EP3473734A1 - Method for treating a steel - Google Patents

Method for treating a steel Download PDF

Info

Publication number
EP3473734A1
EP3473734A1 EP18200468.9A EP18200468A EP3473734A1 EP 3473734 A1 EP3473734 A1 EP 3473734A1 EP 18200468 A EP18200468 A EP 18200468A EP 3473734 A1 EP3473734 A1 EP 3473734A1
Authority
EP
European Patent Office
Prior art keywords
treatment
steel
cryogenic
equal
quenching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP18200468.9A
Other languages
German (de)
French (fr)
Inventor
Valentine Deneux
Nicolas Binot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Landing Systems SAS
Original Assignee
Safran Landing Systems SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Landing Systems SAS filed Critical Safran Landing Systems SAS
Publication of EP3473734A1 publication Critical patent/EP3473734A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/04Hardening by cooling below 0 degrees Celsius
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/28Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for plain shafts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation

Definitions

  • the present invention relates to a method of treating a steel including a cryogenic treatment, the steel may be intended for the constitution of parts of aircraft landing gear.
  • This steel comprising, in percentages by weight, 0.2% to 0.33% of carbon, 4% to 8% of cobalt, 7% to 11% of nickel, 0.8% to 3% of chromium, 0.5% at 2.5% molybdenum, 0.5% to 5.9% tungsten, 0.05% to 0.2% vanadium, and at most 0.02% titanium, the remainder being iron and unavoidable impurities, is - in the aforementioned patent - treated by the following succession of steps without precision on the time separating each of these steps: heat treatment of solution dissolution of the steel, quenching treatment, immersion in the liquid nitrogen and income treatment.
  • Such steel is a material of interest for the constitution of parts of aircraft landing gear, in particular.
  • the invention is remarkable in that the time between the end of the quenching treatment and the start of the cryogenic treatment is limited.
  • the inventors have found, in recent studies, that the residual austenite content could vary rather lightly within a batch of steel parts described above having undergone cryogenic treatment. This variation, however slight, has a significant influence on the dispersion of the mechanical properties within the batch of treated parts.
  • the identification of these slight variations in the residual austenite content has been made possible through the use of specific and sufficiently precise measurement (synchrotron X-ray diffraction and sigmameter). Once the origin of the dispersion of the mechanical properties was identified, the inventors studied the influence of the conditions of reaching the cryogenic treatment temperature and found that the time separating the end of the quench from the start of the cryogenic treatment had a influence on the residual austenite content.
  • the invention advantageously makes it possible to better control the residual austenite content obtained in the treated steel and, consequently, to reduce the dispersion of the mechanical properties.
  • the inventors have found that limiting this time advantageously makes it possible to improve the stress corrosion resistance of the steel.
  • the fact of carrying out the cryogenic treatment in a cooled cryogenic chamber after loading of the steel advantageously makes it possible to make the process compatible with a treatment on an industrial scale.
  • the invention provides a gradual cooling of the cryogenic chamber in which the steel is placed which also participates in controlling the residual austenite content with respect to the case where the steel is directly immersed in a cryogenic bath. This last case results indeed in an undesirable phenomenon of heating which does not make it possible to control correctly the cooling, and which has the consequence of not allowing to control correctly the residual austenite content.
  • the time separating the end of the quenching treatment from the beginning of the cryogenic treatment is less than or equal to 2 hours, preferably 1 hour.
  • the duration of the cryogenic treatment is greater than or equal to 1 hour.
  • the method further comprises a treatment of income of the steel produced after the cryogenic treatment.
  • the treated steel is a part of a landing gear of an aircraft.
  • the piece can for example be an axle, the balance or part of the balance, as the pivot axis of the balance.
  • the steel constitutes a piece having a mass greater than or equal to 10 kg.
  • the mass of the piece may be greater than or equal to 40 kg, for example greater than or equal to 100 kg.
  • the invention is particularly advantageous in the case of the treatment of a workpiece having a significant mass, and therefore a substantial size, insofar as the undesirable phenomenon of calefaction mentioned above occurs regardless of the size of the workpiece but is all the more important as the size of the room is large.
  • the steel is cooled to a quenching temperature of less than or equal to 71 ° C during quenching treatment.
  • the treated steel comprises, in percentages by weight, 0.2% to 0.33% of carbon, 4% to 8% of cobalt, 7% to 11% of nickel, 0.8% to 3% of chromium, 0, 5% to 2.5% molybdenum, 0.5% to 5.9% tungsten, 0.05% to 0.2% vanadium, and at most 0.02% titanium, the balance being iron and unavoidable impurities.
  • the treated steel comprises, in percentages by weight, 0.25% to 0.31% of carbon, 6.8% to 8% of cobalt, 9.3% to 10.5% of nickel, 0.8% to 2.6% chromium, 0.9% to 2.1% molybdenum, 0.7% to 2% tungsten, 0.05% to 0.12% vanadium, and not more than 0.015% % titanium, the rest being iron and unavoidable impurities.
  • the treated steel comprises, in percentages by weight, 0.29% to 0.31% of carbon, 6.8% to 7.2% of cobalt, 9.8% to 10.2% of nickel, 0.8% to 2.6% chromium, 0.9% to 2.1% molybdenum, 0.7% to 1.4% tungsten, 0.05% to 0.12% vanadium, and at most 0.015% titanium, the balance being iron and unavoidable impurities.
  • the process is initiated by a rise ramp (step E1) to a temperature Ts, between 950 ° C and 1100 ° C.
  • the temperature Ts is then maintained in order to carry out the heat treating solution of the steel (step E2).
  • the duration of the E2 solution heat treatment of the steel may be greater than or equal to 1 hour, and for example be between 1 hour and 2 hours.
  • a quenching treatment of the steel (step E3) is then carried out after the dissolution treatment E2.
  • This quenching treatment E3 consists of rapid cooling of the steel by immersion in a cooling fluid such as water or oil.
  • the steel is cooled to a quenching end temperature Ta.
  • This end of quenching temperature Ta is, in the example illustrated, equal to the ambient temperature (20 ° C.), but it is not beyond the scope of the invention if this is different from the ambient temperature, and is for example, higher than room temperature.
  • the quenching end temperature Ta may be less than or equal to 71 ° C., preferably less than or equal to 50 ° C. In particular, the quenching temperature Ta may be between 16 ° C and 71 ° C.
  • the temperature of the steel is equal, at that time, to the end of quenching temperature Ta.
  • a first intermediate step (step E4) during which the steel is maintained in an environment at room temperature Ta can be performed after quenching E3 and before placing the steel in the cryogenic chamber.
  • this first intermediate step E4 is of limited duration so that the time separating the end of the quenching treatment E3 from the beginning of the cryogenic treatment also remains limited, as indicated above.
  • This cooling comprises a temperature ramp down to the treatment temperature Tc which is less than or equal to -73 ° C.
  • the rate of cooling imposed during this ramp down temperature may be greater than or equal to 0.5 ° C / minute, for example greater than or equal to 1.5 ° C / minute, or even greater than or equal to 2.5 ° C / minute, or even greater than or equal to 5 ° C / minute.
  • This cooling rate may furthermore be less than or equal to 4 ° C./minute.
  • This imposed cooling rate can be substantially constant. It is not beyond the scope of the invention if the cooling rate varies during the cooling E5, the cooling E5 can thus comprise a first temperature decrease at a first cooling rate, then a second temperature decrease at a second cooling speed. cooling different from the first, for example less than this.
  • the invention limits the time between the end of the quenching treatment E3, corresponding to the moment when the quenching temperature Ta is reached, from the beginning of the cryogenic treatment E6, corresponding to the moment when the quenching temperature Tc treatment is reached.
  • This duration corresponds to the duration after the end of the hardening E3 during which the steel is at a temperature above the treatment temperature Tc. Limiting this duration makes it possible to limit the residual austenite content.
  • the figure 2 is a comparative test result made on a Ferrium® M54 steel by implementing a quenching temperature Ta of 20 ° C and a treatment temperature Tc of -73 ° C. In this test, the time between the end of the quenching treatment and the start of the cryogenic treatment was varied.
  • the inventors have also carried out a comparative test in order to determine the influence of the time separating the end of the quenching treatment from the beginning of the cryogenic treatment on the resistance to stress corrosion of the steel.
  • the stress corrosion resistance of the steel was measured in the following manner: an initial crack of the specimen is made which is wetted with a solution of NaCl, then a constant stress is imposed on the sample and after 1000h the K1SCC is determined. After 1000h, the specimen is statically broken, which makes it possible to determine its K1SCC sound from the initial crack size and with the value of the load. K1SCC is a parameter known to those skilled in the art quantifying the resistance to stress corrosion.
  • the test carried out has shown that the stress corrosion resistance of the steel is significantly better when the steel has been treated by limiting the time separating the end of the quenching treatment from the beginning of the cryogenic treatment to 2 hours than in the case except invention where this duration is 8 hours.
  • the installation useful for the implementation of the method is known per se.
  • Such an installation comprises a cryogenic chamber connected to a cooling fluid reservoir and a control system configured to control the rate of introduction of the cooling fluid into the chamber, and its evacuation rate to outside of it.
  • the cooling fluid can be introduced inside the chamber in the gaseous state.
  • the cooling fluid can be vaporized outside the enclosure and the cooling fluid in the gaseous state thus generated can be introduced inside the enclosure through at least one port injection. Due to the control of these flow rates of introduction and evacuation, it is possible to obtain the desired cooling rate, which contributes to having the desired duration between the end of the quench E3 and the beginning of the cryogenic treatment E6.
  • This control of the flow rates of introduction and evacuation also makes it possible to maintain the treatment temperature Tc during the cryogenic treatment.
  • a cryogenic installation that can be used, mention may be made of the Linde Gas VF TES fluid type liquid nitrogen installation.
  • a temperature stabilization plateau, during which the treatment temperature Tc is maintained, is then carried out to effect the cryogenic treatment of the steel (step E6).
  • the duration of the cryogenic treatment E6 is predetermined, and may be greater than or equal to 1 hour, and for example be between 1 hour and 2 hours.
  • step E7 a progressive rise in temperature to room temperature Ta can be carried out.
  • a second intermediate step E8 can be carried out during which the steel is maintained in an environment at room temperature Ta.
  • a rise ramp can then be carried out (step E9) to a tempering temperature Tr, for example between 465 ° C. and 550 ° C.
  • the duration of the income treatment can be greater than or equal to 4 hours, and for example be between 4 hours and 32 hours.
  • the steel can then be cooled, for example by keeping it in an environment at room temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

