EP3496352B1 - Procédé et appareil de réglage de symbole - Google Patents

Procédé et appareil de réglage de symbole Download PDF

Info

Publication number
EP3496352B1
EP3496352B1 EP17854799.8A EP17854799A EP3496352B1 EP 3496352 B1 EP3496352 B1 EP 3496352B1 EP 17854799 A EP17854799 A EP 17854799A EP 3496352 B1 EP3496352 B1 EP 3496352B1
Authority
EP
European Patent Office
Prior art keywords
blank symbol
reference blank
subcarrier
symbol
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17854799.8A
Other languages
German (de)
English (en)
Other versions
EP3496352A1 (fr
EP3496352A4 (fr
Inventor
Yueying Zhao
Jian Zhang
Ju Liu
Dongyu Chu
Changqing Zhu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Publication of EP3496352A1 publication Critical patent/EP3496352A1/fr
Publication of EP3496352A4 publication Critical patent/EP3496352A4/fr
Application granted granted Critical
Publication of EP3496352B1 publication Critical patent/EP3496352B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0066Requirements on out-of-channel emissions

Definitions

  • Embodiments of this application relate to communications technologies, and in particular, to a method and an apparatus for setting a symbol.
  • a 5G communications system may use a plurality of subcarrier spacings (numerology), so that a base station and a terminal device in the communications system can use different subcarrier spacings for different services, different deployment scenarios, and different spectrums.
  • blank symbols are allowed in a subframe and used in some specific application scenarios.
  • these blank symbols are symbols neither used to transmit service data nor used to transmit any signaling, and are only used to transmit a specific signal or implement a specific function in a specific scenario.
  • the foregoing specific application scenario may be, for example, a dynamic TDD interference measurement scenario, an electromagnetic perception measurement scenario, and a listen-before-talk (Listen-Before-Talk, LBT) scenario of an unlicensed spectrum.
  • FUJITSU "TDD frame structure with mixed numerology", 3GPP DRAFT; R1-166676 TDD FRAME STRUCTURE WITH MIXED NUMEROLOGY FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE J 650, ROUTE DES LUCIOLES; F-06921 SOPHIA-ANTIPOLIS CEDEX; vol. RAN WG1, no. Gothenburg, Sweden, 20160822 - 20160826 21 August 2016 , discusses frequent DL-UL switching.
  • NATIONAL INSTRUMENTS "Design Considerations on Guard Period for NR Frame Structure", 3GPP DRAFT, R1-167732 GUARD PERIOD FOR NR FRAME STRUCTURE, SRD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE J 650, ROUTE DES LUCIOLES; F-06921 SOPHIA-ANTIPOLIS CEDEX; FRANCE; vol. RAN WG1, no. Gothenburg, Sweden, 20160822 - 20160826 21 August 2016 , discusses a guard period for enabling switching between UL and DL directions.
  • Embodiments of this application provide a method and an apparatus for setting a symbol, to resolve a prior-art technical problem of how to determine a length of a blank symbol corresponding to a subcarrier of each subcarrier spacing when a communications system uses a plurality of subcarrier spacings.
  • the invention is defined by the appended independent claims, wherein preferred embodiments are defined in the dependent claims.
  • a first aspect of the embodiments of this application provides a method for setting a symbol in a communications system that uses a plurality of subcarrier spacings, according to claim 1.
  • the terminal may set, based on the length of the reference blank symbol and the time domain information of the reference blank symbol, a blank symbol for a subcarrier corresponding to another subcarrier spacing in the plurality of subcarrier spacings.
  • the terminal may set one or more complete symbols as blank symbols. This avoids a case in which a symbol cannot work normally because a part of the symbol is set as a blank symbol, thereby improving spectral efficiency of the system.
  • the time domain information of the reference blank symbol is used to indicate a location of the reference blank symbol in a subframe corresponding to a reference subcarrier, and the reference subcarrier is a subcarrier corresponding to the first subcarrier spacing.
  • the time domain information of the reference blank symbol includes first time domain information; or the time domain information of the reference blank symbol includes first time domain information and second time domain information.
  • the first time domain information includes a symbol number of the reference blank symbol
  • the second time domain information includes a subframe number of the reference blank symbol and/or a frame number of the reference blank symbol.
  • the terminal can use a plurality of manners to set, based on the time domain information of the reference blank symbol and the length of the reference blank symbol, a blank symbol for a subcarrier used by the terminal. This increases flexibility of setting a symbol by the terminal, so that the foregoing symbol setting manner is applicable to more extensive scenarios, further improving spectral efficiency of the system.
  • the obtaining a length of a reference blank symbol includes: obtaining the length of the reference blank symbol based on a preset reference subcarrier spacing, where the reference subcarrier spacing is the first subcarrier spacing; or obtaining the length of the reference blank symbol based on length information of the reference blank symbol.
  • the length information of the reference blank symbol includes a subcarrier spacing set including the plurality of subcarrier spacings; and the obtaining the length of the reference blank symbol based on length information of the reference blank symbol includes: obtaining the length of the reference blank symbol based on the first subcarrier spacing in the subcarrier spacing set.
  • the obtaining the length of the reference blank symbol based on the first subcarrier spacing in the subcarrier spacing set includes: using, as the length of the reference blank symbol, duration corresponding to a sum of a derivative and a cyclic prefix that are of the first subcarrier spacing.
  • the length information of the reference blank symbol includes a mini slot set including mini slots corresponding to the plurality of subcarrier spacings; and the obtaining the length of the reference blank symbol based on length information of the reference blank symbol includes: obtaining the length of the reference blank symbol based on a first mini slot in the mini slot set, where the first mini slot is a maximum mini slot in the mini slot set, and the first mini slot is a mini slot corresponding to the first subcarrier spacing.
  • the obtaining the length of the reference blank symbol based on a first mini slot in the mini slot set includes: using duration corresponding to the first mini slot as the length of the reference blank symbol.
  • the length information of the reference blank symbol includes any one of the following: a subcarrier spacing corresponding to the reference blank symbol, the length of the reference blank symbol, and a mini slot corresponding to the reference blank symbol.
  • the length information of the reference blank symbol further includes frequency domain information of the reference blank symbol.
  • the blank symbol can be set more flexibly, so that the foregoing symbol setting manner is applicable to more extensive scenarios.
  • a second aspect of the embodiments of this application provides a method for setting a symbol in a communications system that uses a plurality of subcarrier spacings, according to claim 3.
  • the base station may set, based on the length of the reference blank symbol and the time domain information of the reference blank symbol, a blank symbol for a subcarrier of one or more subcarrier spacings used in the communications system.
  • the base station may set one or more complete symbols as blank symbols. This avoids a case in which a symbol cannot work normally because a part of the symbol is set as a blank symbol, thereby improving spectral efficiency of the system.
  • the time domain information of the reference blank symbol is used to indicate a location of the reference blank symbol in a subframe corresponding to a reference subcarrier, and the reference subcarrier is a subcarrier corresponding to the first subcarrier spacing.
  • the setting, by the base station based on the length of the reference blank symbol and time domain information of the reference blank symbol, a blank symbol for a subcarrier corresponding to at least one subcarrier spacing includes: setting, by the base station based on the length of the reference blank symbol and the time domain information of the reference blank symbol, a blank symbol for a subcarrier corresponding to each subcarrier spacing; or setting, by the base station based on the length of the reference blank symbol and the time domain information of the reference blank symbol, a blank symbol for the subcarrier corresponding to the first subcarrier spacing, and setting a subband width corresponding to the first subcarrier spacing to full bandwidth.
  • the blank symbol can be set more flexibly, so that the foregoing symbol setting manner is applicable to more extensive scenarios.
  • the time domain information of the reference blank symbol includes first time domain information; or the time domain information of the reference blank symbol includes first time domain information and second time domain information.
  • the first time domain information includes a symbol number of the reference blank symbol
  • the second time domain information includes a subframe number of the reference blank symbol and/or a frame number of the reference blank symbol.
  • a terminal can use a plurality of manners to set, based on the time domain information of the reference blank symbol and the length of the reference blank symbol, a blank symbol for a subcarrier used by the terminal. This increases flexibility of setting a symbol by the terminal, so that the foregoing symbol setting manner is applicable to more extensive scenarios, further improving spectral efficiency of the system.
  • the obtaining a length of a reference blank symbol includes: obtaining the length of the reference blank symbol based on a preset reference subcarrier spacing, where the reference subcarrier spacing is the first subcarrier spacing; or obtaining the length of the reference blank symbol based on length information of the reference blank symbol.
  • the length information of the reference blank symbol includes a subcarrier spacing set including the plurality of subcarrier spacings; and the obtaining the length of the reference blank symbol based on length information of the reference blank symbol includes: obtaining the length of the reference blank symbol based on the first subcarrier spacing in the subcarrier spacing set.
  • the obtaining the length of the reference blank symbol based on the first subcarrier spacing in the subcarrier spacing set includes: using, as the length of the reference blank symbol, duration corresponding to a sum of a derivative and a cyclic prefix that are of the first subcarrier spacing.
  • the length information of the reference blank symbol includes a mini slot set including mini slots corresponding to the plurality of subcarrier spacings; and the obtaining the length of the reference blank symbol based on length information of the reference blank symbol includes: obtaining the length of the reference blank symbol based on a first mini slot in the mini slot set, where the first mini slot is a maximum mini slot in the mini slot set, and the first mini slot is a mini slot corresponding to the first subcarrier spacing.
  • the obtaining the length of the reference blank symbol based on a first mini slot in the mini slot set includes: using duration corresponding to the first mini slot as the length of the reference blank symbol.
  • the length information of the reference blank symbol includes any one of the following: a subcarrier spacing corresponding to the reference blank symbol, the length of the reference blank symbol, and a mini slot corresponding to the reference blank symbol.
  • the length information of the reference blank symbol further includes frequency domain information of the reference blank symbol.
