EP3494584B1 - Electrical device having a plurality of cooling units - Google Patents

Electrical device having a plurality of cooling units Download PDF

Info

Publication number
EP3494584B1
EP3494584B1 EP17772346.7A EP17772346A EP3494584B1 EP 3494584 B1 EP3494584 B1 EP 3494584B1 EP 17772346 A EP17772346 A EP 17772346A EP 3494584 B1 EP3494584 B1 EP 3494584B1
Authority
EP
European Patent Office
Prior art keywords
cooling
winding
temperature
electrical device
partial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17772346.7A
Other languages
German (de)
French (fr)
Other versions
EP3494584A1 (en
Inventor
Jörg FINDEISEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3494584A1 publication Critical patent/EP3494584A1/en
Application granted granted Critical
Publication of EP3494584B1 publication Critical patent/EP3494584B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2876Cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/12Oil cooling
    • H01F27/14Expansion chambers; Oil conservators; Gas cushions; Arrangements for purifying, drying, or filling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/323Insulation between winding turns, between winding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/40Structural association with built-in electric component, e.g. fuse
    • H01F27/402Association of measuring or protective means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/40Structural association with built-in electric component, e.g. fuse
    • H01F27/402Association of measuring or protective means
    • H01F2027/406Temperature sensor or protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/12Oil cooling
    • H01F27/125Cooling by synthetic insulating and incombustible liquid

Definitions

  • the invention relates to an electrical device for connection to a high-voltage network with a vessel which is filled with an insulating fluid, an active part arranged in the vessel which has a magnetizable core and partial windings for generating a magnetic field in the core, and a cooling device for cooling the Isolating fluids, wherein at least one thermal barrier delimits the cooling spaces, in each of which at least one partial winding is arranged.
  • a medium-frequency transformer is shown there, which has a housing filled with insulating fluid, in which an active part is arranged.
  • the active part has a core which forms a closed magnetic circuit, a section of the core being enclosed by a secondary and a primary winding which are arranged concentrically to one another.
  • an insulating element is arranged between the primary and secondary windings, which is equipped with a conductive shield on both sides.
  • the conductive shields on both sides of the insulating element are electrically connected on the one hand to the primary winding and on the other to the secondary winding, so that the formation of high electrical field strengths is avoided. Due to the thermal insulation, cooling tubes, which are connected to a cooling unit, extend on both sides of the thermal element.
  • the US 2013/0307654 A1 discloses a transformer having a tank and an active part arranged in the tank.
  • the tank or boiler is filled with an insulating fluid.
  • a cooling unit which is connected to the interior of the boiler, is provided for cooling the insulating fluid.
  • the cooling unit has a pump for circulating the insulating fluid and a heat exchanger which is arranged in the air flow of a fan of the cooling unit.
  • a so-called emergency cooling unit is provided, which has a pipeline system that extends through the interior of the windings.
  • a transformer with tank and active part is known, the active part again consisting of a core with low and high voltage winding.
  • the boiler or tank is filled with an insulating fluid that is circulated through a cooling unit.
  • Guide tubes or channels are also formed in the interior of the tank in order to guide the insulating fluid specifically over the windings and through the core.
  • Transformers or chokes which are connected to a high-voltage network, each have a vessel that is usually filled with a mineral insulating oil as the insulating fluid.
  • a low-voltage and a high-voltage winding which are inductively coupled to one another via a magnetizable core, are arranged in the vessel.
  • the insulating fluid also serves to cool the transformer.
  • the insulating oil which is heated during operation, is conducted to dissipate the heat via a cooling device attached to the outside of the vessel. The cooling is set so that a maximum temperature of the insulating fluid is not exceeded, since otherwise the solid insulation of the transformer could be damaged.
  • Alternative insulating fluids such as ester or silicone oils, are increasingly being used in transformers, which have a higher temperature resistance. These alternative insulating fluids ensure a higher level of fire safety and are also biodegradable. Improved environmental compatibility of insulating fluids is particularly necessary for off-shore applications. Due to the improved thermal resistance of these alternative insulating fluids, the transformer can be operated at higher temperatures. In this context, reference is made to the IEEE 1276 (1997) standard.
  • the object of the invention is therefore to provide an electrical device of the type mentioned at the beginning which is inexpensive and at the same time can be operated at higher temperatures.
  • the invention solves this problem in that the cooling device has at least two cooling units and each cooling unit is set up to cool an associated partial winding, at least one partial winding having temperature ranges in which insulating materials with different thermal load capacities are arranged.
  • a thermal barrier in interaction with at least two cooling units ensures that at least two partial windings can be operated in different temperature sections, which are referred to here as cold room temperatures.
  • the thermal barrier takes care of that Formation of at least two cooling spaces which are each connected to one of the cooling units.
  • the cooling units can thus set different cooling space temperatures, that is to say different temperatures of the insulating fluid and / or the windings, in the cooling spaces connected to them.
  • the cooling space temperature is expediently set in such a way that a maximum operating temperature predetermined for this cooling space is not exceeded. In this way it is possible to use different insulating materials in the cold rooms.
  • the partial winding that is arranged in a cooling space that allows higher cooling space temperatures can be designed to be low in insulating material.
  • the partial windings have different insulations.
  • a first part-winding has high-temperature insulation
  • a second part-winding and all further part-windings have the usual insulation made of materials that are designed for lower temperatures.
  • insulation here also includes barrier systems and spacers that are used in addition to the insulation of the winding conductors.
  • enamelled copper wires coated with various insulating varnishes which can withstand even high temperatures, are available on the market. This also applies, for example, to a wire with a coating made of Pyre-ML-polyimide, which is thermally stable up to 220 ° C. Due to the small thickness of its lacquer layer, a good heat transfer from the wire to the insulating fluid is guaranteed.
  • the material of the insulating material is advantageously selected as a function of the position of the respective insulation in relation to the so-called hot point of the winding.
  • a hotspot temperature is the hottest temperature of the electrical conductor of the partial winding which is in thermally conductive contact with the solid insulating material or the insulating fluid when the electrical device is in operation.
  • the conductor insulation is selected so that the material is not damaged even when the hot spot temperature is reached.
  • the conductor insulation can withstand the maximum winding temperature.
  • Solid insulation with a certain distance from the hottest points of the respective partial winding on the other hand, can be assigned to a lower thermal class if the corresponding temperature gradient permits.
  • the cooling device has at least two cooling units, each cooling unit being set up to cool an associated cooling space.
  • one of the cooling units can be connected to a partial winding via supply and discharge lines, for example, in such a way that the insulating fluid cooled by a cooling unit is circulated in a targeted manner via a selected partial winding and ensures that the required cooling room temperature is set in the cooling room .
  • the layered winding substructure can be used for the targeted supply of the insulating fluid to the selected partial winding.
  • the insulating material disks of the substructure are expediently designed in such a way that that a separation of the flow of the insulating fluid to the respective partial windings is provided.
  • the cooling circuits Due to the separation of the flow of the insulating fluid through the cooling spaces, the cooling circuits can be completely separated from one another in terms of flow, or they can partially use a common space. In terms of flow, this space can be in front of or behind the cooling rooms.
  • the thermal barrier advantageously forms an inlet opening which is connected to an outlet of the cooling device.
  • This connection or in other words the connection between the respective cooling unit and the inlet opening, can be designed as desired within the scope of the invention. It is essential that the main part of the insulating fluid flow emerging from the respective cooling unit reaches the inlet opening.
  • the inlet opening is formed by a thermal barrier which at least partially defines a cooling space in which a high-voltage winding is arranged. Due to the higher voltage, the high-voltage winding is equipped with more complex insulation. In order to use conventional materials for the said insulation there, the high-voltage winding must be cooled more than the low-voltage winding, which is insulated with high-temperature materials.
  • the fluid-filled cooling spaces separated from one another by the barrier system are expediently hydraulically connected to one another.
  • This connection can be made via the connection to a common expansion vessel used by both cooling chambers, or via a partially open design of winding substructures or winding superstructures.
  • the thermal barrier encloses a partial winding at least in sections.
  • the thermal barrier is designed as a hollow cylinder, for example, and is arranged concentrically with at least one partial winding.
  • the thermal barrier forms a guide or, in other words, cooling channels for the insulating fluid flow, so that the insulating fluid is guided over the partial winding.
  • the cooling channels can be designed in a meandering shape.
  • the thermal barrier is also an electrical barrier, at least in sections.
  • the first partial winding is expediently a low-voltage winding and a second partial winding is a high-voltage winding.
  • the two windings are concentric with one another and, for example, also with a core section extending through the inner low-voltage winding.
  • the electrical device according to this embodiment of the invention is a transformer with concentric upper and lower voltage windings as partial windings.
  • the partial windings are advantageously designed as circumferentially closed cylindrical windings.
  • a first cooling unit for cooling the low-voltage winding and a second cooling unit for cooling the high-voltage winding are set up.
  • the cooling device it is expedient here for the cooling device to apply colder insulating fluid to the high-voltage winding so that it can be operated at lower temperatures.
  • the low-voltage winding and the high-voltage winding are in turn equipped with different insulating materials as partial winding insulation, which can withstand the different cold room temperatures.
  • the cooling spaces are hydraulically coupled to one another within the scope of the invention.
  • the cooling space in which the high-voltage winding is arranged is hydraulically connected to the cooling space in which the low-voltage winding is arranged via an expansion vessel.
  • a cooling unit is designed as a closed circulating cooling system, a pump being provided for circulating the insulating fluid.
  • a second cooling unit is connected to the interior of the vessel, the first cooling unit and the interior of the electrical device being connected to one another only via an expansion vessel.
  • a hydraulic connection of the cooling spaces takes place exclusively via the expansion vessel, which is absolutely necessary anyway due to the temperature-dependent volume expansion of the insulating fluid.
  • the gaps between the individual barriers and between the winding and the vessel, which are not required for cooling or for guiding the insulating fluid, can advantageously be closed by means of inserts to avoid bypasses.
  • the cooling device has a feed line which forms an outlet opening arranged below the first partial winding and in particular below the high-voltage winding.
  • the cooled insulating fluid exits the cooling device via the supply line and is introduced directly into the cooling space of the first partial winding, so that the first partial winding is more strongly cooled than the further partial windings that are downstream of the first partial winding in the flow direction of the insulating fluid.
  • At least one cooling unit is advantageously connected to the winding substructure and / or winding superstructure of a partial winding in such a way that, during normal operation, the respective over the cooling units guided flows of the insulating fluid are separated from one another.
  • Each cooling unit expediently has at least one cooling register.
  • the term cooling register should also include radiators here.
  • At least one or each cooling unit can be a passive cooling unit or else have a circulation pump for circulating the insulating fluid via a cooling register.
  • the cooling register can be equipped with one or more fans or fans.
  • the cooling registers are connected to the vessel of the electrical device in such a way that they have different perpendicular distances from a floor surface defined by the base surface of the vessel.
  • the cooling registers are attached to the vessel at different heights.
  • the cooling units are passive cooling units and do not have a circulation pump. In the case of passive cooling units, the circulation speed of the insulating fluid over the cooling register is determined by the height offset between the center of the warm fluid column in the cooling channels of the respective partial winding and the center of the cold fluid column of the respective cooling register.
  • Further components of the electrical device for example step switches, are assigned to one of the two cooling circuits flowing through the cooling chambers according to their respective permissible operating temperature.
  • the cooling device advantageously has a control unit with temperature sensors, the temperature sensors are set up to detect the temperature of a partial winding and / or to detect the temperature of the insulating fluid in a partial winding.
  • the control unit is, for example, equipped with a threshold value for each cooling unit, so that the cooling output of the respective cooling unit can be controlled as a function of the respective threshold value.
  • the respective threshold value is determined depending on the temperature resistance of the insulating materials of the partial windings. If the temperature detected by the temperature sensors reaches the threshold value, the control unit controls either a circulating pump or a fan of the respective cooling unit and thus increases the cooling capacity of said cooling unit.
  • the temperature sensors are set up to detect the temperature of a partial winding and / or to detect the temperature of the insulating fluid.
  • the temperature sensors can therefore also directly detect the temperature of the winding conductor within the scope of the invention.
  • At least one partial winding has several temperature ranges in which insulating materials with different thermal load capacities are arranged. It can be advantageous here if insulating materials with a lower thermal load capacity are arranged in each upstream temperature range than in downstream temperature ranges which lie behind the upstream temperature range in the direction of flow of the insulating fluid.
  • a temperature sensor for measuring a hot spot temperature is arranged in at least two temperature ranges, which provides temperature measurement values on the output side that are compared with a threshold value previously defined depending on the insulating materials used in the respective temperature range, a control signal being generated on the basis of this comparison becomes. Depending on the design, this can trigger a warning signal, cause shutdown, a reduction triggered by the load of the electrical device or used to control the cooling system.
  • the wide temperature spread of the insulating liquid enables the effective use of external evaporative coolers and coolers based on heat pipes.
  • several fluidically connected temperature ranges in the cooling room are equipped with sensors for measuring the hot spot temperature of the partial winding in the respective temperature range, the signals of each of these temperature sensors being assigned their own threshold values for triggering control functions which relate to the thermal class of the partial winding used in the respective temperature ranges Insulating materials are matched.
  • FIG. 1 shows a first exemplary embodiment of the electrical device 1 according to the invention in a sectional side view, the electrical device being designed as a transformer 1.
  • the transformer 1 has a vessel 14 in which a magnetizable core 2, a low-voltage winding 3.1 and a high-voltage winding 3.2 are arranged concentrically to one another as part of the winding according to the invention.
  • Said windings 3.1, 3.2 are designed as a hollow cylinder.
  • the high-voltage winding 3.2 can be connected to a high-voltage network via a connection (not shown in the figures), and the low-voltage winding 3.1 can be connected to a distribution network or a load via a connection line, also not shown.
  • the high and low voltage windings 3.1, 3.2 are inductively coupled to one another via the magnetizable core 2, so that the high voltage winding 3.2 induces a voltage in the low voltage winding 3.1 or vice versa.
  • the vessel 14 is filled with an insulating fluid 30 and, in the present case, a commercially available ester.
  • a thermal barrier 4 is arranged between the high-voltage winding 3.2 and the low-voltage winding 3.1.
  • the thermal barrier 4 is circumferentially closed and also designed as a hollow cylinder. It completely encloses the also cylindrical low voltage winding 3.1.
  • An expansion vessel 18 is arranged above the vessel 14, which serves to absorb the temperature-related fluctuations in volume of the insulating fluid 30.
  • a cooling device which has two cooling units, a first cooling unit having a cooling register 15.1, a circulating pump 16.1 and a temperature sensor 22.1, a supply line 37.1 and a return line 38.1.
  • the second cooling unit has a cooling register 15.2, a circulation pump 16.2, a temperature sensor 22.2, a supply line 37.2 and a return line 38.2.
  • the feed line 37.1 has an outlet opening 32 which is arranged below the radially inner low-voltage winding 3.1.
  • An inlet opening of the return line 38.1 is directly connected to a winding superstructure 9.1 of the winding 3.1.
  • the winding superstructure 9.1 is fluidically sealed, which means that the flow of the insulating fluid 30 is guided by the winding superstructure.
  • the return line 38.1 is connected to the expansion vessel 18 via a connecting line, which in turn is connected to the interior of the vessel 14 of the transformer 1 via a second connecting line.
  • the supply line 37.2 of the second cooling unit opens with its outlet opening directly into the side wall of the vessel 14.
  • the return line 38.2 is connected near the upper edge of the vessel.
  • the inner wall of the thermal barrier 4 thus delimits a first cooling space in which the low-voltage winding 3.1 is arranged.
  • the insulating fluid 30 cooled by the first cooling unit 15.1, 16.1, 37.1, 38.1 is fed via the sealed winding substructure 8.1 directly to the low-voltage winding 3.1 and from there directly back to the cooling register 15.1.
  • the hydraulic coupling of the cooling spaces takes place only via the expansion vessel 18. Different cooling space temperatures arise in the cooling spaces. The Insulations are adapted to these cold room temperatures.
  • the temperature sensors 22.1 and 22.2 are each connected to a control unit (not shown in the figures) via a signal line. If the temperature of the insulating fluid 30 detected by the temperature sensors 22.1 or 22.2 exceeds a threshold value previously set for the respective partial winding 3.1 or 3.2, the control unit increases the output of the circulating pump and thus the output of the respective cooling unit.
  • the threshold values were determined depending on the thermal class of the insulating materials of the respective partial windings.
  • FIG. 2 shows an embodiment of the electrical device 1 according to the invention, in which the hydraulic coupling of the cooling circuits takes place via the upper winding structures 9.1, 9.2 of the partial windings 3.1, 3.2, which are open at the top.
  • a mixture of the insulating fluid 30 occurs above the partial windings 3.1 and 3.2.
  • the insulating fluid 30 is cooled differently in the cooling units assigned to each partial winding 3.1, 3.2.
  • a higher cooling effort is operated.
  • the insulating fluid 30 is cooled to a lower temperature.
  • the cooling space of the partial winding 3.1 and the core 2 are included in the cooling circuit formed by the cooler 15.2.
  • the design of the core 2 for higher temperatures requires only very little effort, since no molded parts are required and an electrical field stress does not have to be taken into account. As a result, the core 2 is also exposed to higher operating temperatures.
  • the supply of the insulating fluid 30 cooled in separate cooling units to the partial windings 3.1 and 3.2 takes place via the winding substructure 8.1, 8.2 of the respective partial winding 3.1 and 3.2.
  • the winding substructure 8.1, 8.2 built up in layers in each case is used for the separate supply of the insulating fluid 30 to the partial windings 3.1, 3.2 separated by the thermal barrier.
  • the insulating disks of the respective winding substructure 8.1, 8.2, not shown in detail here, are designed in such a way that a separation of the flow of the insulating fluid 30 to the respective partial windings 3.1 and 3.2 is provided.
  • the winding substructures 8.1 and 8.2 are sealed against one another. Furthermore, at least one connecting line 37.1 is provided, which extends between the cooling unit 15.1, 16.1 and the winding substructure 8.2, so that the flow of the cooled insulating fluid is sealed off from the interior of the vessel 14.
  • the cooling register 15.1 is connected directly to the winding substructure 8.2 via a pipe 37.1.
  • the spaces 40 between the partial windings 3.2 and the vessel 14 that are not required for cooling or for guiding the insulating fluid 30 are closed by means of enclosures 11.2 to avoid bypasses.
  • FIG 3 shows a further embodiment of the invention with two cooling spaces separated by the thermal barrier 4.
  • the thermal barrier 4 comprises cylindrical sections 4.1 and 4.2 and a partition 4.5.
  • the thermal barrier 4 made of a thermally insulating material causes a thermal and fluidic decoupling of the radially outer partial winding 3.2 from the inner partial winding 3.1 and the core 2 of the transformer 1.
  • the decoupling is achieved by separating the insulating fluid flows both cooling circuits achieved by means of the thermal barrier 4.
  • an electrical barrier 7 is integrated into the barrier 4 as a section.
  • the winding substructure 8.2 of the partial winding 3.2 is fluidically connected to the supply line 37.2, which leads to the cooler register 15.2 of the second cooling unit arranged outside the vessel.
  • the radially inner partial winding 3.1 and the cooling channels of the core 2 are open to the fluid space of the vessel 14.
  • the supply line 37.1 of the first cooling register 15.1 is connected to the vessel 14 at a level below the lower edge of the partial winding 3.1.
  • the inner partial winding 3.1 and the core 2 are thus supplied with cooled insulating fluid 30 by a “free” flow that is not guided.
  • each partial winding has a winding superstructure 9.1, 9.2.
  • Each winding superstructure 9.1 and 9.2 is open to the fluid space of the vessel 14. Through the openings of their winding superstructure 9.1, 9.2, both cooling spaces are hydraulically connected to one another via the interior of the vessel, ie the fluid space of the vessel 14.
  • the interior of the vessel 14 and thus both cooling spaces are connected to the expansion vessel 18. It occurs within the said fluid spaces of the transformer 1 Due to the temperature dependence of the density of the insulating fluid 30 to form a thermal stratification of the insulating fluid 30. This thermal stratification is reinforced by the high viscosity of the insulating fluid 30 used and the very low flow velocities in the large cross section. In the special embodiment, this effect is used for the thermal separation of the two cooling circuits.
  • the connection of the return line 38.2 to the cooling register 15.2 is arranged below the connection of the return line 38.1 to the cooling register 15.1.
  • a further section 4.5 of the thermal barrier 4 is provided in the usually open area above the windings. This section 4.5 projects beyond the electrical barrier 7.
  • the vertical distance H5 from the upper edge of section 4.5 of the thermal barrier 4 to the return line 38.2 is a multiple of the flow-limiting diameter of the return line 38.2. This prevents insulating fluid 30, which has a significantly higher temperature and which has flowed through the low-voltage winding 3.1, from getting into the return line 38.2.
  • potential undesired flow channels 10.5, for example between sections 7.5 of the barrier system 4 and the electrical barrier 7, are completely or partially closed at one of their ends by inserts made of insulating material.
  • the partial windings 3.1 and 3.2 form vertically superposed temperature ranges 5.1, 5.2, 5.3 and 6.1, 6.2 within the cooling chambers, which are equipped with electrical insulation made of insulating materials that have a different thermal load capacity from temperature range to temperature range.
  • the thermal load capacity of the insulating materials in the temperature range 5.1 through which the insulating fluid 30 first flows is lower than the insulating materials the downstream temperature ranges in the direction of flow.
  • insulating materials of different thermal classes can be used at least partially within the temperature ranges.
  • the thermal load capacity of an insulating material can be lower if it maintains the necessary distance to the hottest point of the temperature range, for example to a certain winding position.
  • the thermal class can be graded within a temperature range 5.1, depending on whether the insulating material is used as conductor insulation, spacer, potential control ring or barrier.
  • This arrangement can be used for a wide variety of insulating materials and thus different temperature ranges.
  • An exemplary assignment of the thermal classes to the temperature ranges shown in the exemplary embodiment is given below.
  • an insulating fluid based on an ester is used.
  • spacer is intended to include radial and axial spacers such as strips, tabs, intermediate layers or the like.
  • barrier system is intended to include barriers, angle rings, caps, discs, insulating cylinders or the like.
  • the grading of the thermal performance of the insulating materials can also be done within the thermal classes EN 60085, there is a multitude of possibilities, for example a graduation in differences of less than 10K is also possible.
  • the hot spots of the temperature ranges are equipped with thermal sensors 25.1, 25.2, 25.3, 26.1, 26.2, which are each connected to a control unit (not shown in the figure).
  • a sensor 27, 28 for measuring the maximum temperature of the insulating liquid 30 is also arranged in the area of the respective outlet opening in the winding superstructure 9.1 or 9.2.
  • the hot spots of all temperature ranges are therefore equipped with thermal sensors and the signals are fed to a control unit.
  • Each of these signals is assigned a threshold value tailored to the thermal class of the insulating materials of the corresponding winding area. If one of the temperature signals exceeds the threshold value assigned to it, a control signal is generated. Depending on the design, this can trigger a warning signal, shutdown and lower the load of the trigger electrical device or be used to control the cooling system.
  • Different threshold values for cooling system control, warning and triggering are preferably assigned to the signal of each temperature sensor 25.1, 25.2, 25.3, 26.1, 26.2.
  • Fig. 4 shows a further embodiment in which one cooling unit is designed as an active cooling unit and has a circulation pump 16.2, while the other cooling unit is a passive cooling unit 15.1, in which the insulating fluid 30 is circulated through the cooling register 15.1 due to a temperature difference that occurs.
  • the winding 3.2 with the higher high-voltage requirements that is to say the winding with a high proportion of insulating materials and insulating parts that are complex to manufacture, is forcefully cooled by the active cooling unit 15.2, 16.2.
  • the partial winding 3.2 is again enclosed by cylindrical sections 4.1 of the thermal barrier 4.
  • the cooled insulating fluid 30 is supplied via the fluidically sealed winding substructure 8.2, which is connected to the cooling unit 15.2 and the pump 16.2 via the supply line 37.2.
  • the vessel 14 is also connected to the cooling register 15.1.
  • the more strongly cooled partial winding 3.2 is provided with insulating materials of a low thermal class. Since large differences in the temperatures of the insulating fluid 30 inside and outside the thermal barrier 4 occur during the operation of a transformer 1 shown, additional barrier sections 4.6 are provided which prevent fluid flow directly on the wall of the barrier 4.2 and thus reduce the thermal influence on the partial winding 3.2 .
  • electrical barriers and angular rings that follow the barrier section 4.2 are provided with shims which prevent the fluid flow within the channel between the barriers.
  • Figure 5 shows an embodiment of a transformer 1 with natural cooling (ONAN cooling).
  • ONAN cooling natural cooling
  • the insulating fluid 30 heated by the partial windings 3.1, 3.2 rises due to its lower density compared to the insulating fluid 30 in the wider vicinity of the winding and is replaced by cold insulating fluid 30 flowing in from below.
  • the difference in weight between the warm column of liquid in the winding channels and the colder column of liquid in the cooling register 15.1 or 15.2 creates a pressure difference which serves as the driving force for the fluid circuit.
  • a higher geometric arrangement of the cold insulating fluid column of the cooling register leads to an increase in the pressure difference that drives the coolant flow.
  • the cooling register 15.1 which supplies the winding 3.1 with cooled insulating fluid, is arranged at a greater distance from the center of the winding 3.1 than the cooling register 15.2, which is provided for supplying the partial winding 3.2 and the core 2.
  • This height offset is described here - due to the fixed distance between the partial winding and a floor level defined by the bottom of the vessel - by the distance between the respective cooling register and the said floor level. These different heights are therefore taken into account here as the perpendicular distance H1, H2 of the respective cooling register 15.1, 15.2 to the floor plane which is defined by the floor of the vessel 14.
  • H1 is greater than H2. Since both partial windings 3.1 and 3.2 are supported on the lower yoke of the core 4, their centers are approximately the same height. Accordingly, the distance between the center of the first cooler 15.1 and the center of the first winding 3.1 is greater than the distance between the center of the second cooler 15.2 and the center of the second winding 3.2.
  • the cooled insulating fluid 30 is supplied to the winding 3.1 connected to the higher-level cooling unit 15.1 via the winding substructure 8.1 which is fluidically sealed for this purpose.
  • the insulating fluid flow is thus adapted to the different operating temperatures of the two partial windings and their different flow resistances.
  • the cooling register 15.1 and / or 15.2 can be equipped with fans within the scope of the invention.
  • FIG 6 shows a further embodiment of the electrical device 1 according to the invention, which differs from that in Figure 5
  • the exemplary embodiment shown differs in that the cooling registers 15.1 and 15.2 are equipped with fans 17.
  • the cooling register 15.1 and the cooling register 15.2 have a different number of fans 17.
  • the cooling registers 15.1 and 15.2 are at the same height.
  • the supply line 37.1 of the first cooling unit is arranged exactly below the first partial winding 3.1, that is to say the low-voltage winding.
  • the thermal barrier 4 in contrast to that in FIG Figures 1 to 5 shown embodiments up to the upper wall of the vessel 14, wherein the return line 38.1 the cooling space inside the thermal barrier 4 with the cooling register 15.1 connects.
  • the first cooling unit therefore again forms a closed, circulating cooling circuit, the hydraulic coupling between the first cooling space and the second cooling space, which is defined by the outer wall of the thermal barrier 4 and the inner wall of the vessel 14, taking place via the expansion vessel 18.
  • the corresponding connecting lines are provided for this.
  • both cooling rooms are each equipped with their own Buchholz relay 20 in order to monitor gas accumulations in both cooling rooms.
  • the cooling unit for the cooling space with the partial winding which is equipped with insulating materials of a lower thermal class is switched to fan operation at a lower temperature than the cooler for the partial winding with insulating materials of a higher thermal class.
  • the cooling register 15.2 has a larger number of fans 17 than the cooling register 15.2.
  • FIG 7 shows a further embodiment of the invention of the electrical device 1 according to the invention, which is essentially according to the embodiment Figure 1 corresponds, however, the cooling units 15.1 and 15.2 are each designed as passive cooling units, so that the cooling units each have no circulation pump.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transformer Cooling (AREA)

