment, coupling between the antennas may be reduced by grounding the antenna feed which is not needed.
- SAR hotspots may be avoided by grounding an antenna which is not needed, by using an RF switch to ground its corresponding antenna feed.
- An antenna feed may also be grounded, for example when the device is in proximity of a user's body, thus preventing the user from too much exposure to radio and microwaves emanating from the device.
- the antenna arrangement described above may comprise shorting elements, which may be connectable to an electrical ground by an RF switch, allowing use of the antenna element for multiple frequencies.
- the first antenna element may be coupled with two antenna feeds: one configured for Long Term Evolution (LTE) Low Band (LB) and other configured for LTE High Band (HB) and Medium (MB) Band.
- the second antenna feed may be configured for WLAN frequencies.
- a device may comprise more than one of an antenna arrangement described above, allowing MIMO operation, with lower mutual coupling and lesser or no SAR hotspots.
- the communication capabilities of a device may be improved by using antenna assemblies as described herein.
- FIG. 1 illustrates a schematic representation of a device 100, according to an embodiment, as a circuit diagram.
- Device 100 comprises two antenna elements 110 and 112, two antenna feeds 111a and 113a, impedance matching circuits 115, 116, 118, a diplexer 117, and feed lines 119, 120 coupled to corresponding radios (not shown in FIG. 1 ) and an RF switch 105.
- a radio may, for example, comprise one or more of: a receiver, a transmitter, a transceiver, an RF front end, any intermediate circuitry etc.
- antenna elements 110, 111a are illustrated as outside the device 100, they may be inside the device 100 or they may be implemented by using a housing of the device 100 or a portion thereof.
- antenna element 110 is coupled to antenna feed 111a.
- Antenna feed 111a is coupled with impedance matching circuits 115, 116, which are configured in parallel to each other and coupled to a diplexer 117.
- the diplexer 117 is connected to a feed line 119 which is coupled to a radio (not shown in FIG. 1 ).
- Antenna feed 111a is also coupled to RF switch 105.
- Antenna element 112 is coupled to antenna feed 113a.
- Antenna feed 113a is coupled to impedance matching circuit 118, which is connected via a feed line 120 to a radio (not shown in FIG. 1 ).
- Antenna feed 112 is also coupled to RF switch 105.
- RF switch 105 is a single pole multi-throw switch, preferably a solid state single pole multi-throw switch, the pole 108 being connected to an electrical ground plane in the device 100.
- RF switch 105 may comprise a Silicon on Insulator (Sol) switch, a Gallium Arsenide (GaAs) switch, Complementary Metal on Semiconductor (CMOS) switch, a Micro-electro-mechanical system (MEMS) switch, a PiN diode switch, or a combination thereof.
- Sol Silicon on Insulator
- GaAs Gallium Arsenide
- CMOS Complementary Metal on Semiconductor
- MEMS Micro-electro-mechanical system
- a radio coupled to feed line 119 may be a transmitter. Signals coming via feedline 119 may be frequency de-multiplexed into two different frequency range signals by diplexer 117 and fed to corresponding impedance matching circuit 115, 116. Impedance matching circuit 115, 116 may match the impedance of feed line 119 to the impedance of antenna 110 for maximum transfer of signal energy to antenna 110 and/or to prevent standing waves. The signal so transferred via the impedance matching circuits 115, 116 may reach the antenna and be transmitted. According to an embodiment, a radio coupled to feedline 119 may be a receiver, where the signals travel in a direction opposite to the transmitter case.
- the radio coupled to feedline 119 may be a transceiver, supporting both transmission and reception of radio signals.
- Feed line 120 may be coupled to a receiver, transmitter or a transceiver.
- Signals are received by antenna element 112 and transferred via the antenna feed 113a and impedance matching circuit 118 to feed line 120.
- the impedance matching circuit 118 may match the impedance of antenna element 112 to the impedance of feed line 120.
- RF Switch 105 may comprise a pole 108 connected to a ground plane 109.
- RF switch 105 may have three states: 106, 107 and 104. In state 104, RF switch 105 may be in an open state.
- the RF switch 105 may connect antenna feed 111a to electrical ground 109. In state 107, the RF switch 105 may connect antenna feed 113a to electrical ground plane 105. Furthermore, the number of the states may vary depending on the number of used radios within the device 100, or depending on the number of different antennas within the device 100. Three states has been illustrated only as an illustrative embodiment, however the number of states, and configuration of the states may vary from two states to various states.
- grounding antenna feed 111a by configuring RF switch 105 in state 106 improves performance of antenna element 112 and consequently the corresponding radio coupled to it via antenna feed 113a, impedance matching circuit 118 and feedline 120.
- grounding feed 113a by configuring RF switch 105 in state 107, improves performance of antenna element 110 and consequently the radios connected to it.
- grounding an antenna feed 111a or 113a reduces or eliminates SAR hotspots potentially caused by antenna elements 110, 112.
- the state of RF switch 105 may be configured based on operating characteristics of the radios, which are coupled to antenna elements 110, 112.
