EP3486494B1 - Radialgebläsegehäuse und radialgebläse - Google Patents

Radialgebläsegehäuse und radialgebläse Download PDF

Info

Publication number
EP3486494B1
EP3486494B1 EP18190075.4A EP18190075A EP3486494B1 EP 3486494 B1 EP3486494 B1 EP 3486494B1 EP 18190075 A EP18190075 A EP 18190075A EP 3486494 B1 EP3486494 B1 EP 3486494B1
Authority
EP
European Patent Office
Prior art keywords
centrifugal fan
fan housing
pressure compensation
section
spiral section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18190075.4A
Other languages
English (en)
French (fr)
Other versions
EP3486494A1 (de
Inventor
Daniel Gebert
Jens Müller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebm Papst Mulfingen GmbH and Co KG
Original Assignee
Ebm Papst Mulfingen GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebm Papst Mulfingen GmbH and Co KG filed Critical Ebm Papst Mulfingen GmbH and Co KG
Publication of EP3486494A1 publication Critical patent/EP3486494A1/de
Application granted granted Critical
Publication of EP3486494B1 publication Critical patent/EP3486494B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • F04D29/424Double entry casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • F04D17/162Double suction pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows
    • F04D25/166Combinations of two or more pumps ; Producing two or more separate gas flows using fans