Description

Die Erfindung betrifft ein elektrisches Gerät zum Anschluss an ein Hochspannungsnetz mit einem Gefäß, das mit einem Isolierfluid befüllt ist, einem in dem Gefäß angeordneten Aktivteil, das einen magnetisierbaren Kern und Teilwicklungen zum Erzeugen eines Magnetfelds in dem Kern aufweist, und einer Kühleinrichtung zum Kühlen des Isolierfluids, wobei wenigstens eine thermische Barriere, die Kühlräume begrenzt, in denen jeweils wenigstens eine Teilwicklung angeordnet ist.The invention relates to an electrical device for connection to a high-voltage network with a vessel which is filled with an insulating fluid, an active part arranged in the vessel which has a magnetizable core and partial windings for generating a magnetic field in the core, and a cooling device for cooling the Isolating fluids, wherein at least one thermal barrier delimits the cooling spaces, in each of which at least one partial winding is arranged.

Ein solches elektrisches Gerät ist aus der EP 2 833 378 A1 bereits bekannt. Dort ist ein Mittelfrequenztransformator gezeigt, der ein mit Isolierfluid befülltes Gehäuse aufweist, in dem ein Aktivteil angeordnet ist. Das Aktivteil verfügt über einen Kern, der einen geschlossenen Magnetkreis ausbildet, wobei ein Abschnitt des Kerns von einer Sekundär- und einer Primärwicklung umschlossen ist, die konzentrisch zueinander angeordnet sind. Um die Frequenz des Mittelfrequenztransformators ohne zusätzlichen Temperaturanstieg erhöhen zu können, ist zwischen der Primär- und der Sekundärwicklung ein isolierendes Element angeordnet, das beidseitig mit einer leitenden Abschirmung ausgerüstet ist. Die leitenden Abschirmungen auf beiden Seiten des isolierenden Elementes sind einmal mit der Primärwicklung und ein anderes Mal mit der Sekundärwicklung elektrisch verbunden, so dass die Ausbildung hoher elektrischer Feldstärken vermieden ist. Aufgrund der thermischen Isolierung erstrecken sich Kühlrohre, die mit einer Kühleinheit verbunden sind, auf beiden Seiten des thermischen Elementes.Such an electrical device is from the EP 2 833 378 A1 already known. A medium-frequency transformer is shown there, which has a housing filled with insulating fluid, in which an active part is arranged. The active part has a core which forms a closed magnetic circuit, a section of the core being enclosed by a secondary and a primary winding which are arranged concentrically to one another. In order to be able to increase the frequency of the medium-frequency transformer without an additional temperature increase, an insulating element is arranged between the primary and secondary windings, which is equipped with a conductive shield on both sides. The conductive shields on both sides of the insulating element are electrically connected on the one hand to the primary winding and on the other to the secondary winding, so that the formation of high electrical field strengths is avoided. Due to the thermal insulation, cooling tubes, which are connected to a cooling unit, extend on both sides of the thermal element.

