EP3489338A1 - Compositions détergentes contenant des polyesters antisalissures provenant de ressources renouvelables - Google Patents

Compositions détergentes contenant des polyesters antisalissures provenant de ressources renouvelables Download PDF

Info

Publication number
EP3489338A1
EP3489338A1 EP17204076.8A EP17204076A EP3489338A1 EP 3489338 A1 EP3489338 A1 EP 3489338A1 EP 17204076 A EP17204076 A EP 17204076A EP 3489338 A1 EP3489338 A1 EP 3489338A1
Authority
EP
European Patent Office
Prior art keywords
laundry detergent
polyesters
structural units
detergent composition
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17204076.8A
Other languages
German (de)
English (en)
Inventor
Kevin MUTCH
Martijn GILLISSEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clariant International Ltd
Original Assignee
Clariant International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clariant International Ltd filed Critical Clariant International Ltd
Priority to EP17204076.8A priority Critical patent/EP3489338A1/fr
Priority to PCT/EP2018/082719 priority patent/WO2019105939A1/fr
Priority to ARP180103500A priority patent/AR113595A1/es
Publication of EP3489338A1 publication Critical patent/EP3489338A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3711Polyacetal carboxylates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0036Soil deposition preventing compositions; Antiredeposition agents

Definitions

  • the invention relates to laundry detergent compositions comprising polyesters based on renewably sourced raw materials.
  • the compositions display good soil release performance compared to compositions containing no soil release polymer.
  • Polyester containing fabrics can be surface modified to increase the hydrophilicity of the fabric, which can improve soil removal.
  • Such surface modification can be achieved through direct treatment of the fabric, as outlined for example in GB 1,088,984 , or more preferably through deposition of a surface modifying polymer in a washing process, as disclosed for example in US 3,962,152 .
  • the renewable soil release finish imparted through washing ensures the continuous protection of the fiber from oily stains.
  • the polymers used in these processes typically consist of a polyester midblock with either one or two endblocks of polyethylene glycol, as further outlined in US 3,959,230 and US 3,893,929 .
  • polyesters described in the prior art comprise glycol terephthalate or glycol terephthalate / polyglycol terephthalate co-polymers. This is governed by the fact that most polyesters used in fiber making comprise ethylene terephthalate units. This structural similarity between polyester substrate and soil release polyester is often considered to be a prerequisite for a functioning soil release polymer.
  • polyesters described in the prior art are difficult to formulate in some laundry detergent formulations due to being too hydrophobic. Moreover, they are based on raw materials sourced from non-renewable feedstocks such as crude oil. There is also a growing consumer perception that "phthalate"-based ingredients may pose a general health risk; polyethylene terephthalate - polyoxyethylene terephthalate polymers would fall into this group. In the interests of the environment and of consumer perception, there is therefore a drive for renewably sourced soil release polymers exhibiting improved cleaning on polyethylene terephthalate and polyethylene terephthalate containing materials, which are nevertheless themselves not based on terephthalates or at least contain reduced amounts of terephthalate units.
  • polyesters described in the prior art are prepared in high energy demanding processes via direct esterification or transesterification. Due to the limited solubility of terephthalic acid in typical reaction mixtures, elevated temperatures and pressures are required for a direct esterification process. In the case of transesterification, distillates of low boiling alcohols are obtained which need to be disposed of. In the interest of the environment, there is a drive for soil release polymers, which can be prepared by more benign production processes.
  • the problem to be solved by the present invention was to provide laundry detergent compositions containing polyesters which are based on renewably sourced raw materials and which display good soil release performance and which, due to their more hydrophilic structure, are easy to formulate in liquid laundry detergents.
  • laundry detergent compositions comprising:
  • One advantage of the laundry detergent composition of the invention is the high content of renewably based carbon of the polyester a), in cases where the amount of structural units (a1) and (a2) in the polymer is high.
  • the terminal group (a3) may not be linked to structural unit (a2) but may be linked to structural unit (a1), which results in the following structural entity:
  • the definition of the group G 1 may vary between these structural units (a2).
  • the definition of R 1 may vary in these terminal groups.