Definitions

  • the invention relates to a radial fan housing and a radial fan with such a radial fan housing, in particular for use in extractor hoods.
  • Radial fans are known in various designs from the prior art.
  • double-flow radial fans with suction openings on two axially opposite sides their radial fan housings, are often used due to the limited space available have two housing parts for receiving a fan wheel.
  • the two fan wheels generate two air currents in the housing parts.
  • the two housing parts are brought together in the blow-out section of the radial blower, so that the two air streams are blown out together into the exhaust pipe via a single blow-out opening.
  • the inner diameter of the exhaust pipe is standardized in many countries and is usually 150mm.
  • the blow-out opening of the radial fan is designed to be correspondingly large.
  • the parallel operation of the two fan wheels with a single drive motor is realized in the prior art, for example, by an engine lock.
  • the air characteristics generated (efficiency, maximum pressure) of the individual impellers differ only slightly.
  • Another possibility for realizing the parallel operation of the fan wheels can be done, for example, by a drive motor which is arranged between the fan wheels.
  • the two individual impellers In parallel, i.e. when the wheels are connected, the situation changes significantly.
  • the two individual impellers must each reach the same pressure in parallel operation. This is also possible up to a certain pressure and volume flow, but subsequently both the efficiency and the pressure drop significantly.
  • the invention is therefore based on the object of providing a solution for radial fans with a plurality of impellers operated in parallel, in which the efficiency achieved is improved over the course of the volume flow conveyed, in particular with volume flows below the maximum efficiency of the radial fan.
  • a radial fan housing of a radial fan with a first housing part for receiving a first radial impeller and an axially directly adjacent second housing part for receiving a second radial impeller is proposed.
  • the first and the second housing part have flow spaces which run separately in a spiral spiral section of the radial fan housing and which open into one another in a blow-out section of the radial fan housing which directly adjoins the spiral section in the circumferential direction.
  • the first housing part and the second housing part are flow-connected in the spiral section via at least one pressure equalization opening to ensure pressure equalization between the housing parts.
  • the flow spaces in the spiral spiral section of the radial fan housing each form the pressure space of the individual impellers, the respective flow spaces increasing in the circumferential direction due to the spiral shape in the direction of the blow-out opening.
  • the spiral shape can extend over the entire spiral section.
  • the pressure chambers run in sections in the circumferential direction, in part with a constant, in part with a spirally increasing flow cross-sectional area.
  • the at least one pressure equalization opening in the spiral section of the radial fan housing enables pressure equalization between the Housing parts even before the individual flows of the respective impellers are brought together in the blow-out section. This results in the possibility, for example, of an impact on the ratio of the pressure difference to the volume difference (dp / dV) of one impeller that occurs due to the fluidic connection with the flow space of the other impeller, and to prevent a pressure drop and drop in efficiency at a certain volume flow .
  • a plurality of pressure equalization openings spaced apart from one another, are provided in the spiral section thereof, viewed in the circumferential direction.
  • the pressure equalization is distributed over several places, so that fluctuations occurring in the circumferential direction in the individual housing parts can be compensated for repeatedly.
  • the flow cross-sectional area of each individual pressure equalization opening can be reduced and the risk of noise formation can thus be reduced.
  • An embodiment is particularly favorable in which a plurality of pressure equalization openings are provided in the spiral section which are uniform in the circumferential direction, i.e. are arranged in the circumferential direction at an identical distance from each other.
  • the radial blower housing is characterized in that the pressure compensation openings each have an identical, in particular round, opening cross-sectional area.
  • the pressure compensation openings can be designed as bores or channels. This favors an inexpensive introduction into or attachment to the housing parts. With an identical opening cross-sectional area of the pressure compensation openings, for example in a solution with bores, the same tool can always be used economically advantageously.
  • the blow-out section is also designed in a spiral shape and forms a single blow-out opening of the radial fan housing.
  • the spiral section of the radial fan housing viewed in the circumferential direction, has an angular range of up to 280 ° and the blow-off section has an angular range of at least 80 °.
  • the blow-out section is designed to be as large as possible in order to ensure the longest possible flow path in the blow-out section of the individual flows generated by the two radial impellers.
  • the size of the pressure equalization openings also has a significant impact on the efficiency of the radial fan.
  • the one or the plurality of pressure equalization openings have a total opening cross-sectional area that determines at least 2.7% of the cross-sectional area of the blow-out opening.
  • the total opening cross-sectional area is defined as the sum of the opening cross-sectional area of all pressure equalization openings.
  • each subsection comprises at least one pressure compensation opening which forms at least 10% of the total opening cross-sectional area.
  • each subsection comprises at least one pressure compensation opening, each of which has identical opening cross-sectional areas.
  • an embodiment variant which is advantageous in terms of efficiency provides that the two subsections adjoining the blow-out section in the circumferential direction each comprise at least one pressure compensation opening, which together form at least 30% of the total opening cross-sectional area.
  • the invention also comprises a radial fan with a radial fan housing as described above in any of the variants described.
  • a radial impeller is arranged in each of the first and second housing parts, which can be driven together and are designed to generate separate air volume flows in the spiral section in the first and second housing parts in the spiral section. The separated air flows are brought together in the blow-out section and blown out of the blow-out opening. In the spiral section, the air volume flows between the first and the second housing part are flow-connected via the at least one pressure compensation opening for pressure compensation.
  • the fluidic effect is advantageous in the case of a radial fan in which the radial impellers have impeller blades which are curved forwards.
  • the radial impellers are arranged in parallel and can each be driven by the motor at an identical speed.
  • FIG 1 a double-flow radial blower 50 with a radial blower housing 1 is shown in perspective view.
  • Figure 2 shows the same radial fan 50 in a sectional view.
  • the radial fan housing 1 comprises a first housing part 2 and an axially separated second housing part 4, in each of which a radial impeller 3, 5 is accommodated with forward-curved impeller blades.
  • the radial impellers 3, 5 are simultaneously driven in parallel by the motor 12.
  • Both housing parts 2, 4 each have an axial suction opening 22, 23, through which the radial fan 50 sucks air axially.
  • the first and second housing parts 2, 4 of the radial fan housing 1 form a spiral-shaped spiral section 6, within which the separate flow spaces 8, 9 inside the housing parts 2, 4 expand radially in the circumferential direction.
  • the radial fan housing 1 comprises the blow-out section 7, in which the flow spaces 8, 9 open into one another into a single enlarged blow-out space which extends as far as the blow-out opening 11.
  • the blow-out section 7 of the radial fan housing 1 is also spiral-shaped and increases the pressure space in the blow-out section 7 in the circumferential direction even more than in the spiral section 6.
  • the sectional view according to Figure 2 runs through the spiral section 6 and shows, by way of example, two pressure compensation openings 10 in the spiral section 6, which connect the first housing part 2 and the second housing part 4 in terms of flow technology for pressure compensation and are designed as channels. After the two housing parts 2, 4 are at least locally axially spaced from one another, the channels bridge the axial distance and ensure pressure equalization between the separate housing parts 2, 4 in the spiral section 6.
  • Fig. 3 is the double-flow radial fan 50 from Figure 1 shown as a schematic side view, in which the circumferential course of the spiral section 6 and the adjoining blow-out section 7 with the blow-out opening 11 with diameter D can be seen.
  • the spiral section 6 is divided in the circumferential direction into four sub-sections 41, 42, 43, 44 of equal size, which together take up an angular range ⁇ of 280 °, the blow-out section 7 accordingly determines an angular range ⁇ of 80 °.
  • Fig. 4 shows a schematic side view of a double-flow radial fan in an embodiment according to Figure 1 , however, the two housing parts 2, 4 axially abut one another and six pressure equalization openings 10 in the form of round bores are evenly distributed in the circumferential direction over the spiral section 6.
  • each subsection 41, 42, 43, 44 comprises at least one pressure equalization opening 10. After all pressure equalization openings 10 in Figure 4 are of identical size, each of the pressure equalization openings 10 forms approximately 16.7% of the total opening cross-sectional area.
  • Figure 5 is a variant according to execution Figure 4 , in which the six pressure equalization openings 10 are provided only in the three sub-sections 41, 42, 43 which are closer to the blow-out section 7 when viewed in the direction of flow.
  • the spiral section 6 is circumferential, as in FIG Figure 3 shown, divided into four sub-sections 41, 42, 43, 44 of equal size, however, the pressure equalization openings 10 are then provided in particular in the two sub-sections 41, 42 adjoining the blow-out section 7 in the circumferential direction and are designed such that they together form at least 30% of the total opening cross-sectional area form.
  • FIG 6 is a diagram with characteristic curves for the pressure curve psf [Pa] and the efficiency nse [%] at different volume flows qv [m 3 / h] of the radial fan 50 measured in accordance with an identical test setup Fig. 1 and the same radial blower without a pressure compensation opening in the spiral section, the solid characteristics in each case according to the radial blower 50 Fig. 1 and the dashed curves each characterize the radial fan without a pressure compensation opening in the spiral section.
  • the advantageous effect of the pressure equalization between the housing parts in the spiral section on the efficiency can be clearly seen especially in the particularly important area with a volume flow of up to approx. 500 m 3 / h.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