Die US 2013/0307654 A1 offenbart einen Transformator mit einem Tank und einem Aktivteil, das in dem Tank angeordnet ist. Der Tank oder Kessel ist mit einem Isolierfluid befüllt. Zur Kühlung des Isolierfluids ist eine Kühleinheit bereitgestellt, die mit dem Inneren des Kessels verbunden ist. Die Kühleinheit verfügt über eine Pumpe zum Umwälzen des Isolierfluids und einen Wärmetauscher, der im Luftstrom eines Gebläses der Kühleinheit angeordnet ist. Zur Verbesserung der Kühlleistung ist eine sogenannte Notfall-Kühleinheit vorgesehen, die über ein Rohrleitungssystem verfügt, das sich durch das Innere der Wicklungen erstreckt.The US 2013/0307654 A1 discloses a transformer having a tank and an active part arranged in the tank. The tank or boiler is filled with an insulating fluid. A cooling unit, which is connected to the interior of the boiler, is provided for cooling the insulating fluid. The The cooling unit has a pump for circulating the insulating fluid and a heat exchanger which is arranged in the air flow of a fan of the cooling unit. To improve the cooling performance, a so-called emergency cooling unit is provided, which has a pipeline system that extends through the interior of the windings.

Aus der EP 0 616 341 A1 ist ein Transformator mit Tank und Aktivteil bekannt, wobei das Aktivteil wieder aus einem Kern mit Unter- und Oberspannungswicklung besteht. Der Kessel oder Tank ist mit einem Isolierfluid befüllt, das über eine Kühleinheit umgewälzt wird. Im Inneren des Tanks sind ferner Führungsrohre oder -kanäle ausgebildet, um das Isolierfluid gezielt über die Wicklungen und durch den Kern zu führen.From the EP 0 616 341 A1 a transformer with tank and active part is known, the active part again consisting of a core with low and high voltage winding. The boiler or tank is filled with an insulating fluid that is circulated through a cooling unit. Guide tubes or channels are also formed in the interior of the tank in order to guide the insulating fluid specifically over the windings and through the core.

Transformatoren oder Drosseln, die an ein Hochspannungsnetz angeschlossen sind, weisen jeweils ein Gefäß auf, das in der Regel mit einem mineralischen Isolieröl als Isolierfluid befüllt ist. Bei einem Transformator sind in dem Gefäß eine Unterspannungs- und eine Oberspannungswicklung angeordnet, die über einen magnetisierbaren Kern induktiv miteinander gekoppelt sind. Das Isolierfluid dient neben der Isolierung der Wicklungen auch zur Kühlung des Transformators. Dazu wird das beim Betrieb erwärmte Isolieröl zum Abführen der Wärme über eine außen an das Gefäß angebaute Kühleinrichtung geführt. Die Kühlung ist so eingestellt, dass eine maximale Temperatur des Isolierfluids nicht überschritten wird, da ansonsten die Feststoffisolierungen des Transformators beschädigt werden könnten.Transformers or chokes, which are connected to a high-voltage network, each have a vessel that is usually filled with a mineral insulating oil as the insulating fluid. In the case of a transformer, a low-voltage and a high-voltage winding, which are inductively coupled to one another via a magnetizable core, are arranged in the vessel. In addition to insulating the windings, the insulating fluid also serves to cool the transformer. For this purpose, the insulating oil, which is heated during operation, is conducted to dissipate the heat via a cooling device attached to the outside of the vessel. The cooling is set so that a maximum temperature of the insulating fluid is not exceeded, since otherwise the solid insulation of the transformer could be damaged.

Zunehmend kommen alternative Isolierfluide, wie Ester- oder Silikonöle, in Transformatoren zum Einsatz, die eine höhere Temperaturbeständigkeit aufweisen. Diese alternativen Isolierfluide gewährleisten eine höhere Brandsicherheit und sind zudem biologisch abbaubar. Eine verbesserte Umweltverträglichkeit von Isolierfluiden ist insbesondere für Off-Shore-Anwendungen erforderlich. Auf Grund der verbesserten thermischen Beständigkeit dieser alternativen Isolierfluide kann der Transformator bei höheren Temperaturen betrieben werden. In diesem Zusammenhang sei auf die Norm IEEE 1276(1997) verwiesen.Alternative insulating fluids, such as ester or silicone oils, are increasingly being used in transformers, which have a higher temperature resistance. These alternative insulating fluids ensure a higher level of fire safety and are also biodegradable. Improved environmental compatibility of insulating fluids is particularly necessary for off-shore applications. Due to the improved thermal resistance of these alternative insulating fluids, the transformer can be operated at higher temperatures. In this context, reference is made to the IEEE 1276 (1997) standard.

Neben den konventionellen, also derzeit überwiegend eingesetzten, Isoliersystemen und Materialien sind so genannte Hochtemperaturisolierungen für elektrische Geräte bekannt. Diese sind jedoch kostenintensiv. Aus diesem Grunde wurden so genannte Hybridlösungen vorgeschlagen, bei denen sowohl Hochtemperaturwerkstoffe als auch übliche Werkstoffe als Isolierung eingesetzt wurden. Beispielsweise weist das Barrierensystem der Isolierung konventionelle Isolierwerkstoffe auf, während die Leiterwicklungsisolierung durch Hochtemperaturwerkstoffe erfolgt. Den Hybridlösungen haftet jedoch der Nachteil an, dass trotz des Einsatzes kostspieliger Hochtemperaturisolierwerkstoffe die Betriebstemperatur des Isolierfluids aufgrund der immer noch verwendeten konventionellen Isolierwerkstoffe deutlich unter der Temperatur liegt, die bei ausschließlichem Einsatz von Hochtemperaturisolierwerkstoffen möglich wäre.In addition to the conventional, ie currently predominantly used, insulation systems and materials, so-called high-temperature insulation for electrical devices is known. However, these are costly. For this reason, so-called hybrid solutions have been proposed, in which both high-temperature materials and conventional materials were used as insulation. For example, the barrier system of the insulation has conventional insulation materials, while the conductor winding insulation is carried out using high-temperature materials. However, the hybrid solutions have the disadvantage that, despite the use of expensive high-temperature insulating materials, the operating temperature of the insulating fluid is significantly below the temperature that would be possible if high-temperature insulating materials were used exclusively due to the conventional insulating materials still being used.

Aufgabe der Erfindung ist es daher, ein elektrisches Gerät der eingangs genannten Art bereitzustellen, das kostengünstig ist und gleichzeitig bei höheren Temperaturen betrieben werden kann.The object of the invention is therefore to provide an electrical device of the type mentioned at the beginning which is inexpensive and at the same time can be operated at higher temperatures.

Die Erfindung löst diese Aufgabe dadurch, dass die Kühleinrichtung wenigstens zwei Kühleinheiten aufweist und jede Kühleinheit zum Kühlen einer zugeordneten Teilwicklung eingerichtet ist, wobei wenigstens eine Teilwicklung Temperaturbereiche aufweist, in denen Isolierstoffe unterschiedlicher thermischer Belastbarkeit angeordnet sind..The invention solves this problem in that the cooling device has at least two cooling units and each cooling unit is set up to cool an associated partial winding, at least one partial winding having temperature ranges in which insulating materials with different thermal load capacities are arranged.

Erfindungsgemäß sorgt eine thermische Barriere im Zusammenspiel mit wenigstens zwei Kühleinheiten dafür, dass zumindest zwei Teilwicklungen in unterschiedlichen Temperaturabschnitten, die hier als Kühlraumtemperaturen bezeichnet sind, betrieben werden können. Die thermische Barriere sorgt für die Ausbildung von wenigstens zwei Kühlräumen, die mit jeweils einer der Kühleinheiten verbunden sind. Die Kühleinheiten können so im Rahmen der Erfindung in den mit ihnen verbundenen Kühlräumen unterschiedliche Kühlraumtemperaturen, also unterschiedliche Temperaturen des Isolierfluids und/oder der Wicklungen, einstellen. Die Kühlraumtemperatur wird zweckmä-βigerweise so eingestellt, dass eine für diesen Kühlraum vorbestimmte maximale Betriebstemperatur nicht überschritten wird. Auf diese Weise ist es möglich, in den Kühlräumen unterschiedliche Isoliermaterialien einzusetzen. Darüber hinaus kann beispielsweise die Teilwicklung, die in einem Kühlraum angeordnet ist, der höhere Kühlraumtemperaturen erlaubt, isolierstoffarm ausgelegt sein.According to the invention, a thermal barrier in interaction with at least two cooling units ensures that at least two partial windings can be operated in different temperature sections, which are referred to here as cold room temperatures. The thermal barrier takes care of that Formation of at least two cooling spaces which are each connected to one of the cooling units. Within the scope of the invention, the cooling units can thus set different cooling space temperatures, that is to say different temperatures of the insulating fluid and / or the windings, in the cooling spaces connected to them. The cooling space temperature is expediently set in such a way that a maximum operating temperature predetermined for this cooling space is not exceeded. In this way it is possible to use different insulating materials in the cold rooms. In addition, for example, the partial winding that is arranged in a cooling space that allows higher cooling space temperatures can be designed to be low in insulating material.

Im Rahmen der Erfindung stellen sich Vorteile ein, wenn in dem Kühlraum, in dem sich bei Normalbetrieb höhere Kühlraumtemperaturen einstellen, eine Teilwicklung angeordnet ist, die für geringere Betriebsspannungen ausgelegt ist. Hier ist beispielsweise der Einsatz von Netzdrilleiterwicklungen möglich.In the context of the invention, there are advantages if a partial winding is arranged in the cooling space in which higher cooling space temperatures occur during normal operation, which partial winding is designed for lower operating voltages. Here, for example, the use of three-phase mains cable windings is possible.

Erfindungsgemäß weisen die Teilwicklungen unterschiedliche Isolierungen auf. So weist beispielsweise eine erste Teilwicklung eine Hochtemperaturisolierung auf, während eine zweite Teilwicklung und alle weiteren Teilwicklungen übliche Isolierungen aus Werkstoffen aufweisen, die für niedrigere Temperaturen ausgelegt sind. Der Begriff "Isolierung" umfasst hier auch Barrierensysteme und Abstandshalter, die neben der Isolierung der Wicklungsleiter eingesetzt werden.According to the invention, the partial windings have different insulations. For example, a first part-winding has high-temperature insulation, while a second part-winding and all further part-windings have the usual insulation made of materials that are designed for lower temperatures. The term “insulation” here also includes barrier systems and spacers that are used in addition to the insulation of the winding conductors.

Weiterhin sind mit verschiedenen Isolierlacken beschichtete Kupferlackdrähte, die selbst hohen Temperaturen Stand halten können, am Markt erhältlich. Dies gilt beispielsweise auch für einen Draht mit einer Beschichtung aus Pyre-ML-polyimid, der bis 220°C thermisch beständig ist. Aufgrund der geringen Dicke seiner Lackschicht ist eine gute Wärmeabgabe des Drahtes an das Isolierfluid gewährleistet.Furthermore, enamelled copper wires coated with various insulating varnishes, which can withstand even high temperatures, are available on the market. This also applies, for example, to a wire with a coating made of Pyre-ML-polyimide, which is thermally stable up to 220 ° C. Due to the small thickness of its lacquer layer, a good heat transfer from the wire to the insulating fluid is guaranteed.

Andere Teilwicklungen, die in einem Kühlraum angeordnet sind, in dem das Isolierfluid eine geringere Kühlraumtemperatur aufweist, sind hingegen zweckmäßigerweise mit den üblichen konventionellen, also nicht hochtemperaturbeständigen Teilwicklungsisolierungen oder Barrierensystemen bestückt.Other partial windings which are arranged in a cooling space in which the insulating fluid has a lower cooling space temperature, however, are expediently equipped with the usual conventional, ie not high temperature resistant partial winding insulation or barrier systems.

Im Rahmen der Erfindung ist vorteilhafterweise das Material des Isolierstoffs in Abhängigkeit der Lage der jeweiligen Isolierung in Bezug auf den so genannten Heißpunkt der Wicklung ausgewählt. Eine Heißpunkttemperatur ist die bei Betrieb des elektrischen Gerätes heißeste Temperatur des mit festem Isolierstoff oder dem Isolierfluid in wärmeleitendem Kontakt stehenden elektrischen Leiters der Teilwicklung. Somit ist beispielsweise die Leiterisolation so ausgewählt, dass das Material auch bei Erreichen der Heißpunkttemperatur nicht beschädigt wird. Die Leiterisolation kann mit anderen Worten der maximalen Wicklungstemperatur standhalten. Feststoffisolationen mit einem gewissen Abstand zu den heißesten Stellen der jeweiligen Teilwicklung, können hingegen, wenn der entsprechende Temperaturgradient dies zulässt, einer niedrigeren thermischen Klasse zugeordnet sein.In the context of the invention, the material of the insulating material is advantageously selected as a function of the position of the respective insulation in relation to the so-called hot point of the winding. A hotspot temperature is the hottest temperature of the electrical conductor of the partial winding which is in thermally conductive contact with the solid insulating material or the insulating fluid when the electrical device is in operation. Thus, for example, the conductor insulation is selected so that the material is not damaged even when the hot spot temperature is reached. In other words, the conductor insulation can withstand the maximum winding temperature. Solid insulation with a certain distance from the hottest points of the respective partial winding, on the other hand, can be assigned to a lower thermal class if the corresponding temperature gradient permits.

Im Rahmen der Erfindung weist die Kühleinrichtung wenigstens zwei Kühleinheiten auf, wobei jede Kühleinheit zum Kühlen eines zugeordneten Kühlraums eingerichtet ist. Durch den Einsatz von zwei Kühleinheiten kann eine der Kühleinheiten beispielsweise über Zu- und Abführungsleitungen mit einer Teilwicklung in einer Weise verbunden werden, dass das von einer Kühleinheit abgekühlte Isolierfluid gezielt über eine ausgewählte Teilwicklung umgewälzt wird und in dem Kühlraum für die Einstellung der erforderlichen Kühlraumtemperatur sorgt.In the context of the invention, the cooling device has at least two cooling units, each cooling unit being set up to cool an associated cooling space. By using two cooling units, one of the cooling units can be connected to a partial winding via supply and discharge lines, for example, in such a way that the insulating fluid cooled by a cooling unit is circulated in a targeted manner via a selected partial winding and ensures that the required cooling room temperature is set in the cooling room .

Da auf Grund der verschiedenen Spannungen der Teilwicklungen jeweils unterschiedliche vertikale Abstände zum Joch des Kernes erforderlich sind, kann der schichtweise aufgebaute Wicklungsunterbau zur gezielten Zuführung des Isolierfluides zu der ausgewählten Teilwicklung genutzt werden. Die Isolierstoffscheiben des Unterbaus sind zweckmäßigerweise so ausgeführt, dass eine Trennung des Flusses des Isolierfluids zu den jeweiligen Teilwicklungen bereitgestellt ist.Since different vertical distances to the yoke of the core are required due to the different voltages of the partial windings, the layered winding substructure can be used for the targeted supply of the insulating fluid to the selected partial winding. The insulating material disks of the substructure are expediently designed in such a way that that a separation of the flow of the insulating fluid to the respective partial windings is provided.