  • the (OC 3 H 6 )- and (OC 2 H 4 )-groups may be arranged blockwise, alternatingly, periodically and/or statistically, preferably blockwise and/or statistically.
  • the groups (OC 3 H 6 )- and (OC 2 H 4 )- may be arranged, for example, in a purely statistically or blockwise form but may also be arranged in a form which could be considered as both statistical and blockwise, e.g.
  • Both of (OC 3 H 6 )- and (OC 2 H 4 )- may be bonded to R 1 - and -O.
  • the sum of p and q of the terminal group (a3), based on a molar average, is preferably a number of from 1 to 200, more preferably a number of from 5 to 150 and even more preferably a number of from 10 to 75.
  • R 1 is preferably methyl.
  • G 1 is preferably (OC 2 H 4 ) or (OC 3 H 6 ).
  • the one or more polyesters a) additionally comprise one or more of the structural unit (a4), which may be linked to structural units (a1) or other structural units (a4) via the structural unit (a2), or directly linked to a terminal group:
  • the one or more polyesters a) comprise the structural units (a4)
  • these units may be linked to each other or to structural units (a1) via the structural unit (a2), which may result in the following structural entities:
  • terminal group (a3) may also be linked to the structural unit (a4), which results in the following structural entity:
  • the average molecular weight (M w ) of the one or more polyesters a) is preferably in the range of from 2000 to 20000 g/mol.
  • the average molecular weight (M w ) of the one or more polyesters a) may be determined by GPC analysis, preferably as detailed in the following: 10 ⁇ l of sample is injected onto a PSS Suprema column of dimensions 300 x 8 mm with porosity 30 ⁇ and particle size 10 ⁇ m. The detection is monitored at 235 nm on a multiple wavelength detector.
  • the employed eluent is 1.25 g/l of disodium hydrogen phosphate in a 45 / 55 % (v/v) water / acetonitrile mixture. Separations are conducted at a flow-rate of 0.8 ml/min. Quantification is performed by externally calibrating standard samples of different molecular weight polyethylene glycols.
  • the average number of repeating structural unit (a1) is preferably from 2 to 60, more preferably from 2 to 50, even more preferably from 3 to 40 and most preferably from 4 to 30, and within this preferred embodiment may be 4, 5, 6, 7, 8, 9, 10, 11, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30.
  • the total amount of the terminal group (a3), based on the total weight of the polyester is preferably at least 40 wt.-%, more preferably at least 50 wt.-%, even more preferably at least 60 wt.-% and most preferably at least 70 wt.-%.
  • the total amount of structural units (a1) and (a2) and of the terminal group (a3), based on the total weight of the polyester is preferably at least 50 wt.-%, more preferably at least 60 wt.-%, even more preferably at least 70 wt.-%, and most preferably at least 80 wt.-%.
  • the amount of structural unit (a4) in the one or more polyesters a), based on the total weight of the polyester is preferably at least 0.1 wt.-%, more preferably from 0.1 wt.-% to 50 wt.-%, and even more preferably from 0.5 wt.-% to 40 wt.-%.
  • the structural units are exclusively selected from the group consisting of repeating structural units (a1) and (a2).
  • the one or more polyesters a comprise structural units exclusively selected from the group consisting of structural units (a1) and (a2) and the terminal group (a3), where two or more of structural units (a1), one or more of structural units (a2) and either one or two of the terminal groups (a3) must be present wherein
  • polyester A adjacent structural units (a1) are connected by structural unit (a2). Furthermore, in the case that only one terminal group (a3) is present in the polymer, the other terminal group is selected from the group consisting of OH, OCH 3 , and G 1 OH. Both terminal groups may only be linked to the structural unit (a1).
  • the average number of structural units (a1) is preferably from 2 to 30, more preferably from 3 to 20, and even more preferably from 4 to 15.
  • the average molecular weight (Mw) of Polyester A is preferably from 2000 to 20000 g/mol.
  • the one or more polyesters a comprise structural units exclusively selected from the group consisting of structural units (a1) and (a2) and the terminal group (a3), where two or more of the repeating structural units (a1), one or more of the repeating structural units (a2) and either one or two of the terminal groups (a3) must be present wherein
  • polyester B adjacent structural units (a1) are connected by the structural unit (a2). Furthermore, in the case that only one terminal group (a3) is present in the polymer, the other terminal group is selected from the group consisting of OH, OCH 3 , and G 1 OH. Both terminal groups may only be linked to the structural unit (a1). Furthermore, the (OC 3 H 6 )- and (OC 2 H 4 )-groups of the terminal group (a3) are arranged blockwise.
  • the average number of structural units (a1) is preferably from 2 to 30, more preferably from 3 to 20, and even more preferably from 4 to 15.
  • the average molecular weight (Mw) of Polyester B is preferably from 2000 to 20000 g/mol.