- the state of RF switch 105 may also be configured based on operating characteristics of the device, usage characteristics of the device, conditions of the wireless networks to which the device is configured to connect, user input or a combination thereof. For example, if a network corresponding to an antenna element 110, 112 is unavailable, the corresponding feed 111a, 113a may be grounded. According to an embodiment, in some situations, for example when the device is away from a user's body, the RF switch 105 may be put in state 104, so that both antenna elements 110 and 114 may operate simultaneously. According to an embodiment, device 100 may comprise a controller (not shown in FIG. 1 ), configured to control the operation of RF switch 105.
- feed line 119 may carry signals with frequencies corresponding to Long Term Evolution Low Band (LTE-LB) and Long Term Evolution Medium and High Band (LTE-MHB).
- Diplexer 117 may frequency multiplex/de-multiplex these frequencies.
- Impedance matching circuit 115 may correspond to LTE-LB frequencies and impedance matching circuit 116 may correspond to LTE-MHB frequencies.
- Antenna element 110 and antenna feed 111a may also be configured to operate at frequencies corresponding to LTE-LB and LTE-MHB.
- feed line 120 may carry signals with frequencies corresponding to Wireless Local Area Network WLAN, for example as specified in IEEE standards family 802.11.
- impedance matching circuit 118, antenna feed 113a and antenna 112 may be configured to operate at frequencies corresponding to WLAN. According to an embodiment either of the impedance matching circuits 115, 116 and diplexer 117 may be removed.
- RF switch 105 may be configured to be coupled to antenna feeds 111a, 113a after impedance matching circuits 115, 116, 118. According to an embodiment, this may improve grounding and isolation by causing a substantial impedance mismatch when the RF switch 105 is configured into a state 106,107 which grounds an antenna feed 111a, 113a. This may minimize radiation or reception by the corresponding antenna element 110, 112, enabling improvement in isolation.
- antenna element 110 may experience no or minimal coupling with antenna element 112.
- FIG. 2 illustrates a sectional view of a portion of a device 100, showing an implementation of an antenna assembly according to an embodiment.
- the antenna elements 110 and 111b and corresponding antenna feeds 111b, 112 of embodiments of FIG. 1 may be implemented as illustrated in FIG. 2 .
- Device 100 comprises a device housing 130, at least a portion of which is conductive.
- Device may comprise a Printed Circuit Board (PCB) 125.
- PCB Printed Circuit Board
- Many components like a processors, cameras, digital signal processors etc. (not shown in FIG. 2 ) may be configured on the PCB 125.
- An antenna element 112 is configured at an edge of the PCB 125.
- antenna element 112 may be a Planar Inverted F Antenna (PIFA).
- PIFA Planar Inverted F Antenna
- antenna feed 113b is coupled to antenna element 112.
- antenna feed 113b may be coupled to antenna element 112 at a point between middle of the antenna element 112 and the end where it is connected to the PCB 125 to implement an inverted F antenna.
- a conductive portion of device housing 130 serves as antenna element 110 to which feed 111b is coupled.
- An RF switch 105 (not shown in FIG. 2 ) may be configured on PCB 125. RF switch 105 may have three states corresponding to feed 111b grounded, feed 113b grounded and no feed grounded. The operation of the RF switch may be similar to that described in embodiments of FIG. 1 .
- a shorting element 122 may short the antenna element 110, implementing an inverted F-antenna.
- antenna feed 111b may be coupled to antenna element 110 at a point between middle of the antenna element 112 and an end where shorting element 122 is configured to implement an inverted F antenna.
- a third feed (not shown in FIG. 2 ) may be coupled to antenna element 110 at an end opposite to the shorting element 122.
- a controller (not shown in FIG. 2 ) may be configured on PCB 125, configured to control the operation of RF switch 105 (not shown in FIG. 2 ).
- FIG. 3 illustrates a sectional view of a device 100 according to an embodiment.
- Device 100 comprises a device housing 130, a PCB 125, antenna elements 110, 112, antenna feeds 111c, 113c,114, impedance matching circuits 115, 116, 118, feed lines 119, 120, 121, RF switch 105 and shorting elements 122, 123.
- antenna elements 110, 112 may be part of the PCB 125, the shorting elements 122, 123 providing both structural support and a galvanic connection.
- Antenna feed 113c is coupled to antenna element 110 at a suitable distance from shorting element 122, the shorting element 122 being configured at an end 1101 of the antenna element 110.
- the distance between antenna feed 113c and shorting element 122 may depend on, for example, frequency of signals for which antenna feed 113c is configured, dimensions of antenna element 110, properties desired from the antenna so implemented, or a combination thereof.
- Antenna feed 114 is coupled to antenna element 110 at a point substantially near an end 1102 of the antenna element 110 which is opposite to the end 1101 where shorting element 122 is configured.
- Antenna element 112 may be configured in a gap between the antenna element 110 and main portion of PCB 125.
- Shorting element 123 is configured at an end 1121 of the antenna element 112.