L'invention concerne un procédé de traitement d'un acier comportant, en pourcentages massiques, 0,2% à 0,33% de carbone, 4% à 8% de cobalt, 7% à 11% de nickel, 0,8% à 3% de chrome, 0,5% à 2,5% de molybdène, 0,5% à 5,9% de tungstène, 0,05% à 0,2% de vanadium, et au plus 0,02% de titane, le reste étant constitué de fer et d'impuretés inévitables, le procédé comportant au moins : - un traitement thermique de mise en solution (E2) de l'acier à une température comprise entre 950°C et 1100°C, - un traitement de trempe (E3) de l'acier, réalisé après le traitement thermique de mise en solution, - le placement de l'acier dans une enceinte cryogénique après le traitement de trempe, - le refroidissement (E5) de l'intérieur de l'enceinte cryogénique dans laquelle l'acier est présent, ce refroidissement étant réalisé jusqu'à une température de traitement (Tc) inférieure ou égale à -73°C, et - le traitement cryogénique (E6) de l'acier pendant lequel la température de traitement est maintenue dans l'enceinte, la durée séparant la fin du traitement de trempe du début du traitement cryogénique étant inférieure ou égale à 4 heures.The invention relates to a process for treating a steel comprising, in percentages by weight, 0.2% to 0.33% of carbon, 4% to 8% of cobalt, 7% to 11% of nickel, 0.8% at 3% chromium, 0.5% to 2.5% molybdenum, 0.5% to 5.9% tungsten, 0.05% to 0.2% vanadium, and at most 0.02% of titanium, the remainder being iron and unavoidable impurities, the process comprising at least: a solution heat treatment (E2) of the steel at a temperature of between 950 ° C. and 1100 ° C., a quenching treatment (E3) of the steel, carried out after the solution heat treatment, the placement of the steel in a cryogenic chamber after the quenching treatment, cooling (E5) of the inside of the cryogenic chamber in which the steel is present, this cooling being carried out up to a treatment temperature (Tc) of less than or equal to -73 ° C, and the cryogenic treatment (E6) of the steel during which the treatment temperature is maintained in the chamber, the time separating the end of the quenching treatment from the beginning of the cryogenic treatment being less than or equal to 4 hours.

Description

La présente invention concerne un procédé de traitement d'un acier comprenant notamment un traitement cryogénique, cet acier pouvant être destiné à la constitution de pièces de train d'atterrissage d'aéronef.The present invention relates to a method of treating a steel including a cryogenic treatment, the steel may be intended for the constitution of parts of aircraft landing gear.

