EP3486566A1 - Turbine à gaz comprenant une chambre de combustion tubulaire munie d'un amortisseur - Google Patents

Turbine à gaz comprenant une chambre de combustion tubulaire munie d'un amortisseur Download PDF

Info

Publication number
EP3486566A1
EP3486566A1 EP17201933.3A EP17201933A EP3486566A1 EP 3486566 A1 EP3486566 A1 EP 3486566A1 EP 17201933 A EP17201933 A EP 17201933A EP 3486566 A1 EP3486566 A1 EP 3486566A1
Authority
EP
European Patent Office
Prior art keywords
liner
damper
damper body
gas turbine
combustor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17201933.3A
Other languages
German (de)
English (en)
Inventor
Mirko Ruben Bothien
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ansaldo Energia Switzerland AG
Original Assignee
Ansaldo Energia Switzerland AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ansaldo Energia Switzerland AG filed Critical Ansaldo Energia Switzerland AG
Priority to EP17201933.3A priority Critical patent/EP3486566A1/fr
Publication of EP3486566A1 publication Critical patent/EP3486566A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/46Combustion chambers comprising an annular arrangement of several essentially tubular flame tubes within a common annular casing or within individual casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/60Support structures; Attaching or mounting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00014Reducing thermo-acoustic vibrations by passive means, e.g. by Helmholtz resonators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03045Convection cooled combustion chamber walls provided with turbolators or means for creating turbulences to increase cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03341Sequential combustion chambers or burners