- Antenna feed 111c is coupled to antenna element 112 at a suitable distance from shorting element 123. The distance between antenna feed 111c and shorting element 123 may depend on, for example, frequency of signals for which antenna feed 111c is configured, dimensions of antenna element 112, properties desired from the antenna so implemented, or a combination thereof.
- antenna feed 111c may be coupled to antenna element 112 at a point between middle of the antenna element 112 and an end where it is connected to the PCB 125 via shorting element 123 to implement an inverted F antenna.
- Antenna feed 113c is coupled to a feed line 119 via impedance matching circuit 115.
- Feed line 119 may be configured to carry signals to corresponding to two frequencies, one being higher than the other.
- Further antenna feed 111c is coupled to feed line 120 via impedance matching circuit 118.
- Antenna feed 114 is coupled to feed line 121 via impedance matching circuit 116.
- RF switch 105 may be a one pole multiple throw solid state switch. According to an embodiment, the RF switch 105 may have three states.
- the pole 108 may be connected to a device ground plane 109.
- Shorting element 122, impedance matching circuit 118 and hence antenna feed 111c, shorting element 123, impedance matching circuit 116 and hence antenna feed 114 are connectable to device ground plane 109 via the RF switch 105.
- shorting element 122 may be grounded, allowing antenna element 110 to transmit and/or receive higher frequency signals travelling via feed line 119.
- radios coupled to feed lines 120 and 121 may be turned off when RF switch 105 is in state 106.
- impedance matching circuit 118 and hence the antenna feed 111c may be connected to device ground plane 109, allowing the antenna element 110 to transmit and/or receive signals corresponding to lower frequency signals travelling via feed line 119 and signals travelling via antenna element 121.
- shorting element 123 and impedance matching circuit 116 and hence antenna feed 114 may be connected to device ground plane 109 , allowing antenna element 112 to transmit and/or receive signals travelling via feed line 120 and antenna element 110 to transmit and/or receive lower frequency signals travelling via feed line 119.
- RF switch 105 may be configured into states 106, 104 and 107 based on multiple factors, including but not limited to: availability and signal power characteristics of wireless networks, user preference, proximity of device 100 to the user, etc.
- feedline 119 and impedance matching circuit 115 may be configured for frequencies corresponding to LTE-LB.
- feedline 119 and impedance matching circuit 115 may be configured for frequencies corresponding to frequencies selected from the range 1 Ghz to 5Ghz.
- feedline 119 and impedance matching circuit 115 may be configured for frequencies near or equal to 2 Ghz.
- feedline 120 and impedance matching circuit 118 may be configured for frequencies corresponding to WLAN.
- feedline 121 and impedance matching circuit 116 may be configured for frequencies corresponding to LTE-MHB.
- MIMO antennas with lower mutual coupling may be implemented.
- SAR hotspots may be reduced.
- device 100 may comprise multiple antenna stacks each comprising multiple antenna elements and feeds, wherein an RF switch is configured as discussed herein.
- a corresponding antenna element in another antenna stack may be configured to become operational, allowing MIMO implementation, improvement in antenna isolation and reduction in SAR hot spots.
- a conductive portion of housing 130 may act as antenna element 110.
- a controller (not shown in FIG.
- RF switch 105 may be configured on PCB 125, configured to control the operation of RF switch 105.
- the number of the states of the RF switch 105 may depend on the number of radios of the device 100 and/or the number of antenna elements of the device 100.
- RF switch 105 may be configured before impedance matching circuit 116, 115, 118.
- FIG. 4 illustrates an example of components of a computing device 100 which may be implemented as a form of a computing and/or electronic device.
- the computing device 100 comprises one or more processors 402 which may be microprocessors, controllers or any other suitable type of processors for processing computer executable instructions to control the operation of the apparatus 100.
- Platform software comprising an operating system 406 or any other suitable platform software may be provided on the apparatus to enable application software 408 to be executed on the device.
- Computer executable instructions may be provided using any computer-readable media that are accessible by the device 100.
- Computer-readable media may include, for example, computer storage media such as a memory 404 and communications media.
- Computer storage media, such as a memory 404 include volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, or program modules.
- Computer storage media include, but are not limited to, RAM, ROM, EPROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other non-transmission medium that can be used to store information for access by a computing device
- the computer storage medium (the memory 404) is shown within the device 100, it will be appreciated, by a person skilled in the art, that the storage may be distributed or located remotely and accessed via a network or other communication link (e.g. using a communication interface 412).
- the device 100 may comprise an input/output controller 414 arranged to output information to an output device 416 which may be separate from or integral to the device 100.
- the input/output controller 414 may also be arranged to receive and process an input from one or more input devices 418.
- the output device 416 may also act as the input device.
- the input/output controller 414 may also output data to devices other than the output device, e.g. a locally connected printing device.
- the device 100 for example as described in embodiments of FIG. 1 to FIG. 3 , may be established with the features of FIG. 2 , for example the operating system 406 and the application software 408 working jointly, and executed by the processor 402, may control the states of RF switch 105.
