EP3488454B1 - Processes for preparing a hybrid cylindrical supercapacitor comprising an ionic alkalin metal - Google Patents

Processes for preparing a hybrid cylindrical supercapacitor comprising an ionic alkalin metal Download PDF

Info

Publication number
EP3488454B1
EP3488454B1 EP17764867.2A EP17764867A EP3488454B1 EP 3488454 B1 EP3488454 B1 EP 3488454B1 EP 17764867 A EP17764867 A EP 17764867A EP 3488454 B1 EP3488454 B1 EP 3488454B1
Authority
EP
European Patent Office
Prior art keywords
conductive material
negative electrode
alkali metal
main body
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17764867.2A
Other languages
German (de)
French (fr)
Other versions
EP3488454A1 (en
Inventor
Olivier Caumont
Thierry Drezen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Blue Solutions SA
Original Assignee
Blue Solutions SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Blue Solutions SA filed Critical Blue Solutions SA
Publication of EP3488454A1 publication Critical patent/EP3488454A1/en
Application granted granted Critical
Publication of EP3488454B1 publication Critical patent/EP3488454B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/80Gaskets; Sealings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/82Fixing or assembling a capacitive element in a housing, e.g. mounting electrodes, current collectors or terminals in containers or encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the invention relates to a process for preparing a hybrid alkali metal-cylindrical ion supercapacitor and a hybrid alkali metal-cylindrical ion supercapacitor obtained according to said method.
  • a lithium-ion hybrid supercapacitor (Li-ion) combines the storage principles of a lithium-ion battery and a double-layer electrochemical capacitor (EDLC) and has a higher energy density, generally around 13 or 14 Wh.kg -1 , than a standard EDLC.
  • EDLC double-layer electrochemical capacitor
  • a symmetrical cell of a standard EDLC consists of two identical capacitive electrodes (carbon electrodes with very large specific surfaces, generally between 1000 and 2000 m 2 .g -1 ) deposited on metallic current collectors, between which a porous separator provides electronic isolation. The assembly is immersed in an electrolyte. The potential difference of such an uncharged cell is 0 V, and it increases linearly over time during the galvanostatic charge of the constant current cell.
  • the negative electrode of the lithium-ion battery type is characterized by an almost constant potential during charging and the discharge of the system, in the case of a Li-ion supercapacitor.
  • hybrid supercapacitors in which the negative electrode of an EDLC is replaced by a carbonaceous electrode of the “lithium-ion battery” type proposed.
  • the main problems to be solved in this type of hybrid supercapacitor are the formation of the passivation layer and the intercalation / insertion of lithium in the negative electrode.
  • the passivation of the negative electrode allows the formation of an intermediate layer on the surface of this electrode.
  • the lithium ions are desolvated before being inserted / inserted into the negative electrode.
  • the presence of a well-formed passivation layer makes it possible to avoid the exfoliation of the carbon planes of the negative electrode by the insertion of the solvent with the lithium during the cycling of the system.
  • the lithium is inserted / inserted into the negative electrode until reaching a Li ⁇ x C 6 composition with 0.5 ⁇ x ⁇ 1.
  • x remains between 0.5 and 1, and therefore, the potential of the negative electrode remains relatively stable during successive charges / discharges of the hybrid supercapacitor.
  • the number of steps is increased compared to a conventional assembly process; assembly must be carried out under a humidity-controlled atmosphere in order to avoid degradation of the metallic lithium during its insertion into the stack; and as explained above, the quantity of metallic lithium to be inserted must be calibrated, inducing the implementation of a series of tests and preliminary calculations before assembly which needs to be repeated if one of the parameters of the cell is modified (eg thickness of the electrodes, types of electrodes, etc ).
  • the document EP 1,400,996 describes the interposition of a sacrificial metal lithium source in a hybrid supercapacitor consisting of a stack or a winding of layers of positive electrode (s), negative electrode (s) and separator (s).
  • the quantity of metallic lithium brought into said hybrid supercapacitor is calculated so that a) the capacity of the negative electrode per unit of weight of the active material of negative electrode is at least three times greater than the capacity of l positive electrode per unit weight of the positive electrode active material, and b) the weight of the positive electrode active material is greater than the weight of the negative electrode active material.
  • the hybrid supercapacitor When the hybrid supercapacitor consists of a winding of positive electrode, negative electrode and separator layers, a lithium sheet can be attached by pressure to the current collector of the negative electrode of the outermost layer of the 'winding or arranged in the center of the winding.
  • the penetration of the electrolyte within the winding after assembly can be slowed down since the winding is covered by the lithium source, the electrolyte will therefore hardly diffuse inside the 'winding.
  • the second case it is not described how and when metallic lithium is introduced into the center of the winding. Nor is it described how metallic lithium is electrically connected in the hybrid supercapacitor.
  • the document JP 2007067105 describes a process for the preparation of a hybrid supercapacitor in which the metallic lithium is placed in the center of a winding of electrodes and separators.
  • the positive electrode, negative electrode and separator layers are wound, then metallic lithium is placed in the center of the winding.
  • the metallic lithium is in the form of a lithium sheet wound around a metallic rod playing the role of a current collector (eg nickel, steel); a winding of a layer of metallic lithium and a porous layer of current collector (eg copper) or of a cylindrical tube of metallic lithium inserted in a porous cylindrical tube of current collector.
  • the electrolyte is added, the supercapacitor is hermetically sealed and a preliminary training step (or initial training step) is carried out in order to insert lithium ions in the negative electrode.
  • the quantity of metallic lithium is calibrated so as to avoid the residual presence of metallic lithium at the end of the 1st charging cycle.
  • the presence of metallic lithium in the center can hinder the impregnation of the electrodes by the electrolyte.
  • the metallic lithium support at the center of the winding occupies part of the free volume normally intended to absorb the overpressure generated by the gases formed during the electrical aging of the supercapacitor.
  • the aim of the present invention is to overcome the drawbacks of the aforementioned prior art and to provide a process for the preparation of an economical, simple hybrid supercapacitor, in particular in which the arrangement of the source of metallic lithium is simplified, and which makes it possible to avoid any prior calibration of the mass of metallic lithium to be used.
  • step v) is a preliminary step of forming the negative electrodes, also called the initial forming step.
  • the negative electrodes of the hybrid supercapacitor are ready for use for charge and discharge cycles.
  • the alkali metal M1 present in the center of the wound element i.e.
  • the free volume in the center of the supercapacitor resulting from this withdrawal can be used to contain the gases generated during electrical aging of the supercapacitor by charge / discharge cycles (cycles) or by voltage maintenance constant (floatings), and thus limit / delay the possible swelling of the supercapacitor.
  • Step i) may comprise a substep i-1) of assembling at least one positive electrode, at least one negative electrode, and at least one separator interposed between the negative electrode and the positive electrode, and a substep i-2) of winding the assembly in a spiral around an axis XX to form a cylindrical wound element having a central free volume along the axis XX.
  • the central free volume along the X-X axis is delimited by the innermost turn of the cylindrical wound element.
  • this central volume can for example be occupied by a central solid support (for example a core) to facilitate winding or winding (i.e. volume not free).
  • a central solid support for example a core
  • the sub-step i-2) (or more generally step i)] is preferably carried out without a central solid support.
  • the cylindrical wound element is in a configuration such that the current collector of the positive electrode protrudes at one end of said wound element (ie positive current collector said to be “protruding” or “ overflowing ") and the current collector of the negative electrode protrudes at the other end (ie opposite end) of said wound element (ie negative current collector said to be” protruding "or” overflowing ").
  • cylindrical wound element is delimited at its two opposite ends, respectively, by two current-collecting turns.
  • the cylindrical wound element centered on an axis X-X further comprises a separator deposited on the positive electrode or on the negative electrode.
  • a separator deposited on the positive electrode or on the negative electrode.
  • the wound element can further comprise a layer of said alkali metal M1 on at least one of the faces of the negative current collector protruding.
  • the protruding negative current collector is preferably perforated.
  • the active material of the negative electrode comprises a carbonaceous material.
  • the carbonaceous material of the negative electrode is preferably chosen from graphene, graphite, low temperature carbons (hard or soft), carbon black, carbon nanotubes and carbon fibers.
  • the specific surface (BET method) of the carbonaceous material of the negative electrode is preferably less than approximately 50 m 2 / g.
  • the negative electrode preferably has a thickness varying from 10 to 100 ⁇ m approximately.
  • the active material of the negative electrode comprises graphite and optionally a material chosen from activated carbon, graphene, carbon derived from carbide, hard carbon and soft carbon.
  • the active material of the positive electrode comprises a porous carbonaceous material or a transition metal oxide.
  • the transition metal oxide of the positive electrode is preferably chosen from MnO 2 , SiO 2 , NiO 2 , TIO 2 , RuO 2 and VNO 2 .
  • the porous carbon material is preferably chosen from active carbon, carbon derived from carbide (CDC), porous carbon nanotubes, porous carbon blacks, porous carbon fibers, carbon onions, carbons derived from coke. (whose porosity is increased per charge).
  • the specific surface of the porous carbonaceous material of the positive electrode varies from approximately 1200 to 3000 m 2 / g (BET method), and preferably from approximately 1200 to 1800 m 2 / g (BET method).
  • the active material of the positive electrode comprises activated carbon and optionally a material chosen from graphite, graphene, carbon derived from carbide, hard carbon and soft carbon.
  • the positive electrode preferably has a thickness varying from 50 to 150 ⁇ m approximately.
  • the positive electrode (respectively the negative electrode) generally comprises at least one binder.
  • the binder preferably represents from 1 to 15% by mass approximately relative to the total mass of the electrode.
  • the positive electrode (respectively the negative electrode) may further comprise at least one agent imparting electronic conductivity.
  • the agent conferring electronic conduction properties can be carbon, preferably chosen from carbon blacks such as acetylene black, carbon blacks with a high specific surface area such as the products sold under the name Ketjenblack® EC- 600JD by AKZO NOBEL, carbon nanotubes, graphite, graphene, or mixtures of these materials.
  • carbon blacks such as acetylene black
  • carbon blacks with a high specific surface area such as the products sold under the name Ketjenblack® EC- 600JD by AKZO NOBEL
  • carbon nanotubes graphite, graphene, or mixtures of these materials.
  • the material conferring electronic conduction properties preferably represents from 1 to 10% by mass approximately relative to the total mass of the electrode.
  • the active material, the binder and the agent conferring electronic conduction properties form the electrode and this is deposited on the corresponding current collector.
  • the current collector of the negative electrode can be a current collector of conductive material, in particular copper.
  • the current collector of the positive electrode can be a current collector of conductive material, in particular aluminum.
  • the separator is generally made of a porous, non-conductive electronic material, for example a polymer material based on polyolefins (e.g. polyethylene, polypropylene) or fibers (e.g. glass fibers, wood fibers or cellulose fibers).
  • polyolefins e.g. polyethylene, polypropylene
  • fibers e.g. glass fibers, wood fibers or cellulose fibers.
  • separators made of polymer material based on polyolefins mention may be made of those sold under the reference Celgard®.
  • the main body of the outer casing may have a lower part and an upper part.
  • Step ii) can be carried out so as to position the current collector of the positive electrode protruding in the lower part of the main body of the external envelope and the current collector of the negative electrode protruding in the upper part of the main body of the outer shell.
  • Step ii) may also include a sub-step ii-1) during which the current collector of the protruding negative electrode is electrically connected to a piece of conductive material, preferably by welding (eg using laser welding by transparency), soldering, brazing-diffusion or tight or screwed contacts.
  • welding eg using laser welding by transparency
  • soldering e.g., soldering
  • brazing-diffusion e.g., soldering, brazing-diffusion or tight or screwed contacts.
  • the technique of laser welding by transparency makes it possible to electrically connect all the turns of the wound element.
  • Step ii) may include a sub-step ii-2) during which the current collector of the protruding positive electrode is electrically connected to the lower part of the main body of the external envelope, preferably by welding ( eg using laser welding by transparency), soldering, brazing-diffusion or tight or screwed contacts.
  • welding eg using laser welding by transparency
  • soldering e.g using soldering, brazing-diffusion or tight or screwed contacts.
  • the laser transparency welding technique is conventionally used in processes for the preparation of non-symmetrical supercapacitors. classic hybrids. It electrically connects all the turns of the wound element.
  • Sub-steps ii-1) and ii-2) can be simultaneous or separate.
  • the current collector of the protruding negative electrode is located in the upper part of the main body of the The outer casing and the current collector of the protruding positive electrode is located in the lower part of the main body of the outer casing.
  • the invention is not limited to the embodiment as described above. Indeed, it is entirely conceivable to reverse the upper and lower parts of the main body of the external envelope, and in particular to obtain a configuration in which the current collector of the protruding negative electrode is located in the part lower part of the main body of the outer casing and the current collector of the protruding positive electrode is located in the upper part of the main body of the outer casing.
  • the current collector of the protruding negative electrode is located in the upper part of the main body of the outer casing and the current collector of the protruding positive electrode is located in the lower part of the main body of the outer casing.
  • the reverse configuration it is possible to implement the reverse configuration.
  • the piece of conductive material is preferably made of a conductive material identical to that of the current collector of the negative electrode, in particular copper.
  • the piece of conductive material can be configured to seal, temporarily and at least partially, or even completely, the upper part of the main body of the outer casing of the supercapacitor (eg at the end of step iv)).
  • the piece of conductive material may be capable of sealingly passing through the upper part of the main body of the external envelope, in particular via a sealing means (eg seal) which provides electrical insulation between the piece of material conductor and the outer casing.
  • a sealing means eg seal
  • Step ii) then comprises a sub-step ii-3) during which said parts are mechanically connected to form the main body of the external envelope, in particular by welding.
  • Sub-step ii-3) can be carried out before or after sub-steps ii-1) and ii-2). It is preferably carried out after sub-steps ii-1) and ii-2). This makes it easier and more freely to carry out the sub-steps ii-1) and ii-2).
  • the lower part of the main body of the external envelope is generally made of a conductive material electrochemically compatible with that of the current collector of the positive electrode, in particular aluminum.
  • the supercapacitor may further comprise a cover, integral or separate from said lower part, said cover being made of a conductive material electrochemically compatible with that of the current collector of the positive electrode, in particular aluminum. This cover makes it possible to hermetically close the main body of the outer envelope of the supercapacitor at its lower part.
  • the upper part of the main body of the external envelope is generally made of a conductive material electrochemically compatible with that of the current collector of the positive electrode, in particular aluminum.
  • the piece of conductive material can be an integral part of the upper part of the main body of the external envelope.
  • the lower part of the main body of the external envelope is hermetically sealed and preferably permanently.
  • the organic solvent of the nonaqueous liquid electrolyte makes it possible to optimize the transport and the dissociation of the ions of the alkali metal M1.
  • It may comprise one or more polar aprotic compounds chosen from linear or cyclic carbonates, linear or cyclic ethers, linear or cyclic esters, linear or cyclic sulfones, sulfonamides and nitriles.
  • the organic solvent preferably comprises at least two carbonates chosen from ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate and methyl and ethyl carbonate.
  • M1FSI bis (
  • the nonaqueous liquid electrolyte permeates the wound element and possibly the solid mass when step iv) is carried out before step iii).
  • step iii) an excess of nonaqueous liquid electrolyte is preferably used so as to completely bathe the cylindrical wound element and the solid mass. This thus improves the dissolution of the alkali metal M1.
  • step iii) or step iv) the solid mass therefore finds itself in direct ionic contact with the cylindrical wound element.
  • Step iv) positions the solid mass at the heart of the cylindrical wound element. It is carried out before or after the impregnation step iii) of the cylindrical wound element with the non-aqueous liquid electrolyte.
  • Step iv) is preferably carried out after step iii) (i.e. the most downstream in the process of the invention). This thus makes it possible to reduce the number of steps carried out under a controlled atmosphere.
  • the alkali metal M1 is generally handled under a humidity-controlled atmosphere, in particular under an inert atmosphere, during step iv) and subsequent steps.
  • the alkali metal M1 is preferably chosen from lithium, sodium and potassium, and more preferably lithium.
  • solid mass comprising said alkali metal M1 means a mass in the solid form. In other words, the mass is not in powder form. This also means that the alkali metal M1 or any other chemical element contained in the solid mass is in the solid form and not in powder form.
  • the solid mass preferably has a height greater than or equal to that of the cylindrical wound element. This thus makes it possible to supply ions of the alkali metal M1 over the entire height of the electrodes of the cylindrical wound element during step v).
  • the solid mass comprising said alkali metal M1 is preferably in the form of a hollow cylinder or in the form of a solid bar or a solid rod, in particular cylindrical.
  • the bar or rod may have a diameter ranging from 1 to 50 mm approximately, and preferably ranging from 5 to 20 mm approximately.
  • the bar or rod may have a diameter as close as possible to the diameter of the central free volume of the cylindrical wound element. This thus minimizes the distance traveled by the ions of the alkali metal M1.
  • the solid mass may consist solely of said alkali metal M1 or further comprise a conductive material such as copper.
  • the solid mass consists only of said alkali metal M1, it is preferably in the form of a solid bar or a solid rod of said alkali metal M1.
  • the solid mass further comprises a conductive material
  • it may be in the form of a hollow cylinder comprising an internal layer of said conductive material and an external layer of said alkali metal M1 surrounding said internal layer or in the form of a solid cylinder comprising a central core of said conductive material and a layer of said alkali metal M1 surrounding said central core.
  • the conductive material of the inner layer or of the central core can be in the form of a foam of conductive material (porous conductive material). This thus makes it possible to deposit the alkali metal M1 within the foam of conductive material and to increase the exchange surface between the alkali metal M1 and the non-aqueous liquid electrolyte during step iii) or iv).
  • the insertion according to step iv) is preferably carried out by the upper part of the main body of the external envelope.
  • stage iv) [if stage iv) is carried out after stage iii)] or of stage iii) [if stage iv) is carried out before stage iii)] the upper part of the main body of the external envelope is preferably sealed and temporarily closed.
  • the temporary closure thus makes it possible to be able to carry out step vi) of removal of the solid mass, once the initial step v) of formation has been carried out.
  • Step v) makes it possible to insert ions of the alkali metal M1 in the negative electrode and thus to bring the negative electrode to a lower potential.
  • the solid mass can be mechanically and electrically connected to the piece of conductive material as defined above (also called “first piece of conductive material”) or to another piece of conductive material (also called “Second part made of conductive material”), in particular copper or copper alloy (eg brass).
  • first piece of conductive material also called “first piece of conductive material”