  • the groups -OC 2 H 4 in the structural units "R 1 -(OC 2 H 4 ) p -(OC 3 H 6 ) q -O-" and in the structural units G 1 are of the formula -O-CH 2 -CH 2 -.
  • the groups -OC 3 H 6 in the structural units "R 1 -(OC 2 H 4 ) p -(OC 3 H 6 ) q -O-" and in the structural units G 1 are of the formula -O-CH(CH 3 )-CH 2 - or -O-CH 2 -CH(CH 3 )-, i.e. of the formula
  • the groups (OC 4 H 8 ) in the structural units G 1 are preferably of the formula -O-CH(CH 3 )-CH(CH 3 )-, i.e. of the formula
  • the groups (OC 6 H 12 ) in the structural units G 1 are preferably of the formula -O-CH 2 -CH(n-C 4 H 9 )- or -O-CH(n-C 4 H 9 )-CH 2 -, i.e. of the formula
  • the invention further provides a laundry detergent composition comprising one or more polyesters
  • polyesters of component a) obtainable through a polymerization reaction of the monomers I), II), III) and optionally IV) are referred to in the following as "Polyester C".
  • the sum of p and q in monomer III), based on a molar average, is preferably a number of from 1 to 200, more preferably a number of from 5 to 150 and even more preferably a number of from 10 to 75.
  • R 1 in the definition of monomer III is preferably methyl.
  • Monomer II is preferably HOC 2 H 4 OH or HOC 3 H 6 OH.
  • the one or more optional monomers IV) are preferably selected from the group consisting of aromatic dicarboxylic acids, their derivatives and the salts thereof, more preferably terephthalic acid, phthalic acid, isophthalic acid, 3-sulfophthalic acid, 4-sulfophthalic acid, 5-sulfoisophthalic acid and their salts, and even more preferably terephthalic acid and its ester.
  • the average molecular weight (M w ) of Polyester C is preferably from 2000 to 20000 g/mol.
  • the average number of repeating structural units of Polyester C resulting from monomer I) in the polymerization is preferably from 2 to 60, more preferably from 2 to 50, even more preferably from 3 to 40 and most preferably from 4 to 30.
  • the amount of Polyester C resulting from monomer III) in the polymerization, based on the total weight of the polyester, is preferably at least 40 wt.-%, more preferably at least 50 wt.-%, even more preferably at least 60 wt.-% and most preferably at least 70 wt.-%.
  • the amount of structural units of Polyester C resulting from monomers I) and II) in the polymerization plus the amount of terminal groups resulting from monomer III), based on the total weight of the polyester, is preferably at least 50 wt.-%, more preferably at least 60 wt.-%, even more preferably at least 70 wt.-%, and most preferably at least 80 wt.-%.
  • the amount of Polymer C resulting from optional monomer IV) in the polymerization, based on the total weight of the polyester, is preferably at least 0.1 wt.-%, more preferably from 0.1 wt.-% to 50 wt.-%, and even more preferably from 0.5 wt.-% to 40 wt.-%.
  • Polyester C is obtainable through polymerizing exclusively monomers I), II) and III).
  • polyesters of component a are obtainable through a polymerisation reaction of the following monomers:
  • the average number of structural units resulting from monomer I) is preferably from 2 to 30, more preferably from 3 to 20, and even more preferably from 4 to 15.
  • the average molecular weight (Mw) of Polyester A 1 is preferably from 2000 to 20000 g/mol.
  • polyesters of component a are obtainable through a polymerisation reaction of the following monomers:
  • the average number of repeating structural units resulting from monomer I) is preferably from 2 to 30, more preferably from 3 to 20, and even more preferably from 4 to 15.
  • the average molecular weight (Mw) of Polyester B 1 is preferably from 2000 to 20000 g/mol.
  • the one or more polyesters of component a) are present in the laundry detergent compositions of the invention in an amount of preferably at least 0.1 wt.-%, more preferably from 0.1 wt.-% to 10 wt.-%, even more preferably from 0.2 wt.-% to 5 wt.-% and most preferably from 0.25 wt.-% to 3 wt.-%, in each case based on the total weight of the laundry detergent composition.
  • a suitable process for the preparation of the polyesters of component a) comprises heating suitable starting compounds for structural units (a1), (a2), optionally (a4) and terminal group (a3) with the addition of a catalyst, to temperatures of 160 to 220°C, expediently beginning at atmospheric pressure, and then continuing the reaction under reduced pressure at temperatures of from 160 to 240°C.
  • Reduced pressure preferably means a pressure of from 0.1 to 900 mbar and more preferably a pressure of from 0.5 to 500 mbar.
  • Typical transesterification and condensation catalysts known in the art can be used for the preparation of the copolymers, such as antimony, germanium and titanium based catalysts.
  • tetraisopropyl orthotitanate (IPT) and sodium acetate (NaOAc) are used as the catalyst system in the synthesis of the polymers contained in the inventive laundry detergent compositions.