Auf Grund der Trennung der Strömung des Isolierfluides durch die Kühlräume, können die Kühlkreise strömungstechnisch vollständig voneinander getrennt sein, oder aber teilweise einen gemeinsamen Raum nutzen. Dieser Raum kann jeweils strömungstechnisch vor oder hinter den Kühlräumen liegen.Due to the separation of the flow of the insulating fluid through the cooling spaces, the cooling circuits can be completely separated from one another in terms of flow, or they can partially use a common space. In terms of flow, this space can be in front of or behind the cooling rooms.

Vorteilhafterweise bildet die thermische Barriere eine Eintrittsöffnung aus, die an einen Ausgang der Kühleinrichtung angeschlossen ist. Dieser Anschluss oder mit anderen Worten die Verbindung zwischen der jeweiligen Kühleinheit und der Eintrittsöffnung kann im Rahmen der Erfindung beliebig ausgestaltet sein. Wesentlich ist, dass der Hauptteil der aus der jeweiligen Kühleinheit austretende Isolierfluidströmung in die Eintrittsöffnung gelangt.The thermal barrier advantageously forms an inlet opening which is connected to an outlet of the cooling device. This connection, or in other words the connection between the respective cooling unit and the inlet opening, can be designed as desired within the scope of the invention. It is essential that the main part of the insulating fluid flow emerging from the respective cooling unit reaches the inlet opening.

Weitere Vorteile bringt es mit sich, wenn die Eintrittsöffnung von einer thermischen Barriere ausgebildet ist, die einen Kühlraum zumindest teilweise definiert, in dem eine Oberspannungswicklung angeordnet ist. Die Oberspannungswicklung ist aufgrund der höheren Spannung mit einer aufwändigeren Isolierung bestückt. Um dort konventionelle Materialen für die besagte Isolierung einzusetzen, muss die Oberspannungswicklung stärker gekühlt werden als die Unterspannungswicklung, die mit Hochtemperarturwerkstoffen isoliert ist.There are further advantages if the inlet opening is formed by a thermal barrier which at least partially defines a cooling space in which a high-voltage winding is arranged. Due to the higher voltage, the high-voltage winding is equipped with more complex insulation. In order to use conventional materials for the said insulation there, the high-voltage winding must be cooled more than the low-voltage winding, which is insulated with high-temperature materials.

Im Rahmen der Erfindung sind die durch das Barrierensystem voneinander getrennten fluidgefüllten Kühlräume zweckmäßigerweise hydraulisch miteinander verbunden. Diese Verbindung kann über den Anschluss an ein von beiden Kühlräumen genutztes gemeinsames Ausdehnungsgefäß, oder durch eine teilweise offene Gestaltung von Wicklungsunterbauten oder Wicklungsoberbauten erfolgen.In the context of the invention, the fluid-filled cooling spaces separated from one another by the barrier system are expediently hydraulically connected to one another. This connection can be made via the connection to a common expansion vessel used by both cooling chambers, or via a partially open design of winding substructures or winding superstructures.

Gemäß einer diesbezüglichen Weiterentwicklung umschließt die thermische Barriere eine Teilwicklung zumindest abschnittsweise. Die thermische Barriere ist beispielsweise hohlzylindrisch ausgebildet und konzentrisch zu wenigstens einer Teilwicklung angeordnet. Gemäß dieser vorteilhaften Weiterentwicklung bildet die thermische Barriere eine Führung oder mit anderen Worten Kühlkanäle für den Isolierfluidstrom aus, so dass das Isolierfluid über die Teilwicklung geführt wird. Die Kühlkanäle können mäanderförmig ausgeführt sein.According to a further development in this regard, the thermal barrier encloses a partial winding at least in sections. The thermal barrier is designed as a hollow cylinder, for example, and is arranged concentrically with at least one partial winding. According to this advantageous further development, the thermal barrier forms a guide or, in other words, cooling channels for the insulating fluid flow, so that the insulating fluid is guided over the partial winding. The cooling channels can be designed in a meandering shape.

Gemäß einer diesbezüglich zweckmäßigen Weiterentwicklung ist die thermische Barriere zumindest abschnittsweise auch eine elektrische Barriere.According to an expedient further development in this regard, the thermal barrier is also an electrical barrier, at least in sections.

Zweckmäßigerweise ist die erste Teilwicklung eine Unterspannungswicklung und eine zweite Teilwicklung eine Oberspannungswicklung. Die beiden Wicklungen sind konzentrisch zueinander und beispielsweise auch zu einem sich durch die innere Unterspannungswicklung hindurch erstreckenden Kernabschnitt angeordnet. Mit anderen Worten ist das elektrische Gerät gemäß dieser Ausführung der Erfindung ein Transformator mit konzentrischen Ober- und Unterspannungswicklungen als Teilwicklungen. Die Teilwicklungen sind vorteilhafterweise als umfänglich geschlossene zylinderförmige Wicklungen ausgeführt.The first partial winding is expediently a low-voltage winding and a second partial winding is a high-voltage winding. The two windings are concentric with one another and, for example, also with a core section extending through the inner low-voltage winding. In other words, the electrical device according to this embodiment of the invention is a transformer with concentric upper and lower voltage windings as partial windings. The partial windings are advantageously designed as circumferentially closed cylindrical windings.

Gemäß einer diesbezüglichen Variante sind eine erste Kühleinheit zum Kühlen der Unterspannungswicklung und eine zweite Kühleinheit zum Kühlen der Oberspannungswicklung eingerichtet. Wie bereits ausgeführt wurde, ist es hier zweckmäßig, dass die Kühleinrichtung die Oberspannungswicklung mit kälterem Isolierfluid beaufschlagt, so dass diese bei niedrigeren Temperaturen betrieben werden kann. Die Unterspannungswicklung und die Oberspannungswicklung sind dann wiederum mit unterschiedlichen Isolierwerkstoffen als Teilwicklungsisolierung ausgerüstet, die den unterschiedlichen Kühlraumtemperaturen standhalten können.According to a variant in this regard, a first cooling unit for cooling the low-voltage winding and a second cooling unit for cooling the high-voltage winding are set up. As already stated, it is expedient here for the cooling device to apply colder insulating fluid to the high-voltage winding so that it can be operated at lower temperatures. The low-voltage winding and the high-voltage winding are in turn equipped with different insulating materials as partial winding insulation, which can withstand the different cold room temperatures.

Grundsätzlich sind die Kühlräume im Rahmen der Erfindung hydraulisch miteinander gekoppelt. Gemäß einer vorteilhaften Variante hierzu ist der Kühlraum, in dem die Oberspannungswicklung angeordnet ist, mit dem Kühlraum, in dem die Unterspannungswicklung angeordnet ist, über ein Ausdehnungsgefäß hydraulisch miteinander verbunden.In principle, the cooling spaces are hydraulically coupled to one another within the scope of the invention. According to an advantageous variant for this purpose, the cooling space in which the high-voltage winding is arranged is hydraulically connected to the cooling space in which the low-voltage winding is arranged via an expansion vessel.

Gemäß einer Variante ist eine Kühleinheit als geschlossenes umlaufendes Kühlsystem ausgebildet, wobei eine Pumpe zum Umwälzen des Isolierfluids vorgesehen ist. Eine zweite Kühleinheit ist mit dem Innenraum des Gefäßes verbunden, wobei die erste Kühleinheit und der Innenraum des elektrischen Geräts nur über ein Ausdehnungsgefäß miteinander verbunden sind. Gemäß dieser Variante findet eine hydraulische Verbindung der Kühlräume ausschließlich über das Ausdehnungsgefäß statt, das aufgrund der temperaturabhängigen Volumen-Ausdehnung des Isolierfluids ohnehin zwingend erforderlich ist.According to a variant, a cooling unit is designed as a closed circulating cooling system, a pump being provided for circulating the insulating fluid. A second cooling unit is connected to the interior of the vessel, the first cooling unit and the interior of the electrical device being connected to one another only via an expansion vessel. According to this variant, a hydraulic connection of the cooling spaces takes place exclusively via the expansion vessel, which is absolutely necessary anyway due to the temperature-dependent volume expansion of the insulating fluid.

Vorteilhafterweise können die Lücken zwischen den Einzelbarrieren und zwischen Wicklung und Gefäß, welche nicht zur Kühlung oder zur Führung des Isolierfluids benötigt werden, zur Vermeidung von Bypässen, mittels Beilagen verschlossen werden.The gaps between the individual barriers and between the winding and the vessel, which are not required for cooling or for guiding the insulating fluid, can advantageously be closed by means of inserts to avoid bypasses.

Wie bereits ausgeführt wurde, ist es im Rahmen der Erfindung vorteilhaft, dass die Kühleinrichtung über eine Zuführungsleitung verfügt, die eine unterhalb der ersten Teilwicklung und insbesondere unterhalb der Oberspannungswicklung angeordnete Austrittsöffnung ausbildet. Gemäß dieser Variante tritt das abgekühlte Isolierfluid aus der Kühleinrichtung über die Zuführungsleitung aus und wird direkt in den Kühlraum der ersten Teilwicklung eingeführt, so dass die erste Teilwicklung stärker gekühlt wird als die weiteren Teilwicklungen, die der ersten Teilwicklung in Strömungsrichtung des Isolierfluids nachgeordnet sind.As already stated, it is advantageous within the scope of the invention that the cooling device has a feed line which forms an outlet opening arranged below the first partial winding and in particular below the high-voltage winding. According to this variant, the cooled insulating fluid exits the cooling device via the supply line and is introduced directly into the cooling space of the first partial winding, so that the first partial winding is more strongly cooled than the further partial windings that are downstream of the first partial winding in the flow direction of the insulating fluid.

Vorteilhafterweise ist mindestens eine Kühleinheit mit dem Wicklungsunterbau und/oder Wicklungsoberbau einer Teilwicklung so verbunden, dass die bei Normalbetrieb jeweils über die Kühleinheiten geführten Strömungen des Isolierfluids voneinander getrennt sind.At least one cooling unit is advantageously connected to the winding substructure and / or winding superstructure of a partial winding in such a way that, during normal operation, the respective over the cooling units guided flows of the insulating fluid are separated from one another.

Zweckmäßigerweise weist jede Kühleinheit wenigstens ein Kühlregister auf. Der Begriff Kühlregister soll hier auch Radiatoren umfassen. Wenigstens eine oder jede Kühleinheit kann eine passive Kühleinheit sein oder aber eine Umwälzpumpe zum Umwälzen des Isolierfluids über ein Kühlregister aufweisen. Das Kühlregister kann mit einem oder mehreren Lüftern oder Ventilatoren ausgestattet sein.Each cooling unit expediently has at least one cooling register. The term cooling register should also include radiators here. At least one or each cooling unit can be a passive cooling unit or else have a circulation pump for circulating the insulating fluid via a cooling register. The cooling register can be equipped with one or more fans or fans.

Gemäß einer weiteren Variante sind die Kühlregister so mit dem Gefäß des elektrischen Gerätes verbunden, dass diese unterschiedliche lotrechte Abstände zu einer durch die Bodenfläche des Gefäßes definierten Bodenfläche aufweisen. Mit anderen Worten sind die Kühlregister unterschiedlich hoch an dem Gefäß befestigt. Bei einer diesbezüglichen Weiterentwicklung sind die Kühleinheiten passive Kühleinheiten und weisen keine Umwälzpumpe auf. Bei passiven Kühleinheiten wird die Umwälzgeschwindigkeit des Isolierfluids über das Kühlregister neben anderen Einflussgrößen durch den Höhenversatz zwischen dem Mittelpunkt der Warmfluidsäule in den Kühlkanälen der jeweiligen Teilwicklung und dem Mittelpunkt der Kaltfluidsäule des jeweiligen Kühlregisters bestimmt. Da die Teilwicklungen auf dem unteren Joch des Kerns abgestützt sind und somit einen festen Abstand zum Boden aufweisen, kann diese Abhängigkeit der Umwälzgeschwindigkeit von der besagten Höhendifferenz auch mit Hilfe des Abstands des jeweiligen Kühlregisters zur Bodenebene beschrieben werden, die durch den Boden des Gefäßes definiert ist.According to a further variant, the cooling registers are connected to the vessel of the electrical device in such a way that they have different perpendicular distances from a floor surface defined by the base surface of the vessel. In other words, the cooling registers are attached to the vessel at different heights. In a further development in this regard, the cooling units are passive cooling units and do not have a circulation pump. In the case of passive cooling units, the circulation speed of the insulating fluid over the cooling register is determined by the height offset between the center of the warm fluid column in the cooling channels of the respective partial winding and the center of the cold fluid column of the respective cooling register. Since the partial windings are supported on the lower yoke of the core and thus have a fixed distance from the floor, this dependence of the circulation speed on the said height difference can also be described with the aid of the distance of the respective cooling register to the floor plane, which is defined by the bottom of the vessel .

Weitere Komponenten des elektrischen Gerätes, zum Beispiel Stufenschalter, werden entsprechend ihrer jeweiligen zulässigen Betriebstemperatur einem der beiden die Kühlräume durchströmenden Kühlkreisläufe zugeordnet.Further components of the electrical device, for example step switches, are assigned to one of the two cooling circuits flowing through the cooling chambers according to their respective permissible operating temperature.

Vorteilhafterweise weist die Kühleinrichtung eine Steuerungseinheit mit Temperatursensoren auf, wobei die Temperatursensoren zum Erfassen der Temperatur einer Teilwicklung und/oder zum Erfassen der Temperatur des Isolierfluids in einer Teilwicklung eingerichtet sind. Die Steuerungseinheit ist beispielsweise für jede Kühleinheit mit einem Schwellenwert ausgerüstet, so dass die Kühlleistung der jeweiligen Kühleinheit in Abhängigkeit des jeweiligen Schwellenwertes steuerbar ist. Der jeweilige Schwellenwert ist in Abhängigkeit der Temperaturbeständigkeit der Isolierstoffe der Teilwicklungen bestimmt. Erreicht die von den Temperatursensoren erfasste Temperatur den Schwellenwert, steuert die Steuerungseinheit entweder eine Umwälzpumpe oder aber einen Lüfter der jeweiligen Kühleinheit an und erhöht so die Kühlleistung der besagten Kühleinheit.The cooling device advantageously has a control unit with temperature sensors, the temperature sensors are set up to detect the temperature of a partial winding and / or to detect the temperature of the insulating fluid in a partial winding. The control unit is, for example, equipped with a threshold value for each cooling unit, so that the cooling output of the respective cooling unit can be controlled as a function of the respective threshold value. The respective threshold value is determined depending on the temperature resistance of the insulating materials of the partial windings. If the temperature detected by the temperature sensors reaches the threshold value, the control unit controls either a circulating pump or a fan of the respective cooling unit and thus increases the cooling capacity of said cooling unit.

Die Temperatursensoren sind zum Erfassen der Temperatur einer Teilwicklung und/oder zum Erfassen der Temperatur des Isolierfluids eingerichtet. Die Temperatursensoren können daher im Rahmen der Erfindung auch die Temperatur des Wicklungsleiters direkt erfassen.The temperature sensors are set up to detect the temperature of a partial winding and / or to detect the temperature of the insulating fluid. The temperature sensors can therefore also directly detect the temperature of the winding conductor within the scope of the invention.