Arrière-plan de l'inventionBackground of the invention

Le brevet US 9 051 635 divulgue un acier présentant de bonnes propriétés mécaniques associées à une bonne tenue à la corrosion sous contrainte.The patent US 9,051,635 discloses a steel having good mechanical properties associated with good resistance to stress corrosion.

Cet acier comportant, en pourcentages massiques, 0,2% à 0,33% de carbone, 4% à 8% de cobalt, 7% à 11% de nickel, 0,8% à 3% de chrome, 0,5% à 2,5% de molybdène, 0,5% à 5,9% de tungstène, 0,05% à 0,2% de vanadium, et au plus 0,02% de titane, le reste étant constitué de fer et d'impuretés inévitables, est - dans le brevet précité - traité par la succession d'étapes suivantes sans précision sur la durée séparant chacune de ces étapes : traitement thermique de mise en solution de l'acier, traitement de trempe, immersion dans de l'azote liquide et traitement de revenu.This steel comprising, in percentages by weight, 0.2% to 0.33% of carbon, 4% to 8% of cobalt, 7% to 11% of nickel, 0.8% to 3% of chromium, 0.5% at 2.5% molybdenum, 0.5% to 5.9% tungsten, 0.05% to 0.2% vanadium, and at most 0.02% titanium, the remainder being iron and unavoidable impurities, is - in the aforementioned patent - treated by the following succession of steps without precision on the time separating each of these steps: heat treatment of solution dissolution of the steel, quenching treatment, immersion in the liquid nitrogen and income treatment.

Un tel acier constitue un matériau d'intérêt pour la constitution de pièces de train d'atterrissage d'aéronef, notamment.Such steel is a material of interest for the constitution of parts of aircraft landing gear, in particular.

Toutefois, les inventeurs ont constaté qu'il demeurait une dispersion des propriétés mécaniques significative au sein de lots de pièces en acier soumis au traitement divulgué dans le brevet US 9 051 635 . Il est souhaitable de réduire la dispersion de ces propriétés mécaniques afin d'optimiser les courbes de dimensionnement et, par conséquent, d'améliorer les performances des pièces formées par cet acier, par exemple en les allégeant, en allongeant leur durée de vie ou en augmentant les contraintes auxquelles elles peuvent être exposées.However, the inventors have found that there remains a significant dispersion of mechanical properties within batches of steel parts subjected to the treatment disclosed in the patent. US 9,051,635 . It is desirable to reduce the dispersion of these mechanical properties in order to optimize the dimensioning curves and, consequently, to improve the performances of the parts formed by this steel, for example by lightening them, by extending their service life or by increasing the stresses to which they may be exposed.

En outre, l'immersion dans l'azote liquide réalisée dans le document US 9 051 635 ne constitue pas une étape adaptée à un traitement de l'acier à l'échelle industrielle. Il demeure, par conséquent, souhaitable de disposer de procédés de traitement de cet acier qui soient davantage compatibles d'un traitement à l'échelle industrielle.In addition, the immersion in liquid nitrogen carried out in the document US 9,051,635 is not a suitable step for a steel treatment on an industrial scale. It remains, therefore, desirable to have processes for treating this steel that are more compatible with a treatment on an industrial scale.

On connait en outre la publication Wang et al. « Austenite layer and precipitation in high Co-Ni maraging steel » (Micron 57 (2014) 112-116 ) qui divulgue un traitement d'un acier dans lequel ce dernier est plongé après la trempe dans un bain cryogénique à -73°C.We also know the publication Wang et al. "Austenite layer and precipitation in high Co-Ni maraging steel" (Micron 57 (2014) 112-116 ) which discloses a treatment of a steel in which the latter is immersed after quenching in a cryogenic bath at -73 ° C.

Objet et résumé de l'inventionObject and summary of the invention

L'invention vise, selon un premier aspect, un procédé de traitement d'un acier comportant, en pourcentages massiques, 0,2% à 0,33% de carbone, 4% à 8% de cobalt, 7% à 11% de nickel, 0,8% à 3% de chrome, 0,5% à 2,5% de molybdène, 0,5% à 5,9% de tungstène, 0,05% à 0,2% de vanadium, et au plus 0,02% de titane, le reste étant constitué de fer et d'impuretés inévitables, le procédé comportant au moins :

  • un traitement thermique de mise en solution de l'acier à une température comprise entre 950°C et 1100°C,
  • un traitement de trempe de l'acier, réalisé après le traitement thermique de mise en solution,
  • le placement de l'acier dans une enceinte cryogénique après le traitement de trempe,
  • le refroidissement de l'intérieur de l'enceinte cryogénique dans laquelle l'acier est présent, ce refroidissement étant réalisé jusqu'à une température de traitement inférieure ou égale à -73°C, et
  • le traitement cryogénique de l'acier pendant lequel la température de traitement est maintenue dans l'enceinte, la durée séparant la fin du traitement de trempe du début du traitement cryogénique étant inférieure ou égale à 4 heures.
According to a first aspect, the invention relates to a method of treating a steel comprising, in percentages by weight, 0.2% to 0.33% of carbon, 4% to 8% of cobalt, 7% to 11% of nickel, 0.8% to 3% chromium, 0.5% to 2.5% molybdenum, 0.5% to 5.9% tungsten, 0.05% to 0.2% vanadium, and plus 0.02% titanium, the remainder being iron and unavoidable impurities, the process comprising at least:
  • a heat treatment for dissolving the steel at a temperature of between 950 ° C. and 1100 ° C.,
  • a quenching treatment of the steel, carried out after the solution heat treatment,
  • placing the steel in a cryogenic chamber after quenching treatment,
  • cooling the inside of the cryogenic chamber in which the steel is present, this cooling being carried out up to a treatment temperature of less than or equal to -73 ° C, and
  • the cryogenic treatment of the steel during which the treatment temperature is maintained in the chamber, the time separating the end of the quenching treatment from the beginning of the cryogenic treatment being less than or equal to 4 hours.

L'invention est, en particulier, remarquable en ce que la durée séparant la fin du traitement de trempe du début du traitement cryogénique est limitée.In particular, the invention is remarkable in that the time between the end of the quenching treatment and the start of the cryogenic treatment is limited.