Definitions

  • the present invention relates to a gas turbine for power plants.
  • the present invention refers to a gas turbine for power plants comprising a can combustor provided with a damper.
  • a gas turbine for power plants comprises a rotor provided with an upstream compressor sector, a combustor sector and a downstream turbine sector.
  • the terms downstream and upstream refer to the direction of the main gas flow passing through the gas turbine.
  • the compressor comprises an inlet supplied with air and a plurality of blades compressing the passing air.
  • the compressed air leaving the compressor flows into a plenum, i.e. a closed volume delimited by an outer casing, and from there into the combustor.
  • a plenum i.e. a closed volume delimited by an outer casing
  • the compressed air is mixed with at least one fuel.
  • the mixture of fuel and compressed air flows into a combustion chamber inside the combustor where this mixture are combusted.
  • the resulting hot gas leaves the combustor and is expanded in the turbine performing work on the rotor.
  • a sequential gas turbine comprises two combustors in series wherein each combustor is provided with the relative burner and combustion chamber. Following the main gas flow direction, the upstream combustor is called “premix” combustor and is fed by the compresses air. The downstream combustor is called “sequential” or “reheat” combustor and is fed by the hot gas leaving the first combustion chamber.
  • the two combustors are physically separated by a stage of turbine blades, called high pressure turbine.
  • this first kind of sequential gas turbines comprises a compressor, a first combustor, a high-pressure turbine, a second combustor and a low-pressure turbine.
  • the compressor and the two turbines may be connected to a common rotor rotating around an axis and surrounded by a concentric casing.
  • the sequential liner and the picture frame are realized as a single piece called transition duct configured for guiding the hot gas leaving the combustor toward the turbine, in particular toward the first vane of the turbine.
  • the reheat burner can be realized in form of a plurality of single or dual fuel injector fingers extending across the flow channel.
  • these injector fingers can be realized in form of a streamline body having preferably a lobed trailing edge.
  • pressure oscillations may be generated that could cause mechanical damages and limit the operating regime.
  • gas turbines have to operate in lean mode for compliance to pollution emissions.
  • the burner flame during this mode of operation is extremely sensitive to flow perturbations and can easily couple with dynamics of the combustion chamber to lead to thermo-acoustic instabilities. For this reason, usually combustion chambers are provided with damping devices, in order to damp these pressure oscillations.
  • a traditional damper comprises a damper volume that acts as a resonator volume and a neck fluidly connecting the damper volume to the combustion chamber.
  • US8490744 discloses an annular damper as above described.
  • US8490744 discloses a can combustor for a gas turbine having a single stage of combustion wherein the can combustor comprises a burner, a liner arranged downstream the burner and defining an inner combustion chamber and a damper comprising a damper volume wrapped outside the liner and in fluidly connections with the combustion chamber.
  • the inner wall of the damper volume corresponds to the liner and the damper necks collapse in a plurality of through holes provided in the liner.
  • a primary object of the present invention is to provide a can combustor provided with a new damper wrapped around the liner.
  • the present invention provides a gas turbine having an axis and comprising following the gas flow direction:
  • the combustor comprises:
  • the above mentioned damper can be considered as a resonator device or acoustic damper.
  • the can combustor may be provided with a single stage of combustion or two stages of combustion arranged in series.
  • the can combustor comprises a burner followed downstream by a liner defining the combustion chamber and guiding the hot gas flow toward the turbine.
  • the term downstream refers to the hot gas main flow direction.
  • the cross-section of the liner defining the combustion chamber may be circular or square/rectangular.
  • the damper body is annular and arranged spaced from the liner, i.e. the damper body has an inner surface facing the outer surface of the liner, in order to create a cooling gap or channel between the damper body and the liner.
  • a damper neck is present acting as a bridge for fluidly connecting the damping volume with the combustion chamber.
  • the ends of the damper neck may be in flush with the liner and/or the damper body or alternatively may protrude at least in part inside the combustion chamber and/or in the damping volume.
  • the term "inner” refers to the combustor axis.
  • at least the damper body is mechanically decoupled by the liner (i.e. there is no direct physical connection between damper body and liner) and supported in position by a supporting structure at one side fixed to the damper body and at another side fixed to the outer casing.
  • the first advantage consists in creating a controlled convective cooling air flow (in the following will be described that this cooling air is the compressed air delivered in the plenum by the compressor) between the damper body and the liner and therefore the purge air passing through the damper body may be independently adjusted without impacting the liner cooling. In this way, a dumper purge air reduction, for instance applied for optimizing the damping effect, does not involve any detrimental effect on the liner cooling.
  • the second advantage linked to the decoupling of the damper body from the liner, consists in increasing the lifetime of the components. Indeed, the damper body and the liner work at very different temperature and, once mechanically decoupled according the present invention, are free to thermally deform according their own temperature.
  • the damping volume may wrap the liner completely or only in part.
  • the damper body wraps the liner completely and the damping volume can be divided in a plurality of sub-volumes.
  • the damper may comprises a plurality of damper necks connecting the combustion chamber with the damping volume and at least a purge air inlet for allowing purge air enter in the damping volume.
  • the damper neck may be mechanically coupled with the liner and mechanically decoupled from the damper body or the damper neck may be mechanically coupled with the damper body and mechanically decoupled from the liner.