  • Die Erfindung betrifft ein Radialgebläsegehäuse sowie ein Radialgebläse mit einem derartigen Radialgebläsegehäuse, insbesondere zur Verwendung bei Dunstabzugshauben.
  • Radialgebläse sind in verschiedenen Ausführungen aus dem Stand der Technik bekannt. Um eine breitflächige Ansaugung bei Dunstabzugshauben mit hohem Volumenstrom zu realisieren, kommen aufgrund der beengten Platzverhältnisse häufig doppelflutige Radialgebläse mit Ansaugöffnungen an zwei axial gegenüberliegenden Seiten zum Einsatz, deren Radialgebläsegehäuse zwei Gehäuseteile zur Aufnahme jeweils eines Lüfterrades aufweisen. Die beiden Lüfterräder erzeugen in den Gehäuseteilen zwei Luftströme. Die zwei Gehäuseteile werden im Ausblasabschnitt des Radialgebläses zusammengeführt, so dass die beiden Luftströme miteinander über eine einzige Ausblasöffnung in das Abzugsrohr ausgeblasen werden. Der Innendurchmesser des Abzugsrohrs ist in vielen Ländern standardisiert und liegt zumeist bei 150mm. Die Ausblasöffnung des Radialgebläses wird entsprechend groß ausgebildet.
  • Der Parallelbetrieb der beiden Lüfterräder mit einem einzigen Antriebsmotor wird im Stand der Technik beispielsweise über eine Motorversperrung realisiert. Die dabei erzeugten Luftkennlinien (Wirkungsgrad, Maximaldruck) der einzelnen Laufräder unterscheiden sich unwesentlich. Eine andere Möglichkeit zur Realisierung des Parallelbetriebes der Lüfterräder kann beispielsweise durch einen Antriebsmotor erfolgen, der zwischen den Lüfterrädern angeordnet ist. In Parallelschaltung, d.h. im zusammengeschaltenen Zustand der Laufräder, verändert sich die Situation jedoch deutlich. Die beiden einzelnen Laufräder müssen im Parallelbetrieb jeweils den gleichen Druck erreichen. Dies gelingt bis zu einem bestimmten Druck und Volumenstrom auch, jedoch sinken anschließend sowohl der Wirkungsgrad als auch der Druck deutlich ab. Grund hierfür ist, dass sich das Verhältnis des Druckunterschieds zum Volumenunterschied (dp/dV) eines Laufrads aus dem negativen Bereich in den positiven Bereich verändert, wodurch der jeweilige Arbeitspunkt nicht mehr stationär, sondern unerwünscht instationär ist. Dies führt zum strömungstechnischen "Pumpen" und beeinflusst sowohl den Wirkungsgrad als auch den durch das Radialgebläse erzeugten Druck negativ.
  • Druckschriftlicher Stand der Technikaus dem vorliegenden technischen Gebiet ist offenbart in den Dokumenten US 2013/101451 A1 , US 2 710 573 A , US 3 469 772 A und JP 2001 027199 A .
  • Der Erfindung liegt deshalb die Aufgabe zugrunde, eine Lösung für Radialgebläse mit mehreren parallel betriebenen Laufrädern bereitzustellen, bei welcher der erreichte Wirkungsgrad über den Verlauf des geförderten Volumenstroms, insbesondere bei Volumenströmen unterhalb des Wirkungsgradmaximums des Radialgebläses verbessert ist.
  • Diese Aufgabe wird durch die Merkmalskombination gemäß Anspruch 1 gelöst.
  • Erfindungsgemäß wird ein Radialgebläsegehäuse eines Radialgebläses mit einem ersten Gehäuseteil zur Aufnahme eines ersten Radiallaufrads und einem axial unmittelbar daran angrenzenden zweiten Gehäuseteil zur Aufnahme eines zweiten Radiallaufrads vorgeschlagen. Der erste und der zweite Gehäuseteil weisen in einem spiralförmigen Spiralabschnitt des Radialgebläsegehäuses getrennt verlaufende Strömungsräume auf, die in einem sich in Umfangsrichtung gesehen an den Spiralabschnitt unmittelbar anschließenden Ausblasabschnitt des Radialgebläsegehäuses ineinander münden. Der erste Gehäuseteil und der zweite Gehäuseteil sind im Spiralabschnitt über mindestens eine Druckausgleichsöffnung zur Gewährleistung eines Druckausgleichs zwischen den Gehäuseteilen strömungsverbunden.
  • Die Strömungsräume im spiralförmigen Spiralabschnitt des Radialgebläsegehäuses bilden jeweils den Druckraum der einzelnen Laufräder, wobei sich die jeweiligen Strömungsräume aufgrund der Spiralform in Umfangsrichtung in Richtung der Ausblasöffnung vergrößern. Die Spiralform kann sich in einer Ausführungsvariante über den gesamten Spiralabschnitt erstrecken. In einer alternativen Ausführung verlaufen die Druckräume in Umfangsrichtung abschnittsweise teils mit konstanter, teils mit spiralförmig zunehmender Strömungsquerschnittsfläche.