Gemäß einer weiteren Variante weist wenigstens eine Teilwicklung mehrere Temperaturbereiche auf, in denen Isolierstoffe unterschiedlicher thermischer Belastbarkeit angeordnet sind. Hierbei kann es vorteilhaft sein, wenn in jedem vorgelagerten Temperarturbereich Isolierstoffe mit geringerer thermischer Belastbarkeit angeordnet sind als in nachgelagerten Temperaturbereichen, die in Strömungsrichtung des Isolierfluide hinter dem vorgelagerten Temperaturbereich liegen.According to a further variant, at least one partial winding has several temperature ranges in which insulating materials with different thermal load capacities are arranged. It can be advantageous here if insulating materials with a lower thermal load capacity are arranged in each upstream temperature range than in downstream temperature ranges which lie behind the upstream temperature range in the direction of flow of the insulating fluid.

Bei einer hierzu zweckmäßigen Weiterentwicklung ist in wenigsten zwei Temperaturbereichen jeweils ein Temperatursensor zur Messung einer Heißpunkttemperatur angeordnet, der ausgangsseitig Temperaturmesswerte bereitstellt, die mit einem in Abhängigkeit der im jeweiligen Temperaturbereich eingesetzten Isolierstoffe zuvor festgelegten Schwellenwert verglichen werden, wobei auf der Grundlage dieses Vergleichs ein Steuersignal erzeugt wird. Dieses kann je nach Auslegung ein Warnsignal auslösen, die Abschaltung bewirken, eine Senkung der Last des elektrischen Geräts auslösen oder aber zur Steuerung der Kühlanlage genutzt werden.In an expedient further development for this purpose, a temperature sensor for measuring a hot spot temperature is arranged in at least two temperature ranges, which provides temperature measurement values on the output side that are compared with a threshold value previously defined depending on the insulating materials used in the respective temperature range, a control signal being generated on the basis of this comparison becomes. Depending on the design, this can trigger a warning signal, cause shutdown, a reduction triggered by the load of the electrical device or used to control the cooling system.

Erfindungsgemäß wird der Betrieb bei höheren Temperaturen ermöglicht, wobei eine kostspielige Umstellung beispielsweise der isolierstoffreichen Wicklungsteile einer Oberspannungswicklung auf Hochtemperaturisolierwerkstoffe unterbleiben kann. Darüber hinaus sind eine höhere Stromdichte in den Wicklungsleitern und damit eine deutliche Reduzierung der Baugröße möglich. Eine Erhöhung der Temperatur des Isolierfluides führt im Rahmen der Erfindung zu einer erheblichen Vergrößerung der Temperaturdifferenz zum äußeren Kühlmedium wie beispielsweise Luft oder Wasser. Damit steigt die Effektivität der Kühlung erheblich, so dass das erfindungsgemäße elektrische Gerät kompakter ausgeführt sein kann.According to the invention, operation at higher temperatures is made possible, with an expensive conversion, for example, of the winding parts rich in insulating material of a high-voltage winding to high-temperature insulating materials. In addition, a higher current density in the winding conductors and thus a significant reduction in size are possible. In the context of the invention, an increase in the temperature of the insulating fluid leads to a considerable increase in the temperature difference to the external cooling medium such as air or water. This increases the effectiveness of the cooling considerably, so that the electrical device according to the invention can be made more compact.

Auf Grund der hohen Viskosität von Isolierfluiden auf Ester- und Silikonbasis ergeben sich weiterhin strömungstechnische und kühlungstechnische Vorteile beim Betrieb mit höheren Temperaturen. Es wird eine Optimierung der Verluste für Normallast, bei Bereitstellung eines hohen Überlastspielraumes möglich.Due to the high viscosity of ester and silicone-based insulating fluids, there are also fluidic and cooling advantages when operated at higher temperatures. It is possible to optimize the losses for normal load, provided a high overload margin is provided.

Für bestimmte Anwendungen ermöglicht die hohe Temperaturspreizung der Isolierflüssigkeit den effektiven Einsatz von äußeren Verdampfungskühlern und Kühlern auf der Basis von Wärmerohren.For certain applications, the wide temperature spread of the insulating liquid enables the effective use of external evaporative coolers and coolers based on heat pipes.

Vorteilhafterweise sind mehrere strömungstechnisch verbundene Temperaturbereiche im Kühlraum mit Sensoren zur Messung der Heißpunkttemperatur der Teilwicklung im jeweiligen Temperaturbereich ausgestattet, wobei den Signalen jedes dieser Temperatursensoren jeweils eigene Schwellenwerte zur Auslösung von Steuerfunktionen zugeordnet sind, welche auf die thermische Klasse der in den jeweiligen Temperaturbereichen der Teilwicklung verwendeten Isolierstoffe abgestimmt sind.Advantageously, several fluidically connected temperature ranges in the cooling room are equipped with sensors for measuring the hot spot temperature of the partial winding in the respective temperature range, the signals of each of these temperature sensors being assigned their own threshold values for triggering control functions which relate to the thermal class of the partial winding used in the respective temperature ranges Insulating materials are matched.

Weitere zweckmäßige Ausgestaltungen und Vorteile der Erfindung sind Gegenstand der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfindung unter Bezug auf die Figuren der Zeichnung, wobei gleiche Bezugszeichen auf gleich wirkende Bauteile verweisen und wobei

Figuren 1 bis 7
unterschiedliche Ausführungsbeispiele des erfindungsgemäßen elektrischen Geräts in einer teilweise geschnittenen Seitenansicht schematisch verdeutlichen.
Further useful refinements and advantages of the invention are the subject matter of the following description of exemplary embodiments of the invention with reference to the figures of the drawing, the same reference symbols referring to components that have the same effect and where
Figures 1 to 7
schematically illustrate different embodiments of the electrical device according to the invention in a partially sectioned side view.

Figur 1 zeigt ein erstes Ausführungsbeispiel des erfindungsgemäßen elektrischen Geräts 1 in einer geschnittenen Seitenansicht, wobei das elektrische Gerät als Transformator 1 ausgeführt ist. Der Transformator 1 weist ein Gefäß 14 auf, in dem ein magnetisierbarer Kern 2, eine Unterspannungswicklung 3.1 und eine Oberspannungswicklung 3.2 jeweils als Teilwicklung im Sinne der Erfindung konzentrisch zueinander angeordnet sind. Die besagten Wicklungen 3.1, 3.2 sind hohlzylindrisch ausgestaltet. Die Oberspannungswicklung 3.2 ist über einen figürlich nicht dargestellten Anschluss mit einem Hochspannungsnetz verbindbar, wobei die Unterspannungswicklung 3.1 über eine ebenfalls nicht dargestellte Anschlussleitung mit einem Verteilnetz oder einer Last verbunden werden kann. Die Ober- und Unterspannungswicklung 3.1, 3.2 sind über den magnetisierbaren Kern 2 induktiv miteinander gekoppelt, so dass die Oberspannungswicklung 3.2 in der Unterspannungswicklung 3.1 eine Spannung induziert oder umgekehrt. Figure 1 shows a first exemplary embodiment of the electrical device 1 according to the invention in a sectional side view, the electrical device being designed as a transformer 1. The transformer 1 has a vessel 14 in which a magnetizable core 2, a low-voltage winding 3.1 and a high-voltage winding 3.2 are arranged concentrically to one another as part of the winding according to the invention. Said windings 3.1, 3.2 are designed as a hollow cylinder. The high-voltage winding 3.2 can be connected to a high-voltage network via a connection (not shown in the figures), and the low-voltage winding 3.1 can be connected to a distribution network or a load via a connection line, also not shown. The high and low voltage windings 3.1, 3.2 are inductively coupled to one another via the magnetizable core 2, so that the high voltage winding 3.2 induces a voltage in the low voltage winding 3.1 or vice versa.

Das Gefäß 14 ist mit einem Isolierfluid 30 und in dem vorliegenden Fall einem handelsüblichen Ester befüllt. Eine thermische Barriere 4 ist zwischen der Oberspannungswicklung 3.2 und der Unterspannungswicklung 3.1 angeordnet. Die thermische Barriere 4 ist umfänglich geschlossen und ebenfalls hohlzylindrisch ausgebildet. Dabei umschließt sie die ebenfalls zylindrische Unterspannungswicklung 3.1 vollständig. Oberhalb des Gefäßes 14 ist ein Ausdehnungsgefäß 18 angeordnet, das zur Aufnahme der temperaturbedingten Volumenschwankungen des Isolierfluids 30 dient.The vessel 14 is filled with an insulating fluid 30 and, in the present case, a commercially available ester. A thermal barrier 4 is arranged between the high-voltage winding 3.2 and the low-voltage winding 3.1. The thermal barrier 4 is circumferentially closed and also designed as a hollow cylinder. It completely encloses the also cylindrical low voltage winding 3.1. An expansion vessel 18 is arranged above the vessel 14, which serves to absorb the temperature-related fluctuations in volume of the insulating fluid 30.

Zum Kühlen der Teilwicklungen 3.1 und 3.2 ist eine Kühleinrichtung vorgesehen, die zwei Kühleinheiten aufweist, wobei eine erste Kühleinheit ein Kühlregister 15.1, eine Umwälzpumpe 16.1 sowie einen Temperatursensor 22.1, eine Zuführungsleitung 37.1 sowie eine Rückführungsleitung 38.1 aufweist. Die zweite Kühleinheit verfügt über ein Kühlregister 15.2, eine Umwälzpumpe 16.2, einen Temperatursensor 22.2, eine Zuführungsleitung 37.2 sowie eine Rückführungsleitung 38.2. Die Zuführungsleitung 37.1 weist eine Austrittsöffnung 32 auf, die unterhalb der radial innen liegenden Unterspannungswicklung 3.1 angeordnet ist. Eine Eintrittsöffnung der Rückführungsleitung 38.1 ist direkt mit einem Wicklungsoberbau 9.1 der Wicklung 3.1 verbunden. Der Wicklungsoberbau 9.1 ist strömungstechnisch abgedichtet, damit ist gemeint, dass die Strömung des Isolierfluids 30 von dem Wicklungsoberbau geführt ist. Die Rückführungsleitung 38.1 ist über eine Verbindungsleitung mit dem Ausdehnungsgefäß 18 verbunden, das wiederum über eine zweite Verbindungsleitung mit dem Innenraum des Gefäßes 14 des Transformators 1 verbunden ist. Die Zuführungsleitung 37.2 der zweiten Kühleinheit mündet mit ihrer Austrittsöffnung direkt in der Seitenwand des Gefäßes 14. Die Rückführungsleitung 38.2 ist nahe der Oberkante des Gefäßes angeschlossen. Durch die Innenwand der thermischen Barriere 4 ist somit ein erster Kühlraum begrenzt, in dem die Unterspannungswicklung 3.1 angeordnet ist. Die Außenwand der thermischen Barriere 4 begrenzt zusammen mit dem Gefäß 14 einen zweiten Kühlraum, in dem die Oberspannungswicklung 3.2 liegt. Gemäß dem in Figur 1 dargestellten Ausführungsbeispiel wird das von der ersten Kühleinheit 15.1, 16.1, 37.1, 38.1 gekühlte Isolierfluid 30 über den abgedichteten Wicklungsunterbau 8.1 direkt zur Unterspannungswicklung 3.1 und von dort aus direkt zurück zum Kühlregister 15.1 geführt. Die hydraulische Kopplung der Kühlräume erfolgt in diesem Ausführungsbeispiel nur über das Ausdehnungsgefäß 18. Es stellen sich unterschiedliche Kühlraumtemperaturen in den Kühlräumen ein. Die Isolierungen sind an diese Kühlraumtemperaturen jeweils angepasst.To cool the partial windings 3.1 and 3.2, a cooling device is provided which has two cooling units, a first cooling unit having a cooling register 15.1, a circulating pump 16.1 and a temperature sensor 22.1, a supply line 37.1 and a return line 38.1. The second cooling unit has a cooling register 15.2, a circulation pump 16.2, a temperature sensor 22.2, a supply line 37.2 and a return line 38.2. The feed line 37.1 has an outlet opening 32 which is arranged below the radially inner low-voltage winding 3.1. An inlet opening of the return line 38.1 is directly connected to a winding superstructure 9.1 of the winding 3.1. The winding superstructure 9.1 is fluidically sealed, which means that the flow of the insulating fluid 30 is guided by the winding superstructure. The return line 38.1 is connected to the expansion vessel 18 via a connecting line, which in turn is connected to the interior of the vessel 14 of the transformer 1 via a second connecting line. The supply line 37.2 of the second cooling unit opens with its outlet opening directly into the side wall of the vessel 14. The return line 38.2 is connected near the upper edge of the vessel. The inner wall of the thermal barrier 4 thus delimits a first cooling space in which the low-voltage winding 3.1 is arranged. The outer wall of the thermal barrier 4, together with the vessel 14, delimits a second cooling space in which the high-voltage winding 3.2 is located. According to the in Figure 1 The illustrated embodiment, the insulating fluid 30 cooled by the first cooling unit 15.1, 16.1, 37.1, 38.1 is fed via the sealed winding substructure 8.1 directly to the low-voltage winding 3.1 and from there directly back to the cooling register 15.1. In this exemplary embodiment, the hydraulic coupling of the cooling spaces takes place only via the expansion vessel 18. Different cooling space temperatures arise in the cooling spaces. The Insulations are adapted to these cold room temperatures.

Die Temperatursensoren 22.1 und 22.2 sind jeweils mit einer figürlich nicht dargestellten Steuerungseinheit über eine Signalleitung verbunden. Übersteigt die von den Temperatursensoren 22.1 bzw. 22.2 erfasste Temperatur des Isolierfluids 30 einen zuvor für die jeweilige Teilwicklung 3.1 oder 3.2 festgelegten Schwellenwert, erhöht die Steuerungseinheit die Leistung der Umwälzpumpe und somit die Leistung der jeweiligen Kühleinheit. Die Schwellenwerte wurden in Abhängigkeit der thermischen Klasse der Isolierstoffe der jeweiligen Teilwicklungen ermittelt.The temperature sensors 22.1 and 22.2 are each connected to a control unit (not shown in the figures) via a signal line. If the temperature of the insulating fluid 30 detected by the temperature sensors 22.1 or 22.2 exceeds a threshold value previously set for the respective partial winding 3.1 or 3.2, the control unit increases the output of the circulating pump and thus the output of the respective cooling unit. The threshold values were determined depending on the thermal class of the insulating materials of the respective partial windings.

Figur 2 zeigt ein Ausführungsbeispiel des erfindungsgemäßen elektrischen Geräts 1, bei dem die hydraulische Kopplung der Kühlkreise über die nach oben offenen Wicklungsoberbauten 9.1, 9.2 der Teilwicklungen 3.1, 3.2 erfolgt. Es kommt oberhalb der Teilwicklungen 3.1 und 3.2 zu einer Mischung des Isolierfluides 30. In den jeweils einer Teilwicklung 3.1, 3.2 zugeordneten Kühleinheiten wird das Isolierfluid 30 unterschiedlich gekühlt. So wird im Kühlkreis für die Teilwicklung 3.2 deren Wicklungsleiter mit einer aufwändigen Hochspannungsisolation ausgerüstet sind, ein höherer Kühlaufwand betrieben. Mit anderen Worten wird das Isolierfluid 30 auf eine tiefere Temperatur gekühlt. Figure 2 shows an embodiment of the electrical device 1 according to the invention, in which the hydraulic coupling of the cooling circuits takes place via the upper winding structures 9.1, 9.2 of the partial windings 3.1, 3.2, which are open at the top. A mixture of the insulating fluid 30 occurs above the partial windings 3.1 and 3.2. The insulating fluid 30 is cooled differently in the cooling units assigned to each partial winding 3.1, 3.2. Thus, in the cooling circuit for the partial winding 3.2, whose winding conductors are equipped with complex high-voltage insulation, a higher cooling effort is operated. In other words, the insulating fluid 30 is cooled to a lower temperature.