  • the blank symbol can be set more flexibly, so that the foregoing symbol setting manner is applicable to more extensive scenarios.
  • a third aspect of the embodiments of this application provides an apparatus for setting a symbol in a communications system that uses a plurality of subcarrier spacings.
  • the apparatus includes a module or a means (means) configured to perform the method provided in any one of the first aspect or the implementations of the first aspect.
  • a fourth aspect of the embodiments of this application provides an apparatus for setting a symbol in a communications system that uses a plurality of subcarrier spacings.
  • the apparatus includes a module or a means (means) configured to perform the method provided in any one of the second aspect or the implementations of the second aspect.
  • a base station also referred to as a radio access network (Radio Access Network, RAN) device, is a device connecting a terminal to a wireless network, and may be a base transceiver station (Base Transceiver Station, BTS) in a Global System for Mobile Communications (Global System of Mobile communication, GSM) or Code Division Multiple Access (Code Division Multiple Access, CDMA), a NodeB (NodeB, NB) in Wideband Code Division Multiple Access (Wideband Code Division Multiple Access, WCDMA), an evolved NodeB (Evolutional Node B, eNB or eNodeB for short) in Long Term Evolution (Long Term Evolution, LTE), a relay node or an access point, a base station in a future 5G network, or the like. This is not limited herein.
  • BTS Base Transceiver Station
  • GSM Global System of Mobile Communications
  • CDMA Code Division Multiple Access
  • NodeB NodeB
  • WCDMA Wideband Code Division Multiple Access
  • a terminal may be a wireless terminal or a wired terminal.
  • the wireless terminal may be a device that provides a user with voice and/or other service data connectivity, a handheld device with a wireless connection function, or another processing device connected to a wireless modem.
  • the wireless terminal may communicate with one or more core networks through a radio access network (Radio Access Network, RAN).
  • the wireless terminal may be a mobile terminal, such as a mobile phone (also referred to as a "cellular" phone) or a computer with a mobile terminal, for example, may be a portable, pocket-sized, handheld, computer built-in, or in-vehicle mobile apparatus, which exchanges voice and/or data with the radio access network.
  • the wireless terminal may be a device such as a personal communication service (Personal Communication Service, PCS) phone, a cordless telephone set, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, or a personal digital assistant (Personal Digital Assistant, PDA).
  • PCS Personal Communication Service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the wireless terminal may also be referred to as a system, a subscriber unit (Subscriber Unit), a subscriber station (Subscriber Station), a mobile station (Mobile Station), a mobile console (Mobile), a remote station (Remote Station), a remote terminal (Remote Terminal), an access terminal (Access Terminal), a user terminal (User Terminal), a user agent (User Agent), or a user device (User Device or User Equipment). This is not limited herein.
  • the term "a plurality of' means two or more.
  • the term "and/or” describes an association relationship for describing associated objects and represents that three relationships may exist.
  • a and/or B may represent the following three cases: Only A exists, both A and B exist, and only B exists.
  • the character "/" generally indicates an "or" relationship between the associated objects.
  • a 5G communications system may simultaneously use a plurality of different subcarrier spacings (numerology) on a same frequency, so that a base station and a terminal device in the communications system can use different subcarrier spacings for different services, different deployment scenarios, and different spectrums.
  • the service may be, for example, an enhanced mobile broadband (enhanced Mobile Broadband, eMBB) service, a massive machine type communications (Massive Machine Type Communication, mMTC) service, an ultra-reliable and low latency communications, (Ultra-reliable and low latency communications, URLLC) service, a Multimedia Broadcast Multicast Service (Multimedia Broadcast Multicast Service, MBMS), or a positioning service.
  • the deployment scenario may be, for example, an indoor hotspot scenario, a dense urban area scenario, a suburban area scenario, an urban area macro coverage scenario, or a high-speed railway scenario.
  • the spectrum may be, for example, any frequency range within 100 GHz.
  • Subframes corresponding to subcarriers within all subcarrier spacings have same duration, and symbol lengths of the corresponding subframes are also the same. However, subframe duration corresponding to the subcarrier spacings may be the same or different. Symbol lengths corresponding to the subcarrier spacings are also different.
  • FIG. 1 is a schematic diagram of a correspondence between a subcarrier spacing and a symbol according to an embodiment of this application. It is assumed that the foregoing communications system uses three subcarrier spacings: a 15 kHz subcarrier spacing, a 30 kHz subcarrier spacing, and a 60 kHz subcarrier spacing.
  • FIG. 1 shows a corresponding quantity of symbols of each subcarrier spacing in a same time length (the symbol shown herein may be a symbol including a cyclic prefix).
  • the 15 kHz subcarrier spacing is corresponding to four symbols
  • the 30 kHz subcarrier spacing is corresponding to eight symbols
  • the 60 kHz subcarrier spacing is corresponding to 16 symbols.
  • a smaller subcarrier spacing is corresponding to a longer symbol length.
  • a first scenario is a dynamic time division duplex (Time-Division Duplex, TDD) interference measurement application scenario.
  • TDD Time-Division Duplex
  • a dynamic TDD technology is introduced into the 5G communications system.
  • different cells may use different TDD configurations.
  • various base stations may flexibly deploy services.
  • base stations and terminal devices in various cells use channels with a same frequency to send and receive data.
  • cross interference may be easily caused to a base station and a terminal that are sending data within a coverage range of an adjacent cell.
  • a base station and/or a terminal that are/is to send data may use a blank symbol to send a cross interference interception signal, to perform cross interference measurement before sending the data.
  • the base station and/or the terminal that are/is to send the data may adjust, based on a cross interference measurement result, respective transmit power when sending the data, to eliminate or suppress cross interference.
  • a second scenario is an electromagnetic perception application scenario.
  • a radar signal bounces off an object. Therefore, in communication, a base station may use a blank symbol to send the radar signal, so that a radar receiver disposed at the base station receives the radar signal that bounces back, to implement interception of a wireless environment around the base station to provide assistance for network planning and deployment.
  • the radar signal described herein may be a linear frequency modulation (linear frequency modulation, LFM) signal, or may be a modulation signal that approximates a linear modulation signal by using an orthogonal frequency division multiplexing (Orthogonal Frequency Division Multiplexing, OFDM) modulation signal.
  • LFM linear frequency modulation
  • OFDM Orthogonal Frequency Division Multiplexing
  • approximating LFM by using an OFDM modulation signal may be specifically making subcarriers of a plurality of adjacent OFDM symbols rise in a stepwise manner in frequency domain, so that the adjacent OFDM symbols form approximate slopes, to approximate an LFM waveform.
  • a third scenario is a listen-before-talk (Listen-Before-Talk, LBT) application scenario of an unlicensed spectrum.
  • LBT listen-before-talk
  • a licensed-assisted access using Long Term Evolution (Licensed-Assisted Access using Long Term Evolution, LAA-LTE) system may use 5 GHz license-free spectrums (also referred to as unlicensed spectrums) to extend existing LTE services, that is, use license-free spectrums to carry some data services in an LTE system. Therefore, to share a license-free spectrum with another system, a terminal device in the LAA-LTE system uses a listen-before-talk (Listen-Before-Talk, LBT) channel access mechanism when using the license-free spectrum to send data.
  • LBT listen-before-talk
  • a base station and/or the terminal device before sending data, access/assesses, in a blank symbol, all channels on the license-free spectrum through clear channel assessment (Clear Channel Assessment, CCA); and when determining, through assessment, that all the channels on the license-free spectrum are idle, the base station and/or the terminal device use/uses the license-free spectrum to send the data.
  • CCA Clear Channel Assessment
  • subcarriers of different subcarrier spacings are corresponding to different symbol lengths. If the blank symbol is set for the subcarrier of each subcarrier spacing based on a symbol length corresponding to any subcarrier spacing, a symbol corresponding to another subcarrier spacing less than the subcarrier spacing cannot work normally. Still referring to FIG. 1 , it is assumed that a first symbol shown in FIG. 1 is set as a blank symbol based on a symbol length corresponding to a subcarrier of the 30 kHz subcarrier spacing.
  • a length of a first symbol corresponding to a subcarrier of the 15 kHz subcarrier spacing is greater than a length of the blank symbol
  • a blank symbol is set for the subcarrier of the 15 kHz subcarrier spacing based on the symbol length corresponding to the subcarrier of the 30 kHz subcarrier spacing
  • the first symbol corresponding to the subcarrier of the 15 kHz subcarrier spacing cannot work normally, reducing spectral efficiency of the system. Therefore, when a communications system uses a plurality of subcarrier spacings, how to determine a length of a blank symbol corresponding to a subcarrier of each subcarrier spacing is a problem to be urgently resolved.
  • the embodiments of this application provide a method for setting a symbol, to resolve a technical problem of how to determine a length of a blank symbol corresponding to a subcarrier of each subcarrier spacing when a communications system uses a plurality of subcarrier spacings.
  • FIG. 2 is a schematic flowchart of a method for setting a symbol according to an embodiment of this application.
  • This embodiment relates to a specific process in which a terminal sets, based on an obtained length of a reference blank symbol and time domain information of the reference blank symbol, a blank symbol for a subcarrier corresponding to a second subcarrier spacing in a plurality of subcarrier spacings.
  • the method includes the following steps.
  • a terminal obtains a length of a reference blank symbol.
  • the terminal may be a terminal in "a communications system using a plurality of subcarrier spacings".
  • the plurality of subcarrier spacings include at least a first subcarrier spacing and a second subcarrier spacing. Both the first subcarrier spacing and the second subcarrier spacing may be subcarrier spacings currently used by the terminal, or the second subcarrier spacing is a subcarrier spacing currently used by the terminal.
  • the length of the reference blank symbol that is, duration occupied by the reference blank symbol in time domain, is associated with a minimum subcarrier spacing (that is, the first subcarrier spacing) in the plurality of subcarrier spacings used in the communications system. In other words, the length of the reference blank symbol may be determined by the first subcarrier spacing or a system parameter associated with the first subcarrier spacing.
  • a manner of obtaining the length of the reference blank symbol by the terminal is not limited.
  • the terminal may calculate the length of the reference blank symbol based on the first subcarrier spacing; may calculate the length of the reference blank symbol based on the system parameter associated with the first subcarrier spacing; or may receive the length of the reference blank symbol, sent by using higher layer signaling.