  • Die mindestens eine Druckausgleichsöffnung im Spiralabschnitt des Radialgebläsegehäuses ermöglicht den Druckausgleich zwischen den Gehäuseteilen bereits bevor die einzelnen Strömungen der jeweiligen Laufräder im Ausblasabschnitt zusammengeführt werden. Daraus ergibt sich die Möglichkeit, beispielsweise durch eine Motorversperrung auftretende Auswirkungen auf das Verhältnis des Druckunterschieds zum Volumenunterschied (dp/dV) des einen Laufrads, durch die strömungstechnische Verbindung mit dem Strömungsraum des anderen Laufrads auszugleichen und einen Druckabfall sowie Wirkungsgradabfall bei einem bestimmten Volumenstrom zu verhindern.
  • In einer vorteilhaften Ausführung des Radialgebläsegehäuses ist vorgesehen, dass in dessen Spiralabschnitt in Umfangsrichtung gesehen mehrere, voneinander beabstandet angeordnete Druckausgleichsöffnungen vorgesehen sind. Der Druckausgleich verteilt sich dabei auf mehrere Stellen, so dass in Umfangsrichtung auftretende Schwankungen in den einzelnen Gehäuseteilen wiederholt ausgeglichen werden können. Zudem kann die Strömungsquerschnittsfläche jeder einzelnen Druckausgleichsöffnung reduziert und mithin die Gefahr von Geräuschbildung verringert werden. Dabei ist eine Ausführung besonders günstig, bei der im Spiralabschnitt eine Vielzahl von Druckausgleichsöffnungen vorgesehen ist, die in Umfangsrichtung gleichmäßig, d.h. in Umfangsrichtung in identischem Abstand zueinander verteilt angeordnet sind.
  • Als weitere vorteilhafte Ausgestaltung ist das Radialgebläsegehäuse dadurch gekennzeichnet, dass die Druckausgleichsöffnungen jeweils eine identische, insbesondere runde Öffnungsquerschnittsfläche aufweisen. Als Ausführungsvarianten können die Druckausgleichsöffnungen als Bohrungen oder Kanäle ausgebildet sein. Dies begünstigt eine kostengünstige Einbringung in oder Anbringung an die Gehäuseteile. Bei identischer Öffnungsquerschnittsfläche der Druckausgleichsöffnungen, beispielsweise bei einer Lösung mit Bohrungen kann ökonomisch vorteilhaft stets dasselbe Werkzeug eingesetzt werden.
  • In einer erfindungsgemäßen Ausführung des Radialgebläsegehäuses ist vorgesehen, dass neben dem Spiralabschnitt auch der Ausblasabschnitt spiralförmig ausgebildet ist und eine einzige Ausblasöffnung des Radialgebläsegehäuses bildet. Als strömungstechnisch vorteilhafte Größenverteilung wurde bestimmt, dass der Spiralabschnitt des Radialgebläsegehäuses in Umfangsrichtung gesehen einen Winkelbereich von bis zu 280° und der Ausblasabschnitt einen Winkelbereich von mindestens 80° einnimmt. Erfindungsgemäß wird der Ausblasabschnitt so groß wie möglich gestaltet, um einen möglichst langen gemeinsamen Strömungsweg im Ausblasabschnitt der von den beiden Radiallaufrädern erzeugten Einzelströmungen zu gewährleisten.
  • Auch die Größe der Druckausgleichsöffnungen beeinflusst die Auswirkung auf den Wirkungsgrad des Radialgebläses erheblich. In einer günstigen Ausführung der Erfindung weisen die eine oder die Vielzahl der Druckausgleichsöffnungen eine Gesamtöffnungsquerschnittsfläche auf, die mindestens 2,7% der Querschnittsfläche der Ausblasöffnung bestimmt. Die Gesamtöffnungsquerschnittsfläche ist vorliegend definiert als die Summe der Öffnungsquerschnittsfläche aller Druckausgleichsöffnungen.
  • Auch die Position der Anordnung der Druckausgleichsöffnungen im Spiralabschnitt beeinflusst die Wirkung des Druckausgleichs. Dabei wurde als vorteilhafte Ausgestaltung herausgefunden, dass, wenn der Spiralabschnitt in Umfangsrichtung in vier gleich große Unterabschnitte unterteilt wird, jeder Unterabschnitt mindestens eine Druckausgleichsöffnung umfasst, die mindestens 10% der Gesamtöffnungsquerschnittsfläche bildet.