Les inventeurs ont constaté, lors d'études récentes, que la teneur en austénite résiduelle pouvait varier de manière assez légère au sein d'un lot de pièces en acier décrit plus haut ayant subi un traitement cryogénique. Cette variation, même légère, a toutefois une influence significative sur la dispersion des propriétés mécaniques au sein du lot de pièces traité. L'identification de ces légères variations de la teneur en austénite résiduelle a été rendue possible grâce à l'emploi de techniques de mesure particulières et suffisamment précises (diffraction aux rayons X synchrotron et sigmamètre). Une fois l'origine de la dispersion des propriétés mécaniques identifiée, les inventeurs ont étudié l'influence des conditions d'atteinte de la température de traitement cryogénique et ont constaté que la durée séparant la fin de la trempe du début du traitement cryogénique avait une influence sur la teneur en austénite résiduelle. Ainsi, en limitant cette durée comme décrit plus haut, l'invention permet avantageusement de mieux contrôler la teneur en austénite résiduelle obtenue dans l'acier traité et, par conséquent, de réduire la dispersion des propriétés mécaniques. En outre, les inventeurs ont constaté que le fait de limiter cette durée permet avantageusement d'améliorer la tenue à la corrosion sous contrainte de l'acier. Le fait de réaliser le traitement cryogénique dans une enceinte cryogénique refroidie après chargement de l'acier permet avantageusement de rendre le procédé compatible d'un traitement à l'échelle industrielle. En outre, l'invention réalise un refroidissement progressif de l'enceinte cryogénique dans lequel l'acier est placé ce qui participe aussi à maitriser la teneur en austénite résiduelle par rapport au cas où l'acier est directement plongé dans un bain cryogénique. Ce dernier cas résulte en effet en un phénomène indésirable de caléfaction qui ne permet pas de maitriser correctement le refroidissement, et qui a pour conséquence de ne pas permettre de maîtriser correctement la teneur en austénite résiduelle.The inventors have found, in recent studies, that the residual austenite content could vary rather lightly within a batch of steel parts described above having undergone cryogenic treatment. This variation, however slight, has a significant influence on the dispersion of the mechanical properties within the batch of treated parts. The identification of these slight variations in the residual austenite content has been made possible through the use of specific and sufficiently precise measurement (synchrotron X-ray diffraction and sigmameter). Once the origin of the dispersion of the mechanical properties was identified, the inventors studied the influence of the conditions of reaching the cryogenic treatment temperature and found that the time separating the end of the quench from the start of the cryogenic treatment had a influence on the residual austenite content. Thus, by limiting this period as described above, the invention advantageously makes it possible to better control the residual austenite content obtained in the treated steel and, consequently, to reduce the dispersion of the mechanical properties. In addition, the inventors have found that limiting this time advantageously makes it possible to improve the stress corrosion resistance of the steel. The fact of carrying out the cryogenic treatment in a cooled cryogenic chamber after loading of the steel advantageously makes it possible to make the process compatible with a treatment on an industrial scale. In addition, the invention provides a gradual cooling of the cryogenic chamber in which the steel is placed which also participates in controlling the residual austenite content with respect to the case where the steel is directly immersed in a cryogenic bath. This last case results indeed in an undesirable phenomenon of heating which does not make it possible to control correctly the cooling, and which has the consequence of not allowing to control correctly the residual austenite content.

Dans un exemple de réalisation, la durée séparant la fin du traitement de trempe du début du traitement cryogénique est inférieure ou égale à 2 heures, de préférence à 1 heure.In an exemplary embodiment, the time separating the end of the quenching treatment from the beginning of the cryogenic treatment is less than or equal to 2 hours, preferably 1 hour.

Le fait d'imposer une telle durée entre la trempe et le début du traitement cryogénique permet avantageusement de réduire davantage encore la dispersion des propriétés mécaniques obtenues pour l'acier traité.The fact of imposing such a time between quenching and the beginning of the cryogenic treatment advantageously makes it possible to further reduce the dispersion of the mechanical properties obtained for the treated steel.

Dans un exemple de réalisation, la durée du traitement cryogénique est supérieure ou égale à 1 heure.In an exemplary embodiment, the duration of the cryogenic treatment is greater than or equal to 1 hour.

Dans un exemple de réalisation, le procédé comprend en outre un traitement de revenu de l'acier réalisé après le traitement cryogénique.In an exemplary embodiment, the method further comprises a treatment of income of the steel produced after the cryogenic treatment.

Dans un exemple de réalisation, l'acier traité constitue une pièce d'un train d'atterrissage d'un aéronef. La pièce peut par exemple être un essieu, le balancier ou une partie du balancier, comme l'axe pivot du balancier.In an exemplary embodiment, the treated steel is a part of a landing gear of an aircraft. The piece can for example be an axle, the balance or part of the balance, as the pivot axis of the balance.

Dans un exemple de réalisation, l'acier constitue une pièce ayant une masse supérieure ou égale à 10 kg. La masse de la pièce peut être supérieure ou égale à 40 kg, par exemple supérieure ou égale à 100 kg.In an exemplary embodiment, the steel constitutes a piece having a mass greater than or equal to 10 kg. The mass of the piece may be greater than or equal to 40 kg, for example greater than or equal to 100 kg.

L'invention est particulièrement avantageuse dans le cas du traitement d'une pièce ayant une masse significative, et donc une dimension conséquente, dans la mesure où le phénomène indésirable de caléfaction évoqué plus haut se produit quelle que soit la taille de la pièce mais est d'autant plus important que la taille de la pièce est grande.The invention is particularly advantageous in the case of the treatment of a workpiece having a significant mass, and therefore a substantial size, insofar as the undesirable phenomenon of calefaction mentioned above occurs regardless of the size of the workpiece but is all the more important as the size of the room is large.

Dans un exemple de réalisation, l'acier est refroidi jusqu'à une température de fin de trempe inférieure ou égale à 71°C durant le traitement de trempe.In an exemplary embodiment, the steel is cooled to a quenching temperature of less than or equal to 71 ° C during quenching treatment.

Le fait d'avoir une température de fin de trempe réduite participe avantageusement à réduire davantage encore la teneur en austénite résiduelle.The fact of having a reduced quenching end temperature advantageously contributes to further reducing the residual austenite content.

Brève description des dessinsBrief description of the drawings

D'autres caractéristiques et avantages de l'invention ressortiront de la description suivante, donnée à titre non limitatif, en référence aux figures annexées dans lesquelles :

  • la figure 1 représente, de manière schématique, l'évolution de la température imposée à l'acier, selon un exemple de procédé de traitement selon l'invention, et
  • la figure 2 est un résultat d'essai comparatif montrant l'influence de la durée séparant la fin du traitement de trempe du début du traitement cryogénique sur la teneur en austénite résiduelle.
Other features and advantages of the invention will emerge from the following description, given in a non-limiting manner, with reference to the appended figures in which:
  • the figure 1 represents, schematically, the evolution of the temperature imposed on the steel, according to an example of a treatment method according to the invention, and
  • the figure 2 is a comparative test result showing the influence of the time separating the end of the quenching treatment from the start of the cryogenic treatment on the residual austenite content.