  • the terminal sets, based on the length of the reference blank symbol and time domain information of the reference blank symbol, a blank symbol for a subcarrier corresponding to a second subcarrier spacing in a plurality of subcarrier spacings.
  • the terminal may set, based on the length of the reference blank symbol and the time domain information of the reference blank symbol, the blank symbol for the subcarrier corresponding to the second subcarrier spacing. That is, the terminal sets a blank symbol for a subcarrier used by the terminal.
  • a smaller subcarrier spacing is corresponding to a longer symbol length, and there is a multiple relationship between symbol lengths corresponding to various subcarrier spacings. Therefore, the length of the reference blank symbol, determined based on the minimum subcarrier spacing used in the communications system, is greater than or equal to a symbol length corresponding to another subcarrier spacing in the communications system.
  • the length of the reference symbol is equal to a length of one or more symbols corresponding to the another subcarrier spacing.
  • the terminal may set one or more complete symbols as blank symbols. This avoids a case in which a symbol cannot work normally because a part of the symbol is set as a blank symbol, thereby improving spectral efficiency of the system.
  • the time domain information of the reference blank symbol is used by the terminal to determine a time domain location of the set blank symbol.
  • the time domain information of the reference blank symbol may be used to indicate a location of the reference blank symbol in a subframe corresponding to a reference subcarrier, and the reference subcarrier is a subcarrier corresponding to the first subcarrier spacing.
  • the terminal may determine a location of the reference blank symbol in a subframe corresponding to the second subcarrier spacing, based on a correspondence between a symbol and a subframe of the subcarrier spacing in which the terminal is located (that is, the second subcarrier spacing), a correspondence between a symbol and a subframe of the first subcarrier spacing, and the location of the reference blank symbol in the subframe corresponding to the reference subcarrier (that is, the time domain information of the reference blank symbol).
  • the terminal may set, as the blank symbol based on the length of the reference blank symbol, a symbol that is corresponding to the location of the reference blank symbol and that is in the subframe corresponding to the subcarrier used by the terminal.
  • the terminal may use a discontinuous transmission manner and pause data transmission in a symbol, to turn the symbol into a blank symbol.
  • the time domain information of the reference blank symbol may be further used to indicate a location of the reference blank symbol in a subframe corresponding to the subcarrier of the second subcarrier spacing. In this way, the terminal may directly set, as the blank symbol based on the length of the reference blank symbol, the symbol that is corresponding to the location of the reference blank symbol and that is in the subframe corresponding to the subcarrier used by the terminal.
  • the time domain information of the reference blank symbol when used to indicate the location of the reference blank symbol in the subframe corresponding to the reference subcarrier, the time domain information may be time domain information of a plurality of consecutive reference blank symbols, so that when setting, based on the time domain information and the length of the reference symbol, a blank symbol on a subcarrier used by any terminal in the communications system, the terminal sets one or more complete symbols as blank symbols. This avoids a case in which a symbol cannot work normally because a part of the symbol is set as a blank symbol, thereby improving spectral efficiency of the system.
  • the terminal sets, as blank symbols based on the length of the reference blank symbol and the time domain information of the reference blank symbol, one or more symbols in the subframe corresponding to the subcarrier used by the terminal, symbols in which a synchronization channel, a broadcast channel, and a beam reference signal (Beam Reference Signaling, BRS) are located may not be set as blank symbols.
  • a synchronization channel a broadcast channel
  • a beam reference signal Beam Reference Signaling, BRS
  • the terminal sets, as blank symbols, a plurality of symbols in the subframe corresponding to the subcarrier used by the terminal, the plurality of symbols may be consecutive symbols.
  • the terminal may set, based on the length of the reference blank symbol and the time domain information of the reference blank symbol, a blank symbol for a subcarrier corresponding to another subcarrier spacing in the plurality of subcarrier spacings.
  • the terminal may set one or more complete symbols as blank symbols. This avoids a case in which a symbol cannot work normally because a part of the symbol is set as a blank symbol, thereby improving spectral efficiency of the system.
  • this embodiment describes a specific process in which the terminal obtains the length of the reference blank symbol, and S101 may include the following several cases: In a first case, the length of the reference blank symbol is obtained based on a preset reference subcarrier spacing.
  • the terminal may obtain the length of the reference blank symbol directly based on the preset reference subcarrier spacing.
  • the terminal may use, as the length of the reference blank symbol, duration corresponding to a sum of "a derivative of the reference subcarrier spacing" and "a cyclic prefix corresponding to a symbol of the reference subcarrier spacing".
  • the terminal may alternatively use duration of a mini slot corresponding to the reference subcarrier spacing as the length of the reference blank symbol.
  • the terminal may alternatively obtain the length of the reference blank symbol based on the reference subcarrier spacing by using an existing technical means, or the like. Details are not described herein.
  • the length of the reference blank symbol is obtained based on length information of the reference blank symbol.
  • the length information of the reference blank symbol may carry any information that can be used to obtain the length of the reference blank symbol.
  • the length information of the reference blank symbol may include a subcarrier spacing set including the plurality of subcarrier spacings used in the communications system, a mini slot set including mini slots corresponding to all the subcarrier spacings used in the communications system, the length of the reference blank symbol, a subcarrier spacing corresponding to the reference blank symbol, a mini slot corresponding to the reference blank symbol, and the like.
  • the length information of the reference blank symbol may be sent by a base station to the terminal.
  • the base station may send the length information of the reference blank symbol to the terminal by using existing common configuration signaling, for example, master information block (Master Information Block, MIB) signaling or system information block (System Information Blocks, SIB) signaling.
  • the base station may alternatively send the length information of the reference blank symbol to the terminal by using existing dedicated signaling, for example, Radio Resource Control (Radio Resource Control, RRC) signaling.
  • RRC Radio Resource Control
  • the base station may alternatively send the length information of the reference blank symbol to the terminal by using a separate message.
  • the base station may alternatively indicate the length information of the reference blank symbol to the terminal in another manner. Any manner in which the terminal can learn of the length information of the reference blank symbol shall fall within the protection scope of the embodiments of this application.
  • the terminal may obtain the length of the reference blank symbol based on the minimum subcarrier spacing in the subcarrier spacing set (that is, the first subcarrier spacing).
  • the terminal may use, as the length of the reference blank symbol, duration corresponding to a sum of "a derivative of the first subcarrier spacing" and "a cyclic prefix corresponding to a symbol of the first subcarrier spacing".
  • the length of the reference blank symbol, determined by the terminal based on the subcarrier spacing set may be a sum of 1/15k and a cyclic prefix corresponding to a symbol of the 15 kHz subcarrier spacing.
  • the terminal may alternatively obtain the length of the reference blank symbol based on the first subcarrier spacing by using an existing technical means, or the like. Details are not described herein.
  • the terminal may obtain the length of the reference blank symbol based on a maximum mini slot in the mini slot set.
  • the maximum mini slot in the mini slot set is a mini slot corresponding to the minimum subcarrier spacing, that is, a mini slot corresponding to the first subcarrier spacing.
  • the terminal may use duration corresponding to a first mini slot as the length of the reference blank symbol.
  • the length of the reference blank symbol, determined by the terminal based on the mini slot set may be 33.34 us.
  • the terminal may alternatively obtain the length of the reference blank symbol based on the first mini slot by using an existing technical means, or the like. Details are not described herein.
  • the terminal may use duration corresponding to the fixed mini slot as the length of the reference blank symbol.
  • the terminal may obtain the length of the reference blank symbol directly based on the length information of the reference blank symbol.
  • the length of the reference blank symbol may be specific duration. For example, if the length information of the reference blank symbol includes 33.34 us, the terminal may directly use 33.34 us as the length of the reference blank symbol.
  • the length information of the reference blank symbol is sent by the base station to the terminal by using dedicated signaling, the length of the reference blank symbol, included in the length information of the reference blank symbol, may be a quantity of "symbols in the subframe corresponding to the subcarrier used by the terminal", included in the reference blank symbol. For example, if the length information of the reference blank symbol includes 3, the terminal may use, as the length of the reference blank symbol, a product of the number and a symbol length of the subframe corresponding to the subcarrier used by the terminal.
  • the terminal may use, as the length of the reference blank symbol, duration corresponding to a sum of "a derivative of the subcarrier spacing corresponding to the reference blank symbol” and "a cyclic prefix corresponding to a symbol of the subcarrier spacing".
  • the terminal may alternatively obtain, by using an existing technical means, the length of the reference blank symbol based on the subcarrier spacing corresponding to reference blank symbol, or the like. Details are not described herein.
  • the terminal may use duration of the mini slot corresponding to the reference blank symbol as the length of the reference blank symbol.
  • the terminal may alternatively obtain, by using an existing technical means, the length of the reference blank symbol based on the mini slot corresponding to reference blank symbol, or the like. Details are not described herein.
  • the length information of the reference blank symbol may further include frequency domain information of the reference blank symbol.
  • the frequency domain information of the reference blank symbol is used to indicate, to the terminal, a frequency band on which a blank symbol may be set on a subcarrier in the communications system.
  • the terminal may determine, based on the frequency domain information carried in the length information, whether the subcarrier used by the terminal is within a frequency domain range included in the frequency domain information.