  • second piece of conductive material also called “Second part made of conductive material”
  • copper or copper alloy eg brass
  • the second piece of conductive material is configured to provide direct or indirect electrical connection with the first piece of conductive material. This thus makes it possible to electrically connect the solid mass with the negative electrode via the two pieces of conductive material.
  • the electrical connection between the solid mass and the negative electrode can therefore be made via the first piece of conductive material or the first and second pieces of conductive material.
  • steps iv) and v) are concomitant.
  • the electrical connection between the solid mass and the negative electrode is made during the insertion of the solid mass into the central free volume of the cylindrical wound element, in particular when the solid mass is completely inserted in the central free volume of the cylindrical wound element.
  • the electrical connection of step v) is thus made by electrical contact of the solid mass with the first piece of conductive material or by electrical contact of the second piece of conductive material with the first piece of conductive material, the first piece of material. conductor itself being in electrical contact with the current collector protruding from the negative electrode.
  • this forms a short circuit between the negative electrode of the wound element and the solid mass, inducing the migration of the ions of the alkali metal M1 towards the negative electrode.
  • the electrical connection between the first and second pieces of conductive material can be direct or indirect (i.e. direct or indirect short circuit).
  • a direct electrical connection implies that the two parts are in mechanical and electrical contact.
  • Direct contact makes it possible (once the main body of the external envelope is closed) to carry out step v) without any particular precaution, with the exception of avoiding contact between the positive and negative poles.
  • the type of direct connection between the first piece of conductive material and the second piece of conductive material may involve screwing with electrical support and gasket, pinching, clipping or blocking 1 ⁇ 4 turn.
  • the indirect electrical connection implies for example the application between said parts of a potential difference, a current flow or the presence of a controlled resistance. This allows better control of the process of intercalation of the ions of the alkali metal M1 on the negative electrode during step v).
  • This embodiment involves controlling the flow of current in the controlled resistor, and therefore the proper initial dimensioning of the resistor, or the implementation of charge / discharge benches or controlled power supplies to ensure the potentials or the passages current.
  • the advantage of such an embodiment is to be able to follow the evolution of the potential of the negative electrode vs the positive electrode to determine the end of step v).
  • the insulating intermediate piece seals between the two pieces of conductive material.
  • an intermediate piece with controlled resistivity also called “spacer with controlled resistance”
  • the electrical connection between the two pieces of conductive material is carried out via the electrical resistance provided by the intermediate piece with controlled resistivity .
  • This intermediate piece with controlled resistivity also provides sealing between the two pieces of conductive material (e.g. piece of elastomer or thermoplastic material).
  • the second piece of conductive material can be configured to seal (temporarily hermetic) and temporarily at least partially, or even completely, the upper part of the main body of the outer casing of the supercapacitor (eg at the end of the step iv)).
  • the combination of the first and second pieces of conductive material completely closes the upper part of the main body of the outer envelope of the supercapacitor (eg at the end of step iv)).
  • the first piece of conductive material has a central free volume allowing the passage and insertion of the solid mass into the central free volume of the cylindrical wound element [step iv)] and the second piece of conductive material is configured to close or completely cover the central free volume of the first part at the end of step iv) (ie when the insertion is complete). So during step iv), the solid mass is inserted into the free central volume of the cylindrical wound element via the free central volume of the first piece of conductive material. At the end of the insertion, the combination of the first and second pieces of conductive material temporarily and tightly closes the upper part of the main body of the external envelope.
  • the second piece of conductive material When the second piece of conductive material is configured to completely cover the central free volume of the first piece, the latter can have a diameter or a length greater than that or that of the central free volume.
  • the second piece of conductive material is also configured to serve as a gripping means. This thus makes it possible to facilitate the removal of the solid mass during step vi).
  • the second piece of conductive material When the second piece of conductive material is configured to completely close the central free volume of the first part without however covering it, the latter can be configured to fit completely into the central free volume.
  • It may for example be in the form of a collar surrounding the solid mass, said collar being in mechanical and electrical contact with the first piece of conductive material.
  • the solid mass can also be mechanically connected to a gripping means made of insulating material. This thus makes it possible to facilitate the removal of the solid mass during step vi).
  • the insulating intermediate piece (respectively the intermediate piece with controlled resistivity) may also include a central free volume allowing the passage and insertion of the solid mass into the central free volume of the wound element (step iv)] and the second piece of conductive material is configured to close or completely cover the central free volume of the insulating intermediate piece (respectively of the intermediate piece with controlled resistivity) at the end of step iv) (ie when the insertion is complete).
  • the solid mass is inserted into the free central volume of the cylindrical wound element via the free central volume of the insulating intermediate piece (respectively of the intermediate piece with controlled resistivity) and of the first piece of conductive material.
  • the association of the first and second pieces of conductive material (and possibly of the insulating intermediate piece or with controlled resistivity) tightly and temporarily closes the upper part of the main body of the outer casing of the supercapacitor.
  • the central free volume of the first piece of conductive material (respectively the free central volume of the insulating intermediate piece or with controlled resistivity) has dimensions (eg a diameter) substantially identical to those (eg the diameter) of the central free volume of the cylindrical wound element.
  • the second piece of conductive material is preferably of rectangular, square or cylindrical shape, in particular of shape identical to that of the first piece of conductive material so as to improve the contact and the electrical connection between the first and second pieces of conductive material.
  • sealing means between the first and second pieces of conductive material than the insulating intermediate piece or with controlled resistivity can be used to ensure a sealed and temporary closure of the upper part of the main body of the envelope.
  • Step v) may last a time sufficient to allow the negative electrode to be charged with ions of the alkali metal M1 to a value ranging from approximately 70 to 95% of the total charge of the electrode, and preferably to a value ranging from about 80 to 90% of the total charge of the electrode.
  • the negative electrode If the negative electrode is too charged, it can reach charge saturation during operation and degrade.
  • step v) lasts at least 24 hours, and preferably at least 7 days.
  • Step v) can be carried out at room temperature (ie 20-25 ° C) or at a temperature higher than room temperature (for example between 25 ° C and 70 ° C) to increase ionic diffusion and accelerate the formation of the negative electrode, and thus accelerate the consumption of the solid mass in the liquid electrolyte used.
  • step vi) the solid mass is removed from the cylindrical wound element.
  • the supercapacitor no longer comprises alkali metal M1. Furthermore, the gases created during step v) escape from the interior of the supercapacitor, on the one hand, to allow the central volume to be free again and, on the other hand, to allow to collect the pressure of the gases emitted during the subsequent aging of the supercapacitor, and thus avoid or limit the deformations of the external envelope.
  • Step vii) is preferably carried out using a closure plug, for example of the rivet type, a cover, a weld (for example by the technique of friction stir welding, well known according to Anglicism "Friction Stir Welding") or a cover optionally fitted with an anti-overpressure valve.
  • Step vii) can be carried out according to any other method known to those skilled in the art.
  • This closing step is generally final, that is to say that at the end of step vii), the supercapacitor is functional.
  • the term “functional supercapacitor” means that the supercapacitor is ready to be tested and / or checked, then packaged, and finally marketed.
  • the closure plug is preferably configured to close the central free volume of the first piece of conductive material.
  • the method may further comprise after step vi) or during step vi), a step vi ') of emptying the surplus of nonaqueous liquid electrolyte present in the main body of the external envelope.
  • step vi ' thus makes it possible to increase the central free volume of the wound element after the removal of the solid mass according to step vi).
  • the invention also relates to a hybrid alkali metal-ion cylindrical supercapacitor, characterized in that it is obtained according to the method of the invention.
  • the hybrid alkali metal-cylindrical ion supercapacitor contains no residue of alkali metal M1.
  • Part of the alkali metal M1 of the solid mass was inserted in the negative electrode during the initial forming step (step v)], and the other part (ie the remaining part) of the alkali metal M1 of the solid mass was removed in the next step vi).
  • the figure 1 shows a sectional view along a transverse axis of the supercapacitor of the present invention as obtained at the end of step ii) ( Figure la) and of the solid mass comprising said alkali metal M1 before its insertion during the step iv) in the central free volume of the cylindrical wound element ( figure 1b ).
  • FIG. 1a illustrates a hybrid alkali metal-ion cylindrical supercapacitor 1 comprising at least one cylindrical wound element 2 and an external casing 3 containing a main body intended to receive said cylindrical wound element 2 .
  • the cylindrical wound element 2 comprises at least one positive electrode, at least one negative electrode and at least one separator interposed between the positive and negative electrodes, the positive and negative electrodes and the separator being wound together in turns around an axis XX , the cylindrical wound element having a central free volume 4 along the axis XX.
  • the positive electrode comprises at least one active material of positive electrode capable of intercalating and de-intercalating ions of an alkali metal M1 and / or capable of adsorbing and desorbing ions of an alkali metal M1, said positive electrode being deposited on a positive electrode current collector
  • the negative electrode comprises at least one active material of negative electrode capable of intercalating and de-intercalating ions of an alkali metal M1, said negative electrode being deposited on a negative electrode current collector.
  • the main body of the external envelope 3 has a lower part 5 and an upper part 6.
  • the cylindrical wound element 2 is inserted into the main body of the external envelope 3. Furthermore, the current collector of the positive electrode protruding 7 is located in the lower part 5 of the main body of the outer casing and the current collector of the negative electrode protruding 8 is located in the upper part 6 of the main body of the outer casing 3. The lower part of the main body of the outer casing is hermetically closed.
  • Step ii) further comprises a sub-step ii-1) during which the current collector of the negative electrode protruding 8 is electrically connected to a first piece of conductive material 9 , preferably by welding (eg using laser welding by transparency), soldering, brazing-diffusion or tight or screwed contacts.
  • welding eg using laser welding by transparency
  • soldering e.g., soldering
  • brazing-diffusion e.g., soldering, brazing-diffusion or tight or screwed contacts.
  • the technique of laser welding by transparency makes it possible to electrically connect all the turns of the wound element.
  • Stage ii) further comprises a sub-stage ii-2) during which the current collector of the positive electrode protruding 7 is electrically connected to the lower part 5 of the main body of the external envelope 3 , preferably by welding (eg using laser welding by transparency), soldering, diffusion brazing or tight or screwed contacts.
  • welding eg using laser welding by transparency
  • soldering e.g., soldering
  • diffusion brazing e.g., soldering, diffusion brazing or tight or screwed contacts.
  • the laser transparency welding technique is conventionally used in the processes for preparing Conventional non-hybrid symmetrical supercapacitors. It electrically connects all the turns of the wound element.
  • the first piece of conductive material 9 is preferably made of a conductive material identical to that of the current collector of the negative electrode, in particular made of copper or a copper alloy.
  • the first piece of conductive material 9 partially and temporarily closes the upper part 6 of the main body of the outer casing 3 of the supercapacitor.
  • the piece of conductive material 9 passes tightly through the upper part of the main body of the outer casing 3 , in particular via a sealing means 10 (eg seal) which provides electrical insulation between the piece of conductive material 9 and the outer casing 3.
  • a sealing means 10 eg seal
  • the first piece of conductive material 9 has a central free volume 11 allowing the passage and insertion of a solid mass 12 comprising an alkali metal M1 in the central free volume 4 of the wound element 2 (step iv)).
  • Step ii) then comprises a sub-step ii-3) during which said parts are mechanically connected to form the main body of the envelope, in particular by welding.
  • the lower part 5 of the main body of the casing 3 consists of a conductive material electrochemically compatible with that of the current collector of the positive electrode, in particular aluminum.
  • the upper part 6 of the main body of the envelope is made of a conductive material electrochemically compatible with that of the current collector of the positive electrode, in particular aluminum.
  • the figure 1b represents the solid mass 12 comprising an alkali metal M1 which one wishes to insert according to step iv) in the central free volume 4 of the element wound via the central free volume 11 of the first piece of conductive material 9.
  • the alkali metal M1 is preferably chosen from lithium, sodium and potassium, and more preferably lithium.
  • the figure 1b illustrates a solid mass 12 having a height greater than that of the wound element 2. This thus makes it possible to supply alkali metal M1 over the entire height of the electrodes of the wound element 2 during step iv).
  • the solid mass 12 illustrated on the figure 1b consists only of said alkali metal M1 and is in the form of a solid bar or a solid rod, in particular cylindrical.
  • the bar or rod 12 can have a diameter ranging from 1 to 50 mm approximately, and preferably ranging from 5 to 20 mm approximately.
  • the solid mass 12 is mechanically and electrically connected to a second part made of conductive material 13 , in particular copper or copper alloy.
  • This second piece of conductive material 13 is configured to provide electrical connection with the first piece of conductive material 9. This thus makes it possible to electrically connect the solid mass 12 with the negative electrode via the two pieces of conductive material 9 and 13.
  • the figure 2 illustrates a sectional view along a transverse axis of the supercapacitor of the present invention as obtained at the end of step iv) [or step iii), if step iv) of insertion of the solid mass takes place before said step iii)].
  • the second piece of conductive material 13 is configured to completely close or cover the central free volume 11 of the first piece 9 at the end of step iv) (ie when the insertion is complete).
  • the solid mass 12 is inserted into the free central volume 4 of the wound element 2 via the central free volume 11 of the first piece of conductive material 9.
  • the first piece of conductive material 9 is in mechanical and electrical contact with the second piece of conductive material 13 and the association of the first and second pieces of conductive material 9 and 13 completely seal the upper part 6 of the main body of the outer casing 3 in a sealed and temporary manner .
  • the figure 2 illustrates a direct electrical connection between the first and second pieces of conductive material 9 and 13.
  • the central free volume 11 of the first piece of conductive material 9 has dimensions (eg a diameter) substantially identical to those of the central free volume 4 of the wound element 2 .
  • the second piece of conductive material 13 is preferably of rectangular, square or cylindrical shape, in particular of shape identical to that of the first piece of conductive material 9 so as to improve the contact and the connection between the first and second pieces of conductive material 9 and 13.
  • Sealing means between the first and second parts made of conductive material 9 and 13 can be used to ensure a sealed and temporary closure of the upper part 6 of the main body of the external envelope 3 .
  • step iv) the combination of the first and second pieces of conductive material completely closes the upper part of the main body of the envelope.
  • step iv) allows the electrical connection of the solid mass 12 to the current collector projecting from the negative electrode 8 (ie steps iv) and v) concomitant).
  • the figure 3 shows a sectional view along a transverse axis of the supercapacitor of the present invention as obtained at the end of step vii).
  • the hermetic (and final) closure of the supercapacitor is effected by means of a closure cap 14 , for example of the rivet type, of a cover, of a weld (for example by the technique of friction stir welding, well known according to the invention). 'Anglicism' Friction Stir Welding ') or a cover optionally fitted with a pressure relief valve.
  • This cap closure 14 is configured to close the central free volume 11 of the first piece of conductive material 9.
  • the figure 4 shows an embodiment of the invention in which the electrical connection between the first and second pieces of conductive material 9 and 13 is indirect.
  • the type of indirect connection between the first piece of conductive material 9 and the second piece of conductive material 13 involves an intermediate piece 15 lying between the two pieces of conductive material and being mechanically connected to said pieces of conductive material .
  • This intermediate piece 15 is an insulating piece (eg made of elastomeric or thermoplastic material).
  • the electrical connection between the two pieces of conductive material 9 and 13 is carried out using an external electrical circuit 16 (charger / unloader) and electrical connections 17.
  • the insulating intermediate piece 15 provides sealing between the two pieces of conductive material 9 and 13.
  • the figure 5 shows an embodiment of the invention in which the electrical connection between the first and second pieces of conductive material 9 and 13 is indirect.
  • the type of indirect connection between the first piece of conductive material 9 and the second piece of conductive material 13 involves an intermediate piece 15 ' lying between the two pieces of conductive material and being mechanically connected to said pieces of material driver.
  • This intermediate part 15 ′ is an insulating part (eg made of elastomeric or thermoplastic material).
  • the electrical connection between the two pieces of conductive material 9 and 13 is made using an external resistor 16 ' (charger / unloader) and electrical connections 17'.
  • the intermediate piece insulator 15 ' ensures the seal between the two pieces of conductive material 9 and 13.
  • the figure 6 shows an embodiment of the invention in which the electrical connection between the first and second pieces of conductive material 9 and 13 is indirect.
  • the type of indirect connection between the first piece of conductive material 9 and the second piece of conductive material 13 involves an intermediate piece 15 " lying between the two pieces of conductive material and being mechanically connected to said pieces of material driver.
  • This intermediate piece 15 " is an insulating piece (eg made of elastomeric or thermoplastic material).
  • the electrical connection between the two pieces of conductive material 9 and 13 is made using an external short-circuit switch 16 " and electrical connections 17".
  • the insulating intermediate piece 15 " seals between the two pieces of conductive material 9 and 13.
  • the figure 7 shows an embodiment of the invention in which the electrical connection between the first and second pieces of conductive material 9 and 13 is indirect.
  • the type of indirect connection between the first piece of conductive material 9 and the second piece of conductive material 13 involves an intermediate piece 18 located between the two pieces of conductive material and being mechanically connected to said pieces of conductive material .
  • This intermediate piece 18 is a piece with controlled resistivity (eg made of elastomeric or thermoplastic material).
  • the electrical connection between the two pieces of conductive material 9 and 13 is carried out via the electrical resistance provided by the intermediate piece 18 (also called “spacer with controlled resistance”).
  • the intermediate piece 18 also seals between the two pieces of conductive material 9 and 13.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Glass Compositions (AREA)

Description

L'invention concerne un procédé de préparation d'un supercondensateur hybride métal alcalin-ion cylindrique et un supercondensateur hybride métal alcalin-ion cylindrique obtenu selon ledit procédé.The invention relates to a process for preparing a hybrid alkali metal-cylindrical ion supercapacitor and a hybrid alkali metal-cylindrical ion supercapacitor obtained according to said method.

