EP3497431A1 - Device and method for identifying substances of a material by means of spectroscopy - Google Patents

Device and method for identifying substances of a material by means of spectroscopy

Info

Publication number
EP3497431A1
EP3497431A1 EP17761796.6A EP17761796A EP3497431A1 EP 3497431 A1 EP3497431 A1 EP 3497431A1 EP 17761796 A EP17761796 A EP 17761796A EP 3497431 A1 EP3497431 A1 EP 3497431A1
Authority
EP
European Patent Office
Prior art keywords
light
range
laser
sample
plastics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP17761796.6A
Other languages
German (de)
French (fr)
Inventor
Dirk Fey
Juergen Bohleber
Gunther Krieg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP3497431A1 publication Critical patent/EP3497431A1/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/342Sorting according to other particular properties according to optical properties, e.g. colour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/342Sorting according to other particular properties according to optical properties, e.g. colour
    • B07C5/3425Sorting according to other particular properties according to optical properties, e.g. colour of granular material, e.g. ore particles, grain
    • B07C5/3427Sorting according to other particular properties according to optical properties, e.g. colour of granular material, e.g. ore particles, grain by changing or intensifying the optical properties prior to scanning, e.g. by inducing fluorescence under UV or x-radiation, subjecting the material to a chemical reaction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • G01J3/4406Fluorescence spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6408Fluorescence; Phosphorescence with measurement of decay time, time resolved fluorescence
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C2501/00Sorting according to a characteristic or feature of the articles or material to be sorted
    • B07C2501/0054Sorting of waste or refuse
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0279Optical identification, e.g. cameras or spectroscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/718Laser microanalysis, i.e. with formation of sample plasma
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/069Supply of sources
    • G01N2201/0696Pulsed
    • G01N2201/0697Pulsed lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/44Resins; rubber; leather
    • G01N33/442Resins, plastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a device for identifying substances of a material, in particular of plastics and their additives, by means of spectroscopy, comprising a laser for irradiating a sample of the material with light having at least one wavelength, a detector for detecting the light re-emitted by the sample and an analysis device for the spectroscopic analysis of the detected light.
  • the invention further relates to a method for the identification of substances of a material, in particular of plastics and their additives, wherein by means of a laser, a sample of the material is irradiated with light of at least one wavelength and the re-emitted light from the material is detected, wherein the detected light spectroscopically is analyzed.
  • plastic recycling which converts existing substances, ie plastics that have been processed into products that are no longer needed, into valuable substances, ie substances that are suitable for reprocessing in products. This can then be spared the resources required for the production of plastics.
  • various optical methods have become known, for example from EP 198 16 881 B4. Here, among other things, continuously radiating lasers were used for the irradiation.
  • a disadvantage is that a reliable identification of substances and / or their additives was only possible to a limited extent, since the resolution and selectivity of the spectra obtained by means of the irradiation of the samples with laser light was quite low. It is therefore an object of the present invention to provide a method and an apparatus for identifying substances which enables a more accurate, selective and reliable identification of substances. In addition, it is an object of the invention to provide an alternative method and an alternative apparatus for identifying substances and / or their additives.
  • the invention solves the above-mentioned objects in a device for the identification of substances of a material by means of spectroscopy, in particular of plastics and their additives, comprising a laser for irradiating a sample of the material with light having at least one wavelength, a detector for detecting the of the sample re-emitted light and an analyzer for spectroscopic analysis of the detected light, in that the laser is a pulsed laser having a pulse duration in the range of picoseconds or an even shorter pulse duration.
  • the present invention also achieves the abovementioned objects in a method for identifying substances of a material, in particular of plastics and their additives, wherein a sample of the material is irradiated with light of at least one wavelength by means of a laser and the light re-emitted by the sample is detected in which the detected light is analyzed spectroscopically by irradiating the sample with pulsed light from the laser, the pulsed light having a pulse duration in the range of picoseconds or an even shorter pulse duration.
  • the present invention also achieves the aforementioned objects by using pulsed laser light having pulse durations in the range of picoseconds or even shorter pulse durations for irradiating material, in particular plastics and their additives, whose re-emitted light is analyzed spectroscopically.
  • the present invention also achieves the objects mentioned above by using pulsed laser light with pulse durations in the range of picoseconds or even shorter pulse durations for irradiation of material to be identified, in particular of plastics and their additives, for recycling purposes.
  • the present invention also achieves the abovementioned objects by using pulsed laser light having pulse durations in the range of picoseconds or even shorter pulse durations for irradiating polymers, in particular plastics and, if appropriate, their additives and / or impurities, for their identification.
  • the present invention also achieves the abovementioned objects by using pulsed laser light with pulse durations in the range of picoseconds or even shorter pulse durations for fluorescence analysis, in particular for analyzing the fluorescence decay time and / or fluorescence lifetime.
  • the present invention also achieves the above-mentioned objects by using a pulse laser with pulse durations in the range of picoseconds or even shorter pulse durations for irradiating material whose re-emitted light is analyzed spectroscopically to identify the material, in particular by means of a fluorescence lifetime analysis.
  • One of the advantages achieved with this is that, when irradiated with pulsed light, in particular in the picosecond range, a better spectral resolution of the spectrum of the light re-emitted by the sample can be achieved, thus, for example, for subsequent Raman spectroscopy or fluorescence spectroscopy, which results in reliability and selectivity of identification also of significantly improved chemically similar substances.
  • the flexibility in terms of the applicability of the device or the method in various areas are substantially increased.
  • a further advantage is that in this way the duration of the excitation hardly influences the subsequent detection of the re-emitted light of a sample.
  • a detector is to be understood in particular in the description, preferably in the claims also a Dektorarray or the like. Pulse durations in the range of femtoseconds, attoseconds, etc. are to be understood as being even shorter pulse durations with regard to the picosecond range, in particular in the claims, preferably in the description.
  • the femtosecond range is understood to mean the range between 0.1 fs and 500 fs, in particular the range between 1 fs and 100 fs, preferably the range between 2.5 fs and 50 fs , in particular the range between 4 fs and 10 fs, preferably the range between 5 fs and 8 fs, for example 5, 6, 7 and / or 8 fs.
  • the range of the atto seconds is to be understood as meaning the range between 0.1 as and 500 as, in particular the range between 1 as and 100 as, preferably the range between 2.5 as and 50 as , in particular the range between 4 as and 10 as, preferably the range between 5 as and 8 as, for example 5, 6, 7 and / or 8 as.
  • the term "material" is given in particular in the claims, preferably in the description or to understand more than one substance.
  • substrate is to be understood in particular in the claims, preferably in the description, as any kind of solid, liquid or gaseous substance.
  • the term “substance” is understood to mean any type of polymer or polymer, in particular plastics, for example
  • any type of silicone or silicone polymer in particular silicon tectosilane granulate, silicone tectosil film, silicone adhesive Sn, silicone adhesive Pt, any type of silicone hose, etc., any type of polyethylene PE, such as LDPE, HDPE and UHDPE,
  • additive is to be understood in particular in the claims, preferably in the description, any intentional or undesired additions to a substance or substances, in particular flame retardants, preferably halogenated, in particular brominated and / or chlorinated flame retardants, for example comprising
  • additive is to be understood in particular in the claims, preferably in the description, not marking substances, so-called “markers” which are added to a polymer, for example a plastic for its identification and in particular later, for example by means of fluorescence analysis to identify the plastic provided therewith.
  • the time interval between two pulses of the laser is substantially at least one order of magnitude, preferably at least two orders of magnitude, in particular three orders of magnitude above the pulse duration.
  • re-emitted light from a sample can be measured after excitation for a significantly longer time than the excitation time, for example, a factor of 100, 1,000 to 10,000, etc., for a longer time.
  • the reliability for the identification can be further increased by the spectroscopic analysis of re-emitted light of the sample.
  • the laser provides a pulse duration in the range of picoseconds
  • the time interval between two pulses in the nanosecond range is selected.
  • the re-emitted light is substantially detectable between two pulses of the laser.
  • the spectroscopic analysis expediently comprises a fluorescence spectral analysis and / or a fluorescence lifetime analysis.
  • a fluorescence spectral analysis or a fluorescence lifetime analysis in particular, plastics can be distinguished simply and reliably.
  • the sample can be irradiated with light of a fundamental frequency and / or one or more integer multiples thereof by means of the laser.
  • the material sample can be irradiated in a simple manner, for example, with multiple wavelengths or frequencies. If the laser has a fundamental frequency, simple frequency doubling, tripling, etc. can also cover a very large wavelength range for irradiation, which means flexibility significantly increased in terms of identification of chemically different substances.
  • the fundamental frequency and / or the frequency multiplication correspond to wavelengths in the range between 233 nm and 300 nm, in particular between 250 nm and 280 nm, preferably at 266 nm and wavelength doubling at 532 nm.
  • This enables a particularly reliable identification of plastics by means of a spectroscopic analysis and any added foreign substances or additives such as flame retardants or impurities of the plastic such as oil, gasoline, etc.
  • the picosecond range refers to the range between 0.5 ps and 500 ps, more particularly the range between 1 ps and 100 ps, preferably the range between 2.5 ps and 50 ps, more preferably between 4 ps and 10 ps, preferably between 5 ps and 8 ps, for example 5, 6, 7 and / or 8 ps. This can reliably achieve a short excitation time for a sample of the material.
  • the sample is illuminable by the laser in a first direction, the re-emitted light being detectable in a second direction by the detector, the first direction and the second direction being substantially opposite.
  • FIG. 1 in schematic form an apparatus according to an embodiment of the present invention
  • Fig. 2 partial spectra of different plastics when excited with a
  • Fig. 3 partial spectra for plastics when excited with a picosecond laser.
  • Fig. 1 shows in schematic form a device according to an embodiment of the present invention.
  • the device 1 comprises a pulsed light source 2, here in the form of a picosecond laser, with which a sample 3 of the plastic to be identified is irradiated.
  • the pulse duration of the laser is 7.5 ps. Of course, the pulse duration may be as low as 1 ps or 100 ps or so.
  • the re-emitted light from the sample 3 is detected via a filter 4 and a lens 5 by means of a sensor 6.
  • the raw signal obtained by the sensor 6 is processed by means of a signal processing 7 and by means of a differentiator 8 also a differentiated signal is generated.
  • a trigger is likewise generated by means of a trigger generation 9, which then triggers a first timer integrator 12a and via a delay 10 a second timer integrator 12b.
  • the signal is integrated at different non-overlapping time periods on the falling edge of the processed signal.
  • the two values which are provided by the two integrators 12a and 12b are related to each other, here supplied by means of quotient formation and the number thus obtained to an evaluation 14.
  • the evaluation 14 can u.a. consist in that in a memory of the device, a plurality of reference key figures for various. Combinations of plastics and their additives has been deposited and based on a comparison between these ratios and the determined index by the measurement then the plastic and / or its additives are identified , For the storage of such values / characteristic numbers, it is possible, for example, to carry out repeated measurements of the same plastic with the same additives and then to store these in the memory, for example with an average value and a corresponding deviation. In the case of ambiguous identification, such a result can be displayed to a user accordingly and the plastic, if the method is used in recycling, can be sorted out separately and then possibly fed to a further identification method.
  • Fig. 2 shows partial spectra of various plastics taken at excitation with a nanosecond laser and Fig. 3 shows partial spectra for plastics when excited with a picosecond laser.
  • FIGS. 2 and 3 each show a section of a recorded spectrum (intensity versus wavelength) for two different plastics, which are represented by the broken and uninterrupted lines, respectively.
  • the solid lines indicate the plastic polystyrene PS, the broken lines the plastic acrylonitrile-butadiene-styrene ABS.
  • the solid line indicate the plastic polystyrene PS, the broken lines the plastic polypropylene PP.
  • the plastics were each irradiated several times and their spectrum was recorded.
  • the two plastics were each multiply with a Nanosecond laser, so laser light with pulse durations in the nanosecond range, irradiated, and Fig.