  • the terminal obtains the length of the reference blank symbol based on the length information of the reference blank symbol, and further sets, based on the length of the reference blank symbol and the time domain information of the reference blank symbol, the blank symbol on the subcarrier used by the terminal. If the subcarrier used by the terminal is not within the frequency domain range included in the frequency domain information, the terminal does not set the blank symbol based on the received length information of the reference blank symbol. In this manner, the blank symbol can be set more flexibly, and the foregoing symbol setting manner is applicable to more extensive scenarios.
  • the terminal may obtain the length that is of the reference blank symbol and that is associated with the minimum subcarrier spacing in the plurality of subcarrier spacings, so that the terminal can set, based on the length of the reference blank symbol and the time domain information of the reference blank symbol, a blank symbol for a subcarrier corresponding to another subcarrier spacing in the plurality of subcarrier spacings.
  • the terminal may set one or more complete symbols as blank symbols. This avoids a case in which a symbol cannot work normally because a part of the symbol is set as a blank symbol, thereby improving spectral efficiency of the system.
  • the time domain information of the reference blank symbol may be used to indicate the location of the reference blank symbol in the subframe corresponding to the reference subcarrier, and may be further used to indicate the location of the reference blank symbol in the subframe corresponding to the subcarrier of the second subcarrier spacing. Further, based on the foregoing embodiment, when the time domain information of the reference blank symbol is used to indicate the location of the reference blank symbol in the subframe corresponding to the reference subcarrier, the time domain information of the reference blank symbol may include first time domain information, or first time domain information and second time domain information.
  • the first time domain information includes a number of the reference blank symbol, that is, a symbol number of the reference blank symbol in the subframe corresponding to the reference subcarrier.
  • the second time domain information includes a subframe number of the reference blank symbol (that is, a subframe number of the reference blank symbol in the subframe corresponding to the reference subcarrier), and/or a frame number of the reference blank symbol (that is, a frame number of the reference blank symbol in a frame corresponding to the reference subcarrier, where one frame may include at least one subframe).
  • representation forms of the first time domain information and the second time domain information are not limited in this embodiment, provided that the number of the reference blank symbol, the subframe number of the reference blank symbol, and the frame number of the reference blank symbol can be correctly represented. For example, an explicit representation form or an implicit representation form may be used.
  • the terminal may set, based on the preset time domain information of the reference blank symbol and the length of the reference blank symbol, a blank symbol in each subframe corresponding to the subcarrier used by the terminal, that is, set a blank symbol in each subframe.
  • the terminal may set, based on the length of the reference blank symbol, a blank symbol in a subframe that is corresponding to the subframe number of the reference blank symbol and that is on the subcarrier used by the terminal, that is, set a blank symbol in a subframe whose subframe number is the same as that of the reference blank symbol.
  • the terminal may set, based on the length of the reference blank symbol and the number of the reference blank symbol, a blank symbol in each subframe of a frame that is corresponding to the frame number of the reference blank symbol and that is on the subcarrier used by the terminal, that is, set a blank symbol in each subframe whose frame number is the same as that of the reference blank symbol.
  • the terminal may select, in a frame that is corresponding to the frame number of the reference blank symbol and that is on the subcarrier used by the terminal, a subframe whose number is the same as the subframe number of the reference blank symbol, and set a blank symbol in the subframe based on the length of the reference blank symbol and the number of the reference blank symbol, that is, in a frame whose number is the same as the frame number of the reference blank symbol, set a blank symbol in a subframe whose number is the same as the subframe number of the reference blank symbol.
  • the time domain information of the reference blank symbol may be time domain information preset on the terminal, or may be time domain information sent by the base station to the terminal.
  • the time domain information of the reference blank symbol may further include the first time domain information preset on the terminal, and the second time domain information sent by the base station to the terminal; the second time domain information preset on the terminal, and the first time domain information sent by the base station to the terminal; or the like. If the time domain information of the reference blank symbol is sent by the base station to the terminal, the time domain information of the reference blank symbol and the length information of the reference blank symbol described in the foregoing embodiment may be carried in same signaling and sent to the terminal, or may be carried in different signaling and sent to the terminal. This is not limited in this application.
  • the terminal can use a plurality of manners to set, based on the time domain information of the reference blank symbol and the length of the reference blank symbol, the blank symbol for the subcarrier used by the terminal. This increases flexibility of setting a symbol by the terminal, so that the foregoing symbol setting manner is applicable to more extensive scenarios, further improving spectral efficiency of the system.
  • FIG. 3 is a schematic flowchart of another method for setting a symbol according to an embodiment of this application.
  • This embodiment relates to a specific process in which a base station sets, based on an obtained length of a reference blank symbol and time domain information of the reference blank symbol, a blank symbol for a subcarrier corresponding to at least one subcarrier spacing. As shown in FIG. 3 , the method includes the following steps.
  • a base station obtains a length of a reference blank symbol.
  • the base station may be a base station in "a communications system using a plurality of subcarrier spacings".
  • a manner of obtaining the length of the reference blank symbol by the base station is similar to a manner of obtaining the length of the reference blank symbol by a terminal. Details are not described herein again.
  • the base station sets, based on the length of the reference blank symbol and time domain information of the reference blank symbol, a blank symbol for a subcarrier corresponding to at least one subcarrier spacing.
  • the base station may set, based on the length of the reference blank symbol and the time domain information of the reference blank symbol, the blank symbol for the subcarrier corresponding to the at least one subcarrier spacing.
  • the base station sets a blank symbol for a subcarrier corresponding to one or more subcarrier spacings in the communications system.
  • a smaller subcarrier spacing is corresponding to a longer symbol length, and there is a multiple relationship between symbol lengths corresponding to various subcarrier spacings. Therefore, the length of the reference blank symbol, determined based on a minimum subcarrier spacing used in the communications system, is greater than or equal to a symbol length corresponding to another subcarrier spacing in the communications system.
  • the length of the reference symbol is equal to a length of one or more symbols corresponding to the another subcarrier spacing.
  • the base station may set, as blank symbols, one or more complete symbols in a subframe corresponding to a subcarrier of a subcarrier spacing. This avoids a case in which a symbol cannot work normally because a part of the symbol is set as a blank symbol, thereby improving spectral efficiency of the system.
  • the time domain information of the reference blank symbol is used by the terminal to determine a time domain location of the set blank symbol.
  • the time domain information of the reference blank symbol may be used to indicate a location of the reference blank symbol in a subframe corresponding to a reference subcarrier, and the reference subcarrier is a subcarrier corresponding to a first subcarrier spacing.
  • the base station may determine a location of the reference blank symbol in a subframe corresponding to the subcarrier spacing, based on a correspondence between a symbol and a subframe of each subcarrier spacing in the at least one subcarrier spacing, a correspondence between a symbol and a subframe of the first subcarrier spacing, and the location of the reference blank symbol in the subframe corresponding to the reference subcarrier (that is, the time domain information of the reference blank symbol).
  • the base station may set, as the blank symbol based on the length of the reference blank symbol, a symbol that is corresponding to the location of the reference blank symbol and that is in a subframe corresponding to a subcarrier of the subcarrier spacing.
  • the base station may use a discontinuous transmission manner and pause data transmission in a symbol, to turn the symbol into a blank symbol.
  • the time domain information of the reference blank symbol may be further used to indicate a location of the reference blank symbol in a subframe corresponding to each subcarrier spacing in the at least one subcarrier spacing.
  • the base station may directly set, as the blank symbol, a symbol that is corresponding to the location of the reference blank symbol and that is in a subframe corresponding to a subcarrier of the subcarrier spacing.
  • the time domain information of the reference blank symbol when used to indicate the location of the reference blank symbol in the subframe corresponding to the reference subcarrier, the time domain information may be time domain information of a plurality of consecutive reference blank symbols, so that when setting, based on the time domain information and the length of the reference symbol, a blank symbol on a subcarrier of a subcarrier spacing, the base station sets one or more complete symbols as blank symbols. This avoids a case in which a symbol cannot work normally because a part of the symbol is set as a blank symbol, thereby improving spectral efficiency of the system.
  • the base station sets, as blank symbols based on the length of the reference blank symbol and the time domain information of the reference blank symbol, one or more symbols in a subframe corresponding to a subcarrier of each subcarrier spacing in the at least one subcarrier spacing, symbols in which a synchronization channel, a broadcast channel, and a BRS are located may not be set as blank symbols.
  • the base station sets, as blank symbols, a plurality of symbols in the subframe corresponding to the subcarrier of each subcarrier spacing in the at least one subcarrier spacing, the plurality of symbols may be consecutive symbols.
  • the base station may set, based on the length of the reference blank symbol and the time domain information of the reference blank symbol, the blank symbol for the subcarrier of the one or more subcarrier spacings used in the communications system.
  • the base station may set one or more complete symbols as blank symbols. This avoids a case in which a symbol cannot work normally because a part of the symbol is set as a blank symbol, thereby improving spectral efficiency of the system.
  • this embodiment describes a specific process in which the base station obtains the length of the reference blank symbol, and S201 may include the following several cases:
  • the length of the reference blank symbol is obtained based on a preset reference subcarrier spacing.