Un supercondensateur hybride lithium-ion (Li-ion) combine les principes de stockage d'une batterie lithium-ion et d'un condensateur à double couche électrochimique (EDLC) et possède une densité d'énergie plus élevée, généralement de l'ordre de 13 ou 14 Wh.kg-1, qu'un EDLC standard. Une cellule symétrique d'un EDLC standard est constituée de deux électrodes capacitives identiques (électrodes de carbone de très grandes surfaces spécifiques, généralement entre 1000 et 2000 m2.g-1) déposées sur des collecteurs de courant métalliques, entre lesquels un séparateur poreux assure l'isolation électronique. L'ensemble est immergé dans un électrolyte. La différence de potentiel d'une telle cellule non chargée est de 0 V, et elle augmente linéairement avec le temps au cours de la charge galvanostatique de la cellule à courant constant. Lors de la charge, le potentiel de l'électrode positive augmente linéairement et le potentiel de l'électrode négative diminue linéairement. Au cours de la décharge, la tension de cellule diminue linéairement. Les EDLC symétriques industriels fonctionnant en milieu organique ont habituellement une tension nominale de l'ordre de 2,7 V. A contrario, l'électrode négative de type batterie lithium-ion est caractérisée par un potentiel quasiment constant au cours de la charge et de la décharge du système, dans le cas d'un supercondensateur Li-ion. Afin d'accroître la tension de fonctionnement d'un supercondensateur, et ainsi sa densité d'énergie, des supercondensateurs hybrides dans lesquels l'électrode négative d'un EDLC est remplacée par une électrode carbonée de type « batterie lithium-ion » ont été proposés.A lithium-ion hybrid supercapacitor (Li-ion) combines the storage principles of a lithium-ion battery and a double-layer electrochemical capacitor (EDLC) and has a higher energy density, generally around 13 or 14 Wh.kg -1 , than a standard EDLC. A symmetrical cell of a standard EDLC consists of two identical capacitive electrodes (carbon electrodes with very large specific surfaces, generally between 1000 and 2000 m 2 .g -1 ) deposited on metallic current collectors, between which a porous separator provides electronic isolation. The assembly is immersed in an electrolyte. The potential difference of such an uncharged cell is 0 V, and it increases linearly over time during the galvanostatic charge of the constant current cell. During charging, the potential of the positive electrode increases linearly and the potential of the negative electrode decreases linearly. During the discharge, the cell voltage decreases linearly. Industrial symmetrical EDLCs operating in an organic medium usually have a nominal voltage of the order of 2.7 V. Conversely, the negative electrode of the lithium-ion battery type is characterized by an almost constant potential during charging and the discharge of the system, in the case of a Li-ion supercapacitor. In order to increase the operating voltage of a supercapacitor, and thus its energy density, hybrid supercapacitors in which the negative electrode of an EDLC is replaced by a carbonaceous electrode of the “lithium-ion battery” type. proposed.

Les problèmes principaux à résoudre dans ce type de supercondensateur hybride sont la formation de la couche de passivation et l'intercalation/insertion du lithium dans l'électrode négative. Lors du premier cycle d'insertion des ions lithium, la passivation de l'électrode négative permet la formation d'une couche intermédiaire à la surface de cette électrode. En présence de cette couche de passivation, les ions lithium sont désolvatés avant de s'intercaler/s'insérer dans l'électrode négative. La présence d'une couche de passivation bien formée permet d'éviter l'exfoliation des plans du carbone de l'électrode négative par l'insertion du solvant avec le lithium au cours du cyclage du système. Le lithium est intercalé/inséré dans l'électrode négative jusqu'à atteindre une composition Li∼xC6 avec 0,5<x<1. En cours de fonctionnement, x reste compris entre 0,5 et 1, et de ce fait, le potentiel de l'électrode négative reste relativement stable au cours des charges/décharges successives du supercondensateur hybride.The main problems to be solved in this type of hybrid supercapacitor are the formation of the passivation layer and the intercalation / insertion of lithium in the negative electrode. During the first cycle of insertion of lithium ions, the passivation of the negative electrode allows the formation of an intermediate layer on the surface of this electrode. In the presence of this passivation layer, the lithium ions are desolvated before being inserted / inserted into the negative electrode. The presence of a well-formed passivation layer makes it possible to avoid the exfoliation of the carbon planes of the negative electrode by the insertion of the solvent with the lithium during the cycling of the system. The lithium is inserted / inserted into the negative electrode until reaching a Li∼ x C 6 composition with 0.5 <x <1. During operation, x remains between 0.5 and 1, and therefore, the potential of the negative electrode remains relatively stable during successive charges / discharges of the hybrid supercapacitor.

Dans l'état de la technique, il est connu d'ajouter dans un supercondensateur hybride une source de lithium métallique pour réaliser la couche de passivation et intercaler/insérer une quantité suffisante d'ions lithium dans l'électrode négative. En particulier, lors de l'assemblage d'un supercondensateur hybride, une ou plusieurs feuilles de lithium sont insérées dans l'empilement des différentes couches d'électrodes positives, d'électrodes négatives et de séparateurs, par exemple en début, en fin et/ou au milieu de l'empilement. Lors d'une étape préliminaire (et nécessaire) de formation (i.e. étape initiale de formation), des ions lithium provenant des feuilles de lithium insérées dans l'empilement s'intercalent dans les électrodes négatives. Une fois l'intégralité du lithium consommé, le supercondensateur lithium-ion peut être chargé et déchargé. Cette méthode présente toutefois les inconvénients cités ci-après. Tout d'abord, il est nécessaire de prévoir la quantité exacte de lithium métallique à apporter au supercondensateur hybride pour que, d'une part, cette quantité soit suffisante pour former toutes les électrodes négatives dudit supercondensateur hybride et, d'autre part, qu'elle soit complètement consommée après l'étape préliminaire de formation dans le supercondensateur hybride. En effet, la présence de lithium métallique après l'étape préliminaire de formation peut entraîner la formation de dendrites au cours des cycles ultérieurs et un court-circuit du système. Par ailleurs, l'insertion de feuilles de lithium au moment de l'assemblage du supercondensateur rend le procédé d'assemblage complexe et coûteux. En effet, le nombre d'étapes est augmenté par rapport à un procédé d'assemblage conventionnel ; l'assemblage doit se faire sous atmosphère contrôlée en humidité afin d'éviter la dégradation du lithium métallique pendant son insertion dans l'empilement ; et comme expliqué plus haut, la quantité de lithium métallique à insérer doit être calibrée, induisant la mise en œuvre d'une série de tests et calculs préalables avant l'assemblage qui nécessite d'être réitérée si un des paramètres de la cellule est modifié (e.g. épaisseurs des électrodes, types d'électrodes, etc...).In the state of the art, it is known to add a source of metallic lithium to a hybrid supercapacitor to produce the passivation layer and to insert / insert a sufficient quantity of lithium ions in the negative electrode. In particular, during the assembly of a hybrid supercapacitor, one or more sheets of lithium are inserted into the stack of the different layers of positive electrodes, negative electrodes and separators, for example at the start, at the end and / or in the middle of the stack. During a preliminary (and necessary) training step (ie initial training step), lithium ions coming from the lithium sheets inserted in the stack are inserted in the negative electrodes. Once all the lithium has been consumed, the lithium-ion supercapacitor can be charged and discharged. However, this method has the drawbacks mentioned below. First of all, it is necessary to provide the exact quantity of metallic lithium to be supplied to the hybrid supercapacitor so that, on the one hand, this quantity is sufficient to form all the negative electrodes of said hybrid supercapacitor and, on the other hand, that '' it is completely consumed after the preliminary stage of formation in the hybrid supercapacitor. Indeed, the presence of metallic lithium after the preliminary training stage can cause dendrites to form in subsequent cycles and short circuit the system. Furthermore, the insertion of lithium sheets during the assembly of the supercapacitor makes the assembly process complex and expensive. Indeed, the number of steps is increased compared to a conventional assembly process; assembly must be carried out under a humidity-controlled atmosphere in order to avoid degradation of the metallic lithium during its insertion into the stack; and as explained above, the quantity of metallic lithium to be inserted must be calibrated, inducing the implementation of a series of tests and preliminary calculations before assembly which needs to be repeated if one of the parameters of the cell is modified (eg thickness of the electrodes, types of electrodes, etc ...).

A titre d'exemple, le document EP 1 400 996 décrit l'interposition d'une source de lithium métallique sacrificielle dans un supercondensateur hybride constitué d'un empilement ou d'un enroulement de couches d'électrode(s) positive(s), d'électrode(s) négative(s) et de séparateur(s). La quantité de lithium métallique apportée dans ledit supercondensateur hybride est calculée de manière à ce que a) la capacité de l'électrode négative par unité de poids de la matière active d'électrode négative soit au moins trois fois plus grande que la capacité de l'électrode positive par unité de poids de la matière active d'électrode positive, et b) le poids de la matière active d'électrode positive soit supérieur au poids de la matière active d'électrode négative. Lorsque le supercondensateur hybride est constitué par un enroulement de couches d'électrode positive, d'électrode négative et de séparateur, une feuille de lithium peut être attachée par pression au collecteur de courant de l'électrode négative de la couche la plus externe de l'enroulement ou disposée au centre de l'enroulement. Dans le premier cas, la pénétration de l'électrolyte au sein de l'enroulement après l'assemblage peut être ralentie puisque l'enroulement est recouvert par la source de lithium, l'électrolyte va donc difficilement se diffuser à l'intérieur de l'enroulement. Dans le second cas, il n'est pas décrit comment et à quel moment le lithium métallique est introduit au centre de l'enroulement. Il n'est pas non plus décrit comment le lithium métallique est connecté électriquement dans le supercondensateur hybride.As an example, the document EP 1,400,996 describes the interposition of a sacrificial metal lithium source in a hybrid supercapacitor consisting of a stack or a winding of layers of positive electrode (s), negative electrode (s) and separator (s). The quantity of metallic lithium brought into said hybrid supercapacitor is calculated so that a) the capacity of the negative electrode per unit of weight of the active material of negative electrode is at least three times greater than the capacity of l positive electrode per unit weight of the positive electrode active material, and b) the weight of the positive electrode active material is greater than the weight of the negative electrode active material. When the hybrid supercapacitor consists of a winding of positive electrode, negative electrode and separator layers, a lithium sheet can be attached by pressure to the current collector of the negative electrode of the outermost layer of the 'winding or arranged in the center of the winding. In the first case, the penetration of the electrolyte within the winding after assembly can be slowed down since the winding is covered by the lithium source, the electrolyte will therefore hardly diffuse inside the 'winding. In the second case, it is not described how and when metallic lithium is introduced into the center of the winding. Nor is it described how metallic lithium is electrically connected in the hybrid supercapacitor.

Le document JP 2007067105 décrit un procédé de préparation d'un supercondensateur hybride dans lequel le lithium métallique est disposé au centre d'un enroulement d'électrodes et de séparateurs. En particulier, les couches d'électrode positive, d'électrode négative et de séparateur sont enroulées, puis du lithium métallique est placé au centre de l'enroulement. Le lithium métallique est sous la forme d'une feuille de lithium enroulée autour d'une tige métallique jouant le rôle d'un collecteur de courant (e.g. nickel, acier) ; d'un enroulement d'une couche de lithium métallique et d'une couche poreuse de collecteur de courant (e.g. cuivre) ou d'un tube cylindrique de lithium métallique inséré dans un tube cylindrique poreux de collecteur de courant. Puis, l'électrolyte est ajouté, le supercondensateur est hermétiquement fermé et une étape préliminaire de formation (ou étape initiale de formation) est effectuée afin d'intercaler des ions lithium dans l'électrode négative. Là encore la quantité de lithium métallique est calibrée de manière à éviter la présence résiduelle de lithium métallique à la fin du 1er cycle de charge. Par ailleurs, la présence du lithium métallique au centre peut gêner l'imprégnation des électrodes par l'électrolyte. Enfin, le support du lithium métallique au centre de l'enroulement occupe une partie du volume libre normalement destiné à encaisser la surpression engendrée par les gaz formés lors du vieillissement électrique du supercondensateur.The document JP 2007067105 describes a process for the preparation of a hybrid supercapacitor in which the metallic lithium is placed in the center of a winding of electrodes and separators. In particular, the positive electrode, negative electrode and separator layers are wound, then metallic lithium is placed in the center of the winding. The metallic lithium is in the form of a lithium sheet wound around a metallic rod playing the role of a current collector (eg nickel, steel); a winding of a layer of metallic lithium and a porous layer of current collector (eg copper) or of a cylindrical tube of metallic lithium inserted in a porous cylindrical tube of current collector. Then, the electrolyte is added, the supercapacitor is hermetically sealed and a preliminary training step (or initial training step) is carried out in order to insert lithium ions in the negative electrode. Here again, the quantity of metallic lithium is calibrated so as to avoid the residual presence of metallic lithium at the end of the 1st charging cycle. Furthermore, the presence of metallic lithium in the center can hinder the impregnation of the electrodes by the electrolyte. Finally, the metallic lithium support at the center of the winding occupies part of the free volume normally intended to absorb the overpressure generated by the gases formed during the electrical aging of the supercapacitor.

Ainsi, le but de la présente invention est de pallier les inconvénients de l'art antérieur précité et de fournir un procédé de préparation d'un supercondensateur hybride économique, simple, notamment dans lequel l'arrangement de la source de lithium métallique est simplifié, et qui permet d'éviter tout calibrage préalable de la masse de lithium métallique à utiliser.Thus, the aim of the present invention is to overcome the drawbacks of the aforementioned prior art and to provide a process for the preparation of an economical, simple hybrid supercapacitor, in particular in which the arrangement of the source of metallic lithium is simplified, and which makes it possible to avoid any prior calibration of the mass of metallic lithium to be used.

L'invention a pour objet un procédé de préparation d'un supercondensateur hybride métal alcalin-ion cylindrique comprenant au moins un élément bobiné cylindrique et une enveloppe externe contenant un corps principal destiné à recevoir ledit élément bobiné cylindrique, ledit procédé comprenant au moins les étapes suivantes :

  1. i) la préparation d'un élément bobiné cylindrique centré sur un axe X-X comprenant au moins une électrode positive, au moins une électrode négative et au moins un séparateur intercalé entre les électrodes positive et négative, les électrodes positive et négative et le séparateur étant enroulés ensemble en spires autour dudit axe X-X, l'élément bobiné cylindrique ayant un volume libre central selon l'axe X-X, étant entendu que :
    • * l'électrode positive comprend au moins une matière active d'électrode positive capable d'intercaler et de dés-intercaler des ions d'un métal alcalin M1 et/ou capable d'adsorber et de désorber des ions d'un métal alcalin M1, ladite électrode positive étant déposée sur un collecteur de courant d'électrode positive, et
    • * ladite électrode négative comprend au moins une matière active d'électrode négative capable d'intercaler et de dés-intercaler des ions d'un métal alcalin M1, ladite électrode négative étant déposée sur un collecteur de courant d'électrode négative,
  2. ii) l'insertion de l'élément bobiné cylindrique dans un corps principal d'une enveloppe externe destiné à recevoir ledit élément bobiné cylindrique,
  3. iii) l'imprégnation de l'élément bobiné cylindrique par un électrolyte liquide non aqueux comprenant un sel dudit métal alcalin M1 et un solvant organique,
ledit procédé étant caractérisé en ce qu'il comprend en outre :
  • iv) l'insertion d'une masse solide comprenant ledit métal alcalin M1 dans le volume libre central de l'élément bobiné cylindrique, avant ou après l'étape iii),
  • v) la connexion électrique de la masse solide avec l'électrode négative de manière à obtenir un court-circuit et à intercaler des ions dudit métal alcalin M1 dans l'électrode négative de l'élément bobiné cylindrique,
  • vi) le retrait de la masse solide de l'élément bobiné cylindrique, et
  • vii) la fermeture hermétique du corps principal de l'enveloppe externe pour obtenir le supercondensateur hybride métal alcalin-ion cylindrique.
The subject of the invention is a method for preparing a hybrid alkali metal-ion cylindrical supercapacitor comprising at least one cylindrical wound element and an external envelope containing a main body intended to receive said cylindrical wound element, said method comprising at least the steps following:
  1. i) the preparation of a cylindrical wound element centered on an axis XX comprising at least one positive electrode, at least one negative electrode and at least one separator interposed between the positive and negative electrodes, the positive and negative electrodes and the separator being wound up together in turns around said axis XX, the cylindrical wound element having a central free volume along the axis XX, it being understood that:
    • * the positive electrode comprises at least one active material of positive electrode capable of intercalating and de-intercalating ions of an alkali metal M1 and / or capable of adsorbing and desorbing ions of an alkali metal M1 said positive electrode being deposited on a positive electrode current collector, and
    • said negative electrode comprises at least one active material of negative electrode capable of intercalating and de-intercalating ions of an alkali metal M1, said negative electrode being deposited on a negative electrode current collector,
  2. ii) the insertion of the cylindrical wound element into a main body of an external envelope intended to receive said cylindrical wound element,
  3. iii) impregnating the cylindrical wound element with a nonaqueous liquid electrolyte comprising a salt of said alkali metal M1 and an organic solvent,
said method being characterized in that it further comprises:
  • iv) the insertion of a solid mass comprising said alkali metal M1 into the central free volume of the cylindrical wound element, before or after step iii),
  • v) the electrical connection of the solid mass with the negative electrode so as to obtain a short circuit and to insert ions of said alkali metal M1 in the negative electrode of the cylindrical wound element,
  • vi) removing the solid mass from the cylindrical wound element, and
  • vii) sealing the main body of the outer envelope to obtain the hybrid alkali metal-cylindrical ion supercapacitor.