  • the polyesters of component a) may advantageously be prepared by a process which comprises heating 2,5-furandicarboxylic acid or its ester, one or more alkylene glycols, and R 1 -(OC 2 H 4 ) p -(OC 3 H 6 ) q -OH, wherein R 1 , p and q are as described herein, with the addition of a catalyst, to temperatures of from 160 to 220°C, firstly at atmospheric pressure, and then continuing the reaction under reduced pressure at temperatures of from 160 to 240°C.
  • Non-ionic soil release polyesters based on glycol terephthalate or glycol terephthalate / polyglycol terephthalate co-polymers can be prepared by a two stage process of either direct esterification of diacids and diols or transesterification of diesters and diols, followed by a polycondensation reaction under reduced pressure. Due to the limited solubility of terephthalic acid in the reaction mixture elevated temperatures and pressures are required for synthesis via the direct esterification process. In the case of furan-2,5-dicarboxylic acid, the transesterification can be performed efficiently at ambient pressure and moderate temperatures giving a significant energy cost advantage. Furthermore, the condensation product water in the direct esterification process has an improved ecological footprint compared to methanol typically obtained in a transesterification process.
  • the laundry detergent compositions of the invention comprise one or more surfactants, component b).
  • Surfactants assist in removing soil from textile materials and also assist in maintaining removed soil in solution or suspension in the wash liquor.
  • the one or more surfactants of component b) of the laundry detergent compositions are selected from the group consisting of anionic, nonionic, cationic and zwitterionic surfactants, and more preferably from the group consisting of anionic, nonionic and zwitterionic surfactants.
  • Preferred anionic surfactants are alkyl sulfonates and alkyl ether sulfates.
  • Preferred alkyl sulfonates are alkylbenzene sulfonates, particularly linear alkylbenzene sulfonates (LAS) having an alkyl chain length of C 8 -C 15 .
  • Possible counter ions for concentrated alkaline liquids are ammonium ions, e.g. those generated by the neutralization of alkylbenzene sulfonic acid with one or more ethanolamines, for example monoethanolamine (MEA) and triethanolamine (TEA), or alternatively, alkali metals, e.g. those arising from the neutralization of alkylbenzene sulfonic acid with alkali hydroxides.
  • the linear alkyl benzene sulfonate surfactants may be LAS with an alkyl chain length of preferably from 8 to 15 and more preferably from 12 to 14.
  • the neutralization of the acid may be performed before addition to the laundry detergent compostitions or in the formulation process through excess addition of neutralizing agent.
  • alkyl ether sulfates are alkyl polyethoxylate sulfate anionic surfactants of the formula R 2 O(C 2 H 4 O) y SO 3 - M + wherein
  • Nonionic surfactants include primary and secondary alcohol ethoxylates, especially C 8 -C 20 aliphatic alcohol ethoxylated with an average of from 1 to 20 moles of ethylene oxide per mole of alcohol, and more especially the C 10 -C 15 primary and secondary aliphatic alcohols ethoxylated with an average of from 1 to 10 moles of ethylene oxide per mole of alcohol.
  • Non-ethoxylated nonionic surfactants include alkyl polyglycosides, glycerol monoethers and polyhydroxy amides (glucamide). Mixtures of nonionic surfactant may be used.
  • the laundry detergent composition contains preferably from 0.2 wt.-% to 40 wt.-% and more preferably 1 wt.-% to 20 wt.-% of a nonionic surfactant, such as alcohol ethoxylate, nonylphenol ethoxylate, alkylpolyglycoside, alkyldimethylamineoxide, ethoxylated fatty acid monoethanolamide, fatty acid monoethanolamide, polyhydroxy alkyl fatty acid amide, or N-acyl N-alkyl derivatives of glucosamine (“glucamides").
  • a nonionic surfactant such as alcohol ethoxylate, nonylphenol ethoxylate, alkylpolyglycoside, alkyldimethylamineoxide, ethoxylated fatty acid monoethanolamide, fatty acid monoethanolamide, polyhydroxy alkyl fatty acid amide, or N-acyl N-alkyl derivatives of glucosamine (“glucamides”).
  • Nonionic surfactants that may be used include the primary and secondary alcohol ethoxylates, especially the C 8 -C 20 aliphatic alcohols ethoxylated with an average of from 1 to 35 moles of ethylene oxide per mole of alcohol, and more especially the C 10 -C 15 primary and secondary aliphatic alcohols ethoxylated with an average of from 1 to 10 moles of ethylene oxide per mole of alcohol.
  • the laundry detergent composition may comprise up to 10 wt.-% of a zwitterionic surfactant, e.g. amine oxide or betaine.
  • a zwitterionic surfactant e.g. amine oxide or betaine.
  • Typical amine oxides used are of the formula R 3 N(O)(CH 2 R 4 ) 2 wherein
  • R 3 is a primary or branched hydrocarbyl moiety with a chain length of from 8 to 18, which can be saturated or unsaturated.
  • R 3 is a primary alkyl moiety.
  • Preferred amine oxides have compositions wherein R 3 is a C 8 -C 18 alkyl and R 4 is H. These amine oxides are illustrated by C 12-14 alkyldimethyl amine oxide, hexadecyl dimethylamine oxide, octadecylamine oxide.