  • Als strömungstechnisch günstige Weiterbildung ist vorgesehen, dass bei einer Unterteilung des Spiralabschnitts in vier gleich große Unterabschnitte jeder Unterabschnitt mindestens eine Druckausgleichsöffnung umfasst, die jeweils identische Öffnungsquerschnittsflächen aufweisen.
  • In dieser Betrachtung des in Umfangsrichtung in vier gleich große Unterabschnitte unterteilten Spiralabschnitts sieht eine bezüglich des Wirkungsgrads vorteilhafte Ausführungsvariante vor, dass die beiden sich in Umfangsrichtung an den Ausblasabschnitt angrenzenden Unterabschnitte jeweils mindestens eine Druckausgleichsöffnung umfassen, die zusammen mindestens 30% der Gesamtöffnungsquerschnittsfläche bilden.
  • Die Erfindung umfasst zudem ein Radialgebläse mit einem vorstehend beschriebenen Radialgebläsegehäuse in einer beliebigen der beschriebenen Varianten. In dem ersten und dem zweiten Gehäuseteil ist je ein Radiallaufrad angeordnet, die zusammen über einen einzelnen axial angrenzend zu den Radiallaufrädern angeordneten Motor antreibbar und ausgebildet sind, in dem ersten und dem zweiten Gehäuseteil im Spiralabschnitt getrennte Luftvolumenströme zu erzeugen. Die getrennten Luftströme werden im Ausblasabschnitt zusammengeführt und aus der Ausblasöffnung ausgeblasen. Im Spiralabschnitt sind die Luftvolumenströme zwischen dem ersten und dem zweiten Gehäuseteil über die mindestens eine Druckausgleichsöffnung zum Druckausgleich strömungsverbunden. Die sich daraus ergebenden Vorteile sind vorstehend für das Radialgebläsegehäuse beschrieben und gelten entsprechend für das Radialgebläse, das ein derartiges Radialgebläsegehäuse verwendet.
  • Vorteilhaft ist die strömungstechnische Wirkung bei einem Radialgebläse, bei dem die Radiallaufräder vorwärts gekrümmte Laufradschaufeln aufweisen.
  • Zudem ist bei dem Radialgebläse in einer Ausführung vorgesehen, dass die Radiallaufräder parallelgeschaltet angeordnet und über den Motor jeweils mit identischer Drehzahl antreibbar sind.
  • Andere vorteilhafte Weiterbildungen sind in den Unteransprüchen gekennzeichnet bzw. werden nachstehend zusammen mit der Beschreibung der bevorzugten Ausführung der Erfindung anhand der Figuren näher dargestellt. Es zeigen:
  • Fig. 1
    eine perspektivische Ansicht eines doppelflutigen Radialgebläses;
    Fig. 2
    eine Schnittansicht des doppelflutigen Radialgebläses aus Fig. 1,
    Fig. 3
    eine schematische Seitenansicht eines doppelflutigen Radialgebläses,
    Fig. 4
    eine schematische Seitenansicht eines doppelflutigen Radialgebläses als Ausführungsvariante,
    Fig. 5
    eine schematische Seitenansicht eines doppelflutigen Radialgebläses als weitere Ausführungsvariante,
    Fig. 6
    ein Diagramm zur Darstellung des verbesserten Wirkungsgrads.
  • In Figur 1 ist ein doppelflutiges Radialgebläse 50 mit einem Radialgebläsegehäuse 1 in perspektivischer Ansicht gezeigt. Figur 2 zeigt dasselbe Radialgebläse 50 in einer Schnittansicht. Das Radialgebläsegehäuse 1 umfasst einen ersten Gehäuseteil 2 sowie einen axial getrennten zweiten Gehäuseteil 4, in denen jeweils ein Radiallaufrad 3, 5 mit vorwärtsgekrümmten Laufradschaufeln aufgenommen ist. Die Radiallaufräder 3, 5 werden gleichzeitig parallel über den Motor 12 angetrieben. Beide Gehäuseteile 2, 4 weisen jeweils eine axiale Ansaugöffnung 22, 23 auf, über die das Radialgebläse 50 axial Luft ansaugt.
  • Die ersten und zweiten Gehäusteile 2, 4 des Radialgebläsegehäuses 1 bilden einen spiralförmigen Spiralabschnitt 6, innerhalb dessen sich die getrennt verlaufenden Strömungsräume 8, 9 im Inneren der Gehäuseteile 2, 4 in Umfangsrichtung radial erweitern. In Umfangsrichtung an den Spiralabschnitt 6 unmittelbar angrenzend umfasst das Radialgebläsegehäuse 1 den Ausblasabschnitt 7, in dem die Strömungsräume 8, 9 ineinander in einen einzigen vergrößerten Ausblasraum münden, der sich bis zur Ausblasöffnung 11 erstreckt. Der Ausblasabschnitt 7 des Radialgebläsegehäuses 1 ist ebenfalls spiralförmig und vergrößert den Druckraum im Ausblasabschnitt 7 in Umfangsrichtung gesehen sogar noch stärker als im Spiralabschnitt 6.