Le procédé de l'invention est simple et économique. Il permet d'intercaler une quantité de métal alcalin suffisante dans l'électrode négative tout en évitant tout risque de formation de dendrites et/ou de court-circuit induit par la présence de métal alcalin résiduel dans le supercondensateur. En effet, d'une part, l'étape v) est une étape préliminaire de formation des électrodes négatives, également appelée étape initiale de formation. Ainsi, à l'issue de l'étape v) ou vi), les électrodes négatives du supercondensateur hybride sont prêtes à l'emploi pour des cycles de charge et décharge. D'autre part, le métal alcalin M1 présent au centre de l'élément bobiné (i.e. de l'assemblage d'électrodes enroulé en spirale) est retiré du supercondensateur [étape vi)] dès la formation des électrodes négatives [i.e. après l'étape v)] et avant la fermeture hermétique (et définitive) du supercondensateur [i.e. avant l'étape vii)]. Par ailleurs, comme le métal alcalin M1 est retiré, le volume libre au centre du supercondensateur résultant de ce retrait peut être utilisé pour contenir les gaz générés lors du vieillissement électrique du supercondensateur par cycles de charge/décharge (cyclages) ou par maintien en tension constante (floatings), et ainsi limiter/retarder le gonflement éventuel du supercondensateur.The process of the invention is simple and economical. It allows a sufficient quantity of alkali metal to be inserted in the negative electrode while avoiding any risk of dendrite formation and / or short-circuit induced by the presence of residual alkali metal in the supercapacitor. Indeed, on the one hand, step v) is a preliminary step of forming the negative electrodes, also called the initial forming step. Thus, at the end of step v) or vi), the negative electrodes of the hybrid supercapacitor are ready for use for charge and discharge cycles. On the other hand, the alkali metal M1 present in the center of the wound element (i.e. from the spiral wound electrode assembly) is removed from the supercapacitor [step vi)] as soon as the negative electrodes are formed [i.e. after step v)] and before the hermetic (and final) closure of the supercapacitor [i.e. before step vii)]. Furthermore, as the alkali metal M1 is withdrawn, the free volume in the center of the supercapacitor resulting from this withdrawal can be used to contain the gases generated during electrical aging of the supercapacitor by charge / discharge cycles (cycles) or by voltage maintenance constant (floatings), and thus limit / delay the possible swelling of the supercapacitor.

L'étape i) peut comprendre une sous-étape i-1) d'assemblage d'au moins une électrode positive, d'au moins une électrode négative, et d'au moins un séparateur intercalé entre l'électrode négative et l'électrode positive, et une sous-étape i-2) d'enroulement de l'assemblage en spirale autour d'un axe X-X pour former un élément bobiné cylindrique ayant un volume libre central selon l'axe X-X.Step i) may comprise a substep i-1) of assembling at least one positive electrode, at least one negative electrode, and at least one separator interposed between the negative electrode and the positive electrode, and a substep i-2) of winding the assembly in a spiral around an axis XX to form a cylindrical wound element having a central free volume along the axis XX.

Le volume libre central selon l'axe X-X est délimité par la spire la plus interne de l'élément bobiné cylindrique.The central free volume along the X-X axis is delimited by the innermost turn of the cylindrical wound element.

Dans les procédés de l'art antérieur, ce volume central peut par exemple être occupé par un support solide central (par exemple un noyau) pour faciliter le bobinage ou l'enroulement (i.e. volume non libre).In the methods of the prior art, this central volume can for example be occupied by a central solid support (for example a core) to facilitate winding or winding (i.e. volume not free).

Dans le procédé de l'invention, la sous-étape i-2) (ou plus généralement l'étape i)] s'effectue de préférence sans support solide central.In the process of the invention, the sub-step i-2) (or more generally step i)] is preferably carried out without a central solid support.

Toutefois, il est possible d'effectuer la sous-étape i-2) avec un tel support solide central, à condition qu'une sous-étape ultérieure i-3) de retrait dudit support solide central soit mise en œuvre avant l'étape iv). Cette sous-étape i-3) permet ainsi de libérer le volume central de l'élément bobiné cylindrique avant de réaliser l'étape iv).However, it is possible to carry out sub-step i-2) with such a central solid support, provided that a subsequent sub-step i-3) of removing said central solid support is implemented before step iv). This sub-step i-3) thus makes it possible to free the central volume of the cylindrical wound element before carrying out step iv).

A l'issue de l'étape i), l'élément bobiné cylindrique est dans une configuration telle que le collecteur de courant de l'électrode positive dépasse à une extrémité dudit élément bobiné (i.e. collecteur de courant positif dit « dépassant » ou « débordant ») et le collecteur de courant de l'électrode négative dépasse à l'autre extrémité (i.e. extrémité opposée) dudit élément bobiné (i.e. collecteur de courant négatif dit « dépassant » ou « débordant »).At the end of step i), the cylindrical wound element is in a configuration such that the current collector of the positive electrode protrudes at one end of said wound element (ie positive current collector said to be "protruding" or " overflowing ") and the current collector of the negative electrode protrudes at the other end (ie opposite end) of said wound element (ie negative current collector said to be" protruding "or" overflowing ").

En effet, l'élément bobiné cylindrique est délimité à ses deux extrémités opposées, respectivement, par deux spires collectrices de courant.Indeed, the cylindrical wound element is delimited at its two opposite ends, respectively, by two current-collecting turns.

Selon une forme de réalisation particulièrement préférée de l'invention, l'élément bobiné cylindrique centré sur un axe X-X comprend en outre un séparateur déposé sur l'électrode positive ou sur l'électrode négative. Cela permet ainsi lors de l'étape i) d'obtenir les éléments suivants : électrode positive/séparateur/électrode négative/séparateur ou séparateur/électrode positive/séparateur/électrode négative enroulés ensemble en spires autour dudit axe X-X.According to a particularly preferred embodiment of the invention, the cylindrical wound element centered on an axis X-X further comprises a separator deposited on the positive electrode or on the negative electrode. This therefore makes it possible, during step i), to obtain the following elements: positive electrode / separator / negative electrode / separator or separator / positive electrode / separator / negative electrode wound together in turns around said axis X-X.

L'élément bobiné peut comprendre en outre une couche dudit métal alcalin M1 sur au moins une des faces du collecteur de courant négatif dépassant.The wound element can further comprise a layer of said alkali metal M1 on at least one of the faces of the negative current collector protruding.

Le collecteur de courant négatif dépassant est de préférence perforé.The protruding negative current collector is preferably perforated.

Dans un mode de réalisation particulier, la matière active de l'électrode négative comprend un matériau carboné.In a particular embodiment, the active material of the negative electrode comprises a carbonaceous material.

Le matériau carboné de l'électrode négative est de préférence choisi parmi le graphène, le graphite, les carbones basse température (durs ou tendres), le noir de carbone, les nanotubes de carbone et les fibres de carbone.The carbonaceous material of the negative electrode is preferably chosen from graphene, graphite, low temperature carbons (hard or soft), carbon black, carbon nanotubes and carbon fibers.

La surface spécifique (méthode B.E.T) du matériau carboné de l'électrode négative est de préférence inférieure à 50 m2/g environ.The specific surface (BET method) of the carbonaceous material of the negative electrode is preferably less than approximately 50 m 2 / g.

L'électrode négative a de préférence une épaisseur variant de 10 à 100 µm environ.The negative electrode preferably has a thickness varying from 10 to 100 μm approximately.

Selon une forme de réalisation particulièrement préférée de l'invention, la matière active de l'électrode négative comprend du graphite et éventuellement un matériau choisi parmi le charbon actif, le graphène, le carbone dérivé de carbure, le carbone dur et le carbone tendre.According to a particularly preferred embodiment of the invention, the active material of the negative electrode comprises graphite and optionally a material chosen from activated carbon, graphene, carbon derived from carbide, hard carbon and soft carbon.

Dans un mode de réalisation particulier, la matière active de l'électrode positive comprend un matériau carboné poreux ou un oxyde de métal de transition.In a particular embodiment, the active material of the positive electrode comprises a porous carbonaceous material or a transition metal oxide.

L'oxyde de métal de transition de l'électrode positive est de préférence choisi parmi MnO2, SiO2, NiO2, TIO2, RuO2 et VNO2.The transition metal oxide of the positive electrode is preferably chosen from MnO 2 , SiO 2 , NiO 2 , TIO 2 , RuO 2 and VNO 2 .

Le matériau carboné poreux est de préférence choisi parmi les charbons actifs, le carbone dérivé de carbure (CDC), les nanotubes de carbone poreux, les noirs de carbones poreux, les fibres de carbone poreuses, les oignons de carbone, les carbones issus de coke (dont la porosité est accrue par charge).The porous carbon material is preferably chosen from active carbon, carbon derived from carbide (CDC), porous carbon nanotubes, porous carbon blacks, porous carbon fibers, carbon onions, carbons derived from coke. (whose porosity is increased per charge).

Selon une forme de réalisation préférée de l'invention, la surface spécifique du matériau carboné poreux de l'électrode positive varie de 1200 à 3000 m2/g environ (méthode B.E.T), et de préférence de 1200 à 1800 m2/g environ (méthode B.E.T).According to a preferred embodiment of the invention, the specific surface of the porous carbonaceous material of the positive electrode varies from approximately 1200 to 3000 m 2 / g (BET method), and preferably from approximately 1200 to 1800 m 2 / g (BET method).

Selon une forme de réalisation particulièrement préférée de l'invention, la matière active de l'électrode positive comprend du charbon actif et éventuellement un matériau choisi parmi le graphite, le graphène, le carbone dérivé de carbure, le carbone dur et le carbone tendre.According to a particularly preferred embodiment of the invention, the active material of the positive electrode comprises activated carbon and optionally a material chosen from graphite, graphene, carbon derived from carbide, hard carbon and soft carbon.

L'électrode positive a de préférence une épaisseur variant de 50 à 150 µm environ.The positive electrode preferably has a thickness varying from 50 to 150 μm approximately.

Outre la matière active, l'électrode positive (respectivement l'électrode négative) comprend généralement au moins un liant.In addition to the active material, the positive electrode (respectively the negative electrode) generally comprises at least one binder.

Le liant peut être choisi parmi les liants organiques classiquement connus de l'homme de l'art et électrochimiquement stables jusqu'à un potentiel de 5 V vs le métal alcalin M1 (e.g. Li). Parmi de tels liants, on peut notamment citer :

  • les homopolymères et les copolymères de fluorure de vinylidène, tels que le poly(fluorure de vinylidène) (PVDF),
  • les copolymères d'éthylène, de propylène et d'un diène,
  • les homopolymères et les copolymères de tétrafluoroéthylène,
  • les homopolymères et les copolymères de N-vinylpyrrolidone,
  • les homopolymères et les copolymères d'acrylonitrile, ou
  • les homopolymères et les copolymères de méthacrylonitrile.
The binder can be chosen from organic binders conventionally known to those skilled in the art and electrochemically stable up to a potential of 5 V vs the alkali metal M1 (eg Li). Among such binders, there may be mentioned in particular:
  • homopolymers and copolymers of vinylidene fluoride, such as poly (vinylidene fluoride) (PVDF),
  • copolymers of ethylene, propylene and a diene,
  • homopolymers and copolymers of tetrafluoroethylene,
  • homopolymers and copolymers of N-vinylpyrrolidone,
  • homopolymers and copolymers of acrylonitrile, or
  • homopolymers and copolymers of methacrylonitrile.

Lorsqu'il est présent, le liant représente de préférence de 1 à 15% en masse environ par rapport à la masse totale de l'électrode.When present, the binder preferably represents from 1 to 15% by mass approximately relative to the total mass of the electrode.

L'électrode positive (respectivement l'électrode négative) peut comprendre en outre au moins un agent conférant une conductivité électronique.The positive electrode (respectively the negative electrode) may further comprise at least one agent imparting electronic conductivity.

L'agent conférant des propriétés de conduction électronique peut être du carbone, de préférence choisi parmi les noirs de carbone tels que le noir d'acétylène, les noirs de carbone à haute surface spécifique tels que les produits vendus sous la dénomination Ketjenblack® EC-600JD par la société AKZO NOBEL, des nanotubes de carbone, du graphite, du graphène, ou des mélanges de ces matériaux.The agent conferring electronic conduction properties can be carbon, preferably chosen from carbon blacks such as acetylene black, carbon blacks with a high specific surface area such as the products sold under the name Ketjenblack® EC- 600JD by AKZO NOBEL, carbon nanotubes, graphite, graphene, or mixtures of these materials.

Selon l'invention, lorsqu'il est présent, le matériau conférant des propriétés de conduction électronique représente de préférence de 1 à 10% en masse environ par rapport à la masse totale de l'électrode.According to the invention, when it is present, the material conferring electronic conduction properties preferably represents from 1 to 10% by mass approximately relative to the total mass of the electrode.

La matière active, le liant et l'agent conférant des propriétés de conduction électronique forment l'électrode et celle-ci est déposée sur le collecteur de courant correspondant.The active material, the binder and the agent conferring electronic conduction properties form the electrode and this is deposited on the corresponding current collector.

Le collecteur de courant de l'électrode négative peut être un collecteur de courant en matériau conducteur, notamment en cuivre.The current collector of the negative electrode can be a current collector of conductive material, in particular copper.

Le collecteur de courant de l'électrode positive peut être un collecteur de courant en matériau conducteur, notamment en aluminium.The current collector of the positive electrode can be a current collector of conductive material, in particular aluminum.

Le séparateur est généralement en un matériau poreux non conducteur électronique, par exemple en un matériau polymère à base de polyoléfines (e.g. polyéthylène, polypropylène) ou en fibres (e.g. fibres de verre, fibres de bois ou fibres de cellulose).The separator is generally made of a porous, non-conductive electronic material, for example a polymer material based on polyolefins (e.g. polyethylene, polypropylene) or fibers (e.g. glass fibers, wood fibers or cellulose fibers).

À titre d'exemple de séparateurs en matériau polymère à base de polyoléfines, on peut citer ceux commercialisés sous la référence Celgard®.By way of example of separators made of polymer material based on polyolefins, mention may be made of those sold under the reference Celgard®.

Le corps principal de l'enveloppe externe peut avoir une partie inférieure et une partie supérieure.The main body of the outer casing may have a lower part and an upper part.

L'étape ii) peut être effectuée de manière à positionner le collecteur de courant de l'électrode positive dépassant dans la partie inférieure du corps principal de l'enveloppe externe et le collecteur de courant de l'électrode négative dépassant dans la partie supérieure du corps principal de l'enveloppe externe.Step ii) can be carried out so as to position the current collector of the positive electrode protruding in the lower part of the main body of the external envelope and the current collector of the negative electrode protruding in the upper part of the main body of the outer shell.

L'étape ii) peut également comprendre une sous-étape ii-1) au cours de laquelle le collecteur de courant de l'électrode négative dépassant est connecté électriquement à une pièce en matériau conducteur, de préférence par soudage (e.g. à l'aide d'une soudure laser par transparence), brasage, brasage-diffusion ou contacts serrés ou vissés. La technique de soudage laser par transparence permet de connecter électriquement toutes les spires de l'élément bobiné.Step ii) may also include a sub-step ii-1) during which the current collector of the protruding negative electrode is electrically connected to a piece of conductive material, preferably by welding (eg using laser welding by transparency), soldering, brazing-diffusion or tight or screwed contacts. The technique of laser welding by transparency makes it possible to electrically connect all the turns of the wound element.

L'étape ii) peut comprendre une sous-étape ii-2) au cours de laquelle le collecteur de courant de l'électrode positive dépassant est connecté électriquement à la partie inférieure du corps principal de l'enveloppe externe, de préférence par soudage (e.g. à l'aide d'une soudure laser par transparence), brasage, brasage-diffusion ou contacts serrés ou vissés. La technique de soudage laser par transparence est conventionnellement utilisée dans les procédés de préparation de supercondensateurs symétriques non hybrides classiques. Elle permet de connecter électriquement toutes les spires de l'élément bobiné.Step ii) may include a sub-step ii-2) during which the current collector of the protruding positive electrode is electrically connected to the lower part of the main body of the external envelope, preferably by welding ( eg using laser welding by transparency), soldering, brazing-diffusion or tight or screwed contacts. The laser transparency welding technique is conventionally used in processes for the preparation of non-symmetrical supercapacitors. classic hybrids. It electrically connects all the turns of the wound element.

Les sous-étapes ii-1) et ii-2) peuvent être simultanées ou distinctes.Sub-steps ii-1) and ii-2) can be simultaneous or separate.