Der Kühlraum der Teilwicklung 3.1, sowie der Kern 2 werden in den über den Kühler 15.2 gebildeten Kühlkreislauf einbezogen.The cooling space of the partial winding 3.1 and the core 2 are included in the cooling circuit formed by the cooler 15.2.

Die Teilwicklung 3.1 mit geringeren Anforderungen an deren Spannungsfestigkeit, die also einen im Vergleich zur anderen Teilwicklung geringen Anteil an Isolierwerkstoffen aufweist, ist mit einer Isolation einer höheren thermischen Klasse ausgestattet und kann so bei höherer Temperatur betrieben werden. Die Ausstattung dieser Teilwicklung mit Hochtemperaturisolierstoffen erfordert nur geringe Kosten. Im Rahmen der Erfindung ist es zweckmäßig Teilwicklungen mit einer vergleichsweise geringen Spannungsfestigkeit bei einer höheren Temperatur zu betreiben, als die Teilwicklungen mit einer hohen Spannungsfestigkeit.The partial winding 3.1 with lower demands on its dielectric strength, which therefore has a low proportion of insulating materials compared to the other partial winding, is equipped with an insulation of a higher thermal class and can thus be operated at a higher temperature. Equipping this partial winding with high-temperature insulating materials only requires low costs. In the context of the invention, it is useful to have partial windings with a comparative low dielectric strength to operate at a higher temperature than the partial windings with a high dielectric strength.

Die Auslegung des Kernes 2 auf höhere Temperaturen erfordert nur einen sehr geringen Aufwand, da keine Formteile erforderlich sind und eine elektrische Feldbeanspruchung nicht berücksichtigt werden muss. Demzufolge wird der Kern 2 ebenfalls höheren Betriebstemperaturen ausgesetzt.The design of the core 2 for higher temperatures requires only very little effort, since no molded parts are required and an electrical field stress does not have to be taken into account. As a result, the core 2 is also exposed to higher operating temperatures.

Die Zufuhr des in getrennten Kühleinheiten gekühlten Isolierfluides 30 zu den Teilwicklungen 3.1 und 3.2 erfolgt über den Wicklungsunterbau 8.1, 8.2 der jeweiligen Teilwicklung 3.1 bzw. 3.2.The supply of the insulating fluid 30 cooled in separate cooling units to the partial windings 3.1 and 3.2 takes place via the winding substructure 8.1, 8.2 of the respective partial winding 3.1 and 3.2.

Der jeweils schichtweise aufgebaute Wicklungsunterbau 8.1, 8.2 wird zur getrennten Zuführung des Isolierfluides 30 zu den durch die thermische Barriere getrennten Teilwicklungen 3.1, 3.2 genutzt. Die hier nicht im Detail dargestellten Isolierstoffscheiben des jeweiligen Wicklungsunterbaus 8.1, 8.2 sind so ausgestaltet, dass eine Trennung der Strömung des Isolierfluids 30 zu den jeweiligen Teilwicklungen 3.1 und 3.2 bereitgestellt ist.The winding substructure 8.1, 8.2 built up in layers in each case is used for the separate supply of the insulating fluid 30 to the partial windings 3.1, 3.2 separated by the thermal barrier. The insulating disks of the respective winding substructure 8.1, 8.2, not shown in detail here, are designed in such a way that a separation of the flow of the insulating fluid 30 to the respective partial windings 3.1 and 3.2 is provided.

Zur Entkopplung der Fluidströmungen sind die Wicklungsunterbauten 8.1 und 8.2 gegeneinander abgedichtet. Weiterhin ist zumindest eine Verbindungsleitung 37.1 vorgesehen, die sich zwischen der Kühleinheit 15.1, 16.1 und dem Wicklungsunterbau 8.2 erstreckt, so dass die Strömung des gekühlten Isolierfluids gegenüber dem Innenraum des Gefäßes 14 abgedichtet ist. Im Ausführungsbeispiel ist das Kühlregister 15.1 über eine Rohrleitung 37.1 direkt mit dem Wicklungsunterbau 8.2 verbunden.To decouple the fluid flows, the winding substructures 8.1 and 8.2 are sealed against one another. Furthermore, at least one connecting line 37.1 is provided, which extends between the cooling unit 15.1, 16.1 and the winding substructure 8.2, so that the flow of the cooled insulating fluid is sealed off from the interior of the vessel 14. In the exemplary embodiment, the cooling register 15.1 is connected directly to the winding substructure 8.2 via a pipe 37.1.

Im Ausführungsbeispiel sind die nicht zur Kühlung oder zur Führung des Isolierfluids 30 benötigten Räume 40 zwischen der Teilwicklungen 3.2 und dem Gefäß 14 zur Vermeidung von Bypässen mittels Beilagen 11.2 verschlossen.In the exemplary embodiment, the spaces 40 between the partial windings 3.2 and the vessel 14 that are not required for cooling or for guiding the insulating fluid 30 are closed by means of enclosures 11.2 to avoid bypasses.

Figur 3 zeigt ein weiteres Ausführungsbeispiel der Erfindung mit zwei durch die thermische Barriere 4 getrennten Kühlräumen. Die thermische Barriere 4 umfasst zylindrische Abschnitte 4.1 und 4.2 sowie eine Trennwand 4.5. Im gezeigten Ausführungsbeispiel bewirkt die aus einem thermisch isolierenden Material hergestellte thermische Barriere 4 eine thermische und strömungstechnische Entkopplung der radial außen liegenden Teilwicklung 3.2 von der innen liegenden Teilwicklung 3.1 und dem Kern 2 des Transformators 1. Die Entkopplung wird mit anderen Worten durch die Trennung der Isolierfluidströme beider Kühlkreise mittels der thermischen Barriere 4 erreicht. Figure 3 shows a further embodiment of the invention with two cooling spaces separated by the thermal barrier 4. The thermal barrier 4 comprises cylindrical sections 4.1 and 4.2 and a partition 4.5. In the embodiment shown, the thermal barrier 4 made of a thermally insulating material causes a thermal and fluidic decoupling of the radially outer partial winding 3.2 from the inner partial winding 3.1 and the core 2 of the transformer 1. In other words, the decoupling is achieved by separating the insulating fluid flows both cooling circuits achieved by means of the thermal barrier 4.

Im gezeigten Ausführungsbeispiel ist eine elektrische Barriere 7 als Abschnitt in die Barriere 4 integriert. Zur thermischen Trennung der Isolierfluidströmung wird der Wicklungsunterbau 8.2 der Teilwicklung 3.2 strömungstechnisch mit der Zuführungsleitung 37.2 verbunden, welche zum außerhalb des Gefäßes angeordneten Kühlerregister 15.2 der zweiten Kühleinheit führt. Die radial innen liegende Teilwicklung 3.1 und die Kühlkanäle des Kernes 2 liegen zum Fluidraum des Gefäßes 14 hin offen. Weiterhin wird die Zuführungsleitung 37.1 des ersten Kühlregisters 15.1 in einer Höhe unterhalb der Unterkante der Teilwicklung 3.1 mit dem Gefäß 14 verbunden. Die innenliegende Teilwicklung 3.1 und der Kern 2 werden somit durch "freie" also nicht geführte Strömung mit gekühltem Isolierfluid 30 versorgt. Jede Teilwicklung verfügt neben einem Wicklungsunterbau 8.1 beziehungsweise 8.2 über einen Wicklungsoberbau 9.1, 9.2. Jeder Wicklungsoberbau 9.1 und 9.2 liegt offen zum Fluidraum des Gefäßes 14. Durch die Öffnungen ihres Wicklungsoberbaus 9.1, 9.2 sind im Ausführungsbeispiel beide Kühlräume über das Gefäßinnere also den Fluidraum des Gefäßes 14 hydraulisch miteinander verbunden.In the exemplary embodiment shown, an electrical barrier 7 is integrated into the barrier 4 as a section. For the thermal separation of the insulating fluid flow, the winding substructure 8.2 of the partial winding 3.2 is fluidically connected to the supply line 37.2, which leads to the cooler register 15.2 of the second cooling unit arranged outside the vessel. The radially inner partial winding 3.1 and the cooling channels of the core 2 are open to the fluid space of the vessel 14. Furthermore, the supply line 37.1 of the first cooling register 15.1 is connected to the vessel 14 at a level below the lower edge of the partial winding 3.1. The inner partial winding 3.1 and the core 2 are thus supplied with cooled insulating fluid 30 by a “free” flow that is not guided. In addition to a winding substructure 8.1 or 8.2, each partial winding has a winding superstructure 9.1, 9.2. Each winding superstructure 9.1 and 9.2 is open to the fluid space of the vessel 14. Through the openings of their winding superstructure 9.1, 9.2, both cooling spaces are hydraulically connected to one another via the interior of the vessel, ie the fluid space of the vessel 14.

Zur Aufnahme der thermisch bedingten Volumenschwankungen des Isolierfluides 30 sind der Innenraum des Gefäßes 14 und somit beide Kühlräume mit dem Ausdehnungsgefäß 18 verbunden. Innerhalb der besagten Fluidräume des Transformators 1 kommt es auf Grund der Temperaturabhängigkeit der Dichte des Isolierfluids 30 zu einer thermischen Schichtung des Isolierfluids 30. Diese thermische Schichtung wird durch eine hohe Viskosität des eingesetzten Isolierfluids 30 und die sehr geringen Strömungsgeschwindigkeiten im großen Querschnitt verstärkt. Im speziellen Ausführungsbeispiel wird dieser Effekt zur thermischen Trennung der beiden Kühlkreisläufe genutzt. Dazu erfolgt erfindungsgemäß die Anordnung des Anschlusses der Rückführungsleitung 38.2 zum Kühlregister 15.2 unterhalb des Anschlusses der Rückführungsleitung 38.1 zum Kühlregister 15.1. Um eine Durchmischung des unterschiedlich stark erwärmten Isolierfluids 30 zu vermeiden, ist im üblicherweise offenen Bereich oberhalb der Wicklungen ein weiterer Abschnitt 4.5 der thermischen Barriere 4 vorgesehen. Dieser Abschnitt 4.5 überragt die elektrische Barriere 7. Im Ausführungsbeispiel beträgt der vertikale Abstand H5 von der Oberkante des Abschnitts 4.5 der thermischen Barriere 4 zur Rückführungsleitung 38.2 ein Vielfaches des die Strömung begrenzenden Durchmessers der Rückführungsleitung 38.2. Damit wird verhindert, dass deutlich höher temperiertes Isolierfluid 30, welches die Unterspannungswicklung 3.1 durchströmt hat, in die Rückführungsleitung 38.2 gelangt.In order to absorb the thermally induced fluctuations in volume of the insulating fluid 30, the interior of the vessel 14 and thus both cooling spaces are connected to the expansion vessel 18. It occurs within the said fluid spaces of the transformer 1 Due to the temperature dependence of the density of the insulating fluid 30 to form a thermal stratification of the insulating fluid 30. This thermal stratification is reinforced by the high viscosity of the insulating fluid 30 used and the very low flow velocities in the large cross section. In the special embodiment, this effect is used for the thermal separation of the two cooling circuits. For this purpose, according to the invention, the connection of the return line 38.2 to the cooling register 15.2 is arranged below the connection of the return line 38.1 to the cooling register 15.1. In order to avoid mixing of the insulating fluid 30 heated to different degrees, a further section 4.5 of the thermal barrier 4 is provided in the usually open area above the windings. This section 4.5 projects beyond the electrical barrier 7. In the exemplary embodiment, the vertical distance H5 from the upper edge of section 4.5 of the thermal barrier 4 to the return line 38.2 is a multiple of the flow-limiting diameter of the return line 38.2. This prevents insulating fluid 30, which has a significantly higher temperature and which has flowed through the low-voltage winding 3.1, from getting into the return line 38.2.

Zur Vermeidung der Bildung von Bypässen werden potentielle unerwünschte Strömungskanäle 10.5 beispielsweise zwischen Abschnitten 7.5 des Barrierensystems 4 und der elektrischen Barriere 7 an einem ihrer Enden durch Beilagen aus Isoliermaterial ganz oder teilweise verschlossen.In order to avoid the formation of bypasses, potential undesired flow channels 10.5, for example between sections 7.5 of the barrier system 4 and the electrical barrier 7, are completely or partially closed at one of their ends by inserts made of insulating material.

Im gezeigten Ausführungsbeispiel bilden die Teilwicklungen 3.1 und 3.2 innerhalb der Kühlräume vertikal übereinander liegende Temperaturbereiche 5.1, 5.2, 5.3 beziehungsweise 6.1, 6.2 aus, die mit einer elektrischen Isolation aus Isolierwerkstoffen ausgerüstet sind, die eine von Temperaturbereich zu Temperaturbereich unterschiedliche thermische Belastbarkeit aufweisen. So ist die thermische Belastbarkeit der Isolierstoffe in dem vom Isolierfluid 30 zuerst durchströmten Temperaturbereich 5.1 geringerer als die Isolierstoffe der in Strömungsrichtung nachgelagerten Temperaturbereiche. Darüber hinaus können auch innerhalb der Temperaturbereiche zumindest teilweise Isolierwerkstoffe unterschiedlicher thermischer Klassen eingesetzt werden. So kann die thermische Belastbarkeit eines Isolierstoffes geringer sein, wenn dieser zum heißesten Punkt des Temperaturbereichs also beispielsweise zu einer bestimmten Wicklungslage den notwendigen Abstand einhält. Somit kann beispielsweise innerhalb eines Temperaturbereichs 5.1 eine Abstufung der thermischen Klasse erfolgen, je nachdem ob der Isolierwerkstoff als Leiterisolation, Abstandshalter, Potentialsteuerring oder Barriere eingesetzt wird.In the exemplary embodiment shown, the partial windings 3.1 and 3.2 form vertically superposed temperature ranges 5.1, 5.2, 5.3 and 6.1, 6.2 within the cooling chambers, which are equipped with electrical insulation made of insulating materials that have a different thermal load capacity from temperature range to temperature range. Thus, the thermal load capacity of the insulating materials in the temperature range 5.1 through which the insulating fluid 30 first flows is lower than the insulating materials the downstream temperature ranges in the direction of flow. In addition, insulating materials of different thermal classes can be used at least partially within the temperature ranges. The thermal load capacity of an insulating material can be lower if it maintains the necessary distance to the hottest point of the temperature range, for example to a certain winding position. Thus, for example, the thermal class can be graded within a temperature range 5.1, depending on whether the insulating material is used as conductor insulation, spacer, potential control ring or barrier.

Diese Anordnung ist für verschiedenste Isolierstoffe und damit verschiedene Temperaturbereiche anwendbar. Nachfolgend wird eine beispielhafte Zuordnung der thermischen Klassen zu den im Ausführungsbeispiel dargestellten Temperaturbereichen angegeben. Im Ausführungsbeispiel kommt ein Isolierfluid auf Basis eines Esters zum Einsatz.This arrangement can be used for a wide variety of insulating materials and thus different temperature ranges. An exemplary assignment of the thermal classes to the temperature ranges shown in the exemplary embodiment is given below. In the exemplary embodiment, an insulating fluid based on an ester is used.