Abstract

The invention relates to a device (1) for identifying substances of a material by means of spectroscopy, comprising a laser (2) for irradiating a sample (3) of said material with light of at least one wavelength, a detector (6) for detecting the light re-emitted by the sample, and an analysis device for the spectroscopic analysis of the detected light, said laser being a pulsed laser having a pulse duration in the picosecond range or even shorter.

Description

VORRICHTUNG UND VERFAHREN ZUR IDENTIFIKATION VON STOFFEN EINES MATERIALS MITTELS SPEKTROSKOPIE  DEVICE AND METHOD FOR IDENTIFYING SUBSTANCES OF A MATERIAL USING SPECTROSCOPY
Die vorliegende Erfindung betrifft eine Vorrichtung zur Identifikation von Stoffen eines Materials, insbesondere von Kunststoffen und deren Additiven, mittels Spektroskopie, umfassend einen Laser zur Bestrahlung einer Probe des Materials mit Licht mit zumindest einer Wellenlänge, einen Detektor zur Detektion des von der Probe reemittierten Lichts und eine Analyseeinrichtung zur spektroskopischen Analyse des detektierten Lichts. The present invention relates to a device for identifying substances of a material, in particular of plastics and their additives, by means of spectroscopy, comprising a laser for irradiating a sample of the material with light having at least one wavelength, a detector for detecting the light re-emitted by the sample and an analysis device for the spectroscopic analysis of the detected light.
Die Erfindung betrifft ferner ein Verfahren zur Identifikation von Stoffen eines Materials, insbesondere von Kunststoffen und deren Additiven, wobei mittels eines Lasers eine Probe des Materials mit Licht zumindest einer Wellenlänge bestrahlt wird und das von dem Material reemittierte Licht detektiert wird, wobei das detektierte Licht spektroskopisch analysiert wird. The invention further relates to a method for the identification of substances of a material, in particular of plastics and their additives, wherein by means of a laser, a sample of the material is irradiated with light of at least one wavelength and the re-emitted light from the material is detected, wherein the detected light spectroscopically is analyzed.
Obwohl auf beliebige Materialien und Stoffe anwendbar, wird die vorliegende Erfindung mit Bezug auf Kunststoffe erläutert. Although applicable to any materials and materials, the present invention will be explained with reference to plastics.
Obwohl auf beliebigen Gebieten anwendbar, wird die vorliegende Erfindung in Bezug auf Recycling von Stoffen erläutert. Although applicable in any field, the present invention will be explained in terms of recycling of fabrics.
Das Recycling von Kunststoffen erfährt in letzter Zeit eine wachsende Bedeutung. Kunststoffmüll hat bereits erhebliche Auswirkungen auf die Umwelt, sei es durch die Verschmutzung von Gewässern oder die immer weiter ansteigende Menge an Kunststoffmüll. Eine Lösung des Problems bietet das Kunststoff-Recycling, indem Altstoffe, also Kunststoffe, die in Produkten verarbeitet wurden und nicht mehr benötigt werden, in Wertstoffe, also in Stoffe, die für die erneute Verarbeitung in Produkten geeignet sind, umgewandelt werden. Hiermit können dann auch die für die Herstellung von Kunststoffen erforderlichen Ressourcen geschont werden. Zur Detektion und Identifizierung von Kunststoffen sind verschiedene optische Verfahren bekannt geworden, beispielsweise aus der EP 198 16 881 B4. Hier wurden zur Bestrahlung u.a. kontinuierlich strahlende Laser verwendet. Nachteilig dabei ist jedoch, dass eine zuverlässige Identifizierung von Stoffen und/oder deren Additive nur bedingt möglich war, da die Auflösung und Selektivität der mittels der Bestrahlung der Proben mit Laserlicht erhaltenen Spektren recht gering war. Eine Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren und eine Vorrichtung zur Identifizierung von Stoffen anzugeben, welche eine genauere, selektivere und zuverlässigere Identifizierung von Stoffen ermöglicht. Darüber hinaus ist es eine Aufgabe der Erfindung ein alternatives Verfahren und eine alternative Vorrichtung zur Identifizierung von Stoffen und/oder deren Additiven anzugeben. The recycling of plastics has recently become increasingly important. Plastic waste already has a significant impact on the environment, be it due to the pollution of water bodies or the ever increasing amount of plastic waste. One solution to the problem is plastic recycling, which converts existing substances, ie plastics that have been processed into products that are no longer needed, into valuable substances, ie substances that are suitable for reprocessing in products. This can then be spared the resources required for the production of plastics. For the detection and identification of plastics, various optical methods have become known, for example from EP 198 16 881 B4. Here, among other things, continuously radiating lasers were used for the irradiation. A disadvantage, however, is that a reliable identification of substances and / or their additives was only possible to a limited extent, since the resolution and selectivity of the spectra obtained by means of the irradiation of the samples with laser light was quite low. It is therefore an object of the present invention to provide a method and an apparatus for identifying substances which enables a more accurate, selective and reliable identification of substances. In addition, it is an object of the invention to provide an alternative method and an alternative apparatus for identifying substances and / or their additives.
Die Erfindung löst die vorstehend genannten Aufgaben bei einer Vorrichtung zur Identifikation von Stoffen eines Materials mittels Spektroskopie, insbesondere von Kunststoffen und deren Additiven, umfassend einen Laser zur Bestrahlung einer Probe des Materials mit Licht mit zumindest einer Wellenlänge, einen Detektor zur Detektion des von der Probe reemittierten Lichts und eine Analyseeinrichtung zur spektroskopischen Analyse des detektierten Lichts, dadurch, dass der Laser ein gepulster Laser ist, der eine Pulsdauer im Bereich von Picosekunden oder eine noch kürzere Pulsdauer aufweist. The invention solves the above-mentioned objects in a device for the identification of substances of a material by means of spectroscopy, in particular of plastics and their additives, comprising a laser for irradiating a sample of the material with light having at least one wavelength, a detector for detecting the of the sample re-emitted light and an analyzer for spectroscopic analysis of the detected light, in that the laser is a pulsed laser having a pulse duration in the range of picoseconds or an even shorter pulse duration.