Ainsi, à l'issue de l'étape ii) ou des sous-étapes ii-1) et/ou ii-2), le collecteur de courant de l'électrode négative dépassant est situé dans la partie supérieure du corps principal de l'enveloppe externe et le collecteur de courant de l'électrode positive dépassant est situé dans la partie inférieure du corps principal de l'enveloppe externe.Thus, at the end of step ii) or of sub-steps ii-1) and / or ii-2), the current collector of the protruding negative electrode is located in the upper part of the main body of the The outer casing and the current collector of the protruding positive electrode is located in the lower part of the main body of the outer casing.

Il va de soi que l'invention n'est pas limitée au mode de réalisation tel que décrit ci-dessus. En effet, il est tout à fait envisageable d'inverser les parties supérieure et inférieure du corps principal de l'enveloppe externe, et notamment d'obtenir une configuration dans laquelle le collecteur de courant de l'électrode négative dépassant est situé dans la partie inférieure du corps principal de l'enveloppe externe et le collecteur de courant de l'électrode positive dépassant est situé dans la partie supérieure du corps principal de l'enveloppe externe.It goes without saying that the invention is not limited to the embodiment as described above. Indeed, it is entirely conceivable to reverse the upper and lower parts of the main body of the external envelope, and in particular to obtain a configuration in which the current collector of the protruding negative electrode is located in the part lower part of the main body of the outer casing and the current collector of the protruding positive electrode is located in the upper part of the main body of the outer casing.

Ceci étant, dans la description qui va suivre ci-après lorsque l'on parle des parties supérieure et inférieure du corps principal de l'enveloppe externe, on considère qu'à l'issue de l'étape ii), le collecteur de courant de l'électrode négative dépassant est situé dans la partie supérieure du corps principal de l'enveloppe externe et le collecteur de courant de l'électrode positive dépassant est situé dans la partie inférieure du corps principal de l'enveloppe externe. Toutefois, il est possible de mettre en œuvre la configuration inverse.That said, in the description which follows below when speaking of the upper and lower parts of the main body of the external envelope, it is considered that at the end of step ii), the current collector of the protruding negative electrode is located in the upper part of the main body of the outer casing and the current collector of the protruding positive electrode is located in the lower part of the main body of the outer casing. However, it is possible to implement the reverse configuration.

La pièce en matériau conducteur est de préférence constituée d'un matériau conducteur identique à celui du collecteur de courant de l'électrode négative, notamment en cuivre.The piece of conductive material is preferably made of a conductive material identical to that of the current collector of the negative electrode, in particular copper.

La pièce en matériau conducteur peut être configurée pour fermer de façon étanche et temporaire au moins en partie, voire complètement, la partie supérieure du corps principal de l'enveloppe externe du supercondensateur (e.g. à l'issue de l'étape iv)).The piece of conductive material can be configured to seal, temporarily and at least partially, or even completely, the upper part of the main body of the outer casing of the supercapacitor (eg at the end of step iv)).

La pièce en matériau conducteur peut être apte à traverser de manière étanche la partie supérieure du corps principal de l'enveloppe externe, notamment via un moyen d'étanchéité (e.g. joint d'étanchéité) qui assure l'isolation électrique entre la pièce en matériau conducteur et l'enveloppe externe.The piece of conductive material may be capable of sealingly passing through the upper part of the main body of the external envelope, in particular via a sealing means (eg seal) which provides electrical insulation between the piece of material conductor and the outer casing.

Les parties inférieure et supérieure du corps principal de l'enveloppe externe peuvent être deux éléments distincts. L'étape ii) comprend alors une sous-étape ii-3) au cours de laquelle lesdites parties sont reliées mécaniquement pour former le corps principal de l'enveloppe externe, notamment par soudage.The lower and upper parts of the main body of the outer casing can be two separate elements. Step ii) then comprises a sub-step ii-3) during which said parts are mechanically connected to form the main body of the external envelope, in particular by welding.

La sous-étape ii-3) peut être effectuée avant ou après les sous-étapes ii-1) et ii-2). Elle est de préférence effectuée après les sous-étapes ii-1) et ii-2). Cela permet ainsi de réaliser plus facilement et librement les sous-étapes ii-1) et ii-2).Sub-step ii-3) can be carried out before or after sub-steps ii-1) and ii-2). It is preferably carried out after sub-steps ii-1) and ii-2). This makes it easier and more freely to carry out the sub-steps ii-1) and ii-2).

La partie inférieure du corps principal de l'enveloppe externe est généralement constituée d'un matériau conducteur électrochimiquement compatible avec celui du collecteur de courant de l'électrode positive, notamment en aluminium. Le supercondensateur peut comprendre en outre un couvercle, solidaire ou distinct de ladite partie inférieure, ledit couvercle étant constitué d'un matériau conducteur électrochimiquement compatible avec celui du collecteur de courant de l'électrode positive, notamment en aluminium. Ce couvercle permet de fermer hermétiquement le corps principal de l'enveloppe externe du supercondensateur au niveau de sa partie inférieure.The lower part of the main body of the external envelope is generally made of a conductive material electrochemically compatible with that of the current collector of the positive electrode, in particular aluminum. The supercapacitor may further comprise a cover, integral or separate from said lower part, said cover being made of a conductive material electrochemically compatible with that of the current collector of the positive electrode, in particular aluminum. This cover makes it possible to hermetically close the main body of the outer envelope of the supercapacitor at its lower part.

La partie supérieure du corps principal de l'enveloppe externe est généralement constitué d'un matériau conducteur électrochimiquement compatible avec celui du collecteur de courant de l'électrode positive, notamment en aluminium.The upper part of the main body of the external envelope is generally made of a conductive material electrochemically compatible with that of the current collector of the positive electrode, in particular aluminum.

Toutefois, il est possible d'utiliser un matériau conducteur électrochimiquement compatible avec celui du collecteur de courant de l'électrode négative, notamment en cuivre. C'est une solution plus coûteuse (e.g. utilisation de cuivre vs de l'aluminium). Par ailleurs, elle nécessite d'effectuer la sous-étape ii-3) via une liaison différente de la soudure (e.g. sertissage, collage, etc...), afin de permettre l'isolation électrique des parties inférieure et supérieure du corps principal de l'enveloppe externe.However, it is possible to use a conductive material that is electrochemically compatible with that of the current collector of the negative electrode, in particular copper. It's a more expensive solution (eg use of copper vs aluminum). Furthermore, it requires performing sub-step ii-3) via a different connection from the weld (eg crimping, bonding, etc.), in order to allow electrical insulation of the lower and upper parts of the main body. of the outer envelope.

Dans ce mode de réalisation, la pièce en matériau conducteur peut faire partie intégrante de la partie supérieure du corps principal de l'enveloppe externe.In this embodiment, the piece of conductive material can be an integral part of the upper part of the main body of the external envelope.

A l'issue de l'étape ii), la partie inférieure du corps principal de l'enveloppe externe est fermée hermétiquement et de préférence définitivement.At the end of step ii), the lower part of the main body of the external envelope is hermetically sealed and preferably permanently.

Le solvant organique de l'électrolyte liquide non aqueux permet d'optimiser le transport et la dissociation des ions du métal alcalin M1.The organic solvent of the nonaqueous liquid electrolyte makes it possible to optimize the transport and the dissociation of the ions of the alkali metal M1.

Il peut comprendre un ou plusieurs composés polaires aprotiques choisis parmi les carbonates linéaires ou cycliques, les éthers linéaires ou cycliques, les esters linéaires ou cycliques, les sulfones linéaires ou cycliques, les sulfamides et les nitriles.It may comprise one or more polar aprotic compounds chosen from linear or cyclic carbonates, linear or cyclic ethers, linear or cyclic esters, linear or cyclic sulfones, sulfonamides and nitriles.

Le solvant organique comprend de préférence, au moins deux carbonates choisis parmi le carbonate d'éthylène, le carbonate de propylène, le carbonate de diméthyle, le carbonate de diéthyle et le carbonate de méthyle et d'éthyle.The organic solvent preferably comprises at least two carbonates chosen from ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate and methyl and ethyl carbonate.

Le sel du métal alcalin M1 utilisé dans l'électrolyte liquide non aqueux peut être choisi parmi M1PF6, M1AsF6, M1ClO4, M1BF4, M1C4BO8, M1(C2F5SO2)2N, M1[(C2F5)3PF3], M1CF3SO3, M1CH3SO3, M1N(SO2CF3)2 et M1N(SO2F)2, M12SO4, M1NO3, M13PO4, M12CO3, M1FSI (FSI = bis(fluorosulfonyl)imide), M1BETI (BETI = bis(perfluoroéthanesulfonyl)imide également dénommé PFSI) et M1TFSI (TFSI = bis-trifluorométhanesulfonimide), M1 étant tel que défini dans l'invention.The alkali metal salt M1 used in the nonaqueous liquid electrolyte can be chosen from M1PF 6 , M1AsF 6 , M1ClO 4 , M1BF 4 , M1C 4 BO 8 , M1 (C 2 F 5 SO 2 ) 2 N, M1 [( C 2 F 5 ) 3 PF 3 ], M1CF 3 SO 3 , M1CH 3 SO 3 , M1N (SO 2 CF 3 ) 2 and M1N (SO 2 F) 2 , M1 2 SO 4 , M1NO 3 , M1 3 PO 4 , M1 2 CO 3 , M1FSI (FSI = bis (fluorosulfonyl) imide), M1BETI (BETI = bis (perfluoroethanesulfonyl) imide also called PFSI) and M1TFSI (TFSI = bis-trifluoromethanesulfonimide), M1 being as defined in the invention.

A l'issue de l'étape d'imprégnation iii), l'électrolyte liquide non aqueux imprègne l'élément bobiné et éventuellement la masse solide lorsque l'étape iv) est effectuée avant l'étape iii).At the end of the impregnation step iii), the nonaqueous liquid electrolyte permeates the wound element and possibly the solid mass when step iv) is carried out before step iii).

Lors de l'étape iii), un excès d'électrolyte liquide non aqueux est de préférence utilisé de manière à baigner complètement l'élément bobiné cylindrique et la masse solide. Cela permet ainsi d'améliorer la dissolution du métal alcalin M1.During step iii), an excess of nonaqueous liquid electrolyte is preferably used so as to completely bathe the cylindrical wound element and the solid mass. This thus improves the dissolution of the alkali metal M1.

A l'issue de l'étape iii) ou de l'étape iv), la masse solide se retrouve donc en contact ionique direct avec l'élément bobiné cylindrique.At the end of step iii) or step iv), the solid mass therefore finds itself in direct ionic contact with the cylindrical wound element.

L'étape iv) permet de positionner la masse solide au cœur de l'élément bobiné cylindrique. Elle est effectuée avant ou après l'étape d'imprégnation iii) de l'élément bobiné cylindrique par l'électrolyte liquide non aqueux.Step iv) positions the solid mass at the heart of the cylindrical wound element. It is carried out before or after the impregnation step iii) of the cylindrical wound element with the non-aqueous liquid electrolyte.

L'étape iv) est de préférence effectuée après l'étape iii) (i.e. le plus en aval dans le procédé de l'invention). Cela permet ainsi de réduire le nombre d'étapes faites sous atmosphère contrôlée. En effet, le métal alcalin M1 est généralement manipulé sous atmosphère contrôlée en humidité, notamment sous atmosphère inerte, au cours de l'étape iv) et des étapes ultérieures.Step iv) is preferably carried out after step iii) (i.e. the most downstream in the process of the invention). This thus makes it possible to reduce the number of steps carried out under a controlled atmosphere. In fact, the alkali metal M1 is generally handled under a humidity-controlled atmosphere, in particular under an inert atmosphere, during step iv) and subsequent steps.

Le métal alcalin M1 est de préférence choisi parmi le lithium, le sodium et le potassium, et de préférence encore du lithium.The alkali metal M1 is preferably chosen from lithium, sodium and potassium, and more preferably lithium.

Dans la présente invention, l'expression « masse solide comprenant ledit métal alcalin M1 » signifie une masse sous la forme solide. En d'autres termes, la masse n'est pas sous la forme pulvérulente. Cela signifie également que le métal alcalin M1 ou tout autre élément chimique contenu dans la masse solide est sous la forme solide et non pulvérulente.In the present invention, the expression “solid mass comprising said alkali metal M1” means a mass in the solid form. In other words, the mass is not in powder form. This also means that the alkali metal M1 or any other chemical element contained in the solid mass is in the solid form and not in powder form.

La masse solide a de préférence une hauteur supérieure ou égale à celle de l'élément bobiné cylindrique. Ceci permet ainsi de fournir des ions du métal alcalin M1 sur toute la hauteur des électrodes de l'élément bobiné cylindrique au cours de l'étape v).The solid mass preferably has a height greater than or equal to that of the cylindrical wound element. This thus makes it possible to supply ions of the alkali metal M1 over the entire height of the electrodes of the cylindrical wound element during step v).

La masse solide comprenant ledit métal alcalin M1 est de préférence sous la forme d'un cylindre creux ou sous la forme d'un barreau plein ou d'une tige pleine, notamment cylindrique.The solid mass comprising said alkali metal M1 is preferably in the form of a hollow cylinder or in the form of a solid bar or a solid rod, in particular cylindrical.

Le barreau ou la tige peut avoir un diamètre allant de 1 à 50 mm environ, et de préférence allant de 5 à 20 mm environ.The bar or rod may have a diameter ranging from 1 to 50 mm approximately, and preferably ranging from 5 to 20 mm approximately.

Le barreau ou la tige peut avoir un diamètre le plus proche possible du diamètre du volume libre central de l'élément bobiné cylindrique. Cela permet ainsi de minimiser la distance à parcourir par les ions du métal alcalin M1.The bar or rod may have a diameter as close as possible to the diameter of the central free volume of the cylindrical wound element. This thus minimizes the distance traveled by the ions of the alkali metal M1.

La masse solide peut être uniquement constituée dudit métal alcalin M1 ou comprendre en outre un matériau conducteur tel que du cuivre.The solid mass may consist solely of said alkali metal M1 or further comprise a conductive material such as copper.

Lorsque la masse solide est uniquement constituée dudit métal alcalin M1, elle est de préférence sous la forme d'un barreau plein ou d'une tige pleine dudit métal alcalin M1.When the solid mass consists only of said alkali metal M1, it is preferably in the form of a solid bar or a solid rod of said alkali metal M1.

Lorsque la masse solide comprend en outre un matériau conducteur, elle peut être sous la forme d'un cylindre creux comprenant une couche interne dudit matériau conducteur et une couche externe dudit métal alcalin M1 entourant ladite couche interne ou sous la forme d'un cylindre plein comprenant une âme centrale dudit matériau conducteur et une couche dudit métal alcalin M1 entourant ladite âme centrale.When the solid mass further comprises a conductive material, it may be in the form of a hollow cylinder comprising an internal layer of said conductive material and an external layer of said alkali metal M1 surrounding said internal layer or in the form of a solid cylinder comprising a central core of said conductive material and a layer of said alkali metal M1 surrounding said central core.

Le matériau conducteur de la couche interne ou de l'âme centrale peut être sous la forme d'une mousse de matériau conducteur (matériau conducteur poreux). Cela permet ainsi de déposer le métal alcalin M1 au sein de la mousse de matériau conducteur et d'augmenter la surface d'échange entre le métal alcalin M1 et l'électrolyte liquide non aqueux lors de l'étape iii) ou iv).The conductive material of the inner layer or of the central core can be in the form of a foam of conductive material (porous conductive material). This thus makes it possible to deposit the alkali metal M1 within the foam of conductive material and to increase the exchange surface between the alkali metal M1 and the non-aqueous liquid electrolyte during step iii) or iv).

L'insertion selon l'étape iv) est de préférence effectuée par la partie supérieure du corps principal de l'enveloppe externe.The insertion according to step iv) is preferably carried out by the upper part of the main body of the external envelope.

A l'issue de l'étape iv) [si l'étape iv) est effectuée après l'étape iii)] ou de l'étape iii) [si l'étape iv) est effectuée avant l'étape iii)], la partie supérieure du corps principal de l'enveloppe externe est de préférence fermée hermétique et temporairement.At the end of stage iv) [if stage iv) is carried out after stage iii)] or of stage iii) [if stage iv) is carried out before stage iii)], the upper part of the main body of the external envelope is preferably sealed and temporarily closed.

La fermeture temporaire permet ainsi de pouvoir réaliser l'étape vi) de retrait de la masse solide, une fois l'étape v) initiale de formation effectuée.The temporary closure thus makes it possible to be able to carry out step vi) of removal of the solid mass, once the initial step v) of formation has been carried out.

L'étape v) permet d'intercaler des ions du métal alcalin M1 dans l'électrode négative et ainsi d'amener l'électrode négative à un potentiel plus bas.Step v) makes it possible to insert ions of the alkali metal M1 in the negative electrode and thus to bring the negative electrode to a lower potential.

Au cours de l'étape v), la masse solide peut être reliée mécaniquement et électriquement à la pièce en matériau conducteur telle que définie précédemment (également appelée « première pièce en matériau conducteur ») ou à une autre pièce en matériau conducteur (également appelée « deuxième pièce en matériau conducteur »), notamment en cuivre ou en alliage de cuivre (e.g. laiton).During step v), the solid mass can be mechanically and electrically connected to the piece of conductive material as defined above (also called “first piece of conductive material”) or to another piece of conductive material (also called "Second part made of conductive material"), in particular copper or copper alloy (eg brass).