Description détaillée de modes de réalisationDetailed description of embodiments

L'acier traité comporte, en pourcentages massiques, 0,2% à 0,33% de carbone, 4% à 8% de cobalt, 7% à 11% de nickel, 0,8% à 3% de chrome, 0,5% à 2,5% de molybdène, 0,5% à 5,9% de tungstène, 0,05% à 0,2% de vanadium, et au plus 0,02% de titane, le reste étant constitué de fer et d'impuretés inévitables.The treated steel comprises, in percentages by weight, 0.2% to 0.33% of carbon, 4% to 8% of cobalt, 7% to 11% of nickel, 0.8% to 3% of chromium, 0, 5% to 2.5% molybdenum, 0.5% to 5.9% tungsten, 0.05% to 0.2% vanadium, and at most 0.02% titanium, the balance being iron and unavoidable impurities.

Dans un exemple de réalisation, l'acier traité comporte, en pourcentages massiques, 0,25% à 0,31% de carbone, 6,8% à 8% de cobalt, 9,3% à 10,5% de nickel, 0,8% à 2,6% de chrome, 0,9% à 2,1% de molybdène, 0,7% à 2% de tungstène, 0,05% à 0,12% de vanadium, et au plus 0,015% de titane, le reste étant constitué de fer et d'impuretés inévitables.In an exemplary embodiment, the treated steel comprises, in percentages by weight, 0.25% to 0.31% of carbon, 6.8% to 8% of cobalt, 9.3% to 10.5% of nickel, 0.8% to 2.6% chromium, 0.9% to 2.1% molybdenum, 0.7% to 2% tungsten, 0.05% to 0.12% vanadium, and not more than 0.015% % titanium, the rest being iron and unavoidable impurities.

Dans un exemple de réalisation, l'acier traité comporte, en pourcentages massiques, 0,29% à 0,31% de carbone, 6,8% à 7,2% de cobalt, 9,8% à 10,2% de nickel, 0,8% à 2,6% de chrome, 0,9% à 2,1% de molybdène, 0,7% à 1,4% de tungstène, 0,05% à 0,12% de vanadium, et au plus 0,015% de titane, le reste étant constitué de fer et d'impuretés inévitables.In an exemplary embodiment, the treated steel comprises, in percentages by weight, 0.29% to 0.31% of carbon, 6.8% to 7.2% of cobalt, 9.8% to 10.2% of nickel, 0.8% to 2.6% chromium, 0.9% to 2.1% molybdenum, 0.7% to 1.4% tungsten, 0.05% to 0.12% vanadium, and at most 0.015% titanium, the balance being iron and unavoidable impurities.

Le procédé est initié par une rampe de montée en température (étape E1) jusqu'à une température Ts, comprise entre 950°C et 1100°C.The process is initiated by a rise ramp (step E1) to a temperature Ts, between 950 ° C and 1100 ° C.

La température Ts est ensuite maintenue afin de réaliser le traitement thermique de mise en solution de l'acier (étape E2). La durée du traitement thermique de mise en solution E2 de l'acier peut être supérieure ou égale à 1 heure, et par exemple être comprise entre 1 heure et 2 heures.The temperature Ts is then maintained in order to carry out the heat treating solution of the steel (step E2). The duration of the E2 solution heat treatment of the steel may be greater than or equal to 1 hour, and for example be between 1 hour and 2 hours.

Un traitement de trempe de l'acier (étape E3) est ensuite réalisé à l'issue du traitement de mise en solution E2. Ce traitement de trempe E3 consiste en un refroidissement rapide de l'acier par immersion dans un fluide de refroidissement comme l'eau ou l'huile. Durant le traitement de trempe E3, l'acier est refroidi jusqu'à une température de fin de trempe Ta. Cette température de fin de trempe Ta est, dans l'exemple illustré, égale à la température ambiante (20°C), mais on ne sort pas du cadre de l'invention si celle-ci est différente de la température ambiante, et est par exemple supérieure à la température ambiante. La température de fin de trempe Ta peut être inférieure ou égale à 71°C, de préférence inférieure ou égale à 50°C. En particulier, la température de fin de trempe Ta peut être comprise entre 16°C et 71°C. A la fin du traitement de trempe E3, il n'y a plus de refroidissement de l'acier par échange thermique entre ce dernier et le fluide de refroidissement précité utilisé pour la trempe. La température de l'acier est égale, à ce moment-là, à la température de fin de trempe Ta.A quenching treatment of the steel (step E3) is then carried out after the dissolution treatment E2. This quenching treatment E3 consists of rapid cooling of the steel by immersion in a cooling fluid such as water or oil. During the quenching treatment E3, the steel is cooled to a quenching end temperature Ta. This end of quenching temperature Ta is, in the example illustrated, equal to the ambient temperature (20 ° C.), but it is not beyond the scope of the invention if this is different from the ambient temperature, and is for example, higher than room temperature. The quenching end temperature Ta may be less than or equal to 71 ° C., preferably less than or equal to 50 ° C. In particular, the quenching temperature Ta may be between 16 ° C and 71 ° C. At the end of the quenching treatment E3, there is no longer any cooling of the steel by heat exchange between the latter and the aforementioned cooling fluid used for quenching. The temperature of the steel is equal, at that time, to the end of quenching temperature Ta.

Si cela est nécessaire, une première étape intermédiaire (étape E4) durant laquelle l'acier est maintenu dans un environnement à température ambiante Ta peut être effectuée, après la trempe E3 et avant le placement de l'acier dans l'enceinte cryogénique. On pourrait, en variante, s'affranchir de cette première étape intermédiaire E4 et directement placer l'acier dans l'enceinte cryogénique après le traitement de trempe E3. Bien entendu lorsqu'elle est effectuée, cette première étape intermédiaire E4 est d'une durée limitée de sorte que la durée séparant la fin du traitement de trempe E3 du début du traitement cryogénique demeure elle aussi limitée, comme indiqué plus haut.If necessary, a first intermediate step (step E4) during which the steel is maintained in an environment at room temperature Ta can be performed after quenching E3 and before placing the steel in the cryogenic chamber. As a variant, it would be possible to dispense with this first intermediate step E4 and directly place the steel in the cryogenic chamber after the quenching treatment E3. Of course, when it is carried out, this first intermediate step E4 is of limited duration so that the time separating the end of the quenching treatment E3 from the beginning of the cryogenic treatment also remains limited, as indicated above.

Une fois l'acier placé dans l'enceinte cryogénique, un refroidissement de l'intérieur de l'enceinte est alors réalisé (étape E5).Once the steel placed in the cryogenic chamber, a cooling of the interior of the enclosure is then achieved (step E5).