- antenna elements 110, 112, antenna feeds 111a, 111b, 111c, 113a, 113b, 113c, 114, RF switch 105, feedlines 120, 119, 121, impedance matching circuits 116, 118, 115 and associated radios described in embodiments of FIG. 1, FIG. 2 , and FIG. 3 may comprise the communication interface 412 of FIG. 4 .
- communication interface 412 may comprise a controller (not shown in FIG. 4 ), the controller being configured to control the operation of RF switch 105.
- the functionality described herein can be performed, at least in part, by one or more hardware logic components.
- the computing device 100 is configured by the program code 406, 408 when executed by the processor 402 to execute the embodiments of the operations and functionality described.
- the functionality described herein can be performed, at least in part, by one or more hardware logic components.
- illustrative types of hardware logic components include Field-programmable Gate Arrays (FPGAs), Program-specific Integrated Circuits (ASICs), Program-specific Standard Products (ASSPs), System-on-a-chip systems (SOCs), Complex Programmable Logic Devices (CPLDs), Graphics Processing Units (GPUs).
- FIG. 5 illustrates, as a schematic flow chart, a method in accordance with an embodiment.
- the process comprises operations 300, 301, 302, 303, and 304.
- the process may be carried out, for example, on an assembly line where a device 100 is assembled.
- at least one of the operations 300, 301, 302, 303, and 304 may be carried out manually.
- at least one of the operations 300, 301, 302, 303, and 304 may be carried out on an automated assembly line, for example by industrial robots.
- Operation 300 may include coupling a first antenna feed 114 to a first antenna element 110. According to an embodiment, the coupling may be done at one 1102 of the two ends 1101, 1102 of the first antenna element 110.
- Operation 301 may include configuring a first impedance matching circuit 116, between the first antenna feed and a feed line 119.
- Operation 302 may include coupling a second antenna feed 111a, 111b, 111c to a second antenna element 112, the second antenna element 112 being implemented on a PCB 125, for example by etching or depositing metallic material on a substrate.
- Operation 303 may include configuring a second impedance matching circuit 118 between antenna feed 113a, 113b, 113c and a feed line 120.
- Operation 304 includes configuring a single pole multi-throw RF switch 105 on the PCB 125 and connecting its pole 108 to an electrical ground plane 109.
- a method may further comprise Operation 305.
- Operation 305 may include configuring a shorting element 122 at an end 1101 of the antenna element 110 which is opposite to the end 1102 where the shorting element 122 is configured.
- Further operation 305 may include coupling a third antenna feed 113a, 113b, 113c to the first antenna element 110 at a point which is in between a central point of antenna element 110 and the end 1101 where shorting element 122 is configured.
- FIG. 6 illustrates a method of operating antennas in a device as a schematic flow chart according to an embodiment.
- the method may comprise Operations 500, 501, 502, 503 and 504.
- the method of FIG. 6 may be compiled into the program code 406,408.
- the method of FIG. 6 may be carried out by a controller.
- the controller may comprise a hardwired logic circuit.
- Operation 500 may comprise determining the operating characteristics of a first antenna element 110, the first antenna element 110 being coupled to a first antenna feed 111a, 111b, 111c.
- the antenna feed 111a, 111b, 111c may be coupled to a corresponding radio via an impedance matching circuit 115 and a feedline 119.
- Operation 501 may comprise determining the operating characteristics of a second antenna element 112, the second antenna element 112 being coupled to a second antenna feed 113a, 113b, 113c.
- the antenna feed 113a, 113b, 113c may be coupled to a corresponding radio via an impedance matching circuit 118 and a feedline 120.
- Operation 502 may include deciding whether there is a need to ground an antenna feed. This decision may be based on, for example, whether operation of all the antennas is essential, the SAR levels due to the two antennas are too high, mutual coupling between the antennas etc. Operation 503 may be performed if a need to ground an antenna is determined. Otherwise the method may start again at operation 500.
- Operation 503 may include selecting one of the antenna feeds 111a, 111b, 111c, 113a, 113b, 113c to be grounded based on the operating characteristics determined in operations 500 and 501.
- Operation 504 may include configuring an RF switch 105 into a state which grounds the antenna feed 111a, 111b, 111c, or 113a, 113b, 113c.
- RF switch 105 may be coupled to antenna feeds 111a, 111b, 111c, 113a, 113b, 113c and a device ground plane 109 and configurable into multiple states. In a first antenna feed 111a, 111b, 111c may be grounded, in a second state antenna feed 113a, 113b, 113c may be grounded and in a third state, the RF switch 105 may be in a no connection state. RF switch 105 may ground an antenna feed 111a, 111b, 111c, 113a, 113b, 113c by connecting it to the device ground plane 109.
- operating characteristics of an antenna element 110, 112 may include one or more of: power radiated and/or received by the antenna, coupling with other antennas, availability of the corresponding wireless networks, proximity of a user, and availability of an alternative antenna element, for example, in a different antenna stack of the device 100.