La deuxième pièce en matériau conducteur est configurée pour assurer la connexion électrique directe ou indirecte avec la première pièce en matériau conducteur. Cela permet ainsi de connecter électriquement la masse solide avec l'électrode négative via les deux pièces en matériau conducteur.The second piece of conductive material is configured to provide direct or indirect electrical connection with the first piece of conductive material. This thus makes it possible to electrically connect the solid mass with the negative electrode via the two pieces of conductive material.

La connexion électrique entre la masse solide et l'électrode négative peut donc se faire via la première pièce en matériau conducteur ou les première et deuxième pièces en matériau conducteur.The electrical connection between the solid mass and the negative electrode can therefore be made via the first piece of conductive material or the first and second pieces of conductive material.

Généralement, les étapes iv) et v) sont concomitantes. En d'autres termes, la connexion électrique entre la masse solide et l'électrode négative se fait lors de l'insertion de la masse solide dans le volume libre central de l'élément bobiné cylindrique, notamment lorsque la masse solide est complètement insérée dans le volume libre central de l'élément bobiné cylindrique. La connexion électrique de l'étape v) se fait ainsi par contact électrique de la masse solide avec la première pièce en matériau conducteur ou par contact électrique de la deuxième pièce en matériau conducteur avec la première pièce en matériau conducteur, la première pièce en matériau conducteur étant elle-même en contact électrique avec le collecteur de courant dépassant de l'électrode négative.Generally, steps iv) and v) are concomitant. In other words, the electrical connection between the solid mass and the negative electrode is made during the insertion of the solid mass into the central free volume of the cylindrical wound element, in particular when the solid mass is completely inserted in the central free volume of the cylindrical wound element. The electrical connection of step v) is thus made by electrical contact of the solid mass with the first piece of conductive material or by electrical contact of the second piece of conductive material with the first piece of conductive material, the first piece of material. conductor itself being in electrical contact with the current collector protruding from the negative electrode.

Dès que ce contact est effectué, cela forme un court-circuit entre l'électrode négative de l'élément bobiné et la masse solide, induisant la migration des ions du métal alcalin M1 vers l'électrode négative.As soon as this contact is made, this forms a short circuit between the negative electrode of the wound element and the solid mass, inducing the migration of the ions of the alkali metal M1 towards the negative electrode.

La connexion électrique entre les première et deuxième pièces en matériau conducteur peut être directe ou indirecte (i.e. court-circuit direct ou indirect).The electrical connection between the first and second pieces of conductive material can be direct or indirect (i.e. direct or indirect short circuit).

Une connexion électrique directe implique que les deux pièces soient en contact mécanique et électrique.A direct electrical connection implies that the two parts are in mechanical and electrical contact.

Le contact direct permet (une fois le corps principal de l'enveloppe externe fermé) de réaliser l'étape v) sans précaution particulière, à l'exception d'éviter le contact entre les pôles positif et négatif.Direct contact makes it possible (once the main body of the external envelope is closed) to carry out step v) without any particular precaution, with the exception of avoiding contact between the positive and negative poles.

Le type de liaison directe entre la première pièce en matériau conducteur et la deuxième pièce en matériau conducteur peut impliquer un vissage avec appui électrique et joint d'étanchéité, un pinçage, un clipsage ou un blocage ¼ de tour.The type of direct connection between the first piece of conductive material and the second piece of conductive material may involve screwing with electrical support and gasket, pinching, clipping or blocking ¼ turn.

La connexion électrique indirecte implique par exemple l'application entre lesdites pièces d'une différence de potentiel, d'une circulation de courant ou la présence d'une résistance contrôlée. Cela permet de mieux contrôler le processus d'intercalation des ions du métal alcalin M1 sur l'électrode négative au cours de l'étape v).The indirect electrical connection implies for example the application between said parts of a potential difference, a current flow or the presence of a controlled resistance. This allows better control of the process of intercalation of the ions of the alkali metal M1 on the negative electrode during step v).

Ce mode de réalisation implique la maîtrise de la circulation de courant dans la résistance contrôlée, et donc le bon dimensionnement initial de la résistance, ou la mise en œuvre de bancs de charge/décharge ou d'alimentations contrôlées pour assurer les potentiels ou les passages de courant.This embodiment involves controlling the flow of current in the controlled resistor, and therefore the proper initial dimensioning of the resistor, or the implementation of charge / discharge benches or controlled power supplies to ensure the potentials or the passages current.

L'avantage d'un tel mode de réalisation est de pouvoir suivre l'évolution du potentiel de l'électrode négative vs l'électrode positive pour déterminer la fin de l'étape v).The advantage of such an embodiment is to be able to follow the evolution of the potential of the negative electrode vs the positive electrode to determine the end of step v).

Le type de liaison indirecte entre la première pièce en matériau conducteur et la deuxième pièce en matériau conducteur peut impliquer :

  • une pièce intermédiaire isolante (e.g. en matériau élastomère ou thermoplastique) se situant entre les deux pièces en matériau conducteur et étant connectée mécaniquement auxdites pièces en matériau conducteur, et
  • une connexion électrique entre les deux pièces en matériau conducteur à l'aide d'un circuit électrique externe (chargeur/déchargeur), d'une résistance externe ou d'un interrupteur de court-circuit externe ; ou
  • une pièce intermédiaire à résistivité contrôlée se situant entre les deux pièces en matériau conducteur et étant connectée mécaniquement auxdites pièces en matériau conducteur.
The type of indirect connection between the first piece of conductive material and the second piece of conductive material may involve:
  • an insulating intermediate piece (eg of elastomeric or thermoplastic material) located between the two pieces of conductive material and being mechanically connected to said pieces of conductive material, and
  • an electrical connection between the two pieces of conductive material using an external electrical circuit (charger / unloader), an external resistor or an external short-circuit switch; or
  • an intermediate piece with controlled resistivity located between the two pieces of conductive material and being mechanically connected to said pieces of conductive material.

La pièce intermédiaire isolante assure l'étanchéité entre les deux pièces en matériau conducteur.The insulating intermediate piece seals between the two pieces of conductive material.

Dans le cas de l'utilisation d'une pièce intermédiaire à résistivité contrôlée (également appelée « entretoise à résistance contrôlée »), la connexion électrique entre les deux pièces en matériau conducteur est effectuée via la résistance électrique fournie par la pièce intermédiaire à résistivité contrôlée.In the case of the use of an intermediate piece with controlled resistivity (also called “spacer with controlled resistance”), the electrical connection between the two pieces of conductive material is carried out via the electrical resistance provided by the intermediate piece with controlled resistivity .

Cette pièce intermédiaire à résistivité contrôlée assure également l'étanchéité entre les deux pièces en matériau conducteur (e.g. pièce en matériau élastomère ou thermoplastique).This intermediate piece with controlled resistivity also provides sealing between the two pieces of conductive material (e.g. piece of elastomer or thermoplastic material).

La deuxième pièce en matériau conducteur peut être configurée pour fermer de façon étanche (i.e. hermétique) et temporaire au moins en partie, voire complètement, la partie supérieure du corps principal de l'enveloppe externe du supercondensateur (e.g. à l'issue de l'étape iv)).The second piece of conductive material can be configured to seal (temporarily hermetic) and temporarily at least partially, or even completely, the upper part of the main body of the outer casing of the supercapacitor (eg at the end of the step iv)).

Selon une forme de réalisation particulièrement préférée de l'invention, l'association des première et deuxième pièces en matériau conducteur (et éventuellement de la pièce intermédiaire isolante ou à résistivité contrôlée) ferme complètement la partie supérieure du corps principal de l'enveloppe externe du supercondensateur (e.g. à l'issue de l'étape iv)).According to a particularly preferred embodiment of the invention, the combination of the first and second pieces of conductive material (and optionally of the insulating intermediate piece or with controlled resistivity) completely closes the upper part of the main body of the outer envelope of the supercapacitor (eg at the end of step iv)).

En particulier, la première pièce en matériau conducteur comporte un volume libre central permettant le passage et l'insertion de la masse solide dans le volume libre central de l'élément bobiné cylindrique [étape iv)] et la deuxième pièce en matériau conducteur est configurée pour fermer ou recouvrir complètement le volume libre central de la première pièce à l'issue de l'étape iv) (i.e. lorsque l'insertion est terminée). Ainsi, au cours de l'étape iv), la masse solide est insérée dans le volume central libre de l'élément bobiné cylindrique via le volume central libre de la première pièce en matériau conducteur. A la fin de l'insertion, l'association des première et deuxième pièces en matériau conducteur ferme de façon étanche et temporaire la partie supérieure du corps principal de l'enveloppe externe.In particular, the first piece of conductive material has a central free volume allowing the passage and insertion of the solid mass into the central free volume of the cylindrical wound element [step iv)] and the second piece of conductive material is configured to close or completely cover the central free volume of the first part at the end of step iv) (ie when the insertion is complete). So during step iv), the solid mass is inserted into the free central volume of the cylindrical wound element via the free central volume of the first piece of conductive material. At the end of the insertion, the combination of the first and second pieces of conductive material temporarily and tightly closes the upper part of the main body of the external envelope.

Lorsque la deuxième pièce en matériau conducteur est configurée pour recouvrir complètement le volume libre central de la première pièce, celle-ci peut avoir un diamètre ou une longueur supérieure à celui ou celle du volume libre central.When the second piece of conductive material is configured to completely cover the central free volume of the first piece, the latter can have a diameter or a length greater than that or that of the central free volume.

Selon une forme de réalisation particulièrement préférée de l'invention, la deuxième pièce en matériau conducteur est également configurée pour servir de moyen de prise. Cela permet ainsi de faciliter le retrait de la masse solide lors de l'étape vi).According to a particularly preferred embodiment of the invention, the second piece of conductive material is also configured to serve as a gripping means. This thus makes it possible to facilitate the removal of the solid mass during step vi).

Lorsque la deuxième pièce en matériau conducteur est configurée pour fermer complètement le volume libre central de la première pièce sans toutefois le recouvrir, celle-ci peut être configurée pour s'insérer complètement dans le volume libre central.When the second piece of conductive material is configured to completely close the central free volume of the first part without however covering it, the latter can be configured to fit completely into the central free volume.

Elle peut être par exemple sous la forme d'une collerette entourant la masse solide, ladite collerette étant en contact mécanique et électrique avec la première pièce en matériau conducteur.It may for example be in the form of a collar surrounding the solid mass, said collar being in mechanical and electrical contact with the first piece of conductive material.

Dans ce mode de réalisation, la masse solide peut être en outre reliée mécaniquement à un moyen de prise en matériau isolant. Cela permet ainsi de faciliter le retrait de la masse solide lors de l'étape vi).In this embodiment, the solid mass can also be mechanically connected to a gripping means made of insulating material. This thus makes it possible to facilitate the removal of the solid mass during step vi).

La pièce intermédiaire isolante (respectivement la pièce intermédiaire à résistivité contrôlée) peut également comporter un volume libre central permettant le passage et l'insertion de la masse solide dans le volume libre central de l'élément bobiné [étape iv)] et la deuxième pièce en matériau conducteur est configurée pour fermer ou recouvrir complètement le volume libre central de la pièce intermédiaire isolante (respectivement de la pièce intermédiaire à résistivité contrôlée) à l'issue de l'étape iv) (i.e. lorsque l'insertion est terminée). Ainsi, au cours de l'étape iv), la masse solide est insérée dans le volume central libre de l'élément bobiné cylindrique via le volume central libre de la pièce intermédiaire isolante (respectivement de la pièce intermédiaire à résistivité contrôlée) et de la première pièce en matériau conducteur. A la fin de l'insertion, l'association des première et deuxième pièces en matériau conducteur (et éventuellement de la pièce intermédiaire isolante ou à résistivité contrôlée) ferme de façon étanche et temporaire la partie supérieure du corps principal de l'enveloppe externe du supercondensateur.The insulating intermediate piece (respectively the intermediate piece with controlled resistivity) may also include a central free volume allowing the passage and insertion of the solid mass into the central free volume of the wound element (step iv)] and the second piece of conductive material is configured to close or completely cover the central free volume of the insulating intermediate piece (respectively of the intermediate piece with controlled resistivity) at the end of step iv) (ie when the insertion is complete). Thus, during step iv), the solid mass is inserted into the free central volume of the cylindrical wound element via the free central volume of the insulating intermediate piece (respectively of the intermediate piece with controlled resistivity) and of the first piece of conductive material. At the end of the insertion, the association of the first and second pieces of conductive material (and possibly of the insulating intermediate piece or with controlled resistivity) tightly and temporarily closes the upper part of the main body of the outer casing of the supercapacitor.

Afin de faciliter l'insertion de la masse solide, le volume libre central de la première pièce en matériau conducteur (respectivement le volume central libre de la pièce intermédiaire isolante ou à résistivité contrôlée) a des dimensions (e.g. un diamètre) sensiblement identiques à celles (e.g. au diamètre) du volume libre central de l'élément bobiné cylindrique.In order to facilitate the insertion of the solid mass, the central free volume of the first piece of conductive material (respectively the free central volume of the insulating intermediate piece or with controlled resistivity) has dimensions (eg a diameter) substantially identical to those (eg the diameter) of the central free volume of the cylindrical wound element.

La deuxième pièce en matériau conducteur est de préférence de forme rectangulaire, carrée ou cylindrique, notamment de forme identique à celle de la première pièce en matériau conducteur de manière à améliorer le contact et la connexion électrique entre les première et deuxième pièces en matériau conducteur.The second piece of conductive material is preferably of rectangular, square or cylindrical shape, in particular of shape identical to that of the first piece of conductive material so as to improve the contact and the electrical connection between the first and second pieces of conductive material.

D'autres moyens d'étanchéité entre les première et deuxième pièces en matériau conducteur que la pièce intermédiaire isolante ou à résistivité contrôlée peuvent être utilisés pour assurer une fermeture étanche et temporaire de la partie supérieure du corps principal de l'enveloppe.Other sealing means between the first and second pieces of conductive material than the insulating intermediate piece or with controlled resistivity can be used to ensure a sealed and temporary closure of the upper part of the main body of the envelope.

L'étape v) peut durer un temps suffisant pour permettre de charger l'électrode négative en ions du métal alcalin M1 à une valeur allant de 70 à 95% environ de la charge totale de l'électrode, et de préférence à une valeur allant de 80 à 90% environ de la charge totale de l'électrode.Step v) may last a time sufficient to allow the negative electrode to be charged with ions of the alkali metal M1 to a value ranging from approximately 70 to 95% of the total charge of the electrode, and preferably to a value ranging from about 80 to 90% of the total charge of the electrode.

Si l'électrode négative n'est pas chargée suffisamment, elle devient instable et son potentiel remonte avec le temps.If the negative electrode is not charged sufficiently, it becomes unstable and its potential rises over time.

Si l'électrode négative est trop chargée, elle peut arriver à saturation de charge en fonctionnement et se dégrader.If the negative electrode is too charged, it can reach charge saturation during operation and degrade.

Selon une forme de réalisation de l'invention, l'étape v) dure au moins 24 heures, et de préférence au moins 7 jours.According to one embodiment of the invention, step v) lasts at least 24 hours, and preferably at least 7 days.

L'étape v) peut être effectuée à la température ambiante (i.e. 20-25°C) ou à une température plus élevée que la température ambiante (par exemple comprise entre 25 °C et 70°C) pour augmenter la diffusion ionique et accélérer la formation de l'électrode négative, et ainsi accélérer la consommation de la masse solide dans l'électrolyte liquide utilisé.Step v) can be carried out at room temperature (ie 20-25 ° C) or at a temperature higher than room temperature (for example between 25 ° C and 70 ° C) to increase ionic diffusion and accelerate the formation of the negative electrode, and thus accelerate the consumption of the solid mass in the liquid electrolyte used.

Au cours de l'étape vi), la masse solide est retirée de l'élément bobiné cylindrique.During step vi), the solid mass is removed from the cylindrical wound element.

Ainsi, à l'issue de l'étape vi), le supercondensateur ne comprend plus de métal alcalin M1. Par ailleurs, les gaz crées pendant l'étape v) s'échappent de l'intérieur du supercondensateur, d'une part, pour permettre au volume central d'être à nouveau libre et, d'autre part, pour permettre d'encaisser la pression des gaz émis lors du vieillissement ultérieur du supercondensateur, et ainsi éviter ou limiter les déformations de l'enveloppe externe.Thus, at the end of step vi), the supercapacitor no longer comprises alkali metal M1. Furthermore, the gases created during step v) escape from the interior of the supercapacitor, on the one hand, to allow the central volume to be free again and, on the other hand, to allow to collect the pressure of the gases emitted during the subsequent aging of the supercapacitor, and thus avoid or limit the deformations of the external envelope.

L'étape vii) est de préférence effectuée à l'aide d'un bouchon de fermeture, par exemple de type rivet, d'un couvercle, d'une soudure (par exemple par la technique de soudage par friction malaxage, bien connue selon l'anglicisme « Friction Stir Welding ») ou d'un opercule éventuellement équipé d'une valve anti-surpression. L'étape vii) peut être effectuée selon toute autre méthode connue de l'homme du métier.Step vii) is preferably carried out using a closure plug, for example of the rivet type, a cover, a weld (for example by the technique of friction stir welding, well known according to Anglicism "Friction Stir Welding") or a cover optionally fitted with an anti-overpressure valve. Step vii) can be carried out according to any other method known to those skilled in the art.

Cette étape de fermeture est généralement définitive, c'est-à-dire qu'à l'issue de l'étape vii), le supercondensateur est fonctionnel.This closing step is generally final, that is to say that at the end of step vii), the supercapacitor is functional.