  • Die Schnittansicht gemäß Figur 2 verläuft durch den Spiralabschnitt 6 und zeigt beispielhaft zwei Druckausgleichsöffnungen 10 im Spiralabschnitt 6, die den ersten Gehäuseteil 2 und den zweiten Gehäuseteil 4 strömungstechnisch zum Druckausgleich verbinden und als Kanäle ausgebildet sind. Nachdem die beiden Gehäusteile 2, 4 zumindest lokal axial voneinander beabstandet sind, überbrücken die Kanäle den axialen Abstand und gewährleisten den Druckausgleich zwischen den getrennten Gehäuseteilen 2, 4 im Spiralabschnitt 6.
  • In Fig. 3 ist das doppelflutige Radialgebläse 50 aus Figur 1 als schematische Seitenansicht dargestellt, in der der umfängliche Verlauf des Spiralabschnitts 6 und des sich daran anschließenden Ausblasabschnitts 7 mit der Ausblasöffnung 11 mit Durchmesser D erkennbar sind. Der Spiralabschnitt 6 ist in Umfangsrichtung in vier gleich große Unterabschnitte 41, 42, 43, 44 unterteilt, die zusammen gesehen einen Winkelbereich α von 280° einnehmen, der Ausblasabschnitt 7 bestimmt demzufolge einen Winkelbereich β von 80°.
  • Fig. 4 zeigt eine schematische Seitenansicht eines doppelflutigen Radialgebläses in einer Ausführung gemäß Figur 1, wobei jedoch die beiden Gehäuseteile 2, 4 axial aneinander anliegen und sechs Druckausgleichsöffnungen 10 in Form von runden Bohrungen gleichmäßig in Umfangsrichtung über den Spiralabschnitt 6 verteilt vorgesehen sind. In Anwendung der Aufteilung gemäß Figur 3 auf Figur 4, umfasst jeder Unterabschnitt 41, 42, 43, 44 zumindest eine Druckausgleichsöffnung 10. Nachdem alle Druckausgleichsöffnungen 10 in Figur 4 identisch groß ausgebildet sind, bildet jede der Druckausgleichsöffnungen 10 ca. 16,7% der Gesamtöffnungsquerschnittsfläche. Die Druckausgleichsöffnungen 10 sind über den Umfang gleichmäßig mit jeweils identischen Abständen zueinander verteilt vorgesehen, wobei die in Umfangsrichtung gesehen erste Druckausgleichsöffnung 10 bei α=0° und die in Umfangsrichtung gesehen letzte Druckausgleichsöffnung 10 bei α=270° angeordnet ist.
  • Figur 5 ist eine Variante zur Ausführung gemäß Figur 4, bei der die sechs Druckausgleichsöffnungen 10 nur in den in Strömungsrichtung gesehen näher an dem Ausblasabschnitt 7 liegenden drei Unterabschnitten 41, 42, 43 vorgesehen sind.
  • In einer nicht gezeigten weiteren alternativen Ausführung wird der Spiralabschnitt 6 in Umfangsrichtung, wie in Figur 3 gezeigt, in vier gleich große Unterabschnitte 41, 42, 43, 44 unterteilt, jedoch sind die Druckausgleichsöffnungen 10 dann insbesondere in den beiden sich in Umfangsrichtung an den Ausblasabschnitt 7 angrenzenden Unterabschnitten 41, 42 vorgesehen und ausgebildet, dass sie zusammen mindestens 30% der Gesamtöffnungsquerschnittsfläche bilden.
  • Für alle Ausführungsvarianten gilt, dass die Druckausgleichsöffnungen 10 eine Gesamtöffnungsquerschnittsfläche aufweisen, die mindestens 2,7% der Querschnittsfläche der Ausblasöffnung 11 bestimmt. Bei einem üblichen Durchmesser D der Ausblasöffnung von D=150mm und einer Bereitstellung von sechs runden Druckausgleichsöffnungen 10, bedeutet dies einen Mindestdurchmesser der Druckausgleichsöffnungen 10 von 10mm.
  • In Figur 6 ist ein Diagramm mit bei identischem Versuchsaufbau gemessenen Kennlinien zum Druckverlauf psf [Pa] und dem Wirkungsgrad nse [%] bei unterschiedlichen Volumenströmen qv [m3/h] des Radialgebläses 50 gemäß Fig. 1 und desselben Radialgebläses ohne Druckausgleichsöffnung im Spiralabschnitt, wobei die durchgezogenen Kennlinien jeweils das Radialgebläse 50 gemäß Fig. 1 und die gestrichelten Kennlinien jeweils das Radialgebläse ohne Druckausgleichsöffnung im Spiralabschnitt kennzeichnen. Die vorteilhafte Wirkung des Druckausgleichs zwischen den Gehäuseteilen im Spiralabschnitt auf den Wirkungsgrad ist vor allem in dem besonders wichtigen Bereich bei einem Volumenstrom bis ca. 500 m3/h deutlich zu erkennen.