- the embodiments illustrated and described herein as well as embodiments not specifically described herein but within the scope of aspects of the disclosure constitute exemplary means for switching radio frequency signals, exemplary means for electrically grounding antenna elements and antenna feeds, exemplary means for radiating radio signals, exemplary means for matching impedance of feed lines to impedance of antenna radiators.
- the elements illustrated in FIG. 1 and FIG.4 constitute exemplary means for switching radio frequency signals, exemplary means for electrically grounding antenna elements and antenna feeds, exemplary means for radiating radio signals, exemplary means for matching impedance of feed lines to impedance of antenna radiators, exemplary means for carrying RF signals.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Transceivers (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Details Of Aerials (AREA)
- Support Of Aerials (AREA)
Claims (15)
- Dispositif (100) comprenant :un premier élément d'antenne (110) couplé à une première alimentation d'antenne (111a), la première alimentation d'antenne étant couplée à une première ligne d'alimentation (119) par l'intermédiaire d'un premier circuit d'adaptation d'impédance (115, 116) ;un second élément d'antenne (112) couplé à une deuxième alimentation d'antenne (113a), la deuxième alimentation d'antenne étant couplée à une seconde ligne d'alimentation (120) par l'intermédiaire d'un deuxième circuit d'adaptation d'impédance (118) ; etun commutateur de fréquence radio, RF (105) configurable dan des états (104, 106-107) ;dans lequel, dans un premier état (106), le commutateur est configuré pour mettre à la terre la première alimentation d'antenne (111a) ;dans un deuxième état (107), le commutateur est configuré pour être dans un état de non-connexion, dans lequel ni la première alimentation d'antenne (111a) ni la deuxième alimentation d'antenne (113a) ne sont mises à la terre ; etdans un troisième état (104), le commutateur est configuré pour mettre à la terre la deuxième alimentation d'antenne (113a),caractérisé en ce que le commutateur RF (105) est un commutateur multidirectionnel à pôle unique présentant un pôle unique connecté à la terre.
- Dispositif (100) selon la revendication 1, dans lequel le commutateur RF (105) est configuré pour être situé dans la direction vers les premier et second éléments d'antenne (110-112) après le premier et le deuxième circuit d'adaptation d'impédance (115-116, 118).
- Dispositif (100) selon la revendication 1, comprenant en outre un dispositif de commande configuré pour commander le commutateur.
- Dispositif (100) selon la revendication 3, dans lequel
le dispositif de commande est configuré pour :déterminer des informations de fonctionnement du premier élément d'antenne (110) et du second élément d'antenne ;sur la base des informations de fonctionnement déterminées, sélectionner un état (104, 106-107) pour le commutateur RF (105) ; etconfigurer le commutateur RF (105) dans l'état sélectionné (104, 106-107). - Dispositif (100) selon la revendication 1, dans lequel le commutateur RF (105) comprend un commutateur à semi-conducteurs à trois directions à pôle unique (108) ; ou
dans lequel le commutateur RF (105) comprend un dispositif de microsystème électromécanique. - Dispositif (100) selon la revendication 1, comprenant en outre : un boîtier (130), le boîtier comprenant au moins une portion conductrice ; dans lequel le premier élément d'antenne (110) comprend la portion conductrice du boîtier.
- Dispositif (100) selon la revendication 1, comprenant un troisième circuit d'adaptation d'impédance (116) et un diplexeur (117), dans lequel :le troisième circuit d'adaptation d'impédance (116) est configuré parallèlement au premier circuit d'adaptation d'impédance et couplé avec la première alimentation d'antenne (111a) ;et les premier et troisième circuits d'adaptation d'impédance (115, 116) sont couplés à une ou plusieurs lignes d'alimentation (119) par l'intermédiaire du diplexeur (117).
- Dispositif (100) selon la revendication 7, dans lequel le premier élément d'antenne (110) est configuré pour un fonctionnement dans une plage de fréquences correspondant à une bande élevée Long Term Evolution ou une bande moyenne Long Term Evolution ; ou
dans lequel le second élément d'antenne (112) est configuré pour un fonctionnement dans une plage de fréquences adaptée pour des réseaux de zone locale sans fil. - Dispositif (100) comprenant :un premier élément d'antenne (110) présentant une première extrémité et une seconde extrémité ;un premier élément de court-circuit (122) couplé au premier élément d'antenne (110) au niveau d'une première extrémité ;une première alimentation d'antenne (114) couplée à la première antenne au niveau d'une seconde extrémité ;une deuxième alimentation d'antenne (111b) couplée au premier élément d'antenne (110) au niveau d'un point entre un point central du premier élément d'antenne et le premier élément de court-circuit (122) ;un second élément d'antenne (122) présentant deux extrémités ;un second élément de court-circuit (123) couplé au second élément d'antenne (112) au niveau d'une première extrémité ;une troisième alimentation d'antenne (113b) couplée au second élément d'antenne (112) au niveau d'un point entre un point central du second élément d'antenne et le second élément de court-circuit (123) ;un commutateur RF (105), dans lequel :dans un premier état (106), le commutateur est configuré pour mettre à la terre le premier élément de court-circuit (122) ; etdans un deuxième état (104), le commutateur est configuré pour mettre à la terre la troisième alimentation d'antenne (113b) ;caractérisé en ce que le commutateur RF (105) est un commutateur multidirectionnel à pôle unique présentant un pôle unique connecté à la terre et dans un troisième état (107), le commutateur est configuré pour mettre à la terre la deuxième alimentation d'antenne (111b) et le second élément de court-circuit (123).