Die vorliegende Erfindung löst die vorstehend genannten Aufgaben ebenfalls bei einem Verfahren zur Identifikation von Stoffen eines Materials, insbesondere von Kunststoffen und deren Additiven, wobei mittels eines Lasers eine Probe des Materials mit Licht zumindest einer Wellenlänge bestrahlt wird und das von der Probe reemittierte Licht detektiert wird, wobei das detektierte Licht spektroskopisch analysiert wird, dadurch, dass die Probe mit gepulstem Licht des Lasers bestrahlt wird, wobei das gepulste Licht eine Pulsdauer im Bereich von Picosekunden oder eine noch kürzere Pulsdauer aufweist. Die vorliegende Erfindung löst die vorstehend genannten Aufgaben ebenfalls durch eine Verwendung von gepulstenn Laserlicht mit Pulsdauern im Bereich von Picosekunden oder noch kürzeren Pulsdauern zur Bestrahlung von Material, insbesondere von Kunststoffen und deren Additiven, dessen reemittiertes Licht spektroskopisch analysiert wird. The present invention also achieves the abovementioned objects in a method for identifying substances of a material, in particular of plastics and their additives, wherein a sample of the material is irradiated with light of at least one wavelength by means of a laser and the light re-emitted by the sample is detected in which the detected light is analyzed spectroscopically by irradiating the sample with pulsed light from the laser, the pulsed light having a pulse duration in the range of picoseconds or an even shorter pulse duration. The present invention also achieves the aforementioned objects by using pulsed laser light having pulse durations in the range of picoseconds or even shorter pulse durations for irradiating material, in particular plastics and their additives, whose re-emitted light is analyzed spectroscopically.
Die vorliegende Erfindung löst die vorstehend genannten Aufgaben ebenfalls durch eine Verwendung von gepulstem Laserlicht mit Pulsdauern im Bereich von Picosekunden oder noch kürzeren Pulsdauern zur Bestrahlung von zu identifizierendem Material, insbesondere von Kunststoffen und deren Additiven, für Recyclingzwecke. The present invention also achieves the objects mentioned above by using pulsed laser light with pulse durations in the range of picoseconds or even shorter pulse durations for irradiation of material to be identified, in particular of plastics and their additives, for recycling purposes.
Die vorliegende Erfindung löst die vorstehend genannten Aufgaben ebenfalls durch eine Verwendung von gepulstem Laserlicht mit Pulsdauern im Bereich von Picosekunden oder noch kürzeren Pulsdauern zur Bestrahlung von Polymeren, insbesondere Kunststoffen und ggf. deren Additiven und/oder von Verunreinigungen derselben, zu deren Identifikation. The present invention also achieves the abovementioned objects by using pulsed laser light having pulse durations in the range of picoseconds or even shorter pulse durations for irradiating polymers, in particular plastics and, if appropriate, their additives and / or impurities, for their identification.
Die vorliegende Erfindung löst die vorstehend genannten Aufgaben ebenfalls durch eine Verwendung von gepulstem Laserlicht mit Pulsdauern im Bereich von Picosekunden oder noch kürzeren Pulsdauern zur Fluoreszenzanalyse, insbesondere zur Analyse der Fluoreszenzabklingzeit und/oder Fluoreszenzlebenszeit. The present invention also achieves the abovementioned objects by using pulsed laser light with pulse durations in the range of picoseconds or even shorter pulse durations for fluorescence analysis, in particular for analyzing the fluorescence decay time and / or fluorescence lifetime.
Die vorliegende Erfindung löst die vorstehend genannten Aufgaben ebenfalls durch eine Verwendung eines Pulslasers mit Pulsdauern im Bereich von Picosekunden oder noch kürzeren Pulsdauern zur Bestrahlung von Material, dessen reemittiertes Licht zur Identifikation des Materials spektroskopisch analysiert wird, insbesondere mittels einer Fluoreszenzlebenszeitanalyse. Einer der damit erzielten Vorteile ist, dass bei einer Bestrahlung mit gepulstem Licht insbesondere im Picosekunden-Bereich, eine bessere spektrale Auflösung des Spektrums des von der Probe reemittierten Lichts erreicht werden kann, also beispielsweise für eine nachfolgende Raman-Spektroskopie oder Fluoreszenzspektroskopie, was die Zuverlässigkeit und Selektivität der Identifikation auch von chemisch ähnlichen Stoffen erheblich verbessert. Darüber hinaus sind auch die Flexibilität hinsichtlich der Einsetzbarkeit der Vorrichtung bzw. des Verfahrens auf verschiedenen Gebieten wesentlich erhöht. Ein weiterer Vorteil ist, dass auf diese Weise die Dauer der Anregung die nachfolgende Detektion des reemittierten Lichts einer Probe kaum beeinflusst. The present invention also achieves the above-mentioned objects by using a pulse laser with pulse durations in the range of picoseconds or even shorter pulse durations for irradiating material whose re-emitted light is analyzed spectroscopically to identify the material, in particular by means of a fluorescence lifetime analysis. One of the advantages achieved with this is that, when irradiated with pulsed light, in particular in the picosecond range, a better spectral resolution of the spectrum of the light re-emitted by the sample can be achieved, thus, for example, for subsequent Raman spectroscopy or fluorescence spectroscopy, which results in reliability and selectivity of identification also of significantly improved chemically similar substances. In addition, the flexibility in terms of the applicability of the device or the method in various areas are substantially increased. A further advantage is that in this way the duration of the excitation hardly influences the subsequent detection of the re-emitted light of a sample.
Unter einem Detektor ist insbesondere in der Beschreibung, vorzugsweise in den Ansprüchen auch ein Dektorarray oder Ähnliches zu verstehen. Unter noch kürzeren Pulsdauern sind in Bezug auf den Picosekundenbereich insbesondere in den Ansprüchen, vorzugsweise in der Beschreibung Pulsdauern im Bereich von Femtosekunden, Attosekunden, etc. zu verstehen. Unter dem Femto-Sekunden-Bereich ist insbesondere in den Ansprüchen, vorzugsweise in Beschreibung der Bereich zwischen 0,1 fs und 500 fs zu verstehen, insbesondere der Bereich zwischen 1 fs und 100 fs, vorzugsweise der Bereich zwischen 2,5 fs und 50 fs, insbesondere der Bereich zwischen 4 fs und 10 fs, vorzugsweise der Bereich zwischen 5 fs und 8 fs, beispielsweise 5, 6, 7 und/oder 8 fs. Unter dem Atto-Sekunden-Bereich ist insbesondere in den Ansprüchen, vorzugsweise in Beschreibung der Bereich zwischen 0,1 as und 500 as zu verstehen, insbesondere der Bereich zwischen 1 as und 100 as, vorzugsweise der Bereich zwischen 2,5 as und 50 as, insbesondere der Bereich zwischen 4 as und 10 as, vorzugsweise der Bereich zwischen 5 as und 8 as, beispielsweise 5, 6, 7 und/oder 8 as. Unter dem Begriff „Material" sind insbesondere in den Ansprüchen, vorzugsweise in der Beschreibung ein oder mehrere Stoffe zu verstehen. A detector is to be understood in particular in the description, preferably in the claims also a Dektorarray or the like. Pulse durations in the range of femtoseconds, attoseconds, etc. are to be understood as being even shorter pulse durations with regard to the picosecond range, in particular in the claims, preferably in the description. In particular in the claims, preferably in description, the femtosecond range is understood to mean the range between 0.1 fs and 500 fs, in particular the range between 1 fs and 100 fs, preferably the range between 2.5 fs and 50 fs , in particular the range between 4 fs and 10 fs, preferably the range between 5 fs and 8 fs, for example 5, 6, 7 and / or 8 fs. In particular in the claims, preferably in description, the range of the atto seconds is to be understood as meaning the range between 0.1 as and 500 as, in particular the range between 1 as and 100 as, preferably the range between 2.5 as and 50 as , in particular the range between 4 as and 10 as, preferably the range between 5 as and 8 as, for example 5, 6, 7 and / or 8 as. The term "material" is given in particular in the claims, preferably in the description or to understand more than one substance.