  • a preferred amine oxide material is Lauryl dimethylamine oxide, also known as dodecyldimethylamine oxide or DDAO. Such an amine oxide material is commercially available from The Global Amines Company Pte. Ltd. under the trade name Genaminox® LA.
  • Betaines may be alkyldimethyl betaines or alkylamido betaines, wherein the alkyl groups have C 12-18 chains.
  • the one or more surfactants of component b) of the laundry detergent compositions are selected from the group consisting of anionic and nonionic surfactants.
  • the one or more surfactants of component b) of the laundry detergent compositions are selected from the group consisting of linear alkyl benzene sulfonates, alkyl ether sulfates, nonionic surfactants, amine oxides and betaines, and preferably the one or more surfactants of component b) of the laundry detergent compositions are selected from the group consisting of linear alkyl benzene sulfonates, alkyl ether sulfates and nonionic surfactants.
  • surfactants than the preferred LAS, AES, and nonionic surfactants may be added to the mixture of detersive surfactants.
  • alkyl sulfate surfactant may be used, especially the non-ethoxylated C 12-15 primary and secondary alkyl sulfates. Soap may also be used. Levels of soap are preferably lower than 10 wt.-%.
  • the one or more surfactants of component b) of the inventive laundry detergent compositions are present in an amount of at least 5 wt.-%, more preferably from 5 wt.-% to 65 wt.-%, even more preferably from 6 to 60 wt.-% and extraordinarily preferably from 7 wt.-% to 55 wt.-%, in each case based on the total weight of the laundry detergent composition.
  • the laundry detergent compositions may comprise one or more optional ingredients, e.g. they may comprise conventional ingredients commonly used in detergent compositions, especially laundry detergent compositions.
  • optional ingredients include, but are not limited to builders, bleaching agents, bleach active compounds, bleach activators, bleach catalysts, photobleaches, dye transfer inhibitors, colour protection agents, anti-redeposition agents, dispersing agents, fabric softening and antistatic agents, fluorescent whitening agents, enzymes, enzyme stabilizing agents, foam regulators, defoamers, malodour reducers, preservatives, disinfecting agents, hydrotropes, fibre lubricants, anti-shrinkage agents, buffers, fragrances, processing aids, colorants, dyes, pigments, anti-corrosion agents, fillers, stabilizers and other conventional ingredients for washing or laundry detergent compositions.
  • This second polymer is preferably a polyalkoxylated polyethyleneimine (EPEI).
  • EPEI polyalkoxylated polyethyleneimine
  • Polyethylene imines are materials composed of ethylene imine units -CH 2 CH 2 NH- and, where branched, the hydrogen on the nitrogen is replaced by another chain of ethylene imine units.
  • These polyethyleneimines can be prepared, for example, by polymerizing ethyleneimine in the presence of a catalyst such as carbon dioxide, sodium bisulfite, sulfuric acid, hydrogen peroxide, hydrochloric acid, acetic acid, and the like. Specific methods for preparing these polyamine backbones are disclosed in US 2,182,306 , US 3,033,746 , US 2,208,095 , US 2,806,839 , and US 2,553,696 .
  • the laundry detergent compositions may comprise other polymeric materials, for example: dye transfer inhibition polymers, anti redeposition polymers and cotton soil release polymers, especially those based on modified cellulosic materials.
  • the laundry detergent composition may further comprise a polymer of polyethylene glycol and vinyl acetate, for example the lightly grafted copolymers described in WO 2007/138054 .
  • Such amphiphilic graft polymers based on water soluble polyalkylene oxides as graft base and side chains formed by polymerisation of a vinyl ester component have the ability to enable reduction of surfactant levels whilst maintaining high levels of oily soil removal.
  • a hydrotrope is a solvent that is neither water nor conventional surfactant that aids the solubilisation of the surfactants and other components, especially polymer and sequestrant, in the liquid to render it isotropic.
  • suitable hydrotropes there may be mentioned as preferred: monopropylene glycol (MPG), glycerol, sodium cumene sulfonate, ethanol, other glycols, e.g. dipropylene glycol, diethers and urea. MPG and glycerol are preferred hydrotropes.
  • At least one or more enzymes selected from protease, mannanase, pectate lyase, cutinase, esterase, lipase, amylase, and cellulase may be present in the laundry detergent compositions. Less preferred additional enzymes may be selected from peroxidase and oxidase.
  • the enzymes are preferably present with corresponding enzyme stabilizers.
  • the total enzyme content is preferably from 0 wt.-% to 5 wt.-%, more preferably from 0.5 wt.-% to 5 wt.-% and even more preferably from 1 wt.-% to 4 wt.-%.
  • Sequestrants are preferably included.
  • Preferred sequestrants include organic phosphonates, alkanehydroxy phosphonates and carboxylates available under the DEQUEST trade mark from Thermphos.