Ce refroidissement comprend une rampe de descente en température jusqu'à la température Tc de traitement qui est inférieure ou égale à -73°C. La vitesse de refroidissement imposée durant cette rampe de descente en température peut être supérieure ou égale à 0,5°C/minute, par exemple supérieure ou égale à 1,5°C/minute, voire supérieure ou égale à 2,5°C/minute, voire supérieure ou égale à 5°C/minute. Cette vitesse de refroidissement peut en outre être inférieure ou égale à 4°C/minute. Cette vitesse de refroidissement imposée peut être sensiblement constante. On ne sort pas du cadre de l'invention si la vitesse de refroidissement varie durant le refroidissement E5, le refroidissement E5 peut ainsi comprendre une première descente en température à une première vitesse de refroidissement, puis une deuxième descente en température à une deuxième vitesse de refroidissement différente de la première, par exemple inférieure à celle-ci.This cooling comprises a temperature ramp down to the treatment temperature Tc which is less than or equal to -73 ° C. The rate of cooling imposed during this ramp down temperature may be greater than or equal to 0.5 ° C / minute, for example greater than or equal to 1.5 ° C / minute, or even greater than or equal to 2.5 ° C / minute, or even greater than or equal to 5 ° C / minute. This cooling rate may furthermore be less than or equal to 4 ° C./minute. This imposed cooling rate can be substantially constant. It is not beyond the scope of the invention if the cooling rate varies during the cooling E5, the cooling E5 can thus comprise a first temperature decrease at a first cooling rate, then a second temperature decrease at a second cooling speed. cooling different from the first, for example less than this.

Comme évoqué plus haut, dans l'invention on limite la durée séparant la fin du traitement de trempe E3, correspondant au moment où la température de fin de trempe Ta est atteinte, du début du traitement cryogénique E6, correspondant au moment où la température de traitement Tc est atteinte. Cette durée correspond à la durée après la fin de la trempe E3 pendant laquelle l'acier est à une température supérieure à la température de traitement Tc. Le fait de limiter cette durée permet de limiter la teneur en austénite résiduelle. La figure 2 est un résultat d'essai comparatif effectué sur un acier Ferrium® M54 en mettant en oeuvre une température de fin de trempe Ta de 20°C et une température de traitement Tc de -73°C. Dans cet essai, on a fait varier la durée séparant la fin du traitement de trempe du début du traitement cryogénique. On constate que plus cette durée augmente plus la teneur en austénite résiduelle dans l'acier augmente. Les inventeurs ont aussi réalisé un essai comparatif afin de déterminer l'influence de la durée séparant la fin du traitement de trempe du début du traitement cryogénique sur la tenue à la corrosion sous contrainte de l'acier. Dans cet essai, la tenue à la corrosion sous contrainte de l'acier a été mesurée de la manière suivante : on réalise une fissure initiale de l'éprouvette que l'on mouille avec une solution de NaCl, ensuite on impose une contrainte constante à l'échantillon et au bout de 1000h le K1SCC est déterminé. Au bout de 1000h, l'éprouvette est cassée de façon statique, ce qui permet de déterminer son son K1SCC à partir de la taille de fissure initiale et avec la valeur du chargement. Le K1SCC est un paramètre connu de l'homme du métier quantifiant la tenue à la corrosion sous contrainte. L'essai réalisé a montré que la tenue en corrosion sous contrainte de l'acier est significativement meilleure lorsque l'acier a été traité en limitant la durée séparant la fin du traitement de trempe du début du traitement cryogénique à 2 heures que dans le cas hors invention où cette durée est de 8 heures.As mentioned above, in the invention limits the time between the end of the quenching treatment E3, corresponding to the moment when the quenching temperature Ta is reached, from the beginning of the cryogenic treatment E6, corresponding to the moment when the quenching temperature Tc treatment is reached. This duration corresponds to the duration after the end of the hardening E3 during which the steel is at a temperature above the treatment temperature Tc. Limiting this duration makes it possible to limit the residual austenite content. The figure 2 is a comparative test result made on a Ferrium® M54 steel by implementing a quenching temperature Ta of 20 ° C and a treatment temperature Tc of -73 ° C. In this test, the time between the end of the quenching treatment and the start of the cryogenic treatment was varied. It is found that the longer this duration increases the residual austenite content in the steel increases. The inventors have also carried out a comparative test in order to determine the influence of the time separating the end of the quenching treatment from the beginning of the cryogenic treatment on the resistance to stress corrosion of the steel. In this test, the stress corrosion resistance of the steel was measured in the following manner: an initial crack of the specimen is made which is wetted with a solution of NaCl, then a constant stress is imposed on the sample and after 1000h the K1SCC is determined. After 1000h, the specimen is statically broken, which makes it possible to determine its K1SCC sound from the initial crack size and with the value of the load. K1SCC is a parameter known to those skilled in the art quantifying the resistance to stress corrosion. The test carried out has shown that the stress corrosion resistance of the steel is significantly better when the steel has been treated by limiting the time separating the end of the quenching treatment from the beginning of the cryogenic treatment to 2 hours than in the case except invention where this duration is 8 hours.

L'installation utile pour la mise en oeuvre du procédé est connue en soi. Une telle installation comprend une enceinte cryogénique reliée à un réservoir de fluide de refroidissement ainsi qu'un système de contrôle configuré pour contrôler le débit d'introduction du fluide de refroidissement à l'intérieur de l'enceinte, et son débit d'évacuation à l'extérieur de celle-ci. Le fluide de refroidissement peut être introduit à l'intérieur de l'enceinte à l'état gazeux. Dans ce cas, le fluide de refroidissement peut être vaporisé à l'extérieur de l'enceinte puis le fluide de refroidissement à l'état gazeux ainsi généré peut être introduit à l'intérieur de l'enceinte au travers d'au moins un port d'injection. Du fait du contrôle de ces débits d'introduction et d'évacuation, il est possible d'obtenir la vitesse de refroidissement souhaitée, ce qui participe à avoir la durée souhaitée entre la fin de la trempe E3 et le début du traitement cryogénique E6. Ce contrôle des débits d'introduction et d'évacuation permet, en outre, de maintenir la température de traitement Tc durant le traitement cryogénique. A titre d'exemple d'installation cryogénique utilisable, on peut citer l'installation Linde Gas VF TES fluide type azote liquide.The installation useful for the implementation of the method is known per se. Such an installation comprises a cryogenic chamber connected to a cooling fluid reservoir and a control system configured to control the rate of introduction of the cooling fluid into the chamber, and its evacuation rate to outside of it. The cooling fluid can be introduced inside the chamber in the gaseous state. In this case, the cooling fluid can be vaporized outside the enclosure and the cooling fluid in the gaseous state thus generated can be introduced inside the enclosure through at least one port injection. Due to the control of these flow rates of introduction and evacuation, it is possible to obtain the desired cooling rate, which contributes to having the desired duration between the end of the quench E3 and the beginning of the cryogenic treatment E6. This control of the flow rates of introduction and evacuation also makes it possible to maintain the treatment temperature Tc during the cryogenic treatment. As an example of a cryogenic installation that can be used, mention may be made of the Linde Gas VF TES fluid type liquid nitrogen installation.