Unter dem Begriff„Stoff" ist insbesondere in den Ansprüchen, vorzugsweise in der Beschreibung jegliche Art von festem, flüssigem oder gasförmigem Stoff zu verstehen. Insbesondere sind unter dem Begriff „Stoff' jegliche Art von Polymer oder Polymeren zu verstehen, insbesondere Kunststoffe, beispielsweise The term "substance" is to be understood in particular in the claims, preferably in the description, as any kind of solid, liquid or gaseous substance. In particular, the term "substance" is understood to mean any type of polymer or polymer, in particular plastics, for example
- jegliche Art von Silikon oder Silikonpolymer, insbesondere Silikon- tectosilgranulat, Silikontectosilfolie, Silikondehesiv Sn, Silikondehesiv Pt, jegliche Art von Silikonschläuchen, etc., - jegliche Art von Polyethylen PE, wie beispielsweise LDPE, HDPE und UHDPE, any type of silicone or silicone polymer, in particular silicon tectosilane granulate, silicone tectosil film, silicone adhesive Sn, silicone adhesive Pt, any type of silicone hose, etc., any type of polyethylene PE, such as LDPE, HDPE and UHDPE,
- Polymethylmetacrylat PMMA,  Polymethylmethacrylate PMMA,
- Polystyrol PS,  - polystyrene PS,
- Polyvinylchlorid und dessen Derivaten ,  - polyvinyl chloride and its derivatives,
- Polycarbonat PC,  - polycarbonate PC,
- Polyethylenenterephthalat PET.  - polyethylene terephthalate PET.
Unter dem Begriff„Additiv" sind insbesondere in den Ansprüchen, vorzugsweise in der Beschreibung, jegliche gewollten oder ungewollten Zusätze zu einem Stoff oder Stoffen zu verstehen, insbesondere Flammschutzmittel, vorzugsweise halogenierte, insbesondere bromierte und/oder chlorierte Flammschutzmittel, beispielsweise umfassend The term "additive" is to be understood in particular in the claims, preferably in the description, any intentional or undesired additions to a substance or substances, in particular flame retardants, preferably halogenated, in particular brominated and / or chlorinated flame retardants, for example comprising
- polybromierter Diphenylether PDBE,  - polybrominated diphenyl ether PDBE,
- polybromiertes Biphenyl PBB,  - polybrominated biphenyl PBB,
- decabromierter Diphenylether,  decabrominated diphenyl ether,
- pentabromierter Diphenylether,  - pentabrominated diphenyl ether,
- octabromierte Diphenylether,  octabrominated diphenyl ether,
- Hexabromcyclododecan,  - hexabromocyclododecane,
- Tetrabrombisphenol A TBBP-A,  Tetrabromobisphenol A TBBP-A,
- Tetrabromphthalsäureanhydrid,  - tetrabromophthalic anhydride,
- bromierte Polystyrole,  - brominated polystyrenes,
- bromierte Phenole,  - brominated phenols,
- reaktive Flammschutzmittel,  - reactive flame retardants,
- Antimontrioxid,  - antimony trioxide,
- Antimonpentoxid,  - antimony pentoxide,
- Ammoniumsulfat,  Ammonium sulfate,
- etc. Unter dem Begriff„Additiv" sind insbesondere in den Ansprüchen, vorzugsweise in der Beschreibung, nicht Markierungstoffe, sog.„Marker" zu verstehen, die einem Polymer, bspw. einem Kunststoff zu dessen Identifizierung zugesetzt werden und insbesondere später bspw. mittels einer Fluoreszenzanalyse identifiziert werden, um den damit versehenen Kunststoff zu identifizieren. Weitere Merkmale, Vorteile und weitere Ausführungsformen der Erfindung werden im Folgenden beschrieben oder durch das Folgende offenbar: The term "additive" is to be understood in particular in the claims, preferably in the description, not marking substances, so-called "markers" which are added to a polymer, for example a plastic for its identification and in particular later, for example by means of fluorescence analysis to identify the plastic provided therewith. Further features, advantages and further embodiments of the invention are described below or disclosed by the following:
Vorzugsweise liegt der zeitliche Abstand zwischen zwei Pulsen des Lasers im Wesentlichen mindestens eine Größenordnung, vorzugsweise mindestens zwei Größenordnungen, insbesondere drei Größenordnungen über der Pulsdauer. Somit kann auf äußerst effiziente Weise reemittiertes Licht einer Probe nach einer Anregung über eine deutlich längere Zeit als die Anregungszeit, beispielsweise eine um den Faktor 100, 1.000 bis 10.000, etc. längere Zeit, gemessen werden. Dadurch kann die Zuverlässigkeit für die Identifikation mittels der spektroskopischen Analyse von reemittiertem Licht der Probe weiter erhöht werden. Stellt beispielsweise der Laser eine Pulsdauer im Bereich von Picosekunden bereit, wird der zeitliche Abstand zwischen zwei Pulsen im Nano-Sekunden-Bereich gewählt. Zweckmäßigerweise ist das reemittierte Licht im Wesentlichen zwischen zwei Pulsen des Lasers detektierbar. Damit lassen sich auf einfache Weise mehrere sequentielle Anregungen und Messungen des reemittierten Lichts einer Probe realisieren. Auch damit wird die Zuverlässigkeit der spektroskopischen Analyse weiter erhöht, da damit mehrere Messungen in äußerst kurzer Zeit durchgeführt werden können. Diese können dann beispielsweise gemittelt werden und so ein weniger fehlerbehaftetes spektroskopisches Analyseresultat, z.B. durch Steigerung des Signal-Rausch-Verhältnisses, erhalten werden. Preferably, the time interval between two pulses of the laser is substantially at least one order of magnitude, preferably at least two orders of magnitude, in particular three orders of magnitude above the pulse duration. Thus, in a most efficient manner, re-emitted light from a sample can be measured after excitation for a significantly longer time than the excitation time, for example, a factor of 100, 1,000 to 10,000, etc., for a longer time. Thereby, the reliability for the identification can be further increased by the spectroscopic analysis of re-emitted light of the sample. For example, if the laser provides a pulse duration in the range of picoseconds, the time interval between two pulses in the nanosecond range is selected. Conveniently, the re-emitted light is substantially detectable between two pulses of the laser. This makes it possible to easily realize a plurality of sequential excitations and measurements of the re-emitted light of a sample. This also further increases the reliability of the spectroscopic analysis, as it allows several measurements to be carried out in a very short time. These may then be averaged, for example, to produce a less erroneous spectroscopic analysis result, e.g. by increasing the signal-to-noise ratio.