Claims (14)

  1. Radialgebläsegehäuse (1) eines Radialgebläses (50) mit einem ersten Gehäuseteil (2) zur Aufnahme eines ersten Radiallaufrads (3) und einem axial unmittelbar daran angrenzenden zweiten Gehäuseteil (4) zur Aufnahme eines zweiten Radiallaufrads (5), wobei der erste und der zweite Gehäuseteil (2, 4) in einem Spiralabschnitt (6) des Radialgebläsegehäuses (1) getrennt verlaufende Strömungsräume (8, 9) aufweisen, die in einem sich in Umfangsrichtung gesehen an den Spiralabschnitt (6) unmittelbar anschließenden Ausblasabschnitt (7) des Radialgebläsegehäuses (1) ineinander münden, wobei der erste Gehäuseteil (2) und der zweite Gehäuseteil (4) im Spiralabschnitt (6) über mindestens eine Druckausgleichsöffnung (10) strömungsverbunden sind, wobei der Ausblasabschnitt (7) spiralförmig ausgebildet ist und eine einzige Ausblasöffnung des (11) Radialgebläsegehäuses (1) bildet.
  2. Radialgebläsegehäuse nach Anspruch 1, dadurch gekennzeichnet, dass im Spiralabschnitt (6) des Radialgebläsegehäuses (1) in Umfangsrichtung gesehen mehrere, voneinander beabstandet angeordnete Druckausgleichsöffnungen (10) vorgesehen sind.
  3. Radialgebläsegehäuse nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass der Spiralabschnitt (6) des Radialgebläsegehäuses (1) in Umfangsrichtung gesehen einen Winkelbereich von bis zu 280° und der Ausblasabschnitt (7) einen Winkelbereich von mindestens 80° einnimmt.
  4. Radialgebläsegehäuse nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass im Spiralabschnitt (6) eine Vielzahl von Druckausgleichsöffnungen (10) vorgesehen ist, die in Umfangsrichtung gleichmäßig verteilt angeordnet sind.
  5. Radialgebläsegehäuse nach einem der vorigen Ansprüche 2 - 4, dadurch gekennzeichnet, dass die Druckausgleichsöffnungen (10) jeweils eine identische Öffnungsquerschnittsfläche aufweisen.
  6. Radialgebläsegehäuse nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass die eine oder mehreren Druckausgleichsöffnungen (10) als eine oder mehrere Bohrungen oder Kanäle ausgebildet sind.
  7. Radialgebläsegehäuse nach dem vorigen Anspruch, dadurch gekennzeichnet, dass die eine oder mehreren Druckausgleichsöffnungen (10) jeweils eine runde Querschnittsfläche aufweisen.
  8. Radialgebläsegehäuse nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass die eine oder mehreren Druckausgleichsöffnungen (10) eine Gesamtöffnungsquerschnittsfläche aufweisen, die mindestens 2,7% einer Querschnittsfläche der Ausblasöffnung (11) bestimmt.
  9. Radialgebläsegehäuse nach dem vorigen Anspruch, dadurch gekennzeichnet, dass der Spiralabschnitt (6) in Umfangsrichtung in vier gleich große Unterabschnitte (41, 42, 43, 44) unterteilbar ist, wobei jeder Unterabschnitt (41, 42, 43, 44) mindestens eine Druckausgleichsöffnung (10) umfasst, die mindestens 10% der Gesamtöffnungsquerschnittsfläche bildet.
  10. Radialgebläsegehäuse nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass der Spiralabschnitt (6) in Umfangsrichtung in vier gleich große Unterabschnitte (41, 42, 43, 44) unterteilbar ist, wobei jeder Unterabschnitt (41, 42, 43, 44) mindestens eine Druckausgleichsöffnung (10) umfasst, die jeweils identische Öffnungsquerschnittsflächen aufweisen.
  11. Radialgebläsegehäuse nach dem vorigen Anspruch, dadurch gekennzeichnet, dass der Spiralabschnitt (6) in Umfangsrichtung in vier gleich große Unterabschnitte (41, 42, 43, 44) unterteilbar ist, wobei die beiden sich in Umfangsrichtung an den Ausblasabschnitt (7) angrenzenden Unterabschnitte (41, 42) jeweils mindestens eine Druckausgleichsöffnung (10) umfassen, die zusammen mindestens 30% der Gesamtöffnungsquerschnittsfläche bilden.
  12. Radialgebläse (50) mit einem Radialgebläsegehäuse (1) nach einem der vorigen Ansprüche, wobei je ein Radiallaufrad (3, 5) in dem ersten und dem zweiten Gehäuseteil (2, 4) angeordnet ist, die zusammen über einen einzelnen axial angrenzend zu den Radiallaufrädern (3, 5) angeordneten Motor (12) antreibbar und ausgebildet sind, in dem ersten und dem zweiten Gehäuseteil (2, 4) im Spiralabschnitt (6) getrennte Luftvolumenströme zu erzeugen, die im Ausblasabschnitt (7) zusammengeführt und aus der Ausblasöffnung (11) ausgeblasen werden, wobei die Luftvolumenströme im Spiralabschnitt (6) zwischen dem ersten und dem zweiten Gehäuseteil (2, 4) über die mindestens eine Druckausgleichsöffnung (10) zum Druckausgleich strömungsverbunden sind.
  13. Radialgebläse nach dem vorigen Anspruch, dadurch gekennzeichnet, dass die Radiallaufräder (3, 5) vorwärts gekrümmte Laufradschaufeln aufweisen.
  14. Radialgebläse nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass die Radiallaufräder (3, 5) parallelgeschaltet angeordnet und über den Motor (12) jeweils mit identischer Drehzahl antreibbar sind.
EP18190075.4A 2017-11-15 2018-08-21 Radialgebläsegehäuse und radialgebläse Active EP3486494B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017126912.6A DE102017126912A1 (de) 2017-11-15 2017-11-15 Radialgebläsegehäuse und Radialgebläse