  • the preferred sequestrant level is less than 10 wt.-% and preferably less than 5 wt.-% of the laundry detergent composition.
  • a particularly preferred sequestrant is HEDP (1- Hydroxyethylidene -1 , 1 ,-diphosphonic acid), for example sold as Dequest 2010.
  • Dequest® 2066 diethylenetriamine penta(methylene phosphonic acid) or Heptasodium DTPMP.
  • buffers are one or more ethanolamines, e.g. monoethanolamine (MEA) or triethanolamine (TEA). They are preferably used in the laundry detergent composition at levels of from 1 to 15 wt.-%.
  • Other suitable amino alcohol buffer materials may be selected from the group consisting of compounds having a molecular weight above 61 g/mol, which includes MEA.
  • Suitable materials also include, in addition to the already mentioned materials: monoisopropanolamine, diisopropanolamine, triisopropanolamine, monoamino hexanol, 2-[(2-methoxyethyl) methylamino]-ethanol, propanolamine, N-methylethanolamine, diethanolamine, monobutanolamine, isobutanolamine, monopentanolamine, 1-amino-3-(2-methoxyethoxy)-2-propanol, 2-methyl-4- (methylamino)-2-butanol and mixtures thereof.
  • amino ethanol buffers are alkali hydroxides such as sodium hydroxide or potassium hydroxide.
  • the laundry detergent compositions may additionally contain viscosity modifiers, foam boosting agents, preservatives (e.g. bactericides), pH buffering agents, polyelectrolytes, anti-shrinking agents, anti-wrinkle agents, anti-oxidants, sunscreens, anti-corrosion agents, drape imparting agents, anti-static agents and ironing aids.
  • the laundry detergent compositions may further comprise pearlisers and/or opacifiers or other visual cues and shading dye.
  • the laundry detergent compositions may be packaged as unit doses in a polymeric film soluble in the wash water.
  • the laundry detergent compositions may be supplied in multidose plastics packs with a top or bottom closure.
  • a dosing measure may be supplied with the pack either as a part of the cap or as an integrated system.
  • the polyester synthesis may be carried out by the reaction of 2,5-furandicarboxylic acid or its ester, alkylene glycols, alkyl capped polyalkylene glycols and optionally dimethyl terephthalate (DMT) using sodium acetate (NaOAc) and tetraisopropyl orthotitanate (IPT) as the catalyst system.
  • DMT dimethyl terephthalate
  • NaOAc sodium acetate
  • IPT tetraisopropyl orthotitanate
  • the reactants were weighed into a reaction vessel at room temperature under a nitrogen atmosphere.
  • the mixture was heated to an internal temperature of 65 °C for melting and homogenization, followed by the addition of 200 ⁇ l tetraisopropyl orthotitanate.
  • the temperature of the reaction mixture was continuously increased to 210°C under a weak nitrogen flow and held at this temperature for 2 hours.
  • methanol was released from the reaction and was distilled out of the system, whereas in the case of an esterification water is released from the reaction and distilled out of the system.
  • nitrogen was switched off and the pressure reduced to 400 mbar over 3 h.
  • the mixture was heated up to 230°C. At 230°C the pressure was reduced to 1 mbar over 160 min. Once the polycondensation reaction had started, the glycol or mixture of glycols was distilled out of the system. The mixture was stirred for 4 h at 230°C and a pressure of 1 mbar. After the end of this time period, the inner pressure of the reaction vessel was set back to 1 bar using N 2 and the polymer melt was subsequently removed from the reactor and allowed to solidify.
  • Liquid laundry detergent compositions containing exemplary polyesters A series of exemplary liquid laundry detergent compositions, both excluding and including soil release polymer, were prepared according to Table III.
  • the conditions for the test are listed in Table B.
  • Table IV Washing conditions - Soil Release Test Equipment Linitest Plus (SDL Atlas) Water hardness 14°dH Washing temperature 40°C Washing time 30 min Detergent concentration 4.3 g/l Soiled Fabric : Liquor Ratio 1 : 40
  • test fabric white polyester and polycotton standard swatches (WFK 30A and WFK 20A, from WFK Testgewebe GmbH) were used. The fabrics were prewashed three times with the stored liquid laundry detergent compositions. The swatches were then rinsed, dried and soiled with 25 ⁇ l of dirty motor oil. After 1 hour the soiled fabrics were washed again with the same stored liquid laundry detergent compositions used in the pre-washing step. After rinsing and drying the washed swatches, a measurement of the remission of the stained fabric at 457 nm was made using a spectrophotometer (Datacolor 650).
  • the weight content of bio-sourced material shown in Table V is related to the hydrophobic block of the polymer and calculated according to the theoretical composition comprising the structural units (a1), (a2) and optionally (a4).
  • the excess of used glycol and MeOH of the transesterification are therefore not taken into account in the calculation.
  • the used EG, PG (a2) and furan (a1) components are assumed to be 100% bio sourced.
  • Biosourced material content biosourced wt.-%
  • Biosourced wt . ⁇ % 10 ⁇ a 4 wt . ⁇ %