Un palier de stabilisation en température, pendant lequel la température de traitement Tc est maintenue, est ensuite effectué afin de réaliser le traitement cryogénique de l'acier (étape E6). La durée du traitement cryogénique E6 est prédéterminée, et peut être supérieure ou égale à 1 heure, et par exemple être comprise entre 1 heure et 2 heures.A temperature stabilization plateau, during which the treatment temperature Tc is maintained, is then carried out to effect the cryogenic treatment of the steel (step E6). The duration of the cryogenic treatment E6 is predetermined, and may be greater than or equal to 1 hour, and for example be between 1 hour and 2 hours.

Une fois le traitement cryogénique E6 réalisé, une montée en température progressive jusqu'à température ambiante Ta peut être réalisée (étape E7).Once the cryogenic treatment E6 has been carried out, a progressive rise in temperature to room temperature Ta can be carried out (step E7).

On peut ensuite effectuer, si cela est souhaité, une deuxième étape intermédiaire E8 durant laquelle l'acier est maintenu dans un environnement à température ambiante Ta.Then, if desired, a second intermediate step E8 can be carried out during which the steel is maintained in an environment at room temperature Ta.

Une rampe de montée en température peut ensuite être réalisée (étape E9) jusqu'à une température de revenu Tr, par exemple comprise entre 465°C et 550°C.A rise ramp can then be carried out (step E9) to a tempering temperature Tr, for example between 465 ° C. and 550 ° C.

Un palier de stabilisation en température, à la température de revenu Tr, est alors effectué afin de réaliser le traitement thermique de revenu (étape E10). La durée du traitement de revenu peut être supérieure ou égale à 4 heures, et par exemple être comprise entre 4 heures et 32 heures.A temperature stabilization plateau, at the tempering temperature Tr, is then performed in order to perform the heat treatment of income (step E10). The duration of the income treatment can be greater than or equal to 4 hours, and for example be between 4 hours and 32 hours.

L'acier peut ensuite être refroidi, par exemple en le maintenant dans un environnement à température ambiante.The steel can then be cooled, for example by keeping it in an environment at room temperature.

L'expression « compris(e) entre ... et ... » doit se comprendre comme incluant les bornes.The expression "understood between ... and ..." must be understood as including boundaries.

Claims (8)

Procédé de traitement d'un acier comportant, en pourcentages massiques, 0,2% à 0,33% de carbone, 4% à 8% de cobalt, 7% à 11% de nickel, 0,8% à 3% de chrome, 0,5% à 2,5% de molybdène, 0,5% à 5,9% de tungstène, 0,05% à 0,2% de vanadium, et au plus 0,02% de titane, le reste étant constitué de fer et d'impuretés inévitables, le procédé comportant au moins : - un traitement thermique de mise en solution (E2) de l'acier à une température comprise entre 950°C et 1100°C, - un traitement de trempe (E3) de l'acier, réalisé après le traitement thermique de mise en solution, - le placement de l'acier dans une enceinte cryogénique après le traitement de trempe, - le refroidissement (E5) de l'intérieur de l'enceinte cryogénique dans laquelle l'acier est présent, ce refroidissement étant réalisé jusqu'à une température de traitement (Tc) inférieure ou égale à -73°C, et - le traitement cryogénique (E6) de l'acier pendant lequel la température de traitement est maintenue dans l'enceinte, la durée séparant la fin du traitement de trempe du début du traitement cryogénique étant inférieure ou égale à 4 heures. Process for treating a steel comprising, in percentages by weight, 0.2% to 0.33% of carbon, 4% to 8% of cobalt, 7% to 11% of nickel, 0.8% to 3% of chromium , 0.5% to 2.5% of molybdenum, 0.5% to 5.9% of tungsten, 0.05% to 0.2% of vanadium, and at most 0.02% of titanium, the balance being consisting of iron and unavoidable impurities, the process comprising at least: a solution heat treatment (E2) of the steel at a temperature of between 950 ° C. and 1100 ° C., a quenching treatment (E3) of the steel, carried out after the solution heat treatment, the placement of the steel in a cryogenic chamber after the quenching treatment, cooling (E5) of the inside of the cryogenic chamber in which the steel is present, this cooling being carried out up to a treatment temperature (Tc) of less than or equal to -73 ° C, and the cryogenic treatment (E6) of the steel during which the treatment temperature is maintained in the chamber, the time separating the end of the quenching treatment from the beginning of the cryogenic treatment being less than or equal to 4 hours. Procédé selon la revendication 1, dans lequel la durée séparant la fin du traitement de trempe du début du traitement cryogénique est inférieure ou égale à 2 heures.A process according to claim 1, wherein the time between the end of the quenching treatment and the start of the cryogenic treatment is less than or equal to 2 hours. Procédé selon la revendication 2, dans lequel la durée séparant la fin du traitement de trempe du début du traitement cryogénique est inférieure ou égale à 1 heure.A process according to claim 2, wherein the time between the end of the quenching treatment and the start of the cryogenic treatment is less than or equal to 1 hour. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel la durée du traitement cryogénique (E6) est supérieure ou égale à 1 heure.A process as claimed in any one of claims 1 to 3 wherein the duration of the cryogenic treatment (E6) is greater than or equal to 1 hour. Procédé selon l'une quelconque des revendications 1 à 4, comprenant en outre un traitement de revenu (E10) de l'acier réalisé après le traitement cryogénique (E6).The method of any one of claims 1 to 4, further comprising a tempering treatment (E10) of the steel made after the cryogenic treatment (E6). Procédé selon l'une quelconque des revendications 1 à 5, dans lequel l'acier traité constitue une pièce d'un train d'atterrissage d'un aéronef.A method as claimed in any one of claims 1 to 5 wherein the treated steel constitutes a part of an aircraft landing gear. Procédé selon l'une quelconque des revendications 1 à 6, dans lequel l'acier constitue une pièce ayant une masse supérieure ou égale à 10 kg.Process according to any one of claims 1 to 6, wherein the steel constitutes a piece having a mass greater than or equal to 10 kg. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel l'acier est refroidi jusqu'à une température de fin de trempe (Ta) inférieure ou égale à 71°C durant le traitement de trempe (E3).A process according to any one of claims 1 to 7, wherein the steel is cooled to a quenching end temperature (Ta) of less than or equal to 71 ° C during quenching treatment (E3).
EP18200468.9A 2017-10-18 2018-10-15 Method for treating a steel Withdrawn EP3473734A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1759760A FR3072392B1 (en) 2017-10-18 2017-10-18 PROCESS FOR PROCESSING A STEEL