Zweckmäßigerweise umfasst die spektroskopische Analyse eine Fluoreszenz- Spektralanalyse und/oder eine Fluoreszenzlebenszeitanalyse. Mittels einer Fluoreszenzspektralanalyse bzw. einer Fluoreszenzlebenszeitanalyse lassen sich insbesondere Kunststoffe einfach und zuverlässig unterscheiden. The spectroscopic analysis expediently comprises a fluorescence spectral analysis and / or a fluorescence lifetime analysis. By means of a fluorescence spectral analysis or a fluorescence lifetime analysis, in particular, plastics can be distinguished simply and reliably.
Vorteilhafterweise ist die Probe mit Licht einer Grundfrequenz und/oder einem oder mehreren ganzzahligen Vielfachen hiervon mittels des Lasers bestrahlbar. Damit kann die Materialprobe auf einfache Weise z.B. mit mehreren Wellenlängen bzw. Frequenzen bestrahlt werden. Weist der Laser eine Grundfrequenz auf, kann durch einfache Frequenzverdopplung, -Verdreifachung, etc. auch ein sehr großer Wellenlängenbereich zur Bestrahlung abgedeckt werden, was die Flexibilität hinsichtlich Identifizierung von chemisch völlig unterschiedlichen Stoffen wesentlich erhöht. Advantageously, the sample can be irradiated with light of a fundamental frequency and / or one or more integer multiples thereof by means of the laser. Thus, the material sample can be irradiated in a simple manner, for example, with multiple wavelengths or frequencies. If the laser has a fundamental frequency, simple frequency doubling, tripling, etc. can also cover a very large wavelength range for irradiation, which means flexibility significantly increased in terms of identification of chemically different substances.
Zweckmäßigerweise korrespondieren die Grundfrequenz und/oder die Frequenz- Vervielfachung zu Wellenlängen im Bereich zwischen 233 nm und 300 nm, insbesondere zwischen 250 nm und 280 nm, vorzugweise bei 266 nm und einer Wellenlängenverdopplung bei 532 nm. Dies ermöglicht eine besonders zuverlässige Identifizierung von Kunststoffen mittels einer spektroskopischen Analyse und auch ggf. zugesetzten Fremdstoffen bzw. Additiven wie Flamm- Schutzmitteln oder auch Verunreinigungen des Kunststoffs wie Öl, Benzin, etc. Expediently, the fundamental frequency and / or the frequency multiplication correspond to wavelengths in the range between 233 nm and 300 nm, in particular between 250 nm and 280 nm, preferably at 266 nm and wavelength doubling at 532 nm. This enables a particularly reliable identification of plastics by means of a spectroscopic analysis and any added foreign substances or additives such as flame retardants or impurities of the plastic such as oil, gasoline, etc.
Vorteilhafterweise bezeichnet der Pico-Sekunden-Bereich den Bereich zwischen 0,5 ps und 500 ps, insbesondere den Bereich zwischen 1 ps und 100 ps, vorzugsweise den Bereich zwischen 2,5 ps und 50 ps, insbesondere zwischen 4 ps und 10 ps, vorzugsweise zwischen 5 ps und 8 ps, beispielsweise 5, 6, 7 und/oder 8 ps. Damit lässt sich auf zuverlässige Weise eine kurze Anregungszeit für eine Probe des Materials erreichen. Advantageously, the picosecond range refers to the range between 0.5 ps and 500 ps, more particularly the range between 1 ps and 100 ps, preferably the range between 2.5 ps and 50 ps, more preferably between 4 ps and 10 ps, preferably between 5 ps and 8 ps, for example 5, 6, 7 and / or 8 ps. This can reliably achieve a short excitation time for a sample of the material.
Zweckmäßigerweise ist die Probe in einer ersten Richtung durch den Laser beleuchtbar, wobei das reemittierte Licht in einer zweiten Richtung durch den Detektor detektierbar ist, wobei die erste Richtung und die zweite Richtung im Wesentlichen entgegengesetzt sind. Damit lässt sich eine äußerst kompakte Bauweise der Vorrichtung erreichen. Weitere wichtige Merkmale und Vorteile der Erfindung ergeben sich aus den Unteransprüchen, aus den Zeichnungen, und aus dazugehöriger Figurenbeschreibung anhand der Zeichnungen. Conveniently, the sample is illuminable by the laser in a first direction, the re-emitted light being detectable in a second direction by the detector, the first direction and the second direction being substantially opposite. This makes it possible to achieve an extremely compact design of the device. Further important features and advantages of the invention will become apparent from the subclaims, from the drawings, and from associated figure description with reference to the drawings.
Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen. Bevorzugte Ausführungen und Ausführungsformen der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert, wobei sich gleiche Bezugszeichen auf gleiche oder ähnliche oder funktional gleiche Bauteile oder Elemente beziehen. It is understood that the features mentioned above and those yet to be explained below can be used not only in the particular combination given, but also in other combinations or in isolation, without departing from the scope of the present invention. Preferred embodiments and embodiments of the invention are illustrated in the drawings and will be described in more detail in the following description, wherein like reference numerals refer to the same or similar or functionally identical components or elements.
Dabei zeigt It shows
Fig. 1 in schematischer Form eine Vorrichtung gemäß einer Ausführungsform der vorliegenden Erfindung; Fig. 1 in schematic form an apparatus according to an embodiment of the present invention;
Fig. 2 Teilspektren von verschiedenen Kunststoffen bei Anregung mit einem Fig. 2 partial spectra of different plastics when excited with a
Nanosekunden-Laser; und  Nanosecond laser; and
Fig. 3 Teilspektren für Kunststoffe bei Anregung mit einem Picosekunden- Laser. Fig. 3 partial spectra for plastics when excited with a picosecond laser.
Fig. 1 zeigt in schematischer Form eine Vorrichtung gemäß einer Ausführungsform der vorliegenden Erfindung. Fig. 1 shows in schematic form a device according to an embodiment of the present invention.
In Fig. 1 ist eine Vorrichtung 1 zur Identifizierung von Kunststoff und/oder ggf. eines oder mehrerer seiner Additive gezeigt. Die Vorrichtung 1 umfasst dabei eine Pulslichtquelle 2, hier in Form eines Pico-Sekunden-Lasers, mit der eine Probe 3 des Kunststoffs, der identifiziert werden soll, bestrahlt wird. Die Pulsdauer des Lasers beträgt hier 7,5 ps. Selbstverständlich kann die Pulsdauer auch nur 1 ps oder 100 ps oder dergleichen betragen. Das von der Probe 3 reemittierte Licht wird über einen Filter 4 sowie eine Linse 5 mittels eines Sensors 6 detektiert. Das von dem Sensor 6 erhaltene Rohsignal wird mittels einer Signalaufbereitung 7 aufbereitet und mittels eines Differenzierers 8 wird ebenfalls ein differenziertes Signal erzeugt. In Fig. 1, a device 1 for the identification of plastic and / or optionally one or more of its additives is shown. In this case, the device 1 comprises a pulsed light source 2, here in the form of a picosecond laser, with which a sample 3 of the plastic to be identified is irradiated. The pulse duration of the laser is 7.5 ps. Of course, the pulse duration may be as low as 1 ps or 100 ps or so. The re-emitted light from the sample 3 is detected via a filter 4 and a lens 5 by means of a sensor 6. The raw signal obtained by the sensor 6 is processed by means of a signal processing 7 and by means of a differentiator 8 also a differentiated signal is generated.