  • a manner of obtaining the length of the reference blank symbol by the base station based on the preset reference subcarrier spacing is similar to a manner of obtaining the length of the reference blank symbol by the terminal based on the preset reference subcarrier spacing. Details are not described herein again.
  • the length of the reference blank symbol is obtained based on length information of the reference blank symbol.
  • the length information of the reference blank symbol may carry any information that can be used to obtain the length of the reference blank symbol.
  • the length information of the reference blank symbol may include a subcarrier spacing set including the plurality of subcarrier spacings used in the communications system, a mini slot set including mini slots corresponding to all the subcarrier spacings used in the communications system, the length of the reference blank symbol, a subcarrier spacing corresponding to the reference blank symbol, a mini slot corresponding to the reference blank symbol, and the like.
  • the length information of the reference blank symbol when the length information of the reference blank symbol includes the length of the reference blank symbol, the subcarrier spacing corresponding to the reference blank symbol, the mini slot corresponding to the reference blank symbol, and the like, the length information of the reference blank symbol may be sent to the base station by a higher layer or may be preset on the base station.
  • the higher layer described herein may be an upper layer device of the base station, for example, a core network device.
  • a manner of obtaining the length of the reference blank symbol by the base station based on the length information of the reference blank symbol is similar to a manner of obtaining the length of the reference blank symbol by the terminal based on the length information of the reference blank symbol. Details are not described herein again.
  • the length information of the reference blank symbol may further include frequency domain information of the reference blank symbol.
  • the frequency domain information of the reference blank symbol is used to indicate, to the base station, a frequency band on which a blank symbol may be set on a subcarrier in the communications system.
  • the base station may set, based on the frequency domain information carried in the length information, a blank symbol for a subcarrier of a subcarrier spacing within the frequency domain range. In this manner, the blank symbol can be set more flexibly, and the foregoing symbol setting manner is applicable to more extensive scenarios.
  • the base station may set, based on the length of the reference blank symbol and the time domain information of the reference blank symbol, the blank symbol for the subcarrier of the one or more subcarrier spacings used in the communications system.
  • the base station may set one or more complete symbols as blank symbols. This avoids a case in which a symbol cannot work normally because a part of the symbol is set as a blank symbol, thereby improving spectral efficiency of the system.
  • the time domain information of the reference blank symbol may be used to indicate the location of the reference blank symbol in the subframe corresponding to the reference subcarrier, and may be further used to indicate a location of the reference blank symbol in a subframe corresponding to a subcarrier of a second subcarrier spacing. Further, based on the foregoing embodiment, when the time domain information of the reference blank symbol is used to indicate the location of the reference blank symbol in the subframe corresponding to the reference subcarrier, the time domain information of the reference blank symbol may include first time domain information, or first time domain information and second time domain information.
  • the first time domain information includes a number of the reference blank symbol, that is, a symbol number of the reference blank symbol in the subframe corresponding to the reference subcarrier.
  • the second time domain information includes a subframe number of the reference blank symbol (that is, a subframe number of the reference blank symbol in the subframe corresponding to the reference subcarrier), and/or a frame number of the reference blank symbol (that is, a frame number of the reference blank symbol in a frame corresponding to the reference subcarrier, where one frame may include at least one subframe).
  • representation forms of the first time domain information and the second time domain information are not limited in this embodiment, provided that the number of the reference blank symbol, the subframe number of the reference blank symbol, and the frame number of the reference blank symbol can be correctly represented. For example, an explicit representation form or an implicit representation form may be used.
  • time domain information of the reference blank symbol may be time domain information preset on the base station, may be time domain information sent by the higher layer to the base station, may be time domain information determined by the base station based on use of system resources, or the like.
  • the time domain information of the reference blank symbol may further include the first time domain information preset on the base station, and the second time domain information sent by the higher layer to the base station; the second time domain information preset on the base station, and the first time domain information sent by the higher layer to the base station; or the like.
  • the time domain information of the reference blank symbol is sent by the higher layer to the base station
  • the time domain information of the reference blank symbol and the length information of the reference blank symbol described in the foregoing embodiment may be carried in same signaling and sent to the base station, or may be carried in different signaling and sent to the base station. This is not limited in this application.
  • the base station can use a plurality of manners to set, based on the time domain information of the reference blank symbol and the length of the reference blank symbol, the blank symbol for the subcarrier corresponding to the at least one subcarrier spacing. This increases flexibility of setting a symbol by the base station, so that the foregoing symbol setting manner is applicable to more extensive scenarios, further improving spectral efficiency of the system.
  • this embodiment describes a specific process in which the base station sets, based on the length of the reference blank symbol and the time domain information of the reference blank symbol, the blank symbol for the subcarrier corresponding to the at least one subcarrier spacing, and S202 may include the following two cases: In a first case, the base station sets, based on the length of the reference blank symbol and the time domain information of the reference blank symbol, a blank symbol for a subcarrier corresponding to each subcarrier spacing.
  • the base station may set, based on the length of the reference blank symbol and the time domain information of the reference blank symbol, the blank symbol for the subcarrier corresponding to each subcarrier spacing used in the communications system. In other words, the base station sets a blank symbol in a subframe corresponding to the subcarrier of each subcarrier spacing in the communications system.
  • the base station sets, based on the length of the reference blank symbol and the time domain information of the reference blank symbol, a blank symbol for the subcarrier corresponding to the first subcarrier spacing, and sets a subband width corresponding to the first subcarrier spacing to full bandwidth.
  • the base station may set, based on the length of the reference blank symbol and the time domain information of the reference blank symbol, a blank symbol in a subframe corresponding to the subcarrier of the first subcarrier spacing.
  • the base station may further set a subband width corresponding to the subframe to the full bandwidth, that is, modify each subcarrier spacing of the entire bandwidth within a length of a blank symbol to the first subcarrier spacing.
  • This blank symbol setting manner may be applicable to a scenario in which bandwidth corresponding to each subcarrier spacing in the communications system cannot satisfy minimum bandwidth of a blank symbol required in an electromagnetic perception scenario.
  • a blank symbol whose bandwidth is modified to the full bandwidth may be applicable to the electromagnetic perception scenario.
  • This increases flexibility of setting a symbol by the base station, so that the foregoing symbol setting manner is applicable to more extensive scenarios, further improving spectral efficiency of the system.
  • the base station may set, based on the length of the reference blank symbol and the time domain information of the reference blank symbol, the blank symbol for the subcarrier of the one or more subcarrier spacings used in the communications system.
  • the base station may set one or more complete symbols as blank symbols. This avoids a case in which a symbol cannot work normally because a part of the symbol is set as a blank symbol, thereby improving spectral efficiency of the system.
  • the program may be stored in a computer-readable storage medium.
  • the foregoing storage medium includes: any medium that can store program code, such as a ROM, a RAM, a magnetic disk, or an optical disc.
  • FIG. 4 is a schematic structural diagram of an apparatus for setting a symbol according to an embodiment of this application.
  • the apparatus may be located in a terminal, and used in a communications system that uses a plurality of subcarrier spacings.
  • the apparatus includes an obtaining module 11 and a setting module 12.
  • the obtaining module 11 is configured to obtain a length of a reference blank symbol, where the length of the reference blank symbol is associated with a first subcarrier spacing, and the first subcarrier spacing is a minimum subcarrier spacing in the plurality of subcarrier spacings.
  • the setting module 12 is configured to set, based on the length of the reference blank symbol and time domain information of the reference blank symbol, a blank symbol for a subcarrier corresponding to a second subcarrier spacing in the plurality of subcarrier spacings.
  • the time domain information of the reference blank symbol is used to indicate a location of the reference blank symbol in a subframe corresponding to a reference subcarrier, and the reference subcarrier is a subcarrier corresponding to the first subcarrier spacing.
  • the time domain information of the reference blank symbol may include first time domain information; or the time domain information of the reference blank symbol includes first time domain information and second time domain information.
  • the first time domain information includes a symbol number of the reference blank symbol
  • the second time domain information includes a subframe number of the reference blank symbol and/or a frame number of the reference blank symbol.
  • the obtaining module 11 is specifically configured to: obtain the length of the reference blank symbol based on a preset reference subcarrier spacing, where the reference subcarrier spacing is the first subcarrier spacing; or obtain the length of the reference blank symbol based on length information of the reference blank symbol.
  • the length information of the reference blank symbol includes a subcarrier spacing set including the plurality of subcarrier spacings; and that the obtaining module 11 is configured to obtain the length of the reference blank symbol based on length information of the reference blank symbol may be specifically: the obtaining module 11 obtains the length of the reference blank symbol based on the first subcarrier spacing in the subcarrier spacing set.
  • the obtaining module 11 may use, as the length of the reference blank symbol, duration corresponding to a sum of a derivative and a cyclic prefix that are of the first subcarrier spacing.