- Dispositif (100) selon la revendication 9, comprenant en outre un boîtier (130) ; le boîtier comprenant au moins une portion conductrice ; et dans lequel le premier élément d'antenne (110) comprend la portion conductrice du boîtier.
- Dispositif (100) selon la revendication 9, comprenant en outre :une première radio couplée à la première alimentation d'antenne (113b) par l'intermédiaire d'un premier circuit d'adaptation d'impédance (115) ;une deuxième radio couplée à la deuxième alimentation d'antenne (111b) par l'intermédiaire d'un deuxième circuit d'adaptation d'impédance (118) ; etune troisième radio couplée à la troisième alimentation d'antenne (114) par l'intermédiaire d'un troisième circuit d'adaptation d'impédance (116).
- Dispositif (100) selon la revendication 11, dans lequel la première radio est configurée pour fonctionner dans une plage de fréquences correspondant à une bande élevée Long Term Evolution ; dans lequel la deuxième radio est configurée pour fonctionner dans une plage de fréquences correspondant à une bande moyenne Long Term Evolution ; et dans lequel la troisième radio est configurée pour fonctionner dans une plage de fréquences correspondant à WLAN ; ou
dans lequel, lorsque le commutateur est configuré dans le premier état (106), la deuxième radio est configurée pour fonctionner dans une plage de fréquences supérieure à une plage de fréquences correspondant à une bande moyenne Long Term Evolution ; ou
dans lequel la troisième radio est configurée pour fonctionner dans une plage de fréquences Industrielle, Scientifique et Médicale (ISM). - Dispositif (100) selon la revendication 11, comprenant en outre un dispositif de commande, dans lequel le dispositif de commande est configuré pour :déterminer des informations de fonctionnement de la première radio, la deuxième radio et la troisième radio ;sur la base des informations de fonctionnement déterminées, sélectionner un état (104, 106-107) pour le commutateur RF (105) ; etconfigurer le commutateur RF (105) dans l'état sélectionné (104, 106-107).
- Dispositif (100) selon la revendication 13, dans lequel le dispositif de commande est configuré pour recevoir des informations de proximité d'utilisateur.
- Procédé de fonctionnement d'antennes (110, 112) dans un dispositif (100), effectué par le dispositif, comprenant les étapes consistant à :déterminer des caractéristiques de fonctionnement d'un premier élément d'antenne (110), dans lequel une première alimentation d'antenne (111a) est couplée au premier élément d'antenne ;déterminer des caractéristiques de fonctionnement d'un second élément d'antenne (112), dans lequel une deuxième alimentation d'antenne (113a) est couplée au second élément d'antenne ;déterminer si une alimentation d'antenne doit être mise à la terre ;sélectionner, sur la base des caractéristiques de fonctionnement du premier et du second élément d'antenne (110, 112), une alimentation d'antenne à mettre à la terre ; etconfigurer le commutateur RF (105) dans un état, dans lequel état l'alimentation d'antenne sélectionnée (114) est mise à la terre ;dans lequel le commutateur RF (105) est couplé à la première alimentation d'antenne (114), à la deuxième alimentation d'antenne et à un plan de masse électrique (109) et configurable dans de multiples états (104, 106-107), dans lequel ;dans un premier état (106), le commutateur RF (105) est configuré pour connecter la première alimentation d'antenne (111a) au plan de masse électrique (109) ;dans un deuxième état (107), le commutateur RF (105) est configuré pour connecter la deuxième alimentation d'antenne (113) au plan de masse électrique (109) ; etdans un troisième état (104), le commutateur RF (105) est configuré pour être dans un état de non-connexion,caractérisé en ce que le commutateur RF (105) est un commutateur multidirectionnel à pôle unique présentant un pôle unique connecté à la terre.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/235,348 US9947993B2 (en) | 2016-08-12 | 2016-08-12 | Antenna stack |
PCT/US2017/045819 WO2018031503A1 (fr) | 2016-08-12 | 2017-08-08 | Empilement d'antennes |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3497750A1 EP3497750A1 (fr) | 2019-06-19 |
EP3497750B1 true EP3497750B1 (fr) | 2021-06-30 |
Family
ID=59593252
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17751976.6A Active EP3497750B1 (fr) | 2016-08-12 | 2017-08-08 | Empilement d'antennes |
Country Status (4)
Country | Link |
---|---|
US (1) | US9947993B2 (fr) |
EP (1) | EP3497750B1 (fr) |
CN (1) | CN109643845B (fr) |
WO (1) | WO2018031503A1 (fr) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102364559B1 (ko) * | 2017-03-24 | 2022-02-21 | 삼성전자주식회사 | 안테나를 포함하는 전자 장치 |