Es wird ebenfalls ein Trigger erzeugt mittels einer Triggererzeugung 9, welches dann einen ersten Zeitglied-Integrierer 12a und über einen Verzögerer 10 einen zweiten Zeitglied-Integrierer 12b auslöst. Mittels der beiden Integrierer 12a und 12b wird das Signal zu unterschiedlichen, nicht überlappenden Zeitspannen auf der abfallenden Flanke des aufbereiteten Signals aufintegriert. Mittels einer Quotierung 13 werden die beiden Werte, die von den beiden Integrierern 12a und 12b bereitgestellt werden, miteinander in Relation gesetzt, hier mittels Quotientenbildung und die so erhaltene Zahl einer Auswertung 14 zugeführt. A trigger is likewise generated by means of a trigger generation 9, which then triggers a first timer integrator 12a and via a delay 10 a second timer integrator 12b. By means of the two integrators 12a and 12b, the signal is integrated at different non-overlapping time periods on the falling edge of the processed signal. By means of a quotation 13, the two values which are provided by the two integrators 12a and 12b are related to each other, here supplied by means of quotient formation and the number thus obtained to an evaluation 14.
Die Auswertung 14 kann u.a. darin bestehen, dass in einem Speicher der Vorrichtung eine Vielzahl von Referenzkennzahlen für div. Kombinationen von Kunststoffen und deren Additiven hinterlegt worden ist und auf Basis eines Vergleichs zwischen diesen Kennzahlen und der ermittelten Kennzahl durch die Messung dann der Kunststoff und/oder dessen Additive identifiziert werden. Für die Hinterlegung derartiger Werte/Kennzahlen können beispielsweise mehrfach wiederholte Messungen desselben Kunststoffs mit denselben Additiven durchgeführt werden und diese dann beispielsweise mit einem Mittelwert und einer entsprechenden Abweichung im Speicher abgelegt werden. Im Falle einer nicht eindeutigen Identifizierung kann ein solches Ergebnis einem Benutzer entsprechend angezeigt werden und der Kunststoff kann, wenn das Verfahren beim Recycling eingesetzt wird, separat aussortiert werden und ggf. dann einem weiteren Identifizierungsverfahren zugeführt werden. The evaluation 14 can u.a. consist in that in a memory of the device, a plurality of reference key figures for various. Combinations of plastics and their additives has been deposited and based on a comparison between these ratios and the determined index by the measurement then the plastic and / or its additives are identified , For the storage of such values / characteristic numbers, it is possible, for example, to carry out repeated measurements of the same plastic with the same additives and then to store these in the memory, for example with an average value and a corresponding deviation. In the case of ambiguous identification, such a result can be displayed to a user accordingly and the plastic, if the method is used in recycling, can be sorted out separately and then possibly fed to a further identification method.
Fig. 2 zeigt Teilspektren von verschiedenen Kunststoffen aufgenommen bei Anregung mit einem Nanosekunden-Laser und Fig. 3 zeigt Teilspektren für Kunststoffe bei Anregung mit einem Picosekunden-Laser. Fig. 2 shows partial spectra of various plastics taken at excitation with a nanosecond laser and Fig. 3 shows partial spectra for plastics when excited with a picosecond laser.
In den Fig. 2 und 3 ist jeweils ein Ausschnitt eines aufgenommenen Spektrums (Intensität über Wellenlänge) für zwei verschiedene Kunststoffe gezeigt, die durch die unterbrochenen bzw. nicht unterbrochenen Linien dargestellt sind. In Fig. 2 bezeichnen die durchgezogenen Linien jeweils den Kunststoff Polystyrol PS, die unterbrochenen Linien den Kunststoff Acrylnitril-Butadien-Styrol ABS. In Fig. 3 bezeichnen die durchgezogenen Linie jeweils den Kunststoff Polystyrol PS, die unterbrochenen Linien den Kunststoff Polypropylen PP. Hierbei sind die Kunststoffe jeweils mehrfach bestrahlt und deren Spektrum aufgenommen worden. In Fig. 2 wurden die beiden Kunststoffe jeweils mehrfach mit einem Nanosekunden-Laser, also mit Laserlicht mit Pulsdauern im Nanosekunden- bereich, bestrahlt, und Fig. 3 mit einem Picosekunden-Laser, also mit Laserlicht mit Pulsdauern im Picosekundenbereich. Wie zu erkennen ist, weisen die aufgenommenen Spektren in den überlappenden Wellenlängenbereichen zwischen 290nm und 340nm in Fig. 2 einen wesentlich weniger ausgeprägten bzw. charakteristischen Verlauf auf, verglichen mit dem Verlauf der Spektren der Fig. 3. Darüber hinaus sind auch die jeweiligen Maxima in der Intensität in Fig. 3 eindeutiger ausgeprägt und damit leichter identifizierbar als in Fig. 2. Zusammenfassend ermöglicht die Verwendung eines Pico-Sekunden-Lasers, eines Femto-Sekunden-Lasers, etc. zur Identifikation von Stoffen in einer Materialprobe deren einfache und zuverlässige sowie kostengünstige Identifizierung. Obwohl die vorliegende Erfindung anhand bevorzugter Ausführungsbeispiele beschrieben wurde, ist sie nicht darauf beschränkt, sondern auf vielfältige Weise modifizierbar. FIGS. 2 and 3 each show a section of a recorded spectrum (intensity versus wavelength) for two different plastics, which are represented by the broken and uninterrupted lines, respectively. In Fig. 2, the solid lines indicate the plastic polystyrene PS, the broken lines the plastic acrylonitrile-butadiene-styrene ABS. In Fig. 3, the solid line indicate the plastic polystyrene PS, the broken lines the plastic polypropylene PP. In this case, the plastics were each irradiated several times and their spectrum was recorded. In Fig. 2, the two plastics were each multiply with a Nanosecond laser, so laser light with pulse durations in the nanosecond range, irradiated, and Fig. 3 with a picosecond laser, ie with laser light with pulse durations in the picosecond range. As can be seen, the recorded spectra in the overlapping wavelength ranges between 290nm and 340nm in FIG. 2 have a much less pronounced characteristic compared to the course of the spectra of FIG. 3. Moreover, the respective maxima in In summary, the use of a pico-seconds laser, a femtosecond laser, etc. for the identification of substances in a material sample allows their simple and reliable as well as cost-effective identification. Although the present invention has been described in terms of preferred embodiments, it is not limited thereto, but modifiable in a variety of ways.
- -
Bezugszeichenliste LIST OF REFERENCE NUMBERS
1 Vorrichtung 1 device
2 Pulslichtquelle  2 pulse light source
3 Probe  3 sample
4 Filter  4 filters
5 Linse  5 lens
6 Sensor  6 sensor
7 Signalaufbereitung 7 signal conditioning
8 Differenzierer 8 differentiators
9 Triggererzeugung 9 trigger generation
10 Verzögerer 10 retarders
12a, 12b Integrierer  12a, 12b integrator
13 Quotierung  13 quotation
14 Auswertung  14 evaluation