Publications (2)

Publication Number Publication Date
EP3486494A1 EP3486494A1 (de) 2019-05-22
EP3486494B1 true EP3486494B1 (de) 2020-06-17

Family

ID=63350468

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18190075.4A Active EP3486494B1 (de) 2017-11-15 2018-08-21 Radialgebläsegehäuse und radialgebläse

Country Status (3)

Country Link
EP (1) EP3486494B1 (de)
CN (1) CN207999390U (de)
DE (1) DE102017126912A1 (de)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2710573A (en) * 1951-04-30 1955-06-14 Trade Wind Motorfans Inc Air handling apparatus
US3469772A (en) * 1967-07-19 1969-09-30 Donald A Mcdonald Air moving apparatus
US3874191A (en) * 1974-06-12 1975-04-01 Molded Products Company Blower housing
JP2001027199A (ja) * 1999-07-15 2001-01-30 Mitsubishi Heavy Ind Ltd 両吸込多翼送風装置
US9574568B2 (en) * 2011-10-20 2017-02-21 Henkel IP & Holding GmbH Double inlet centrifugal blower with a solid center plate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3486494A1 (de) 2019-05-22
DE102017126912A1 (de) 2019-05-16
CN207999390U (zh) 2018-10-23

Similar Documents

Publication Publication Date Title
DE69203705T2 (de) Stator zur Einführung von Luft in das Innere einer Turbomaschine und Verfahren zum Montieren einer Schaufel dieses Stators.
DE60211061T2 (de) Axialturbine mit einer Stufe in einem Abströmkanal
DE102008011644A1 (de) Gehäusestrukturierung für Axialverdichter im Nabenbereich
WO2005013459A1 (de) Elektrische maschine mit läuferkühlung und entsprechendes kühlungsverfahren
WO2007057292A1 (de) Radialverdichter-laufrad
WO2017093245A1 (de) Lüfterrad für einen axiallüfter
DE102015100215B4 (de) Seitenkanalgebläse für eine Verbrennungskraftmaschine
DE102004023270A1 (de) Axialschraubengebläse
DE102009021620B4 (de) Vakuumpumpe
DE102018128792A1 (de) Kompakter Diagonalventilator mit Nachleiteinrichtung
DE202018106504U1 (de) Kompakter Diagonalventilator mit Nachleiteinrichtung
EP1757814A1 (de) Kreiselverdichter
DE102009021642B4 (de) Vakuumpumpe
CH677009A5 (de)
EP3263838A1 (de) Turbinenschaufel mit innerem kühlkanal
DE102015012259A1 (de) Turbinenrad für eine Turbine eines Abgasturboladers
EP3486494B1 (de) Radialgebläsegehäuse und radialgebläse
DE102010044819A1 (de) Axialturbine und ein Verfahren zum Abführen eines Stroms von einer Axialturbine
DE102013202786A1 (de) Vorrichtung und Verfahren zum Abblasen von Verdichterluft in einem Turbofantriebwerk
DE29715035U1 (de) Reibungsvakuumpumpe
WO2015132077A1 (de) Lüfterrad eines axiallüfters
WO2016184550A1 (de) Radialverdichter und abgasturbolader einer verbrennungskraftmaschine
DE202017106947U1 (de) Radialgebläsegehäuse und Radialgebläse
DE102016004936A1 (de) Elektrische Maschine
EP3577346B1 (de) Turboverdichter mit integrierten strömungskanälen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191028

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTG Intention to grant announced

Effective date: 20200324

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018001687

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1281633

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200918

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200917

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201019

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201017

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018001687

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200821

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

26N No opposition filed

Effective date: 20210318

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200821

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230831

Year of fee payment: 6

Ref country code: CZ

Payment date: 20230804

Year of fee payment: 6

Ref country code: AT

Payment date: 20230818

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230823

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240821

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240819

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240822

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240821

Year of fee payment: 7