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Polyesters Or Polycarbonates (AREA)
EP17204076.8A 2017-11-28 2017-11-28 Compositions détergentes contenant des polyesters antisalissures provenant de ressources renouvelables Withdrawn EP3489338A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17204076.8A EP3489338A1 (fr) 2017-11-28 2017-11-28 Compositions détergentes contenant des polyesters antisalissures provenant de ressources renouvelables
PCT/EP2018/082719 WO2019105939A1 (fr) 2017-11-28 2018-11-27 Compositions détergentes contenant des polyesters facilitant le lavage, d'origine renouvelable
ARP180103500A AR113595A1 (es) 2017-11-28 2018-11-28 Composiciones detergentes que contienen poliésteres de liberación de suciedad de fuentes renovables

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17204076.8A EP3489338A1 (fr) 2017-11-28 2017-11-28 Compositions détergentes contenant des polyesters antisalissures provenant de ressources renouvelables

Publications (1)

Publication Number Publication Date
EP3489338A1 true EP3489338A1 (fr) 2019-05-29

Family

ID=60484189

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17204076.8A Withdrawn EP3489338A1 (fr) 2017-11-28 2017-11-28 Compositions détergentes contenant des polyesters antisalissures provenant de ressources renouvelables

Country Status (3)

Country Link
EP (1) EP3489338A1 (fr)
AR (1) AR113595A1 (fr)
WO (1) WO2019105939A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023161182A1 (fr) 2022-02-24 2023-08-31 Evonik Operations Gmbh Composition d'origine biologique
WO2024002738A1 (fr) 2022-06-28 2024-01-04 Evonik Operations Gmbh Composition contenant un biotensioactif et de la persicomycine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024119298A1 (fr) 2022-12-05 2024-06-13 The Procter & Gamble Company Composition de soin textile et ménager comprenant un composé de carbonate de polyalkylène

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2182306A (en) 1935-05-10 1939-12-05 Ig Farbenindustrie Ag Polymerization of ethylene imines
US2208095A (en) 1937-01-05 1940-07-16 Ig Farbenindustrie Ag Process of producing insoluble condensation products containing sulphur and nitrogen
US2553696A (en) 1944-01-12 1951-05-22 Union Carbide & Carbon Corp Method for making water-soluble polymers of lower alkylene imines
US2806839A (en) 1953-02-24 1957-09-17 Arnold Hoffman & Co Inc Preparation of polyimines from 2-oxazolidone
US3033746A (en) 1958-06-19 1962-05-08 Dow Chemical Co Polyalkyleneimine, phenol germicides
GB1088984A (en) 1963-06-05 1967-10-25 Ici Ltd Modifying treatment of shaped articles derived from polyesters
US3893929A (en) 1971-10-28 1975-07-08 Procter & Gamble Compositions for imparting renewable soil release finish to polyester-containing fabrics
US3959230A (en) 1974-06-25 1976-05-25 The Procter & Gamble Company Polyethylene oxide terephthalate polymers
US3962152A (en) 1974-06-25 1976-06-08 The Procter & Gamble Company Detergent compositions having improved soil release properties
GB1466639A (en) 1974-06-25 1977-03-09 Procter & Gamble Liquid detergent compositions having soil release properties
US4132680A (en) 1976-06-24 1979-01-02 The Procter & Gamble Company Detergent compositions having soil release properties
EP0199403A2 (fr) 1985-04-15 1986-10-29 The Procter & Gamble Company Compositions détergentes liquides stables
US4702857A (en) 1984-12-21 1987-10-27 The Procter & Gamble Company Block polyesters and like compounds useful as soil release agents in detergent compositions
US4711730A (en) 1986-04-15 1987-12-08 The Procter & Gamble Company Capped 1,2-propylene terephthalate-polyoxyethylene terephthalate polyesters useful as soil release agents
US4713194A (en) 1986-04-15 1987-12-15 The Procter & Gamble Company Block polyester and like compounds having branched hydrophilic capping groups useful as soil release agents in detergent compositions
US4759876A (en) 1985-03-19 1988-07-26 Colgate-Palmolive Company Stable soil release promoting enzymatic liquid detergent composition
WO2007138054A1 (fr) 2006-05-31 2007-12-06 The Procter & Gamble Company Compositions de nettoyage comprenant des polymères greffés amphiphiles à base d'oxydes de polyalkylène et des esters vinyliques
JP2015105373A (ja) * 2013-12-03 2015-06-08 花王株式会社 繊維用汚れ放出剤
US20160311208A1 (en) * 2013-12-20 2016-10-27 E. I. Du Pont De Nemours And Company Furan-based polymeric hydrocarbon fuel barrier structures
EP3235848A1 (fr) * 2016-04-18 2017-10-25 Stichting Wageningen Research Copolyesters de dicarboxylate de furane