Claims

A n s p r ü c h e Claims
1. Vorrichtung zur Identifikation von Stoffen eines Materials, insbesondere von Kunststoffen und deren Additiven, mittels Spektroskopie, 1. Device for the identification of substances of a material, in particular of plastics and their additives, by means of spectroscopy,
umfassend full
einen Laser zur Bestrahlung einer Probe des Materials mit Licht mit zumindest einer Wellenlänge, a laser for irradiating a sample of the material with light having at least one wavelength,
einen Detektor zur Detektion des von der Probe reemitierten Lichts und eine Analyseeinrichtung zur spektroskopischen Analyse des detektierten Lichts, dadurch gekennzeichnet, dass a detector for detecting the light reemitierten by the sample and an analysis device for spectroscopic analysis of the detected light, characterized in that
der Laser ein gepulster Laser ist, der eine Pulsdauer im Bereich von Picosekunden oder eine noch kürzere Pulsdauer aufweist. the laser is a pulsed laser having a pulse duration in the range of picoseconds or an even shorter pulse duration.
2. Vorrichtung gemäß Anspruch 1 , wobei der zeitliche Abstand zwischen zwei Pulsen des Lasers im Wesentlichen mindestens eine Größenordnung, vorzugsweise mindestens zwei Größenordnungen, insbesondere drei Größenordnungen über der Pulsdauer liegt. 2. Device according to claim 1, wherein the time interval between two pulses of the laser is substantially at least an order of magnitude, preferably at least two orders of magnitude, in particular three orders of magnitude above the pulse duration.
3. Vorrichtung gemäß Anspruch 2, wobei das reemittierte Licht im Wesentlichen zwischen zwei Pulsen des Lasers detektierbar ist. A device according to claim 2, wherein the re-emitted light is substantially detectable between two pulses of the laser.
4. Vorrichtung gemäß einem der Ansprüche 1 -3, wobei die spektroskopische Analyse eine Fluoreszenzspektralanalyse und/oder eine Fluoreszenzlebenszeit- analyse umfasst. 4. Device according to one of claims 1 -3, wherein the spectroscopic analysis comprises a fluorescence spectral analysis and / or a fluorescence lifetime analysis.
5. Vorrichtung gemäß einem der Ansprüche 1 -4, wobei die Probe mit Licht einer Grundfrequenz und/oder einem oder mehreren ganzzahligen Frequenzvielfachen hiervon mittels des Lasers bestrahlbar ist. 5. Device according to one of claims 1 -4, wherein the sample with light of a fundamental frequency and / or one or more integer frequency multiples thereof can be irradiated by means of the laser.
6. Vorrichtung gemäß Anspruch 5, wobei die Wellenlänge im Bereich zwischen 233nm und 300nm, insbesondere zwischen 250nm und 280 nm, vorzugsweise 266nm korrespondiert und wobei zumindest eine andere Frequenzlänge die entsprechende Frequenzverdoppelung der einen Grundfrequenz ist. 6. The device according to claim 5, wherein the wavelength in the range between 233nm and 300nm, in particular between 250nm and 280nm, preferably 266nm corresponds and wherein at least one other Frequency length is the corresponding frequency doubling of a fundamental frequency.
7. Vorrichtung gemäß einem der Ansprüche 1 -6, wobei die Probe in einer ersten Richtung durch den Laser beleuchtbar ist und wobei das remittierte Licht in einer zweiten Richtung durch den Detektor detektierbar ist, wobei die erste Richtung und die zweite Richtung im Wesentlichen entgegengesetzt sind. 7. The device of claim 1, wherein the sample is illuminable by the laser in a first direction, and wherein the remitted light is detectable in a second direction by the detector, wherein the first direction and the second direction are substantially opposite ,
8. Vorrichtung gemäß einem der Ansprüche 1 -7, wobei der Picosekunden-Be- reich den Bereich bezeichnet, zwischen 0,5 ps und 500 ps, insbesondere den Bereichen zwischen 1 ps und 100 ps, vorzugsweise den Bereich zwischen 2,5 ps und 5,0 ps, insbesondere zwischen 4 ps und 10 ps, vorzugsweise zwischen 5 ps und 8ps, beispielsweise 5, 6, 7, oder 8 ps. 8. The device according to one of claims 1-7, wherein the picosecond region designates the range between 0.5 ps and 500 ps, in particular the ranges between 1 ps and 100 ps, preferably the range between 2.5 ps and 5.0 ps, in particular between 4 ps and 10 ps, preferably between 5 ps and 8 ps, for example 5, 6, 7, or 8 ps.
9. Verfahren zur Identifikation von Stoffen eines Materials, insbesondere von Kunststoffen und deren Additiven, wobei mittels eines Lasers eine Probe des Materials mit Licht zumindest einer Wellenlänge bestrahlt wird und das von der Probe reemitierte Licht detektiert wird, wobei das detektierte Licht spektroskopisch analysiert wird, 9. A method for the identification of substances of a material, in particular of plastics and their additives, wherein a sample of the material is irradiated with light of at least one wavelength by means of a laser and the light reemitierte by the sample is detected, wherein the detected light is analyzed spectroscopically,
dadurch gekennzeichnet, dass characterized in that
die Probe mit gepulstem Licht des Lasers bestrahlt wird, wobei das gepulste Licht eine Pulsdauer im Bereich von Picosekunden oder eine kürzere Pulsdauer aufweist. the sample is irradiated with pulsed light from the laser, the pulsed light having a pulse duration in the range of picoseconds or a shorter pulse duration.
10. Verfahren gemäß Anspruch 9, wobei der Picosekunden-Bereich den Bereich bezeichnet, zwischen 0,5 ps und 500 ps, insbesondere den Bereichen zwischen 1 ps und 100 ps, vorzugsweise den Bereich zwischen 2,5 ps und 5,0 ps, insbesondere zwischen 4 ps und 10 ps, vorzugsweise zwischen 5 ps und 8 ps, beispielsweise 5, 6, 7, oder 8 ps. A method according to claim 9, wherein the picosecond range designates the range between 0.5 ps and 500 ps, in particular the ranges between 1 ps and 100 ps, preferably the range between 2.5 ps and 5.0 ps, in particular between 4 ps and 10 ps, preferably between 5 ps and 8 ps, for example 5, 6, 7, or 8 ps.
1 1. Verwendung von gepulstem Laserlicht mit Pulsdauern im Bereich von Picosekunden oder noch kürzeren Pulsdauern zur Bestrahlung von Material, insbesondere von Kunststoffen und deren Additiven, dessen reemittiertes Licht spektroskopisch analysiert wird. 1 1. Use of pulsed laser light with pulse durations in the range of picoseconds or even shorter pulse durations for irradiation of material, in particular of plastics and their additives, the re-emitted light is analyzed spectroscopically.
12. Verwendung von gepulstem Laserlicht mit Pulsdauern im Bereich von Picosekunden oder noch kürzeren Pulsdauern zur Bestrahlung von zu identifizierendem Material, insbesondere von Kunststoffen und deren Additiven, für Recyclingzwecke. 12. Use of pulsed laser light with pulse durations in the range of picoseconds or even shorter pulse durations for the irradiation of material to be identified, in particular of plastics and their additives, for recycling purposes.
13. Verwendung von gepulstem Laserlicht mit Pulsdauern im Bereich von Picosekunden oder noch kürzeren Pulsdauern zur Bestrahlung von Polymeren, insbesondere Kunststoffen und/oder deren Additiven, zu deren Identifikation. 13. Use of pulsed laser light with pulse durations in the range of picoseconds or even shorter pulse durations for the irradiation of polymers, in particular plastics and / or their additives, for their identification.
14. Verwendung von gepulstem Laserlicht mit Pulsdauern im Bereich von Picosekunden oder noch kürzeren Pulsdauern zur Fluoreszenzanalyse, insbesondere zur Analyse der Fluoreszezabklingzeit und/oder Fluoreszenzlebenszeit. 14. Use of pulsed laser light with pulse durations in the range of picoseconds or even shorter pulse durations for fluorescence analysis, in particular for the analysis of the fluorescence decay time and / or fluorescence lifetime.
15. Verwendung eines Pulslasers mit Pulsdauern im Bereich von Picosekunden oder noch kürzeren Pulsdauern zur Bestrahlung von Material, insbesondere von Kunststoffen und deren Additiven, dessen reemittiertes Licht zur Identifikation des Materials spektroskopisch analysiert wird, insbesondere mittels einer Fluoreszenzlebenszeitanalyse. 15. Use of a pulse laser with pulse durations in the range of picoseconds or even shorter pulse durations for irradiation of material, in particular of plastics and their additives, whose re-emitted light is analyzed spectroscopically for identifying the material, in particular by means of a fluorescence lifetime analysis.
EP17761796.6A 2016-08-09 2017-08-02 Device and method for identifying substances of a material by means of spectroscopy Pending EP3497431A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016214792.7A DE102016214792A1 (en) 2016-08-09 2016-08-09 Device and method for the identification of substances of a material by means of spectroscopy
PCT/DE2017/200079 WO2018028752A1 (en) 2016-08-09 2017-08-02 Device and method for identifying substances of a material by means of spectroscopy