  • the length information of the reference blank symbol includes a mini slot set including mini slots corresponding to the plurality of subcarrier spacings; and that the obtaining module 11 is configured to obtain the length of the reference blank symbol based on length information of the reference blank symbol may be specifically: the obtaining module 11 obtains the length of the reference blank symbol based on a first mini slot in the mini slot set, where the first mini slot is a maximum mini slot in the mini slot set, and the first mini slot is a mini slot corresponding to the first subcarrier spacing. During specific implementation, the obtaining module 11 may use duration corresponding to the first mini slot as the length of the reference blank symbol.
  • the length information of the reference blank symbol includes any one of the following: a subcarrier spacing corresponding to the reference blank symbol, the length of the reference blank symbol, and a mini slot corresponding to the reference blank symbol.
  • the length information of the reference blank symbol may further include frequency domain information of the reference blank symbol.
  • the apparatus may be configured to perform the method provided in the foregoing method embodiments. Specific implementations and technical effects are similar to those of the method embodiments, and details are not described herein again.
  • FIG. 5 is a schematic structural diagram of another apparatus for setting a symbol according to an embodiment of this application.
  • the apparatus may be located in a base station, and used in a communications system that uses a plurality of subcarrier spacings.
  • the apparatus includes an obtaining module 21 and a setting module 22.
  • the obtaining module 21 is configured to obtain a length of a reference blank symbol, where the length of the reference blank symbol is associated with a first subcarrier spacing, and the first subcarrier spacing is a minimum subcarrier spacing in the plurality of subcarrier spacings.
  • the setting module 22 is configured to set, based on the length of the reference blank symbol and time domain information of the reference blank symbol, a blank symbol for a subcarrier corresponding to at least one subcarrier spacing.
  • the time domain information of the reference blank symbol is used to indicate a location of the reference blank symbol in a subframe corresponding to a reference subcarrier, and the reference subcarrier is a subcarrier corresponding to the first subcarrier spacing.
  • the time domain information of the reference blank symbol may include first time domain information; or the time domain information of the reference blank symbol includes first time domain information and second time domain information.
  • the first time domain information includes a symbol number of the reference blank symbol
  • the second time domain information includes a subframe number of the reference blank symbol and/or a frame number of the reference blank symbol.
  • the setting module 22 is specifically configured to set, based on the length of the reference blank symbol and the time domain information of the reference blank symbol, a blank symbol for a subcarrier corresponding to each subcarrier spacing; or the setting module 22 is specifically configured to set, based on the length of the reference blank symbol and the time domain information of the reference blank symbol, a blank symbol for the subcarrier corresponding to the first subcarrier spacing, and set a subband width corresponding to the first subcarrier spacing to full bandwidth.
  • the obtaining module 21 is specifically configured to: obtain the length of the reference blank symbol based on a preset reference subcarrier spacing, where the reference subcarrier spacing is the first subcarrier spacing; or obtain the length of the reference blank symbol based on length information of the reference blank symbol.
  • the length information of the reference blank symbol includes a subcarrier spacing set including the plurality of subcarrier spacings; and that the obtaining module 21 is configured to obtain the length of the reference blank symbol based on length information of the reference blank symbol may be specifically: the obtaining module 21 obtains the length of the reference blank symbol based on the first subcarrier spacing in the subcarrier spacing set.
  • the obtaining module 21 may use, as the length of the reference blank symbol, duration corresponding to a sum of a derivative and a cyclic prefix that are of the first subcarrier spacing.
  • the length information of the reference blank symbol includes a mini slot set including mini slots corresponding to the plurality of subcarrier spacings; and that the obtaining module 21 is configured to obtain the length of the reference blank symbol based on length information of the reference blank symbol may be specifically: the obtaining module 21 obtains the length of the reference blank symbol based on a first mini slot in the mini slot set, where the first mini slot is a maximum mini slot in the mini slot set, and the first mini slot is a mini slot corresponding to the first subcarrier spacing. During specific implementation, the obtaining module 21 may use duration corresponding to the first mini slot as the length of the reference blank symbol.
  • the length information of the reference blank symbol includes any one of the following: a subcarrier spacing corresponding to the reference blank symbol, the length of the reference blank symbol, and a mini slot corresponding to the reference blank symbol.
  • the length information of the reference blank symbol may further include frequency domain information of the reference blank symbol.
  • the apparatus may be configured to perform the method provided in the foregoing method embodiments. Specific implementations and technical effects are similar to those of the method embodiments, and details are not described herein again.
  • module division of the foregoing apparatuses is merely logical function division. During actual implementation, all or some of the modules may be integrated into one physical entity, or the modules may be physically separated. Moreover, all of these modules may be implemented by invoking software by a processing component; or all of these modules may be implemented by hardware; or some modules are implemented by invoking software by a processing component, and some modules are implemented by hardware.
  • the setting module may be a separately disposed processing component, or may be integrated into a chip of the foregoing apparatus for implementation.
  • the setting module may alternatively be stored in a memory of the foregoing apparatus in a form of program code, and a processing component of the foregoing apparatus invokes the program code to perform a function of the foregoing determining module.
  • Other modules are implemented in a similar way. In addition, all or some of these modules may be integrated, or these modules may be implemented separately.
  • the processing component described herein may be an integrated circuit, and has a signal processing capability. In an implementation process, steps in the foregoing methods or the foregoing modules can be implemented by using a hardware integrated logical circuit in the processing component, or by using instructions in a form of software.
  • these modules may be configured as one or more integrated circuits implementing the foregoing methods, for example, one or more application-specific integrated circuits (Application Specific Integrated Circuit, ASIC), one or more microprocessors (digital signal processor, DSP), or one or more field programmable gate arrays (Field Programmable Gate Array, FPGA).
  • ASIC Application Specific Integrated Circuit
  • DSP digital signal processor
  • FPGA Field Programmable Gate Array
  • the processing component may be a general-purpose processor, for example, a central processing unit (Central Processing Unit, CPU) or another processor that can invoke the program code.
  • these modules may be integrated together and implemented in a system-on-a-chip (system-on-a-chip, SOC) form.
  • FIG. 6 is a schematic structural diagram of still another apparatus for setting a symbol according to an embodiment of this application.
  • the apparatus may be located in a terminal, and used in a communications system that uses a plurality of subcarrier spacings.
  • the apparatus may include a processor 31, a transmitter 32, a receiver 33, a memory 34, and an antenna 35.
  • the memory 34, the transmitter 32, the receiver 33, and the processor 31 may be connected by using a bus.
  • the memory 34, the transmitter 32, the receiver 33, and the processor 31 may be connected by using another structure different from a bus structure, for example, a star structure. This is not specifically limited in this application.
  • the processor 31 may be specifically a general-purpose central processing unit or an ASIC, may be one or more integrated circuits configured to control program execution, may be a hardware circuit developed by using an FPGA, or may be a baseband processor.
  • the processor 31 may include at least one processing core.
  • the memory 34 may include one or more of a ROM, a RAM, and a disk memory.
  • the memory 34 is configured to store data and/or an instruction required for running the processor 31.
  • the processor 31 is configured to execute the instruction stored in the memory 34.
  • the processor 31 executes the instruction stored in the memory 34, the processor 31 performs the foregoing symbol setting method performed by the terminal. Details are not described herein again.
  • FIG. 7 is a schematic structural diagram of yet another apparatus for setting a symbol according to an embodiment of this application.
  • the apparatus may be located in a base station, and used in a communications system that uses a plurality of subcarrier spacings.
  • the apparatus includes a processor 41, a transmitter 42, a receiver 43, a memory 44, and an antenna 45.
  • the memory 44, the transmitter 42, the receiver 43, and the processor 41 may be connected by using a bus.
  • the memory 44, the transmitter 42, the receiver 43, and the processor 41 may be connected by using another structure different from a bus structure, for example, a star structure. This is not specifically limited in this application.
  • the processor 41 may be specifically a general-purpose central processing unit or an ASIC, may be one or more integrated circuits configured to control program execution, may be a hardware circuit developed by using an FPGA, or may be a baseband processor.
  • the processor 41 may include at least one processing core.
  • the memory 44 may include one or more of a ROM, a RAM, and a disk memory.
  • the memory 44 is configured to store data and/or an instruction required for running the processor 41.
  • the processor 41 is configured to execute the instruction stored in the memory 44.
  • the processor 41 executes the instruction stored in the memory 44, the processor 41 performs the foregoing symbol setting method performed by the base station. Details are not described herein again.
  • All or some of the foregoing embodiments may be implemented by using software, hardware, firmware, or any combination thereof.
  • the embodiments may be implemented completely or partially in a form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or another programmable apparatus.
  • the computer instructions may be stored in a computer-readable storage medium or may be transmitted from a computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center to another website, computer, server, or data center in a wired (for example, a coaxial cable, an optical fiber, or a digital subscriber line (DSL)) or wireless (for example, infrared, radio, or microwave) manner.
  • the computer-readable storage medium may be any usable medium accessible by a computer, or a data storage device, such as a server or a data center, integrating one or more usable media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, or a magnetic tape), an optical medium (for example, a DVD), a semiconductor medium (for example, a solid state disk Solid State Disk (SSD)), or the like.
  • a magnetic medium for example, a floppy disk, a hard disk, or a magnetic tape
  • an optical medium for example, a DVD
  • a semiconductor medium for example, a solid state disk Solid State Disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Claims (14)