Auslegungsbeispiel für eine Wicklungsanordnung nach Fig. 3 (Thermische Klassen der Isolierstoffe nach EN 60085:2008) Temperaturbereich 5.1 5.2 5.3 6.1 6.2 Leiterisolation B (130°C) F (155°C) H (180°C) E (120°C) B (130°C) Abstandshalter E (120°C) B (130°C) F (155°C) A (105°C) E (120°C) Barrierensystem / Potentialsteuerringe A (105 °C) E (120°C) B (130°C) A (105°C) A (105 °C) Design example for a winding arrangement according to Fig. 3 (Thermal classes of insulating materials according to EN 60085: 2008) Temperature range 5.1 5.2 5.3 6.1 6.2 Conductor insulation B (130 ° C) F (155 ° C) H (180 ° C) E (120 ° C) B (130 ° C) Spacers E (120 ° C) B (130 ° C) F (155 ° C) A (105 ° C) E (120 ° C) Barrier system / potential control rings A (105 ° C) E (120 ° C) B (130 ° C) A (105 ° C) A (105 ° C)

Hierbei soll der Begriff "Abstandshalter" radiale und axiale Abstandshalter wie beispielsweise Leisten, Reiter, Zwischenlagen oder dergleichen umfassen. Der Begriff "Barrierensystem" soll Barrieren, Winkelringe, Kappen, Scheiben, Isolierzylinder oder dergleichen mit beinhalten.The term “spacer” is intended to include radial and axial spacers such as strips, tabs, intermediate layers or the like. The term "barrier system" is intended to include barriers, angle rings, caps, discs, insulating cylinders or the like.

Die Staffelung der thermischen Leistungsfähigkeit der Isolierstoffe kann auch innerhalb der thermischen Klassen nach EN 60085 vorgenommen werden, hier besteht eine Vielzahl an Möglichkeiten, beispielsweise ist auch eine Staffelung in Differenzen kleiner 10K möglich.The grading of the thermal performance of the insulating materials can also be done within the thermal classes EN 60085, there is a multitude of possibilities, for example a graduation in differences of less than 10K is also possible.

Weiterhin sind im Ausführungsbeispiel die Heißpunkte der Temperaturbereiche mit thermischen Sensoren 25.1, 25.2, 25.3, 26.1, 26.2 ausgestattet, die jeweils mit einer figürlich nicht dargestellten Steuereinheit verbunden sind. Im Ausführungsbeispiel ist weiterhin im Bereich der jeweiligen Austrittsöffnung im Wicklungsoberbau 9.1 oder 9.2 ein Sensor 27, 28 zur Messung der maximalen Temperatur der Isolierflüssigkeit 30 angeordnet.Furthermore, in the exemplary embodiment, the hot spots of the temperature ranges are equipped with thermal sensors 25.1, 25.2, 25.3, 26.1, 26.2, which are each connected to a control unit (not shown in the figure). In the exemplary embodiment, a sensor 27, 28 for measuring the maximum temperature of the insulating liquid 30 is also arranged in the area of the respective outlet opening in the winding superstructure 9.1 or 9.2.

In Figur 3 sind somit fünf Temperaturbereiche 5.1, 5.2, 5.3, 6.1, 6.2 vorgesehen, die jeweils mit Isoliersoffen aus 3 unterschiedlichen thermischen Klassen bestückt sind. Somit ergeben sich für jeden Temperaturbereich unterschiedliche zulässige Maximaltemperaturen. Die Isolierflüssigkeit 30 darf in den im Strömungsverlauf vorn angeordneten Temperaturbereichen nicht die für das Isolierfluid zulässige Maximaltemperatur erreichen, da sonst der Temperaturgradient von der Wicklung zum Isolierfluid 30 in den nachfolgend durchströmten Wicklungsbereichen für eine ausreichende Kühlung zu gering wird.In Figure 3 five temperature ranges 5.1, 5.2, 5.3, 6.1, 6.2 are provided, each of which is equipped with insulating materials from 3 different thermal classes. This results in different permissible maximum temperatures for each temperature range. The insulating fluid 30 must not reach the maximum temperature permissible for the insulating fluid in the temperature ranges arranged at the front in the flow path, since otherwise the temperature gradient from the winding to the insulating fluid 30 in the winding regions through which the flow subsequently flows becomes too low for adequate cooling.

Da wie beschrieben die zulässigen Temperaturen in den verschiedenen Temperaturbereichen unterschiedlich sind, macht es Sinn, die Temperaturen in den Temperaturbereichen getrennt zu überwachen. Im Ausführungsbeispiel sind daher die Heißpunkte aller Temperaturbereiche mit thermischen Sensoren ausgestattet und die Signale einer Steuereinheit zugeführt. Jedem dieser Signale wird ein auf die thermische Klasse der Isolierwerkstoffe des entsprechenden Wicklungsbereiches abgestimmter Schwellwert zugeordnet. Überschreitet eines der Temperatursignale den ihm zugeordneten Schwellwert wird ein Steuersignal erzeugt. Dieses kann je nach Auslegung ein Warnsignal auslösen, die Abschaltung bewirken, eine Senkung der Last des elektrischen Geräts auslösen oder aber zur Steuerung der Kühlanlage genutzt werden.Since, as described, the permissible temperatures are different in the various temperature ranges, it makes sense to monitor the temperatures in the temperature ranges separately. In the exemplary embodiment, the hot spots of all temperature ranges are therefore equipped with thermal sensors and the signals are fed to a control unit. Each of these signals is assigned a threshold value tailored to the thermal class of the insulating materials of the corresponding winding area. If one of the temperature signals exceeds the threshold value assigned to it, a control signal is generated. Depending on the design, this can trigger a warning signal, shutdown and lower the load of the trigger electrical device or be used to control the cooling system.

Vorzugsweise werden dem Signal jedes Temperatursensors 25.1, 25.2, 25.3, 26.1, 26.2 verschiedene Schwellwerte für Kühlanlagensteuerung, Warnung und Auslösung zugeordnet.Different threshold values for cooling system control, warning and triggering are preferably assigned to the signal of each temperature sensor 25.1, 25.2, 25.3, 26.1, 26.2.

Fig. 4 zeigt ein weiteres Ausführungsbeispiel, bei dem eine Kühleinheit als aktive Kühleinheit ausgestaltet ist und über eine Umwälzpumpe 16.2 verfügt, während die andere Kühleinheit eine passive Kühleinheit 15.1 ist, bei der das Isolierfluid 30 auf Grund einer sich einstellenden Temperaturdifferenz über das Kühlregister 15.1 umgewälzt wird. Fig. 4 shows a further embodiment in which one cooling unit is designed as an active cooling unit and has a circulation pump 16.2, while the other cooling unit is a passive cooling unit 15.1, in which the insulating fluid 30 is circulated through the cooling register 15.1 due to a temperature difference that occurs.

Im gezeigten Ausführungsbeispiel wird die Wicklung 3.2 mit den höheren hochspannungstechnischen Anforderungen, also die Wicklung mit einem hohen Anteil an Isolierstoffen und aufwändig zu fertigenden Isolierteilen, durch die aktiver Kühleinheit 15.2, 16.2 forciert gekühlt. Die Teilwicklung 3.2 ist wieder von zylindrischen Abschnitten 4.1 der thermischen Barriere 4 umschlossen. Die Zuführung des gekühlten Isolierfluids 30 erfolgt über den strömungstechnisch abgedichteten Wicklungsunterbau 8.2 der über die Zuführungsleitung 37.2 mit der Kühleinheit 15.2 und der Pumpe 16.2 verbunden ist.In the exemplary embodiment shown, the winding 3.2 with the higher high-voltage requirements, that is to say the winding with a high proportion of insulating materials and insulating parts that are complex to manufacture, is forcefully cooled by the active cooling unit 15.2, 16.2. The partial winding 3.2 is again enclosed by cylindrical sections 4.1 of the thermal barrier 4. The cooled insulating fluid 30 is supplied via the fluidically sealed winding substructure 8.2, which is connected to the cooling unit 15.2 and the pump 16.2 via the supply line 37.2.

Das Gefäß 14 ist ferner mit dem Kühlregister 15.1 verbunden. Die stärker gekühlte Teilwicklung 3.2 ist mit Isolierstoffen einer geringen thermischen Klasse versehen. Da sich beim Betrieb eines gezeigten Transformtors 1 große Differenzen der Temperaturen des Isolierfluids 30 innerhalb und außerhalb der thermischen Barriere 4 einstellen, sind zusätzliche Barrierenabschnitte 4.6 vorgesehen, die eine Fluidströmung direkt an der Wandung der Barriere 4.2 vermeiden und damit die thermische Beeinflussung der Teilwicklung 3.2 verringern. Im Ausführungsbeispiel werden dazu direkt den Barrierenabschnitt 4.2 folgende elektrische Barrieren und Winkelringe mit Beilagen versehen, welche die Fluidströmung innerhalb des Kanales zwischen den Barrieren verhindern.The vessel 14 is also connected to the cooling register 15.1. The more strongly cooled partial winding 3.2 is provided with insulating materials of a low thermal class. Since large differences in the temperatures of the insulating fluid 30 inside and outside the thermal barrier 4 occur during the operation of a transformer 1 shown, additional barrier sections 4.6 are provided which prevent fluid flow directly on the wall of the barrier 4.2 and thus reduce the thermal influence on the partial winding 3.2 . In the exemplary embodiment, electrical barriers and angular rings that follow the barrier section 4.2 are provided with shims which prevent the fluid flow within the channel between the barriers.

In diesem Ausführungsbeispiel weist nur die Teilwicklung 3.1 zwei Temperaturbereiche 5.1 und 5.2 auf. Hinsichtlich der Temperaturbereiche gelten die Ausführungen zu Figur 6 hier entsprechend.In this exemplary embodiment, only the partial winding 3.1 has two temperature ranges 5.1 and 5.2. Regarding the temperature ranges, the explanations apply Figure 6 here accordingly.

Figur 5 stellt ein Ausführungsbeispiel eines Transformators 1 mit natürlicher Kühlung (ONAN-Kühlung) dar. Hierbei wird die Bewegung der Isolierflüssigkeit durch thermischen Auftrieb bewirkt. Das von den Teilwicklungen 3.1, 3.2 erwärmte Isolierfluid 30 steigt auf Grund seiner geringeren Dichte gegenüber der Isolierflüssigkeit 30 der weiteren Umgebung der Wicklung auf und wird durch von unten zuströmende kalte Isolierflüssigkeit 30 ersetzt. Der Gewichtsunterschied zwischen der warmen Flüssigkeitssäule in den Wicklungskanälen und der kälteren Flüssigkeitssäule im Kühlregister 15.1 oder 15.2 erzeugt eine Druckdifferenz, welche als antreibende Kraft für den Fluidkreislauf dient. Darüber hinaus führt eine höhere geometrische Anordnung der kalten Isolierfluidsäule des Kühlregisters zu einer Erhöhung der die Kühlmittelströmung antreibenden Druckdifferenz. Dieser Effekt wird im Ausführungsbeispiel genutzt, um eine Wicklung 3.1 mit einem erhöhten Druck und damit einem höheren Volumenstrom der Isolierflüssigkeit zu versorgen. Dazu wird das Kühlregister 15.1, welches die Wicklung 3.1 mit gekühltem Isolierfluid versorgt, mit einem größeren Abstand zur Mitte der Wicklung 3.1 angeordnet, als das Kühlregister 15.2, das zur Versorgung der Teilwicklung 3.2 und des Kernes 2 vorgesehenen ist. Figure 5 shows an embodiment of a transformer 1 with natural cooling (ONAN cooling). Here, the movement of the insulating liquid is caused by thermal lift. The insulating fluid 30 heated by the partial windings 3.1, 3.2 rises due to its lower density compared to the insulating fluid 30 in the wider vicinity of the winding and is replaced by cold insulating fluid 30 flowing in from below. The difference in weight between the warm column of liquid in the winding channels and the colder column of liquid in the cooling register 15.1 or 15.2 creates a pressure difference which serves as the driving force for the fluid circuit. In addition, a higher geometric arrangement of the cold insulating fluid column of the cooling register leads to an increase in the pressure difference that drives the coolant flow. This effect is used in the exemplary embodiment in order to supply a winding 3.1 with an increased pressure and thus a higher volume flow of the insulating liquid. For this purpose, the cooling register 15.1, which supplies the winding 3.1 with cooled insulating fluid, is arranged at a greater distance from the center of the winding 3.1 than the cooling register 15.2, which is provided for supplying the partial winding 3.2 and the core 2.

Dieser Höhenversatz wird hier - auf Grund des feststehenden Abstandes der Teilwicklung zu einer vom Boden des Gefäßes definierten Bodenebene - durch den Abstand des jeweiligen Kühlregisters zur besagten Bodenebene beschrieben. Diese verschiedenen Höhenlagen werden daher hier als lotrechter Abstand H1, H2 des jeweiligen Kühlregisters 15.1, 15.2 zur der Bodenebene berücksichtigt, die durch den Boden des Gefäßes 14 definiert ist.This height offset is described here - due to the fixed distance between the partial winding and a floor level defined by the bottom of the vessel - by the distance between the respective cooling register and the said floor level. These different heights are therefore taken into account here as the perpendicular distance H1, H2 of the respective cooling register 15.1, 15.2 to the floor plane which is defined by the floor of the vessel 14.

H1 ist größer als H2. Da beide Teilwicklungen 3.1 und 3.2 am unteren Joch des Kerns 4 abgestützt sind, liegen deren Mitten in etwa gleicher Höhe. Demzufolge ist der Abstand zwischen der Mitte des ersten Kühlers 15.1 und der Mitte der ersten Wicklung 3.1 größer als der Abstand zwischen der Mitte des zweiten Kühlers 15.2 und der Mitte der zweiten Wicklung 3.2.H1 is greater than H2. Since both partial windings 3.1 and 3.2 are supported on the lower yoke of the core 4, their centers are approximately the same height. Accordingly, the distance between the center of the first cooler 15.1 and the center of the first winding 3.1 is greater than the distance between the center of the second cooler 15.2 and the center of the second winding 3.2.

Wird diese Antriebskraft zu hoch, dann kommt es auf Grund des Strömungswiderstandes in der Wicklung zu einer starken Nebenströmung des Isolierfluids 30 zwischen Teilwicklung und Gefäßwand des Transformators 1, welche die Effektivität der Kühlung senkt. Um dies zu vermeiden erfolgt im Ausführungsbeispiel die Zufuhr des gekühlten Isolierfluides 30 zu der mit der höher angeordneten Kühleinheit 15.1 verbundenen Wicklung 3.1 über den dafür strömungstechnisch abgedichteten Wicklungsunterbau 8.1.If this driving force is too high, then due to the flow resistance in the winding, there is a strong secondary flow of the insulating fluid 30 between the partial winding and the vessel wall of the transformer 1, which reduces the effectiveness of the cooling. In order to avoid this, in the exemplary embodiment the cooled insulating fluid 30 is supplied to the winding 3.1 connected to the higher-level cooling unit 15.1 via the winding substructure 8.1 which is fluidically sealed for this purpose.

Somit ist die Isolierfluidströmung an die verschiedenen Betriebstemperaturen der beiden Teilwicklungen und deren unterschiedliche Strömungswiderstände angepasst.The insulating fluid flow is thus adapted to the different operating temperatures of the two partial windings and their different flow resistances.