WO2019172186A1 (fr) * | 2018-03-09 | 2019-09-12 | 東レ株式会社 | Dispositif de communication sans fil |
CN108598705B (zh) * | 2018-03-27 | 2021-02-19 | Oppo广东移动通信有限公司 | 天线系统及相关产品 |
US11450962B1 (en) * | 2019-03-01 | 2022-09-20 | Lockheed Martin Corporation | Multiplexed ultra-wideband radiating antenna element |
US10965335B1 (en) | 2019-09-27 | 2021-03-30 | Apple Inc. | Wireless device performance optimization using dynamic power control |
CN113097698B (zh) * | 2020-01-08 | 2022-07-19 | 华为技术有限公司 | 天线组件和移动终端 |
WO2024049753A1 (fr) * | 2022-08-31 | 2024-03-07 | Abbott Diabetes Care Inc. | Système, appareil et dispositifs de surveillance d'analyte |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9901789D0 (en) | 1998-04-22 | 1999-03-17 | Koninkl Philips Electronics Nv | Antenna diversity system |
US6801790B2 (en) | 2001-01-17 | 2004-10-05 | Lucent Technologies Inc. | Structure for multiple antenna configurations |
JP2003060408A (ja) * | 2001-06-05 | 2003-02-28 | Murata Mfg Co Ltd | フィルタ部品および通信機装置 |
US7103382B2 (en) * | 2001-07-10 | 2006-09-05 | Kyocera Wireless Corp. | System and method for receiving and transmitting information in a multipath environment |
JP2006080953A (ja) * | 2004-09-10 | 2006-03-23 | Matsushita Electric Ind Co Ltd | アンテナ装置およびこれを用いた移動体無線機器 |
US7505790B2 (en) | 2005-06-07 | 2009-03-17 | Integrated Systems Solution Corp. | Antenna diversity switch of wireless dual-mode co-existence systems |
JP4571988B2 (ja) | 2007-01-19 | 2010-10-27 | パナソニック株式会社 | アレーアンテナ装置及び無線通信装置 |
EP2117075A4 (fr) | 2007-02-28 | 2011-04-20 | Nec Corp | Antenne en réseau, appareil de communication radio, et procédé de commande d'antenne en réseau |
US8344956B2 (en) | 2007-04-20 | 2013-01-01 | Skycross, Inc. | Methods for reducing near-field radiation and specific absorption rate (SAR) values in communications devices |
US7825867B2 (en) * | 2007-04-26 | 2010-11-02 | Round Rock Research, Llc | Methods and systems of changing antenna polarization |
JP5135098B2 (ja) * | 2008-07-18 | 2013-01-30 | パナソニック株式会社 | 無線通信装置 |
GB0918477D0 (en) | 2009-10-21 | 2009-12-09 | Univ Birmingham | Reconfigurable antenna |
US8351849B2 (en) * | 2010-08-23 | 2013-01-08 | Sony Ericsson Mobile Communications Ab | Multi-standard wireless terminals including smart antenna systems for multiple input multiple output communications |
US8674886B2 (en) * | 2010-12-23 | 2014-03-18 | Sony Corporation | Mobile terminal |
JP2012256999A (ja) * | 2011-06-08 | 2012-12-27 | Panasonic Corp | アンテナ装置 |
GB201112839D0 (en) | 2011-07-26 | 2011-09-07 | Univ Birmingham | Multi-output antenna |
CN102426656B (zh) | 2011-08-16 | 2016-12-28 | 中兴通讯股份有限公司 | 降低比吸收率的多天线手机数据卡及方法 |
US8860619B2 (en) | 2011-09-20 | 2014-10-14 | Netgear, Inc. | Wireless device and multi-antenna system having dual open-slot radiators |
US8798554B2 (en) | 2012-02-08 | 2014-08-05 | Apple Inc. | Tunable antenna system with multiple feeds |
US8760360B2 (en) * | 2012-03-16 | 2014-06-24 | Amazon Technologies, Inc. | Switching multi-mode antenna |
KR101887935B1 (ko) * | 2012-03-19 | 2018-09-06 | 삼성전자주식회사 | 통신용 전자 장치를 위한 내장형 안테나 장치 |
US9397399B2 (en) | 2012-04-20 | 2016-07-19 | Ethertronics, Inc. | Loop antenna with switchable feeding and grounding points |
CN202759493U (zh) * | 2012-08-02 | 2013-02-27 | 上海华勤通讯技术有限公司 | 可收发多频段信号的手机 |
US9466872B2 (en) * | 2012-11-09 | 2016-10-11 | Futurewei Technologies, Inc. | Tunable dual loop antenna system |
US20140253398A1 (en) * | 2013-03-06 | 2014-09-11 | Asustek Computer Inc. | Tunable antenna |
US9130279B1 (en) | 2013-03-07 | 2015-09-08 | Amazon Technologies, Inc. | Multi-feed antenna with independent tuning capability |
US20140266968A1 (en) * | 2013-03-12 | 2014-09-18 | Acer Incorporated | Communication device and antenna element therein |
TWI617094B (zh) * | 2013-06-03 | 2018-03-01 | 群邁通訊股份有限公司 | 多頻天線組件及具有該多頻天線組件的無線通訊裝置 |
TWI539662B (zh) * | 2013-06-27 | 2016-06-21 | 宏碁股份有限公司 | 具有可重組式之低姿勢天線元件的通訊裝置 |
CN104283004A (zh) * | 2013-07-08 | 2015-01-14 | 宏碁股份有限公司 | 具有可重组式的低姿势天线元件的通信装置 |
US9503173B2 (en) | 2013-07-31 | 2016-11-22 | Broadcom Corporation | WLAN and cellular shared antennas |
US10797385B2 (en) * | 2013-12-12 | 2020-10-06 | Huawei Device Co., Ltd. | Antenna, antenna apparatus, terminal, and method for adjusting working frequency band of antenna |
JP2015192322A (ja) * | 2014-03-28 | 2015-11-02 | アイホン株式会社 | ワイヤレス通信システム |
CN103928752B (zh) * | 2014-04-11 | 2016-09-21 | 广东欧珀移动通信有限公司 | 一种手机及其天线 |
-
2016
- 2016-08-12 US US15/235,348 patent/US9947993B2/en active Active
-
2017
- 2017-08-08 WO PCT/US2017/045819 patent/WO2018031503A1/fr unknown
- 2017-08-08 CN CN201780049507.8A patent/CN109643845B/zh active Active
- 2017-08-08 EP EP17751976.6A patent/EP3497750B1/fr active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP3497750A1 (fr) | 2019-06-19 |