Dans la présente invention, le terme « supercondensateur fonctionnel » signifie que le supercondensateur est prêt à être testé et/ou contrôlé, puis emballé, et enfin commercialisé.In the present invention, the term “functional supercapacitor” means that the supercapacitor is ready to be tested and / or checked, then packaged, and finally marketed.

Le bouchon de fermeture est de préférence configuré pour fermer le volume libre central de la première pièce en matériau conducteur.The closure plug is preferably configured to close the central free volume of the first piece of conductive material.

Le procédé peut comprendre en outre après l'étape vi) ou pendant l'étape vi), une étape vi') de vidage du surplus d'électrolyte liquide non aqueux présent dans le corps principal de l'enveloppe externe.The method may further comprise after step vi) or during step vi), a step vi ') of emptying the surplus of nonaqueous liquid electrolyte present in the main body of the external envelope.

Cette étape vi') permet ainsi d'augmenter le volume libre central de l'élément bobiné après le retrait de la masse solide selon l'étape vi).This step vi ') thus makes it possible to increase the central free volume of the wound element after the removal of the solid mass according to step vi).

L'invention a également pour objet un supercondensateur hybride métal alcalin-ion cylindrique, caractérisé en ce qu'il est obtenu selon le procédé de l'invention.The invention also relates to a hybrid alkali metal-ion cylindrical supercapacitor, characterized in that it is obtained according to the method of the invention.

En effet, à l'issue de l'étape vi), le supercondensateur hybride métal alcalin-ion cylindrique ne contient aucun résidu de métal alcalin M1. Une partie du métal alcalin M1 de la masse solide a été intercalée dans l'électrode négative au cours de l'étape initiale de formation [étape v)], et l'autre partie (i.e. la partie restante) du métal alcalin M1 de la masse solide a été retirée lors de l'étape suivante vi).Indeed, at the end of step vi), the hybrid alkali metal-cylindrical ion supercapacitor contains no residue of alkali metal M1. Part of the alkali metal M1 of the solid mass was inserted in the negative electrode during the initial forming step (step v)], and the other part (ie the remaining part) of the alkali metal M1 of the solid mass was removed in the next step vi).

Plusieurs modes de réalisation de l'invention sont décrits ci-après en référence aux figures 1 à 6.Several embodiments of the invention are described below with reference to Figures 1 to 6 .

La figure 1 représente une vue en coupe selon un axe transversal du supercondensateur de la présente invention tel qu'obtenu à l'issue de l'étape ii) (figure la) et de la masse solide comprenant ledit métal alcalin M1 avant son insertion lors de l'étape iv) dans le volume libre central de l'élément bobiné cylindrique (figure 1b).The figure 1 shows a sectional view along a transverse axis of the supercapacitor of the present invention as obtained at the end of step ii) (Figure la) and of the solid mass comprising said alkali metal M1 before its insertion during the step iv) in the central free volume of the cylindrical wound element ( figure 1b ).

En particulier, la figure la illustre un supercondensateur hybride métal alcalin-ion cylindrique 1 comprenant au moins un élément bobiné cylindrique 2 et une enveloppe externe 3 contenant un corps principal destiné à recevoir ledit élément bobiné cylindrique 2.In particular, FIG. 1a illustrates a hybrid alkali metal-ion cylindrical supercapacitor 1 comprising at least one cylindrical wound element 2 and an external casing 3 containing a main body intended to receive said cylindrical wound element 2 .

L'élément bobiné cylindrique 2 comprend au moins une électrode positive, au moins une électrode négative et au moins un séparateur intercalé entre les électrodes positive et négative, les électrodes positive et négative et le séparateur étant enroulés ensemble en spires autour d'un axe X-X, l'élément bobiné cylindrique ayant un volume libre central 4 selon l'axe X-X. L'électrode positive comprend au moins une matière active d'électrode positive capable d'intercaler et de dés-intercaler des ions d'un métal alcalin M1 et/ou capable d'adsorber et de désorber des ions d'un métal alcalin M1, ladite électrode positive étant déposée sur un collecteur de courant d'électrode positive, et l'électrode négative comprend au moins une matière active d'électrode négative capable d'intercaler et de dés-intercaler des ions d'un métal alcalin M1, ladite électrode négative étant déposée sur un collecteur de courant d'électrode négative.The cylindrical wound element 2 comprises at least one positive electrode, at least one negative electrode and at least one separator interposed between the positive and negative electrodes, the positive and negative electrodes and the separator being wound together in turns around an axis XX , the cylindrical wound element having a central free volume 4 along the axis XX. The positive electrode comprises at least one active material of positive electrode capable of intercalating and de-intercalating ions of an alkali metal M1 and / or capable of adsorbing and desorbing ions of an alkali metal M1, said positive electrode being deposited on a positive electrode current collector , and the negative electrode comprises at least one active material of negative electrode capable of intercalating and de-intercalating ions of an alkali metal M1, said negative electrode being deposited on a negative electrode current collector.

Le corps principal de l'enveloppe externe 3 a une partie inférieure 5 et une partie supérieure 6. The main body of the external envelope 3 has a lower part 5 and an upper part 6.

A l'issue de l'étape ii), l'élément bobiné cylindrique 2 est inséré dans le corps principal de l'enveloppe externe 3. Par ailleurs, le collecteur de courant de l'électrode positive dépassant 7 est situé dans la partie inférieure 5 du corps principal de l'enveloppe externe et le collecteur de courant de l'électrode négative dépassant 8 est situé dans la partie supérieure 6 du corps principal de l'enveloppe externe 3. La partie inférieure du corps principal de l'enveloppe externe est fermée hermétiquement.At the end of step ii), the cylindrical wound element 2 is inserted into the main body of the external envelope 3. Furthermore, the current collector of the positive electrode protruding 7 is located in the lower part 5 of the main body of the outer casing and the current collector of the negative electrode protruding 8 is located in the upper part 6 of the main body of the outer casing 3. The lower part of the main body of the outer casing is hermetically closed.

L'étape ii) comprend en outre une sous-étape ii-1) au cours de laquelle, le collecteur de courant de l'électrode négative dépassant 8 est connecté électriquement à une première pièce en matériau conducteur 9, de préférence par soudage (e.g. à l'aide d'une soudure laser par transparence), brasage, brasage-diffusion ou contacts serrés ou vissés. La technique de soudage laser par transparence permet de connecter électriquement toutes les spires de l'élément bobiné.Step ii) further comprises a sub-step ii-1) during which the current collector of the negative electrode protruding 8 is electrically connected to a first piece of conductive material 9 , preferably by welding (eg using laser welding by transparency), soldering, brazing-diffusion or tight or screwed contacts. The technique of laser welding by transparency makes it possible to electrically connect all the turns of the wound element.

L'étape ii) comprend en outre une sous-étape ii-2) au cours de laquelle, le collecteur de courant de l'électrode positive dépassant 7 est connecté électriquement à la partie inférieure 5 du corps principal de l'enveloppe externe 3, de préférence par soudage (e.g. à l'aide d'une soudure laser par transparence), brasage, brasage-diffusion ou contacts serrés ou vissés. La technique de soudage laser par transparence est conventionnellement utilisée dans les procédés de préparation de supercondensateurs symétriques non hybrides classiques. Elle permet de connecter électriquement toutes les spires de l'élément bobiné.Stage ii) further comprises a sub-stage ii-2) during which the current collector of the positive electrode protruding 7 is electrically connected to the lower part 5 of the main body of the external envelope 3 , preferably by welding (eg using laser welding by transparency), soldering, diffusion brazing or tight or screwed contacts. The laser transparency welding technique is conventionally used in the processes for preparing Conventional non-hybrid symmetrical supercapacitors. It electrically connects all the turns of the wound element.

La première pièce en matériau conducteur 9 est de préférence constituée d'un matériau conducteur identique à celui du collecteur de courant de l'électrode négative, notamment en cuivre ou en alliage de cuivre.The first piece of conductive material 9 is preferably made of a conductive material identical to that of the current collector of the negative electrode, in particular made of copper or a copper alloy.

Sur la figure la, la première pièce en matériau conducteur 9 ferme de façon étanche et temporaire en partie la partie supérieure 6 du corps principal de l'enveloppe externe 3 du supercondensateur.In FIG. 1 a, the first piece of conductive material 9 partially and temporarily closes the upper part 6 of the main body of the outer casing 3 of the supercapacitor.

La pièce en matériau conducteur 9 traverse de manière étanche la partie supérieure du corps principal de l'enveloppe externe 3, notamment via un moyen d'étanchéité 10 (e.g. joint d'étanchéité) qui assure l'isolation électrique entre la pièce en matériau conducteur 9 et l'enveloppe externe 3. The piece of conductive material 9 passes tightly through the upper part of the main body of the outer casing 3 , in particular via a sealing means 10 (eg seal) which provides electrical insulation between the piece of conductive material 9 and the outer casing 3.

La première pièce en matériau conducteur 9 comporte un volume libre central 11 permettant le passage et l'insertion d'une masse solide 12 comprenant un métal alcalin M1 dans le volume libre central 4 de l'élément bobiné 2 (étape iv)).The first piece of conductive material 9 has a central free volume 11 allowing the passage and insertion of a solid mass 12 comprising an alkali metal M1 in the central free volume 4 of the wound element 2 (step iv)).

Les parties inférieure 5 et supérieure 6 du corps principal de l'enveloppe externe 3 peuvent être deux éléments distincts. L'étape ii) comprend alors une sous-étape ii-3) au cours de laquelle lesdites parties sont reliées mécaniquement pour former le corps principal de l'enveloppe, notamment par soudage.The lower 5 and upper 6 parts of the main body of the outer casing 3 can be two separate elements. Step ii) then comprises a sub-step ii-3) during which said parts are mechanically connected to form the main body of the envelope, in particular by welding.

La partie inférieure 5 du corps principal de l'enveloppe 3 est constituée d'un matériau conducteur électrochimiquement compatible avec celui du collecteur de courant de l'électrode positive, notamment en aluminium.The lower part 5 of the main body of the casing 3 consists of a conductive material electrochemically compatible with that of the current collector of the positive electrode, in particular aluminum.

La partie supérieure 6 du corps principal de l'enveloppe est constituée d'un matériau conducteur électrochimiquement compatible avec celui du collecteur de courant de l'électrode positive, notamment en aluminium.The upper part 6 of the main body of the envelope is made of a conductive material electrochemically compatible with that of the current collector of the positive electrode, in particular aluminum.

La figure 1b représente la masse solide 12 comprenant un métal alcalin M1 que l'on souhaite insérer selon l'étape iv) dans le volume libre central 4 de l'élément bobiné via le volume libre central 11 de la première pièce en matériau conducteur 9. Le métal alcalin M1 est de préférence choisi parmi le lithium, le sodium et le potassium, et de préférence encore du lithium. La figure 1b illustre une masse solide 12 ayant une hauteur supérieure à celle de l'élément bobiné 2. Ceci permet ainsi de fournir du métal alcalin M1 sur toute la hauteur des électrodes de l'élément bobiné 2 au cours de l'étape iv).The figure 1b represents the solid mass 12 comprising an alkali metal M1 which one wishes to insert according to step iv) in the central free volume 4 of the element wound via the central free volume 11 of the first piece of conductive material 9. The alkali metal M1 is preferably chosen from lithium, sodium and potassium, and more preferably lithium. The figure 1b illustrates a solid mass 12 having a height greater than that of the wound element 2. This thus makes it possible to supply alkali metal M1 over the entire height of the electrodes of the wound element 2 during step iv).

La masse solide 12 illustrée sur la figure 1b est uniquement constituée dudit métal alcalin M1 et se présente sous la forme d'un barreau plein ou d'une tige pleine, notamment cylindrique.The solid mass 12 illustrated on the figure 1b consists only of said alkali metal M1 and is in the form of a solid bar or a solid rod, in particular cylindrical.

Le barreau ou la tige 12 peut avoir un diamètre allant de 1 à 50 mm environ, et de préférence allant de 5 à 20 mm environ.The bar or rod 12 can have a diameter ranging from 1 to 50 mm approximately, and preferably ranging from 5 to 20 mm approximately.

Afin de permettre la connexion électrique de la masse solide 12 avec l'électrode négative selon l'étape v), la masse solide 12 est reliée mécaniquement et électriquement à une deuxième pièce en matériau conducteur 13, notamment en cuivre ou en alliage de cuivre. Cette deuxième pièce en matériau conducteur 13 est configurée pour assurer la connexion électrique avec la première pièce en matériau conducteur 9. Cela permet ainsi de connecter électriquement la masse solide 12 avec l'électrode négative via les deux pièces en matériau conducteur 9 et 13. In order to allow the electrical connection of the solid mass 12 with the negative electrode according to step v), the solid mass 12 is mechanically and electrically connected to a second part made of conductive material 13 , in particular copper or copper alloy. This second piece of conductive material 13 is configured to provide electrical connection with the first piece of conductive material 9. This thus makes it possible to electrically connect the solid mass 12 with the negative electrode via the two pieces of conductive material 9 and 13.

La figure 2 illustre une vue en coupe selon un axe transversal du supercondensateur de la présente invention tel qu'obtenu à l'issue de l'étape iv) [ou l'étape iii), si l'étape iv) d'insertion de la masse solide a lieu avant ladite étape iii)].The figure 2 illustrates a sectional view along a transverse axis of the supercapacitor of the present invention as obtained at the end of step iv) [or step iii), if step iv) of insertion of the solid mass takes place before said step iii)].

La deuxième pièce en matériau conducteur 13 est configurée pour fermer ou recouvrir complètement le volume libre central 11 de la première pièce 9 à l'issue de l'étape iv) (i.e. lorsque l'insertion est terminée). Ainsi, au cours de l'étape iv), la masse solide 12 est insérée dans le volume central libre 4 de l'élément bobiné 2 via le volume libre central 11 de la première pièce en matériau conducteur 9. A la fin de l'insertion, la première pièce en matériau conducteur 9 est en contact mécanique et électrique avec la deuxième pièce en matériau conducteur 13 et l'association des première et deuxième pièces en matériau conducteur 9 et 13 ferme complètement de façon étanche et temporaire la partie supérieure 6 du corps principal de l'enveloppe externe 3. The second piece of conductive material 13 is configured to completely close or cover the central free volume 11 of the first piece 9 at the end of step iv) (ie when the insertion is complete). Thus, during step iv), the solid mass 12 is inserted into the free central volume 4 of the wound element 2 via the central free volume 11 of the first piece of conductive material 9. At the end of the insertion, the first piece of conductive material 9 is in mechanical and electrical contact with the second piece of conductive material 13 and the association of the first and second pieces of conductive material 9 and 13 completely seal the upper part 6 of the main body of the outer casing 3 in a sealed and temporary manner .

La figure 2 illustre une connexion électrique directe entre les première et deuxième pièces en matériau conducteur 9 et 13. The figure 2 illustrates a direct electrical connection between the first and second pieces of conductive material 9 and 13.

Afin de faciliter l'insertion de la masse solide 12, le volume libre central 11 de la première pièce en matériau conducteur 9 a des dimensions (e.g. un diamètre) sensiblement identiques à celles du volume libre central 4 de l'élément bobiné 2 .In order to facilitate the insertion of the solid mass 12 , the central free volume 11 of the first piece of conductive material 9 has dimensions (eg a diameter) substantially identical to those of the central free volume 4 of the wound element 2 .

La deuxième pièce en matériau conducteur 13 est de préférence de forme rectangulaire, carrée ou cylindrique, notamment de forme identique à celle de la première pièce en matériau conducteur 9 de manière à améliorer le contact et la connexion entre les première et deuxième pièces en matériau conducteur 9 et 13. The second piece of conductive material 13 is preferably of rectangular, square or cylindrical shape, in particular of shape identical to that of the first piece of conductive material 9 so as to improve the contact and the connection between the first and second pieces of conductive material 9 and 13.

Des moyens d'étanchéité entre les première et deuxième pièces en matériau conducteur 9 et 13 peuvent être utilisés pour assurer une fermeture étanche et temporaire de la partie supérieure 6 du corps principal de l'enveloppe externe 3.Sealing means between the first and second parts made of conductive material 9 and 13 can be used to ensure a sealed and temporary closure of the upper part 6 of the main body of the external envelope 3 .

A l'issue de l'étape iv), l'association des première et deuxième pièces en matériau conducteur ferme complètement la partie supérieure du corps principal de l'enveloppe.At the end of step iv), the combination of the first and second pieces of conductive material completely closes the upper part of the main body of the envelope.

Par ailleurs, l'étape iv) permet la connexion électrique de la masse solide 12 au collecteur de courant débordant de l'électrode négative 8 (i.e. étapes iv) et v) concomitantes).Furthermore, step iv) allows the electrical connection of the solid mass 12 to the current collector projecting from the negative electrode 8 (ie steps iv) and v) concomitant).

La figure 3 représente une vue en coupe selon un axe transversal du supercondensateur de la présente invention tel qu'obtenu à l'issue de l'étape vii). La fermeture hermétique (et définitive) du supercondensateur est effectuée grâce à un bouchon de fermeture 14, par exemple de type rivet, d'un couvercle, d'une soudure (par exemple par la technique de soudage par friction malaxage, bien connue selon l'anglicisme « Friction Stir Welding ») ou d'un opercule éventuellement équipé d'une valve anti-surpression. Ce bouchon de fermeture 14 est configuré pour fermer le volume libre central 11 de la première pièce en matériau conducteur 9.The figure 3 shows a sectional view along a transverse axis of the supercapacitor of the present invention as obtained at the end of step vii). The hermetic (and final) closure of the supercapacitor is effected by means of a closure cap 14 , for example of the rivet type, of a cover, of a weld (for example by the technique of friction stir welding, well known according to the invention). 'Anglicism' Friction Stir Welding ') or a cover optionally fitted with a pressure relief valve. This cap closure 14 is configured to close the central free volume 11 of the first piece of conductive material 9.