Publications (1)

Publication Number Publication Date
EP3497431A1 true EP3497431A1 (en) 2019-06-19

Family

ID=59790893

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17761796.6A Pending EP3497431A1 (en) 2016-08-09 2017-08-02 Device and method for identifying substances of a material by means of spectroscopy

Country Status (3)

Country Link
EP (1) EP3497431A1 (en)
DE (1) DE102016214792A1 (en)
WO (1) WO2018028752A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3839886A1 (en) 2019-12-18 2021-06-23 Vito NV A method and system for performing characterization of one or more materials

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4210970C2 (en) * 1992-04-02 1996-10-17 Markus Dipl Chem Sauer Process for the simultaneous optical qualitative and quantitative detection of different molecules of a mixture marked with fluorochromes or fluorogens by means of laser spectroscopy
DE4231477A1 (en) * 1992-09-19 1994-03-24 Han Kyung Tae Sorting and sepn. of plastic waste and into its component types - by marking with a suitable dye during mfr. and combined measurement of fluorescent wavelength and lifetime
DE19816881B4 (en) 1998-04-17 2012-01-05 Gunther Krieg Method and device for detecting and distinguishing between contaminations and acceptances as well as between different colors in solid particles
KR100750734B1 (en) 2006-10-26 2007-08-22 삼성전자주식회사 Circuit and method for driving light source
JP5437864B2 (en) * 2010-03-10 2014-03-12 富士フイルム株式会社 Operating method of pH measuring device, operating method of detecting device, operating method of biological material analyzing device, and each device
DE102014004529A1 (en) * 2014-03-27 2015-10-15 Ludwig-Maximilians-Universität München The automatic sorting of polymer materials based on the fluorescence decay time of the autofluorescence and the fluorescence of markers
DE102014111871B3 (en) * 2014-08-20 2015-12-31 Unisensor Sensorsysteme Gmbh Sorting plant and process for separating material fractions
DE102015001523A1 (en) * 2015-02-06 2016-08-11 Unisensor Sensorsysteme Gmbh The automatic sorting of polyethylene based on the fluorescence decay time of the autofluorescence
DE102015001524A1 (en) * 2015-02-06 2016-08-11 Unisensor Sensorsysteme Gmbh The automatic sorting of silicones based on the fluorescence decay time of the autofluorescence
DE102015001525A1 (en) * 2015-02-06 2016-08-11 Unisensor Sensorsysteme Gmbh The automatic sorting of polyethylene terephthalate from different sources based on the fluorescence decay time of the autofluorescence
EP3268725A2 (en) * 2015-02-06 2018-01-17 Unisensor Sensorsysteme GmbH Method and apparatus for identifying plastics and/or the additives therein
DE102015001522A1 (en) * 2015-02-06 2016-08-25 Unisensor Sensorsysteme Gmbh Automated sorting of plastics using bi-exponential fluorescence decay times of autofluorescence

Also Published As

Publication number Publication date
DE102016214792A1 (en) 2018-02-15
WO2018028752A1 (en) 2018-02-15

Similar Documents

Publication Publication Date Title
WO2018024300A1 (en) Apparatus for identifying substances
DE4129754C2 (en) Process for the recovery of pure plastic fractions
EP0599153B1 (en) Method and device for the identification of materials
DE112015001471B4 (en) USE OF THE INDIVIDUAL FLUORESCENCE DECAY TIMES OF POLYMERS FOR THEIR DETECTION
EP3311141B1 (en) Method and device for determining a material property of a bitumen material
DE102005062910A1 (en) Procedure for the confirmation of the presence of a chemical compound contained in a medium for identification of a mineral oil, comprises determining the chemical compound contained in the medium by verification step
WO2016124197A2 (en) Method and apparatus for identifying plastics and/or the additives therein
DE19949656A1 (en) Separating scrap plastics from vehicles, electronics and other areas according to type, has two stages of separation which use sensors to determine material sort and position on a belt or carousel
DE69920680T2 (en) Method and device for detecting plastic materials by means of optical measurements
WO2018028752A1 (en) Device and method for identifying substances of a material by means of spectroscopy
EP0166899A2 (en) Method for monitoring properties of bodies from plastic materials
DE2338305C3 (en) Method and device for determining the linear birefringence of a material
DE10049404C2 (en) Plastic, glass, textile or paper-containing material provided with an NIR marker and method for identifying this material
WO2014118154A1 (en) Testing method and testing device for surfaces
DE102014101302B3 (en) Method for spectrometry and spectrometer
EP2338043A1 (en) Determination of degree of curing using a detection substance
EP4139106B1 (en) Method and device for sorting plastic objects
DE19729352A1 (en) Centrifugation process for sample characterization
DE2744168B2 (en) Magnetic optical spectrophotometer
DE2621216A1 (en) METHOD AND DEVICE FOR EXAMINING PUELPE FOR THE PRESENCE OF THICKENINGS
EP1975600A1 (en) Method for determining the degree of crosslinking of polymer products
DE102015001522A1 (en) Automated sorting of plastics using bi-exponential fluorescence decay times of autofluorescence
EP1089068A1 (en) Method and device for the determinination of contaminations
DE4410398C1 (en) Identifying polymers in sorting plastics
DE102019000525A1 (en) Method for measuring the surface tension by means of reflection on the condensed drop

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190130

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220608