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2182306A (en) 1935-05-10 1939-12-05 Ig Farbenindustrie Ag Polymerization of ethylene imines
US2208095A (en) 1937-01-05 1940-07-16 Ig Farbenindustrie Ag Process of producing insoluble condensation products containing sulphur and nitrogen
US2553696A (en) 1944-01-12 1951-05-22 Union Carbide & Carbon Corp Method for making water-soluble polymers of lower alkylene imines
US2806839A (en) 1953-02-24 1957-09-17 Arnold Hoffman & Co Inc Preparation of polyimines from 2-oxazolidone
US3033746A (en) 1958-06-19 1962-05-08 Dow Chemical Co Polyalkyleneimine, phenol germicides
GB1088984A (en) 1963-06-05 1967-10-25 Ici Ltd Modifying treatment of shaped articles derived from polyesters
US3893929A (en) 1971-10-28 1975-07-08 Procter & Gamble Compositions for imparting renewable soil release finish to polyester-containing fabrics
US3959230A (en) 1974-06-25 1976-05-25 The Procter & Gamble Company Polyethylene oxide terephthalate polymers
US3962152A (en) 1974-06-25 1976-06-08 The Procter & Gamble Company Detergent compositions having improved soil release properties
GB1466639A (en) 1974-06-25 1977-03-09 Procter & Gamble Liquid detergent compositions having soil release properties
US4132680A (en) 1976-06-24 1979-01-02 The Procter & Gamble Company Detergent compositions having soil release properties
US4702857A (en) 1984-12-21 1987-10-27 The Procter & Gamble Company Block polyesters and like compounds useful as soil release agents in detergent compositions
US4759876A (en) 1985-03-19 1988-07-26 Colgate-Palmolive Company Stable soil release promoting enzymatic liquid detergent composition
EP0199403A2 (fr) 1985-04-15 1986-10-29 The Procter & Gamble Company Compositions détergentes liquides stables
US4711730A (en) 1986-04-15 1987-12-08 The Procter & Gamble Company Capped 1,2-propylene terephthalate-polyoxyethylene terephthalate polyesters useful as soil release agents
US4713194A (en) 1986-04-15 1987-12-15 The Procter & Gamble Company Block polyester and like compounds having branched hydrophilic capping groups useful as soil release agents in detergent compositions
WO2007138054A1 (fr) 2006-05-31 2007-12-06 The Procter & Gamble Company Compositions de nettoyage comprenant des polymères greffés amphiphiles à base d'oxydes de polyalkylène et des esters vinyliques
JP2015105373A (ja) * 2013-12-03 2015-06-08 花王株式会社 繊維用汚れ放出剤
US20160311208A1 (en) * 2013-12-20 2016-10-27 E. I. Du Pont De Nemours And Company Furan-based polymeric hydrocarbon fuel barrier structures
EP3235848A1 (fr) * 2016-04-18 2017-10-25 Stichting Wageningen Research Copolyesters de dicarboxylate de furane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023161182A1 (fr) 2022-02-24 2023-08-31 Evonik Operations Gmbh Composition d'origine biologique
WO2024002738A1 (fr) 2022-06-28 2024-01-04 Evonik Operations Gmbh Composition contenant un biotensioactif et de la persicomycine

Also Published As

Publication number Publication date
AR113595A1 (es) 2020-05-20
WO2019105939A1 (fr) 2019-06-06

Similar Documents

Publication Publication Date Title
EP3218461B1 (fr) Détergents pour lessive contenant des polymères facilitant le lavage
EP2880074B1 (fr) Compositions alcalines de détergent liquide pour la lessive comprenant des polyesters
EP3218465B1 (fr) Détergents pour lessive contenant des polymères facilitant le lavage
EP2880143B1 (fr) Compositions concentrées de détergent liquide
US11884775B2 (en) Renewably sourced soil release polyesters
US9732308B2 (en) Polyesters
EP1869154B1 (fr) Compositions nettoyantes avec polyalkylenimines alcoxylees
US12030984B2 (en) Soil release polyesters for use in detergent compositions
US9090741B2 (en) Comb polymers and the use thereof in washing and cleaning agents
DE102008023803A1 (de) Additive für Wasch- und Reinigungsmittel
WO2019105939A1 (fr) Compositions détergentes contenant des polyesters facilitant le lavage, d'origine renouvelable
EP3390611B1 (fr) Procede de nettoyage d'une surface dure avec une composition de nettoyage comprenant une polyalkanolamine
US20230183612A1 (en) Soil Release Polyesters For Use In Detergent Compositions
US20230105221A1 (en) Method of making liquid laundry detergent formulation
AU2013298728B9 (en) Alkaline liquid laundry detergent compositions comprising polyesters
US20230087990A1 (en) Liquid laundry composition

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20191128