Publications (1)

Publication Number Publication Date
EP3473734A1 true EP3473734A1 (en) 2019-04-24

Family

ID=61132537

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18200468.9A Withdrawn EP3473734A1 (en) 2017-10-18 2018-10-15 Method for treating a steel

Country Status (5)

Country Link
US (1) US20190112680A1 (en)
EP (1) EP3473734A1 (en)
CN (1) CN109680126A (en)
CA (1) CA3021321A1 (en)
FR (1) FR3072392B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115478211A (en) * 2021-05-31 2022-12-16 宝武特种冶金有限公司 Tungsten-molybdenum-niobium element reinforced ultrahigh-strength steel and bar preparation method thereof
CN115058563A (en) * 2022-05-09 2022-09-16 中国科学院金属研究所 Heat treatment method for improving toughness of high-Co-Ni secondary hardening steel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9051635B2 (en) * 2008-02-20 2015-06-09 Herng-Jeng Jou Lower-cost, ultra-high-strength, high-toughness steel

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080268164A1 (en) * 2007-04-26 2008-10-30 Air Products And Chemicals, Inc. Apparatuses and Methods for Cryogenic Cooling in Thermal Surface Treatment Processes
FR2947565B1 (en) * 2009-07-03 2011-12-23 Snecma CRYOGENIC TREATMENT OF A MARTENSITIC STEEL WITH MIXED CURING
CN102127711B (en) * 2011-02-22 2012-05-23 武汉科技大学 Nano-structured ultrahigh-strength dual-phase steel and production method thereof
CN104388661A (en) * 2014-11-06 2015-03-04 无锡市百顺机械厂 Shaft sleeve heat treatment process
CN106399653B (en) * 2016-09-27 2018-01-30 中国科学院理化技术研究所 Method for improving impact toughness of 1Ni9 low-temperature steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9051635B2 (en) * 2008-02-20 2015-06-09 Herng-Jeng Jou Lower-cost, ultra-high-strength, high-toughness steel

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CARTECH: "CarTech Ferrium M54", 1 January 2015 (2015-01-01), XP055484336, Retrieved from the Internet <URL:https://www.questek.com/filebase/src/Material_Data_Sheets/FerriumM54CarpenterDataShe.pdf> [retrieved on 20180614] *
WANG CHENCHONG ET AL: "Austenite layer and precipitation in high Co-Ni maraging s", MICRON, PERGAMON, OXFORD, GB, vol. 67, 4 August 2014 (2014-08-04), pages 112 - 116, XP029067646, ISSN: 0968-4328, DOI: 10.1016/J.MICRON.2014.07.008 *

Also Published As

Publication number Publication date
CA3021321A1 (en) 2019-04-18
US20190112680A1 (en) 2019-04-18
FR3072392B1 (en) 2019-10-25
CN109680126A (en) 2019-04-26
FR3072392A1 (en) 2019-04-19

Similar Documents

Publication Publication Date Title
CA2984131C (en) Steel, product made of said steel, and manufacturing method thereof
EP2126152A2 (en) Processing method for cracking desensitisation using a nickel based alloy environment, mainly for a nuclear reactor fuel assembly and for a nuclear reactor, and part made of the alloy thus processed
CH704391B1 (en) A method of manufacturing a spring for a timepiece.
EP3473734A1 (en) Method for treating a steel
WO2017064684A1 (en) Steel, product created from said steel, and manufacturing method thereof
EP0864664A1 (en) Process for producing a superelastic article from an alloy of nickel and titanium
FR2625753A1 (en) METHOD FOR THERMALLY TREATING NICKEL SUPERALLIAGE AND FATIGUE RESISTANT SUPERALLIATION ARTICLE
WO2010023405A2 (en) Method for preparing a nickel superalloy part, and part thus obtained
CA2837821A1 (en) Surface treatment of a metal part
EP2134882A2 (en) Microalloyed steel with good resistance to hydrogen for the cold-forming of machine parts having high properties
FR2841907A1 (en) Heat treatment process for bearing component involves carbonitriding at specified temperature, cooling, re-heating and hardening at lower temperature
EP0792945B1 (en) Process for heat treatment of a nickel-base superalloy
FR2935395A1 (en) PROCESS FOR THE PREPARATION OF A NICKEL-BASED SUPERALLIATION PIECE AND A PART THUS PREPARED
EP4045689A1 (en) Method for treating a part made of ferrous metal, and part made of ferrous metal
FR2939150A1 (en) PROCESS FOR TREATING A METAL PART WITH AN ION BEAM
EP2171115A1 (en) Process for the heat treatment of cylinder heads made of an aluminium-based alloy, and cylinder heads having improved fatigue resistance properties
CH648355A5 (en) PROCESS FOR INCREASING THE LIFETIME OF A PART IN REFRACTORY MATERIAL WITH PARALLEL METAL CARBIDE FIBERS DROWNED IN A METAL MATRIX.
WO2022189135A1 (en) Timepiece component made of lead-free brass, and method for manufacturing same
FR2897433A1 (en) Test piece forming method for measuring e.g. mechanical resistance property, involves forming test piece having larger thickness than final test piece by fabrication process e.g. molding process
EP4057077A1 (en) Timepiece component made of lead-free brass and manufacturing method thereof
CH718413B1 (en) Lead-free brass watch component and its manufacturing process.
FR2935988A1 (en) Steel composition, useful in steel roll, comprises carbon, silicon, manganese, chromium, nickel, molybdenum, sulfur, phosphorus, aluminum, nitrogen, niobium, and titanium, optionally bismuth, lead, tellurium, selenium and/or calcium
FR2952559A1 (en) Manufacturing a titanium alloy part, which is useful in aeronautical industry, comprises performing N-successive treatment cycles of hot forging treatment at a specified temperature until the part obtains a uniform temperature
EP4327164A1 (en) Timepiece component and method for manufacturing such a timepiece component
WO2022129806A1 (en) Wrought products made of 2xxx alloy having an optimized corrosion resistance, and method for obtaining same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181015

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200422

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20201103