  1. Procédé de définition d'un symbole dans un système de communications qui utilise une pluralité d'espacements de sous-porteuses, comprenant :
    l'obtention, par un terminal, d'une information de longueur d'un symbole vide de référence, les symboles vides n'étant ni utilisés pour transmettre des données de service ni utilisés pour transmettre une signalisation, mais étant utilisés pour transmettre un signal spécifique ou mettre en oeuvre une fonction spécifique, les informations de longueur du symbole vide de référence étant associées à un premier espacement de sous-porteuse, et le premier espacement de sous-porteuse étant un espacement de sous-porteuse minimum dans la pluralité d'espacements de sous-porteuses, et les informations de longueur du symbole vide de référence comportant en outre des informations de domaine fréquentiel du symbole vide de référence ; et
    la définition, par le terminal sur la base des informations de longueur du symbole vide de référence et des informations de domaine temporel du symbole vide de référence, d'un symbole vide pour une sous-porteuse correspondant à un second espacement de sous-porteuse dans la pluralité d'espacements de sous-porteuses.
  2. Procédé selon la revendication 1, les informations de domaine temporel du symbole vide de référence étant utilisées pour indiquer un emplacement du symbole vide de référence dans une sous-trame correspondant à une sous-porteuse de référence, et la sous-porteuse de référence étant une sous-porteuse correspondant au premier espacement de sous-porteuse.
  3. Procédé de définition d'un symbole dans un système de communications qui utilise une pluralité d'espacements de sous-porteuses, comprenant :
    l'obtention, par une station de base, d'une information de longueur d'un symbole vide de référence, les symboles vides n'étant ni utilisés pour transmettre des données de service ni utilisés pour transmettre une signalisation, mais étant utilisés pour transmettre un signal spécifique ou mettre en oeuvre une fonction spécifique, les informations de longueur du symbole vide de référence étant associées à un premier espacement de sous-porteuse, et le premier espacement de sous-porteuse étant un espacement de sous-porteuse minimum dans la pluralité d'espacements de sous-porteuse, et les informations de longueur du symbole vide de référence comportant en outre des informations de domaine fréquentiel du symbole vide de référence ; et
    la définition, par la station de base sur la base des informations de longueur du symbole vide de référence et des informations de domaine temporel du symbole vide de référence, d'un symbole vide pour une sous-porteuse correspondant à au moins un espacement de sous-porteuse.
  4. Procédé selon la revendication 3, les informations de domaine temporel du symbole vide de référence étant utilisées pour indiquer un emplacement du symbole vide de référence dans une sous-trame correspondant à une sous-porteuse de référence, et la sous-porteuse de référence étant une sous-porteuse correspondant au premier espacement de sous-porteuse.
  5. Procédé selon la revendication 4, la définition, par la station de base sur la base de la longueur du symbole vide de référence et des informations de domaine temporel du symbole vide de référence, d'un symbole vide pour une sous-porteuse correspondant à au moins un espacement de sous-porteuse comprenant :
    la définition, par la station de base sur la base de la longueur du symbole vide de référence et des informations de domaine temporel du symbole vide de référence, d'un symbole vide pour une sous-porteuse correspondant à chaque espacement de sous-porteuse ; ou
    la définition, par la station de base sur la base de la longueur du symbole vide de référence et des informations de domaine temporel du symbole vide de référence, d'un symbole vide pour la sous-porteuse correspondant au premier espacement de sous-porteuse, et la définition d'une largeur de sous-bande correspondant au premier espacement de sous-porteuse sur l'ensemble de la bande passante.
  6. Procédé selon la revendication 2 ou 4, les informations de domaine temporel du symbole vide de référence comprenant des premières informations de domaine temporel, ou les informations de domaine temporel du symbole vide de référence comprenant des premières informations de domaine temporel et des secondes informations de domaine temporel ; et
    les premières informations de domaine temporel comprenant un numéro de symbole du symbole vide de référence, et les secondes informations de domaine temporel comprenant un numéro de sous-trame du symbole vide de référence et/ou un numéro de trame du symbole vide de référence.
  7. Procédé selon la revendication 1 ou 3, l'obtention d'une longueur d'un symbole vide de référence comprenant :
    l'obtention de la longueur du symbole vide de référence sur la base d'un espacement de sous-porteuse de référence prédéfini, l'espacement de sous-porteuse de référence étant le premier espacement de sous-porteuse ; ou
    l'obtention de la longueur du symbole vide de référence sur la base des informations de longueur du symbole vide de référence.
  8. Procédé selon la revendication 7, les informations de longueur du symbole vide de référence comprenant un ensemble d'espacements de sous-porteuses comprenant la pluralité d'espacements de sous-porteuses ; et
    l'obtention de la longueur du symbole vide de référence sur la base des informations de longueur du symbole vide de référence comprenant :
    l'obtention de la longueur du symbole vide de référence sur la base du premier espacement de sous-porteuse dans l'ensemble d'espacements de sous-porteuses.
  9. Procédé selon la revendication 8, l'obtention de la longueur du symbole vide de référence sur la base du premier espacement de sous-porteuse dans l'ensemble d'espacements de sous-porteuses comprenant :
    l'utilisation, comme longueur du symbole vide de référence, d'une durée correspondant à une somme d'un dérivé et d'un préfixe cyclique qui sont du premier espacement de sous-porteuse.
  10. Procédé selon la revendication 7, les informations de longueur du symbole vide de référence comprenant un ensemble de mini-créneaux comprenant des mini-créneaux correspondant à la pluralité d'espacements de sous-porteuses ; et
    l'obtention de la longueur du symbole vide de référence sur la base des informations de longueur du symbole vide de référence comprenant :
    l'obtention de la longueur du symbole vide de référence sur la base d'un premier mini-créneau dans l'ensemble de mini-créneaux, le premier mini-créneau étant un mini-créneau maximum dans l'ensemble de mini-créneaux, et le premier mini-créneau étant un mini-créneau correspondant au premier espacement de sous-porteuse.
  11. Procédé selon la revendication 10, l'obtention de la longueur du symbole vide de référence sur la base d'un premier mini-créneau dans l'ensemble de mini-créneaux comprenant :
    l'utilisation de la durée correspondant au premier mini-créneau comme longueur du symbole vide de référence.
  12. Procédé selon la revendication 7, les informations de longueur du symbole vide de référence comprenant l'un quelconque des éléments suivants : un espacement de sous-porteuse correspondant au symbole vide de référence, la longueur du symbole vide de référence et un mini créneau correspondant au symbole vide de référence.
  13. Appareil, utilisé par un terminal, destiné à la définition d'un symbole dans un système de communications qui utilise une pluralité d'espacements de sous-porteuses, comprenant :
    un processeur (31), configuré pour obtenir des informations de longueur d'un symbole vide de référence, et définir, sur la base des informations de longueur du symbole vide de référence et des informations de domaine temporel du symbole vide de référence, un symbole vide pour une sous-porteuse correspondant à un second espacement de sous-porteuse dans la pluralité d'espacements de sous-porteuses,
    les symboles vides n'étant ni utilisés pour transmettre des données de service ni utilisés pour transmettre une signalisation, mais étant utilisés pour transmettre un signal spécifique ou mettre en oeuvre une fonction spécifique, et
    les informations de longueur du symbole vide de référence étant associées à un premier espacement de sous-porteuse, et le premier espacement de sous-porteuse étant un espacement de sous-porteuse minimum dans la pluralité d'espacements de sous-porteuses, et les informations de longueur du symbole vide de référence comportant en outre des informations de domaine fréquentiel du symbole vide de référence.
  14. Appareil, utilisé par une station de base, destiné à la définition d'un symbole dans un système de communications qui utilise une pluralité d'espacements de sous-porteuses, comprenant :
    un processeur (41), configuré pour obtenir des informations de longueur d'un symbole vide de référence, et pour définir, sur la base des informations de longueur du symbole vide de référence et des informations de domaine temporel du symbole vide de référence, un symbole vide pour une sous-porteuse correspondant à au moins un espacement de sous-porteuse,
    les symboles vides n'étant ni utilisés pour transmettre des données de service ni utilisés pour transmettre une signalisation, mais étant utilisés pour transmettre un signal spécifique ou mettre en oeuvre une fonction spécifique,
    les informations de longueur du symbole vide de référence étant associées à un premier espacement de sous-porteuse, et le premier espacement de sous-porteuse étant un espacement de sous-porteuse minimum dans la pluralité d'espacements de sous-porteuses, et les informations de longueur du symbole vide de référence comportant en outre des informations de domaine fréquentiel du symbole vide de référence.
EP17854799.8A 2016-09-30 2017-09-25 Procédé et appareil de réglage de symbole Active EP3496352B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610877415.6A CN107888356B (zh) 2016-09-30 2016-09-30 设置符号的方法和装置
PCT/CN2017/103157 WO2018059349A1 (fr) 2016-09-30 2017-09-25 Procédé et appareil de réglage de symbole