  • the purge air inlet is realized in form of a concentric gap present between the damper neck and the damper body, in particular between the damper neck and the hole of the damper body configured for receiving the damper neck.
  • this embodiment may also comprise a second purge air inlet on the outer wall of the damper body.
  • the purge air inlet is located only on the outer wall of the damper body.
  • a concentric gap is present between the damper neck and the liner, particular between the damper neck and the hole of the liner configured for receiving the damper neck. In this case, part of the cooling air passing through the cooling gap enters the combustion chamber.
  • a plurality of trip strips or turbolator elements may be placed on the outer surface of the liner and/or on the inner wall of the damper body.
  • other different kinds of cooling devices may be provided for increasing the heat transfer between the cooling air passing in the gap and the liner and/or the damper.
  • the can combustor is a sequential can combustor and comprises in series a first burner, a first liner defining a first combustion chamber, a subsequent burner and a subsequent liner defining a subsequent combustion chamber.
  • the damper is associated at least to the subsequent liner.
  • FIG. 1 is a schematic view of a gas turbine for power plants that can be provided with a can combustor according to the present invention.
  • a gas turbine 1 having an axis 9 and comprising a compressor 2, a combustor sector 4 and a turbine 3.
  • ambient air 10 enters the compressor 2 and compressed air leaves the compressor 2 and enters in a plenum 16, i.e. a volume defined by an outer casing 17.
  • the compressed air 37 enters in the combustor that comprises a plurality of can combustors 4 annularly arranged as ring around the axis 9.
  • each can combustor 4 involves a single stage of combustion and comprises a burner 5 where the compressed air 37 is mixed with at least a fuel. This mixture is then combusted in a combustion chamber 6 and the resulting hot gas flows toward a downstream turbine 3.
  • the combustion chamber 6 is limited by a liner 7.
  • the turbine 3 comprises a plurality of vanes 12, i.e. stator blades, supported by a vane carrier 14, and a plurality of blades 13, i.e. rotor blades, supported by a rotor 8.
  • the hot gas expands performing work on the rotor 8 and leaves the turbine 3 in form of exhaust gas 11.
  • figure 2 is schematic view of a different kind of can combustor that can be improved according the present invention.
  • a can combustor 4 having two stages of combustion in series and housed in a relative portal hole of an outer casing 17 defining the plenum 16 where the compresses air are delivered by the compressor 2.
  • the can combustor 4 has an axis 24 and comprises in series along the gas flow M a first combustor, or premix combustor 18, and a second combustor, or sequential combustor 19.
  • the first combustor 18 comprises a first or premix burner 20 and a first combustion chamber 21.
  • the sequential combustor 19 comprises a sequential burner 22 and a second combustion chamber 23.
  • the burner axis 24 is parallel to the gas flow direction M and the sequential burner 22 may comprise a plurality of fuel injectors, in particular dual fuel and carrying air injectors.
  • the fuel is fed to the sequential burner 22 by a fuel lance 25 axially extending outside the first combustion chamber 21 up to the sequential burner 22.
  • the combustion chambers 21 23 are delimited by a liner 7.
  • the premix combustion chamber 21 is limited by an upstream portion of the liner 7 and the sequential combustion chambers 21 by a sequential liner 26 that is part of a transition duct 27 for guiding the hot gas toward the turbine.
  • FIGS 3-5 are schematic views of embodiments of the present invention.
  • the reference number 7 refers to a liner in general and therefore may correspond to the single liner 7 of the can combustor 4 of figure 1 but also to the sequential liner 26 of figure 2 .
  • the reference number 6 refers to a combustion chamber in general and therefore may correspond to the combustion chamber 6 of the can combustor 4 of figure 1 but also to the sequential combustion chamber 23 of figure 2 .
  • Figures 3-5 disclose an annular damper 28 comprising a damper body 29 defining a damping volume 30 that is wrapped outside around the liner 7.
  • the damper body 28 is spaced from the liner 7 in order to form a cooling gap 31 between the damper body 29 and the liner 7.
  • the reference C in figures 3-5 refers to a cooling air, i.e. the compressed air delivered by the compressor in the plenum, passing in the cooling gap 31.
  • a damper neck 32 connects the damping volume 30 with the combustion chamber 6 and acts as a bridge in the cooling gap 31 between the liner 7 and the damper body 29.
  • the gas turbine comprises a supporting structure 35 at a first side coupled with the inner surface of the outer casing 17 and at a second side coupled to the damper body 29, preferably the outer wall of the damper body 29.
  • This supporting structure 35 is configured to maintain in position the damper body 29 because according the main aspect of the invention the damper body 29 is not mechanically coupled with the liner 7.
  • the damper neck 32 is mechanically coupled with the liner 7, for instance by welding, and mechanically decoupled from the damper body 29 or the damper neck 32 is mechanically coupled (or integral) with the damper body 29 and mechanically decoupled from the liner 7.
  • the purge air inlet 34 is realized in form of a concentric gap present between the damper neck 32 and the damper body 29, in particular between the damper neck 32 and the hole of the damper body 29 configured for receiving the damper neck 32.
  • part of the cooling air C passing through the cooling gap 31 enters the damping volume 30 acting as purge air flow P.
  • This embodiment may also comprises a second purge air inlet 33 on the outer wall of the damper body and represented in figure 3 in dotted line.
  • the purge air inlet 33 is located only on the outer wall of the damper body 29.
  • a concentric gap 36 is present between the damper neck 32 and the liner 7, in particular between the damper neck 32 and the hole of the liner 7 configured for receiving the damper neck 32.
  • part of the cooling air C passing through the cooling gap 31 enters the combustion chamber 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
EP17201933.3A 2017-11-15 2017-11-15 Turbine à gaz comprenant une chambre de combustion tubulaire munie d'un amortisseur Withdrawn EP3486566A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17201933.3A EP3486566A1 (fr) 2017-11-15 2017-11-15 Turbine à gaz comprenant une chambre de combustion tubulaire munie d'un amortisseur