La figure 4 représente un mode de réalisation de l'invention dans lequel la connexion électrique entre les première et deuxième pièces en matériau conducteur 9 et 13 est indirecte.The figure 4 shows an embodiment of the invention in which the electrical connection between the first and second pieces of conductive material 9 and 13 is indirect.

Dans ce mode de réalisation, le type de liaison indirecte entre la première pièce en matériau conducteur 9 et la deuxième pièce en matériau conducteur 13 implique une pièce intermédiaire 15 se situant entre les deux pièces en matériau conducteur et étant connectée mécaniquement auxdites pièces en matériau conducteur.In this embodiment, the type of indirect connection between the first piece of conductive material 9 and the second piece of conductive material 13 involves an intermediate piece 15 lying between the two pieces of conductive material and being mechanically connected to said pieces of conductive material .

Cette pièce intermédiaire 15 est une pièce isolante (e.g. en matériau élastomère ou thermoplastique).This intermediate piece 15 is an insulating piece (eg made of elastomeric or thermoplastic material).

La connexion électrique entre les deux pièces en matériau conducteur 9 et 13 est effectuée à l'aide d'un circuit électrique externe 16 (chargeur/déchargeur) et de liaisons électriques 17. La pièce intermédiaire isolante 15 assure l'étanchéité entre les deux pièces en matériau conducteur 9 et 13. The electrical connection between the two pieces of conductive material 9 and 13 is carried out using an external electrical circuit 16 (charger / unloader) and electrical connections 17. The insulating intermediate piece 15 provides sealing between the two pieces of conductive material 9 and 13.

La figure 5 représente un mode de réalisation de l'invention dans lequel la connexion électrique entre les première et deuxième pièces en matériau conducteur 9 et 13 est indirecte.The figure 5 shows an embodiment of the invention in which the electrical connection between the first and second pieces of conductive material 9 and 13 is indirect.

Dans ce mode de réalisation, le type de liaison indirecte entre la première pièce en matériau conducteur 9 et la deuxième pièce en matériau conducteur 13 implique une pièce intermédiaire 15' se situant entre les deux pièces en matériau conducteur et étant connectée mécaniquement auxdites pièces en matériau conducteur.In this embodiment, the type of indirect connection between the first piece of conductive material 9 and the second piece of conductive material 13 involves an intermediate piece 15 ' lying between the two pieces of conductive material and being mechanically connected to said pieces of material driver.

Cette pièce intermédiaire 15' est une pièce isolante (e.g. en matériau élastomère ou thermoplastique).This intermediate part 15 ′ is an insulating part (eg made of elastomeric or thermoplastic material).

La connexion électrique entre les deux pièces en matériau conducteur 9 et 13 est effectuée à l'aide d'une résistance externe 16' (chargeur/déchargeur) et de liaisons électriques 17'. La pièce intermédiaire isolante 15' assure l'étanchéité entre les deux pièces en matériau conducteur 9 et 13. The electrical connection between the two pieces of conductive material 9 and 13 is made using an external resistor 16 ' (charger / unloader) and electrical connections 17'. The intermediate piece insulator 15 ' ensures the seal between the two pieces of conductive material 9 and 13.

La figure 6 représente un mode de réalisation de l'invention dans lequel la connexion électrique entre les première et deuxième pièces en matériau conducteur 9 et 13 est indirecte.The figure 6 shows an embodiment of the invention in which the electrical connection between the first and second pieces of conductive material 9 and 13 is indirect.

Dans ce mode de réalisation, le type de liaison indirecte entre la première pièce en matériau conducteur 9 et la deuxième pièce en matériau conducteur 13 implique une pièce intermédiaire 15" se situant entre les deux pièces en matériau conducteur et étant connectée mécaniquement auxdites pièces en matériau conducteur.In this embodiment, the type of indirect connection between the first piece of conductive material 9 and the second piece of conductive material 13 involves an intermediate piece 15 " lying between the two pieces of conductive material and being mechanically connected to said pieces of material driver.

Cette pièce intermédiaire 15" est une pièce isolante (e.g. en matériau élastomère ou thermoplastique).This intermediate piece 15 " is an insulating piece (eg made of elastomeric or thermoplastic material).

La connexion électrique entre les deux pièces en matériau conducteur 9 et 13 est effectuée à l'aide d'un interrupteur de court-circuit externe 16" et de liaisons électriques 17". La pièce intermédiaire isolante 15" assure l'étanchéité entre les deux pièces en matériau conducteur 9 et 13. The electrical connection between the two pieces of conductive material 9 and 13 is made using an external short-circuit switch 16 " and electrical connections 17". The insulating intermediate piece 15 " seals between the two pieces of conductive material 9 and 13.

La figure 7 représente un mode de réalisation de l'invention dans lequel la connexion électrique entre les première et deuxième pièces en matériau conducteur 9 et 13 est indirecte.The figure 7 shows an embodiment of the invention in which the electrical connection between the first and second pieces of conductive material 9 and 13 is indirect.

Dans ce mode de réalisation, le type de liaison indirecte entre la première pièce en matériau conducteur 9 et la deuxième pièce en matériau conducteur 13 implique une pièce intermédiaire 18 se situant entre les deux pièces en matériau conducteur et étant connectée mécaniquement auxdites pièces en matériau conducteur.In this embodiment, the type of indirect connection between the first piece of conductive material 9 and the second piece of conductive material 13 involves an intermediate piece 18 located between the two pieces of conductive material and being mechanically connected to said pieces of conductive material .

Cette pièce intermédiaire 18 est une pièce à résistivité contrôlée (e.g. en matériau élastomère ou thermoplastique).This intermediate piece 18 is a piece with controlled resistivity (eg made of elastomeric or thermoplastic material).

La connexion électrique entre les deux pièces en matériau conducteur 9 et 13 est effectuée via la résistance électrique fournie par la pièce intermédiaire 18 (également appelée « entretoise à résistance contrôlée »).The electrical connection between the two pieces of conductive material 9 and 13 is carried out via the electrical resistance provided by the intermediate piece 18 (also called “spacer with controlled resistance”).

La pièce intermédiaire 18 assure également l'étanchéité entre les deux pièces en matériau conducteur 9 et 13. The intermediate piece 18 also seals between the two pieces of conductive material 9 and 13.

Claims (23)

  1. A method for preparing a cylindrical, alkali metal-ion hybrid supercapacitor, comprising at least one cylindrical coiled element and an outer enclosure containing a main body intended to receive said cylindrical coiled element, said method comprising at least the following steps:
    i) preparing a cylindrical coiled element centered on an axis X-X comprising at least one positive electrode, at least one negative electrode and at least one separator interposed between the positive and negative electrodes, the positive and negative electrodes and the separator being wound together in turns around said axis X-X, the cylindrical coiled element having a central free volume along the axis X-X, with the understanding that:
    * the positive electrode comprises at least one positive electrode active material capable of interposing and de-interposing ions of an alkali metal M1 and/or capable of adsorbing and desorbing ions of an alkali metal M1, said positive electrode being deposited on a positive electrode current collector, and
    * said negative electrode comprises at least one negative electrode active material capable of interposing and de-interposing ions of an alkali metal M1, said negative electrode being deposited on a negative electrode current collector,
    ii) inserting the cylindrical coiled element into a main body of an outer enclosure intended to receive said cylindrical coiled element,
    iii) impregnating the cylindrical coiled element with a nonaqueous liquid electrolyte comprising a salt of said alkali metal M1 and an organic solvent,
    said method being characterized in that it further comprises:
    iv) inserting a solid mass comprising said alkali metal M1 into the central free volume of the cylindrical coiled element, before or after step iii),
    v) electrically connecting the solid mass with the negative electrode so as to obtain a short-circuit and to interpose ions of said alkali metal M1 into the negative electrode of the cylindrical coiled element,
    vi) removing the solid mass from the cylindrical coiled element, and
    vii) hermetically sealing the main body of the outer enclosure, in order to obtain the cylindrical, alkali metal-ion hybrid supercapacitor.
  2. The method according to claim 1, characterized in that step i) comprises a sub-step i-1) for assembling at least one positive electrode, at least one negative electrode, and at least one separator interposed between the negative electrode and the positive electrode, and a sub-step i-2) for winding the assembly in a spiral around an axis X-X in order to form a cylindrical coiled element having a central free volume along the axis X-X.
  3. The method according to any one of the preceding claims, characterized in that the active material of the negative electrode comprises graphite and optionally a material chosen from activated carbon, graphene, carbon derived from carbide, hard carbon and soft carbon.
  4. The method according to any one of the preceding claims, characterized in that the active material of the positive electrode comprises a porous carbon material or a transition metal oxide.
  5. The method according to any one of the preceding claims, characterized in that the active material of the positive electrode comprises activated carbon and optionally a material chosen from graphite, graphene, carbon derived from carbide, hard carbon and soft carbon.
  6. The method according to any one of the preceding claims, characterized in that the current collector of the negative electrode is made from copper.
  7. The method according to any one of the preceding claims, characterized in that the current collector of the positive electrode is made from aluminum.
  8. The method according to any one of the preceding claims, characterized in that the alkali metal M1 is chosen from lithium, sodium and potassium.
  9. The method according to any one of the preceding claims, characterized in that the solid mass is solely made from said alkali metal M1 and is in the form of a solid bar or a solid rod of said alkali metal M1.
  10. The method according to any one of the preceding claims, characterized in that step v) lasts a sufficient amount of time to make it possible to charge the negative electrode with ions of the alkali metal M1 at a value ranging from 70 to 95% of the total charge of the electrode.
  11. The method according to any one of the preceding claims, characterized in that it further comprises, after step vi) or during step vi), a step vi') for emptying the excess nonaqueous liquid electrolyte present in the main body of the outer enclosure.
  12. The method according to any one of the preceding claims, characterized in that step vii) is carried out using a stopper, a cover, a weld or a membrane seal.
  13. The method according to any one of the preceding claims, characterized in that the main body of the outer enclosure has a lower part and an upper part and step ii) is carried out so as to position the current collector of the positive electrode protruding in the lower part of the main body of the outer enclosure and the current collector of the negative electrode protruding in the upper part of the main body of the outer enclosure.
  14. The method according to claim 13, characterized in that step ii) comprises a sub-step ii-1) during which the current collector of the negative electrode protruding at one end of said coiled element is electrically connected to a part made from conductive material.
  15. The method according to claim 13 or 14, characterized in that step ii) comprises a sub-step ii-2) during which the current collector of the positive electrode protruding at one end of said coiled element is electrically connected to the lower part of the main body of the outer enclosure.
  16. The method according to any one of claims 13 to 15, characterized in that at the end of step ii), the lower part of the main body of the outer enclosure is hermetically and permanently sealed and the insertion according to step iv) is done through the upper part of the main body of the outer enclosure.
  17. The method according to any one of claims 14 to 16, characterized in that the part made from conductive material is made from a conductive material identical to that of the current collector of the negative electrode.
  18. The method according to any one of claims 14 to 17, characterized in that the part made from conductive material is configured to tightly and temporarily seal, at least partially, or even completely, the upper part of the main body of the outer enclosure of the supercapacitor.
  19. The method according to any one of claims 14 to 18, characterized in that the part made from conductive material is able to pass tightly through the upper part of the main body of the outer enclosure.
  20. The method according to any one of claims 14 to 19, characterized in that during step v), the solid mass is mechanically and electrically coupled to the part made from conductive material as defined according to claims 14 and 17 to 19 and called "first part made from conductive material" or to another part made from conductive material called "second part made from conductive material", said second part made from conductive material being configured to ensure the direct or indirect electrical connection with the first part made from conductive material.
  21. The method according to claim 20, characterized in that at the end of step iv), the association of the first and second parts made from conductive material completely closes the upper part of the main body of the outer enclosure.
  22. The method according to claim 20 or 21, characterized in that the first part made from conductive material includes a central free volume allowing the passage and the insertion of the solid mass in the central free volume of the cylindrical coiled element and the second part made from conductive material is configured to close or completely cover the central free volume of the first part at the end of step iv).
  23. A cylindrical, alkali metal-ion hybrid supercapacitor characterized in that it is obtained according to a method as defined in any one of the preceding claims.
EP17764867.2A 2016-07-25 2017-07-24 Processes for preparing a hybrid cylindrical supercapacitor comprising an ionic alkalin metal Active EP3488454B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1657106A FR3054366B1 (en) 2016-07-25 2016-07-25 PROCESS FOR THE PREPARATION OF A CYLINDRICAL METAL ALKALINE-ION HYBRID SUPERCONDENSOR
PCT/FR2017/052043 WO2018020126A1 (en) 2016-07-25 2017-07-24 Method for the production of a cylindrical hybrid supercapacitor comprising an ionic alkali metal

Publications (2)

Publication Number Publication Date
EP3488454A1 EP3488454A1 (en) 2019-05-29
EP3488454B1 true EP3488454B1 (en) 2020-04-22

Family

ID=56990627

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17764867.2A Active EP3488454B1 (en) 2016-07-25 2017-07-24 Processes for preparing a hybrid cylindrical supercapacitor comprising an ionic alkalin metal

Country Status (10)

Country Link
US (1) US20190333709A1 (en)
EP (1) EP3488454B1 (en)
JP (1) JP2019526167A (en)
KR (1) KR20190022820A (en)
CN (1) CN109564824A (en)
CA (1) CA3027117A1 (en)
FR (1) FR3054366B1 (en)
SG (1) SG11201811293SA (en)
TW (1) TW201816814A (en)
WO (1) WO2018020126A1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2451634C (en) 2001-06-29 2009-06-30 Kanebo, Limited Organic electrolytic capacitor
JP4732072B2 (en) * 2005-08-30 2011-07-27 富士重工業株式会社 Winding type lithium ion capacitor
US8159815B2 (en) * 2006-09-19 2012-04-17 Daihatsu Motor Co., Ltd. Electrochemical capacitor
JP5271860B2 (en) * 2009-09-30 2013-08-21 Jmエナジー株式会社 Accumulator
CN101763944B (en) * 2009-12-09 2011-07-20 中南大学 Method for preparing composite carbon cathode material for super-capacitor battery
CN104008893B (en) * 2014-04-11 2016-10-19 中国科学院电工研究所 The preparation method of lithium ion hybrid capacitors and lithium ion hybrid capacitors thereof
CN104319115A (en) * 2014-07-16 2015-01-28 惠州市鸣曦科技有限公司 Method for pre-burying of negative electrode of hybrid super capacitor
KR102255622B1 (en) * 2014-12-16 2021-05-25 한국과학기술원 Lithiation-Induced Rescaling of Metal Oxide Nanocrystals for Energy Storage and Supercapacitor Using Thereof
CN105047428B (en) * 2015-08-03 2016-06-29 宁波中车新能源科技有限公司 A kind of preparation method of lithium-ion capacitor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
SG11201811293SA (en) 2019-02-27
US20190333709A1 (en) 2019-10-31
WO2018020126A1 (en) 2018-02-01
KR20190022820A (en) 2019-03-06
FR3054366B1 (en) 2018-08-03
CN109564824A (en) 2019-04-02
EP3488454A1 (en) 2019-05-29
CA3027117A1 (en) 2018-02-01
TW201816814A (en) 2018-05-01
JP2019526167A (en) 2019-09-12
FR3054366A1 (en) 2018-01-26

Similar Documents

Publication Publication Date Title
EP2984697B1 (en) Lithium electrochemical storage battery having a casing providing improved thermal dissipation, associated battery pack and production processes
EP2842185B1 (en) Bushing forming a terminal for a lithium storage battery and related storage battery
EP3130020B1 (en) Lithium-ion electrochemical accumulator having a terminal directly connected to the electrode assembly and associated production methods
EP3179532B1 (en) Glass-metal sealed feed-through, use as lithium electrochemical battery, associated production method
EP3329527B1 (en) Lithium storage battery with integrated circuit-breaker for improved operating safety
EP1213783A1 (en) Battery with wound electrodes and heat dissipating means
EP1602143A2 (en) Rechargeable electrochemical accumulator
CA2230939A1 (en) Battery with an insulated, corrosion-resistant casing
EP2875538B1 (en) Bipolar li-ion battery with improved seal and associated production process
EP3410514B1 (en) Bushing forming a terminal for a metal-ion storage cell, including a gas release valve, associated cell
EP2718944B1 (en) Method for assembling a hybrid supercapacitor based on lithium
EP2255368B1 (en) Multiple-track supercapacitor
EP3523837B1 (en) Accumulator
EP3488454B1 (en) Processes for preparing a hybrid cylindrical supercapacitor comprising an ionic alkalin metal
EP3384550B1 (en) Process for the capacity-regeneration of a metal-ion electrochemical accumulator and associated battery
EP3510652A1 (en) Feedthrough forming a terminal for an electrochemical metal-ion battery and associated battery
EP3319150B1 (en) Method for regenerating the capacity of a metal-ion electrochemical cell
FR3129528A1 (en) Process for producing an all-solid-state battery from a metal-ion electrochemical accumulator with liquid electrolyte, for the purposes of abusive thermal tests.
FR3016736A1 (en) LITHIUM-ION BATTERY (LI-ION) CAPACITY INCREASED BY INCREASE IN HEIGHT AVAILABLE INSIDE THE HOUSING
FR2652949A1 (en) Cylindrical cell having a lithium anode and a solid cathode

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190122

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191212

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017015359

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1261217

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200822

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200723

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200824

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1261217

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017015359

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602017015359

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210125

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210202

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200724

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422