Die Kühlregister 15.1 und/oder 15.2 können im Rahmen der Erfindung mit Lüftern ausgerüstet sein.The cooling register 15.1 and / or 15.2 can be equipped with fans within the scope of the invention.

Figur 6 zeigt ein weiteres Ausführungsbeispiel des erfindungsgemäßen elektrischen Geräts 1, das sich von dem in Figur 5 gezeigten Ausführungsbeispiel dahin unterscheidet, dass die Kühlregister 15.1 und 15.2 mit Lüftern oder Ventilatoren 17 ausgerüstet sind. Dabei weisen das Kühlregister 15.1 und das Kühlregister 15.2 eine unterschiedliche Anzahl von Lüftern 17 auf. Darüber hinaus liegen die Kühlregister 15.1 und 15.2 auf der gleichen Höhe. Die Zuführungsleitung 37.1 der ersten Kühleinheit ist genau unterhalb der ersten Teilwicklung 3.1, also der Unterspannungswicklung, angeordnet. Die thermische Barriere 4 erstreckt im Gegensatz zu den in den Figuren 1 bis 5 gezeigten Ausführungsbeispielen bis zur oberen Wandung des Gefäßes 14, wobei die Rückführungsleitung 38.1 den Kühlraum im Inneren der thermischen Barriere 4 mit dem Kühlregister 15.1 verbindet. Die erste Kühleinheit bildet daher wieder einen geschlossen umlaufenden Kühlkreislauf aus, wobei die hydraulische Kopplung zwischen dem ersten Kühlraum und dem zweiten Kühlraum, der von der Außenwand der thermischen Barriere 4 und der Innenwand des Gefäßes 14 definiert wird, über das Ausdehnungsgefäß 18 erfolgt. Hierzu sind die entsprechenden Verbindungsleitungen vorgesehen. Figure 6 shows a further embodiment of the electrical device 1 according to the invention, which differs from that in Figure 5 The exemplary embodiment shown differs in that the cooling registers 15.1 and 15.2 are equipped with fans 17. The cooling register 15.1 and the cooling register 15.2 have a different number of fans 17. In addition, the cooling registers 15.1 and 15.2 are at the same height. The supply line 37.1 of the first cooling unit is arranged exactly below the first partial winding 3.1, that is to say the low-voltage winding. The thermal barrier 4, in contrast to that in FIG Figures 1 to 5 shown embodiments up to the upper wall of the vessel 14, wherein the return line 38.1 the cooling space inside the thermal barrier 4 with the cooling register 15.1 connects. The first cooling unit therefore again forms a closed, circulating cooling circuit, the hydraulic coupling between the first cooling space and the second cooling space, which is defined by the outer wall of the thermal barrier 4 and the inner wall of the vessel 14, taking place via the expansion vessel 18. The corresponding connecting lines are provided for this.

Da sich im Ausführungsbeispiel die thermische und strömungstechnische Trennung der Wicklungen auch oberhalb der Wicklungen fortsetzt, sind beide Kühlräume jeweils mit einem eigenen Buchholzrelais 20 ausgestattet, um Gasansammlungen in beiden Kühlräumen zu überwachen.Since the thermal and fluidic separation of the windings also continues above the windings in the exemplary embodiment, both cooling rooms are each equipped with their own Buchholz relay 20 in order to monitor gas accumulations in both cooling rooms.

Bei steigender Belastung des Transformators 1 steigen die Temperaturen in beiden Teilwicklungen 3.1, 3.2 unterschiedlich an und werden zunächst ohne Lüfterunterstützung gekühlt (ONAN-Kühlung). Die Lüfter 17 werden für jeden Kühlkreis unterschiedlich bei für beide Teilsysteme unterschiedlichen Temperaturen zugeschaltet beziehungsweise gesteuert.When the load on the transformer 1 increases, the temperatures rise differently in the two partial windings 3.1, 3.2 and are initially cooled without fan support (ONAN cooling). The fans 17 are switched on or controlled differently for each cooling circuit at different temperatures for the two subsystems.

Im Ausführungsbeispiel wird die Kühleinheit für den Kühlraum mit der Teilwicklung welche mit Isolierwerkstoffen einer geringeren thermischen Klasse ausgestattet ist, bereits bei einer niedrigeren Temperatur auf Lüfterbetrieb umgeschaltet, als der Kühler für die Teilwicklung mit Isolierwerkstoffen einer höheren thermischen Klasse. Um beide Teilwicklungen bei voller Last betreiben zu können, verfügt das Kühlregister 15.2 im Vergleich zum Kühlregister 15.2 über eine größere Anzahl von Lüftern 17.In the exemplary embodiment, the cooling unit for the cooling space with the partial winding which is equipped with insulating materials of a lower thermal class is switched to fan operation at a lower temperature than the cooler for the partial winding with insulating materials of a higher thermal class. In order to be able to operate both partial windings at full load, the cooling register 15.2 has a larger number of fans 17 than the cooling register 15.2.

Figur 7 zeigt ein weiteres Ausführungsbeispiel der Erfindung des erfindungsgemäßen elektrischen Geräts 1, das im Wesentlichen dem Ausführungsbeispiel gemäß Figur 1 entspricht, wobei jedoch die Kühleinheiten 15.1 und 15.2 jeweils als passive Kühleinheiten ausgelegt sind, so dass die Kühleinheiten jeweils keine Umwälzpumpe aufweisen. Figure 7 shows a further embodiment of the invention of the electrical device 1 according to the invention, which is essentially according to the embodiment Figure 1 corresponds, however, the cooling units 15.1 and 15.2 are each designed as passive cooling units, so that the cooling units each have no circulation pump.

Weitere hier nicht dargestellte Komponenten des elektrischen Gerätes 1, zum Beispiel Stufenschalter, werden entsprechend ihrer jeweils zulässigen Betriebstemperatur einem der beiden Kühlräume zugeordnet.Further components, not shown here, of the electrical device 1, for example step switches, are assigned to one of the two cold rooms according to their respective permissible operating temperature.

Claims (15)

  1. Electrical device (1) for connecting to a high-voltage network, having
    - a vessel (14) which is filled with an insulating fluid (30),
    - an active part which is arranged in the vessel (14) and which has a magnetizable core (2) and partial windings (3.1, 3.2) for generating a magnetic field in the core (2), and
    - a cooling device (15) for cooling the insulating fluid (30), there being at least one thermal barrier (4) which delimits cooling spaces in each of which there is arranged at least one partial winding (3.1, 3.2), wherein the cooling device (15) has at least two cooling units, and each cooling unit is designed to cool an associated partial winding (3.1, 3.2), characterized in that at least one partial winding has, along the flow of the insulated fluid, temperature regions (5.1, 5.2, 5.3) in which insulating materials of different thermal loadability are arranged.
  2. Electrical device (1) according to Claim 1,
    characterized in that
    the thermal barrier (4) forms at least one inlet opening which is connected to an outlet of the cooling device (15).
  3. Electrical device (1) according to one of the preceding claims,
    characterized in that
    the thermal barrier (4) encloses a partial winding at least in certain portions.
  4. Electrical device (1) according to one of the preceding claims,
    characterized in that
    the thermal barrier (4) is an electrical barrier at least in certain portions.
  5. Electrical device (1) according to one of the preceding claims,
    characterized in that
    the first partial winding is a low-voltage winding (3.1) and a second partial winding is a high-voltage winding (3.2), wherein the windings (3.1, 3.2) are arranged concentrically to one another and to a core portion (2) extending through the inner low-voltage winding.
  6. Electrical device (1) according to Claim 5,
    characterized in that
    a first cooling unit (15.1, 16.1) is designed to cool the low-voltage winding (3.1), and a second cooling unit (15.2, 16.2) is designed to cool the high-voltage winding (3.2).
  7. Electrical device (1) according to Claim 6,
    characterized in that
    the cooling space in which the high-voltage winding is arranged is hydraulically coupled to the cooling space in which the low-voltage winding is arranged via an expansion vessel.
  8. Electrical device (1) according to one of the preceding claims,
    characterized in that
    at least one cooling unit (15.1, 16.1) is connected to the winding base (8.1, 8.2) and/or winding top (9.1, 9.2) of a partial winding (3.1, 3.2) in such a way that the flows of the insulating fluid (30) that are in each case guided via the cooling units (15.1, 16.1) during normal operation are separated from one another.
  9. Electrical device (1) according to one of the preceding claims,
    characterized in that
    each cooling unit (15) has a cooling register (15.1, 15.2).
  10. Electrical device (1) according to Claim 9,
    characterized in that
    the cooling registers (15.1, 15.2) have different vertical spacings (H1, H2) from a bottom plane (35) defined by a bottom surface of the vessel (14).
  11. Electrical device (1) according to one of the preceding claims,
    characterized in that
    the partial windings (3.1, 3.2) have different partial winding insulations.
  12. Electrical device (1) according to one of the preceding claims,
    characterized in that
    the cooling device has a control unit with temperature sensors, wherein the temperature sensors are designed to detect the temperature of a partial winding and/or to detect the temperature of the insulating fluid in a partial winding.
  13. Electrical device (1) according to Claim 12,
    characterized in that
    in each case a temperature sensor for measuring a hotspot temperature is arranged in at least two temperature regions (5.1, 5.2, 5.3) and provides temperature measurement values on the outlet side which are compared with a threshold value predetermined in dependence on the insulating materials used in the respective temperature region, wherein a control signal is generated on the basis of this comparison.
  14. Electrical device (1) according to one of the preceding claims,
    characterized in that
    a plurality of fluidically connected temperature regions (5.1, 5.2, 5.3) in the cooling space are equipped with sensors (25.1, 25.2, 25.3) for measuring the hotspot temperature of the partial winding (3.1, 3.2) in the respective temperature region (5.1, 5.2, 5.3), and the signals of each of these temperature sensors are each assigned dedicated threshold values for triggering control functions which are tailored to the thermal class of the insulating materials used in the respective temperature regions (5.1, 5.2, 5.3) of the partial winding (3.1, 3.2).
  15. Electrical device according to one of the preceding claims,
    characterized in that
    each of the fluidically and thermally separated partial windings (3.1, 3.2) has dedicated sensors for temperature monitoring of the winding temperature (25.3, 26.2) and/or sensors (27, 28) for measuring the maximum insulating fluid temperature in the thermally separated cooling spaces of the windings (3.1, 3.2), and the sensors are connected to a control unit which is provided with means for monitoring the observance of the admissible temperatures of the windings (3.1, 3.2) and/or of the insulating fluid (30), which are different for each cooling space, and for independently controlling the cooling units (15.1, 15.2) respectively assigned to a cooling space.
EP17772346.7A 2016-10-06 2017-09-15 Electrical device having a plurality of cooling units Active EP3494584B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016219406.2A DE102016219406A1 (en) 2016-10-06 2016-10-06 Electrical device with several cooling units
PCT/EP2017/073249 WO2018065189A1 (en) 2016-10-06 2017-09-15 Electrical device having a plurality of cooling units

Publications (2)

Publication Number Publication Date
EP3494584A1 EP3494584A1 (en) 2019-06-12
EP3494584B1 true EP3494584B1 (en) 2020-10-28

Family

ID=59966717

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17772346.7A Active EP3494584B1 (en) 2016-10-06 2017-09-15 Electrical device having a plurality of cooling units

Country Status (4)

Country Link
US (1) US11322287B2 (en)
EP (1) EP3494584B1 (en)
DE (1) DE102016219406A1 (en)
WO (1) WO2018065189A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018112003A1 (en) * 2018-05-18 2019-11-21 Maschinenfabrik Reinhausen Gmbh STATUS ANALYSIS OF AN INDUCTIVE EQUIPMENT

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101355238B (en) * 2008-09-19 2011-12-07 沈阳福林特种变压器有限公司 Vehicle-mounted mobile substation

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2479373A (en) * 1943-10-27 1949-08-16 Westinghouse Electric Corp Cooling system for electrical apparatus
US3144770A (en) * 1961-01-30 1964-08-18 Gen Electric Means for determining an internal condition in electrical apparatus
US3371299A (en) * 1966-02-10 1968-02-27 Westinghouse Electric Corp Transformer apparatus cooling system
JPS4970135A (en) * 1972-11-10 1974-07-06
JPS55145315A (en) * 1979-04-27 1980-11-12 Daihen Corp Forced oil type transformer
CN2144881Y (en) 1992-09-29 1993-10-27 杨开春 Double unit movable substation
JP2853505B2 (en) * 1993-03-19 1999-02-03 三菱電機株式会社 Stationary guidance equipment
DE19701269A1 (en) * 1997-01-16 1998-07-23 Ask Antriebs Steuerungs Und In Isolation and matching transformer with liquid cooling
US6494617B1 (en) * 1999-04-30 2002-12-17 General Electric Company Status detection apparatus and method for fluid-filled electrical equipment
US8928443B2 (en) * 2012-05-17 2015-01-06 Elwha Llc Electrical device with emergency cooling system
EP2833378B1 (en) * 2013-07-31 2016-04-20 ABB Technology AG Transformer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101355238B (en) * 2008-09-19 2011-12-07 沈阳福林特种变压器有限公司 Vehicle-mounted mobile substation

Also Published As

Publication number Publication date
DE102016219406A1 (en) 2018-04-12
US11322287B2 (en) 2022-05-03
WO2018065189A1 (en) 2018-04-12
US20190318862A1 (en) 2019-10-17
EP3494584A1 (en) 2019-06-12

Similar Documents

Publication Publication Date Title
DE19835414A1 (en) Gradient coil for magnetic resonance device
DE112009005222T5 (en) Transformer with a heat pipe
EP3281211B1 (en) Device for dc current transmission
EP3494583A1 (en) Electrical device having encapsulated spaces cooled with different intensity
DE102011013684B4 (en) Electrical component with at least one arranged in a potting electrical power loss source and a cooling device
EP3494584B1 (en) Electrical device having a plurality of cooling units
DE10203788A1 (en) Electrical conductor arrangement and use of the electrical conductor arrangement
EP1258071B1 (en) High-voltage electric rotary machine and a method for cooling the conductors of said machine
DE3336842C2 (en)
EP2793244B1 (en) Dry transformer coil and dry transformer
DE2249560A1 (en) TERMINAL FOR LOW TEMPERATURE CABLE
DE202009007819U1 (en) High voltage socket and high voltage device comprising such a socket
DE2317013B2 (en) Water-cooled high voltage power cable
EP2290662A1 (en) Dry type transformer
EP1841031A1 (en) High current conductor arrangement and generator arrangement
EP3361485A1 (en) Transformer with integrated cooling
EP1411619B1 (en) Generator interconnection, in particular having the connection area in the generator foundation
EP2529382B1 (en) On-load tap changer
DE102013105120A1 (en) Electrical and inductive components
EP2511919A1 (en) Dry transformer heating
DE1690153A1 (en) Method and arrangement for cooling a power transmission line
DE102015121235A1 (en) Switchgear cooling arrangement
EP3147915A1 (en) Cooling of an electric choke
DE2327316C3 (en) Three-phase cable system for water-cooled high-performance cables
DE202021004265U1 (en) Device for inductive heating of metal goods

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190307

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200513

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017007966

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1329046

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502017007966

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210301

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210129

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210128

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210228

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017007966

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210228

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210915

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210915

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210915

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170915

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1329046

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220915

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230928

Year of fee payment: 7

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028