Publications (3)

Publication Number Publication Date
EP3496352A1 EP3496352A1 (fr) 2019-06-12
EP3496352A4 EP3496352A4 (fr) 2019-09-04
EP3496352B1 true EP3496352B1 (fr) 2023-01-18

Family

ID=61763641

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17854799.8A Active EP3496352B1 (fr) 2016-09-30 2017-09-25 Procédé et appareil de réglage de symbole

Country Status (4)

Country Link
US (1) US11108531B2 (fr)
EP (1) EP3496352B1 (fr)
CN (1) CN107888356B (fr)
WO (1) WO2018059349A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11375340B2 (en) * 2019-08-09 2022-06-28 Kt Corporation Apparatus and method for performing positioning
WO2021046666A1 (fr) * 2019-09-09 2021-03-18 Qualcomm Incorporated Motif de synchronisation de transmission en liaison montante

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010104338A2 (fr) * 2009-03-11 2010-09-16 Samsung Electronics Co., Ltd. Procédé et dispositif pour allouer une ressource de transmission de liaison terrestre dans un système de communication sans fil basé sur relais
CN102055706B (zh) * 2009-11-03 2015-01-28 中兴通讯股份有限公司 参考符号的映射方法
CN102740375A (zh) * 2011-04-11 2012-10-17 中兴通讯股份有限公司 一种无线参数配置和信号发送的方法及装置
CN102739594A (zh) * 2011-04-12 2012-10-17 中兴通讯股份有限公司 一种无线帧参数配置和信号发送的方法及装置
CN105099642B (zh) * 2014-05-19 2019-06-07 中兴通讯股份有限公司 一种数据传输方法、装置及计算机存储介质
US9553699B2 (en) * 2014-08-28 2017-01-24 Newracom, Inc. Frame transmitting method and frame receiving method
CN105656597B (zh) * 2014-11-24 2020-02-14 华为技术有限公司 数据传输方法和设备
ES2952417T3 (es) * 2015-03-17 2023-10-31 Nokia Solutions & Networks Oy Método, aparato, sistema y programa informático para extensión de ancho de banda de portadora lte usando un espaciamiento entre subportadoras aumentado
US10244510B2 (en) * 2015-09-25 2019-03-26 Qualcomm Incorporated Techniques for wireless communications using a modified subframe structure
CN111052625A (zh) * 2016-04-20 2020-04-21 康维达无线有限责任公司 下行链路同步
US10356800B2 (en) * 2016-05-09 2019-07-16 Qualcomm Incorporated Scalable numerology with symbol boundary alignment for uniform and non-uniform symbol duration in wireless communication
WO2018032434A1 (fr) * 2016-08-17 2018-02-22 北京小米移动软件有限公司 Procédé et appareil de communication
US10841060B2 (en) * 2016-09-06 2020-11-17 Lg Electronics Inc. Method and apparatus for configuring resource block structure for NR in wireless communication system

Also Published As

Publication number Publication date
US20190229881A1 (en) 2019-07-25
EP3496352A1 (fr) 2019-06-12
CN107888356A (zh) 2018-04-06
EP3496352A4 (fr) 2019-09-04
US11108531B2 (en) 2021-08-31
WO2018059349A1 (fr) 2018-04-05
CN107888356B (zh) 2021-05-07

Similar Documents

Publication Publication Date Title
EP3595371B1 (fr) Procédé de transmission de signal et dispositif
AU2021215138B2 (en) Method for configuring transmission direction of time-frequency resource, and apparatus
US11153774B2 (en) Signal transmission method and device, and system
US10582491B2 (en) Information transmission method and device
KR20170016978A (ko) 차세대 Wi―Fi 네트워크에서 OFDMA 톤 할당을 위한 시스템 및 방법
US10893541B2 (en) Clear channel assesment (CCA) in unlicensed wireless spectrum
JP2018528645A (ja) データ送信方法、無線ネットワーク装置、及び通信システム
EP3637932B1 (fr) Procédé et dispositif de transmission d'informations et de réception d'informations
KR20200085856A (ko) 데이터 전송 방법, 단말 장치 및 네트워크 장치
EP3637818B1 (fr) Procédé et dispositif d'envoi et de réception de signal
US11606802B2 (en) Method, system and apparatus
CN110972294B (zh) 传输随机接入信号的方法和装置
KR20220050157A (ko) 리소스 다중화 방법 및 장치
JP2019186938A (ja) ライセンス不要アクセスについてのプリアンブルについての装置、システム、及び方法
US11108531B2 (en) Method and apparatus for setting symbol
EP3468273A1 (fr) Procédé d'envoi et procédé de réception d'informations de commande, dispositif de réseau, et dispositif terminal
WO2024011632A1 (fr) Procédé et appareil de configuration de ressources, dispositif et support de stockage
CN116456364A (zh) 一种配置方法及其装置
CN117560124A (zh) 资源确定方法、装置、终端及网络侧设备

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190305

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

A4 Supplementary search report drawn up and despatched

Effective date: 20190806

RIC1 Information provided on ipc code assigned before grant

Ipc: H04L 27/26 20060101ALI20190731BHEP

Ipc: H04W 72/04 20090101ALI20190731BHEP

Ipc: H04L 5/00 20060101AFI20190731BHEP

Ipc: H04W 74/08 20090101ALN20190731BHEP

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210525

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602017065644

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H04L0027260000

Ipc: H04L0005000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H04W 74/08 20090101ALN20220818BHEP

Ipc: H04W 72/04 20090101ALI20220818BHEP

Ipc: H04L 27/26 20060101ALI20220818BHEP

Ipc: H04L 5/00 20060101AFI20220818BHEP

INTG Intention to grant announced

Effective date: 20220905

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1545252

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230215

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017065644

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230118

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1545252

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230518

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230418

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230518

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017065644

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

26N No opposition filed

Effective date: 20231019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230925

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230925

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230925

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230925

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240730

Year of fee payment: 8