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17201933.3A EP3486566A1 (fr) 2017-11-15 2017-11-15 Turbine à gaz comprenant une chambre de combustion tubulaire munie d'un amortisseur

Publications (1)

Publication Number Publication Date
EP3486566A1 true EP3486566A1 (fr) 2019-05-22

Family

ID=60327235

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17201933.3A Withdrawn EP3486566A1 (fr) 2017-11-15 2017-11-15 Turbine à gaz comprenant une chambre de combustion tubulaire munie d'un amortisseur

Country Status (1)

Country Link
EP (1) EP3486566A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3832090A1 (fr) * 2019-12-04 2021-06-09 Ansaldo Energia Switzerland AG Ensemble de turbine à gaz pour des applications de centrale électrique avec du gaz combustible préchauffé et procédé de fonctionnement de cet ensemble de turbine à gaz
EP3974723A1 (fr) * 2020-09-23 2022-03-30 Ansaldo Energia Switzerland AG Ensemble turbine à gaz pour centrale électrique comprenant un dispositif d'amortissement à large bande compact
CN115507387A (zh) * 2021-06-07 2022-12-23 通用电气公司 用于燃气涡轮发动机的燃烧器
CN115507384A (zh) * 2021-06-07 2022-12-23 通用电气公司 用于燃气涡轮发动机的燃烧器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1669670A1 (fr) * 2004-12-11 2006-06-14 ROLLS-ROYCE plc Chambre de combustion d'un moteur à turbine à gaz
US8490744B2 (en) 2009-02-27 2013-07-23 Mitsubishi Heavy Industries, Ltd. Combustor and gas turbine having the same
US20160003162A1 (en) * 2013-02-28 2016-01-07 Siemens Aktiengesellschaft Damping device for a gas turbine, gas turbine and method for damping thermoacoustic oscillations
EP3029377A1 (fr) * 2014-12-03 2016-06-08 Alstom Technology Ltd Amortisseur pour une turbine à gaz
US20160215984A1 (en) * 2015-01-28 2016-07-28 General Electric Technology Gmbh Sequential combustor arrangement with a mixer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1669670A1 (fr) * 2004-12-11 2006-06-14 ROLLS-ROYCE plc Chambre de combustion d'un moteur à turbine à gaz
US8490744B2 (en) 2009-02-27 2013-07-23 Mitsubishi Heavy Industries, Ltd. Combustor and gas turbine having the same
US20160003162A1 (en) * 2013-02-28 2016-01-07 Siemens Aktiengesellschaft Damping device for a gas turbine, gas turbine and method for damping thermoacoustic oscillations
EP3029377A1 (fr) * 2014-12-03 2016-06-08 Alstom Technology Ltd Amortisseur pour une turbine à gaz
US20160215984A1 (en) * 2015-01-28 2016-07-28 General Electric Technology Gmbh Sequential combustor arrangement with a mixer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3832090A1 (fr) * 2019-12-04 2021-06-09 Ansaldo Energia Switzerland AG Ensemble de turbine à gaz pour des applications de centrale électrique avec du gaz combustible préchauffé et procédé de fonctionnement de cet ensemble de turbine à gaz
EP3974723A1 (fr) * 2020-09-23 2022-03-30 Ansaldo Energia Switzerland AG Ensemble turbine à gaz pour centrale électrique comprenant un dispositif d'amortissement à large bande compact
CN115507387A (zh) * 2021-06-07 2022-12-23 通用电气公司 用于燃气涡轮发动机的燃烧器
CN115507384A (zh) * 2021-06-07 2022-12-23 通用电气公司 用于燃气涡轮发动机的燃烧器

Similar Documents

Publication Publication Date Title
EP3486566A1 (fr) Turbine à gaz comprenant une chambre de combustion tubulaire munie d'un amortisseur
US8429919B2 (en) Expansion hula seals
JP5674336B2 (ja) 燃焼器缶流れ調整装置
JP7109884B2 (ja) ガスタービンの流れスリーブの取り付け
EP3051206B1 (fr) Agencement de combustion séquentielle d'une turbine à gaz avec un mélangeur et un amortisseur
CN109196203B (zh) 用于燃气涡轮发动机的燃料输送系统
CN106762158B (zh) 用于操作燃气涡轮的同时维持排放标准的系统和方法
MY145017A (en) Fast start-up combined cycle power plant
US9989254B2 (en) Combustor leakage control system
AU2019271950B2 (en) Fuel injector assembly for a heat engine
KR20210148971A (ko) 연소 라이너 냉각
US10161414B2 (en) High compressor exit guide vane assembly to pre-diffuser junction
US8631654B2 (en) Burner system and method for damping such a burner system
EP3412972A1 (fr) Turbine à gaz comprenant une pluralité de chambres de combustion tubulaires
US20150377126A1 (en) Combined Gas Turbine Auxiliary Systems
EP3486567B1 (fr) Chambre de combustion tubulaire pour une turbine à gaz et turbine à gaz comportant une telle chambre de combustion tubulaire
JP2018520289A (ja) 機械駆動用途における超低NOx排出ガスタービンエンジン
US20160010566A1 (en) Method for operating a gas turbine below its rated power
EP3974723B1 (fr) Turbine à gaz pour centrale électrique comprenant un dispositif d'amortissement
US11371699B2 (en) Integrated front panel for a burner
EP3933268A1 (fr) Trajet d'écoulement d'air de chambre de combustion
EP3505826A1 (fr) Brûleur pour une centrale électrique à turbine à gaz, chambre de combustion d'une centrale électrique à turbine à gaz avec un tel brûleur et centrale électrique à turbine à gaz avec une telle chambre de combustion
EP3505725B1 (fr) Chambre de combustion tubulaire pour une turbine à gaz et turbine à gaz comportant une telle chambre de combustion tubulaire
EP2896793A1 (fr) Procédé de fonctionnement d'un ensemble de turbine à gaz et ledit ensemble
US11230974B2 (en) Variable frequency Helmholtz dampers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20191123