WO2018031503A1 (fr) | 2018-02-15 |
CN109643845A (zh) | 2019-04-16 |
CN109643845B (zh) | 2021-05-14 |
US20180048049A1 (en) | 2018-02-15 |
US9947993B2 (en) | 2018-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3497750B1 (fr) | Empilement d'antennes | |
US11245189B2 (en) | Reconfigurable multi-mode active antenna system | |
US11824277B2 (en) | High gain and large bandwidth antenna incorporating a built-in differential feeding scheme | |
US11652524B2 (en) | Antenna system for a multi-beam beamforming front-end wireless transceiver | |
US11296415B2 (en) | Multi-layer patch antenna | |
US9397399B2 (en) | Loop antenna with switchable feeding and grounding points | |
CN206657863U (zh) | 具有低噪声放大器模块的电子设备 | |
US20230024260A1 (en) | Antenna module and radio frequency apparatus including the same | |
US8744373B2 (en) | Multiple antenna system for wireless communication | |
US11462830B2 (en) | Distributed control system for beam steering applications | |
US20100197261A1 (en) | Wireless control subsystem for a mobile electronic device | |
EP2416444A2 (fr) | Antennes multi-bandes à entrées et sorties multiples (MIMO) dotées d'un circuit de neutralisation conductif pour le découplage de signaux | |
EP3357167B1 (fr) | Antenne complémentaire à duplex intégral en bande | |
US10770798B2 (en) | Flex cable fed antenna system | |
US10707582B2 (en) | Wide-band dipole antenna | |
CN105874648B (zh) | 具有径向波导的宽带灵活圆柱形天线阵列的装置和方法 | |
Kadir et al. | Reconfigurable mimo antenna for wireless communication based on arduino microcontroller | |
CN106992802B (zh) | 用于用户终端的信号收发装置、用户终端和信号传输方法 | |
CN218039805U (zh) | 天线辐射体、多合一天线及通讯设备 | |
US20240266716A1 (en) | Electronic device including antenna | |
US20230353225A1 (en) | Gain pattern overlap reduction | |
US20230097074A1 (en) | Millimeter wave antenna tuner | |
CN206807453U (zh) | 用于用户终端的信号收发装置、用户终端 | |
KR20230036791A (ko) | 안테나 모듈 및 안테나 모듈을 포함하는 전자 장치 | |
JP2004320309A (ja) | マルチバンド無線機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190211 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20200619 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210223 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602017041243 Country of ref document: DE Ref country code: AT Ref legal event code: REF Ref document number: 1407206 Country of ref document: AT Kind code of ref document: T Effective date: 20210715 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210630 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210930 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210630 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210630 |
|
RAP4 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: MICROSOFT TECHNOLOGY LICENSING, LLC |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1407206 Country of ref document: AT Kind code of ref document: T Effective date: 20210630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210630 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210630 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210930 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210630 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210630 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210630 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210630 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211102 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210630 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210630 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210630 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210630 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210630 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602017041243 Country of ref document: DE Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210630 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210831 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210630 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210831 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210808 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210630 |
|
26N | No opposition filed |
Effective date: 20220331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210630 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210808 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210630 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230512 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20170808 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210630 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240723 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240723 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240723 Year of fee payment: 8 |