EP3472514B1 - Method for operating a waste heat steam generator - Google Patents

Method for operating a waste heat steam generator Download PDF

Info

Publication number
EP3472514B1
EP3472514B1 EP16753305.8A EP16753305A EP3472514B1 EP 3472514 B1 EP3472514 B1 EP 3472514B1 EP 16753305 A EP16753305 A EP 16753305A EP 3472514 B1 EP3472514 B1 EP 3472514B1
Authority
EP
European Patent Office
Prior art keywords
evaporator
setpoint
flow
bypass line
steam generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16753305.8A
Other languages
German (de)
French (fr)
Other versions
EP3472514A1 (en
Inventor
Jan BRÜCKNER
Frank Thomas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens Energy Global GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Energy Global GmbH and Co KG filed Critical Siemens Energy Global GmbH and Co KG
Publication of EP3472514A1 publication Critical patent/EP3472514A1/en
Application granted granted Critical
Publication of EP3472514B1 publication Critical patent/EP3472514B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D5/00Controlling water feed or water level; Automatic water feeding or water-level regulators
    • F22D5/26Automatic feed-control systems
    • F22D5/34Applications of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/02Feed-water heaters, i.e. economisers or like preheaters with water tubes arranged in the boiler furnace, fire tubes, or flue ways
    • F22D1/12Control devices, e.g. for regulating steam temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D5/00Controlling water feed or water level; Automatic water feeding or water-level regulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/16Waste heat

Definitions

  • the invention relates to a method for operating a waste heat steam generator according to the preamble of claim 1, in particular for load-dependent control of a waste heat steam generator designed according to the forced flow principle.
  • From the EP 2 224 164 A1 discloses a method for operating a waste heat steam generator with an evaporator, an economizer with a number of economizer heating surfaces, and a bypass line connected in parallel to a number of economizer heating surfaces on the flow medium side.
  • a method is disclosed here with which the formation of a water-steam mixture at the inlet of the evaporator is to be reliably avoided in all load conditions.
  • a characteristic parameter for this heat energy supplied to the waste heat steam generator is used to control or regulate the flow rate of the bypass line in order to reduce the flow rate of the bypass line when the parameter increases.
  • the flow rate of the bypass line can be adjusted accordingly when the heat energy supplied to the waste heat steam generator is increased and thus before the measurement of an actual change in temperature or subcooling at the inlet of the evaporator. If, in the current operating mode of the waste heat steam generator, the amount of heat supplied to the waste heat steam generator increases, this is linked to an increase in further thermodynamic state variables of the flow medium (such as feed water mass flow, pressure, medium temperatures), which, due to physical principles, is directly associated with an increase in inlet subcooling. Therefore, in such a case, the flow rate of the bypass line should be reduced so that the temperature at the exit of the economizer increases and so the subcooling at the evaporator inlet is decreased.
  • the flow medium such as feed water mass flow, pressure, medium temperatures
  • the flow rate of the bypass line is advantageously increased in order to adjust the outlet temperature of the economizer in a targeted manner.
  • the flow rate can also be regulated as a function of a predetermined subcooling setpoint US 2011/023487 A1 discloses a similar method of operating a heat recovery steam generator.
  • the object of the invention is therefore to provide an optimized method for operating a waste heat steam generator.
  • FIG 1 initially shows schematically a first embodiment with a control for a waste heat steam generator.
  • a flow medium S driven by a pump (not shown in detail), initially flows into a first preheater heating surface or economizer heating surface 10.
  • a bypass line 4 branches off.
  • a flow control valve 6 is provided, which can be regulated by a controllable motor 8.
  • a simple control valve can also be provided, but a fast-reacting control valve enables better adjustment of the subcooling at the evaporator inlet.
  • Part of the flow medium S thus flows into the bypass line 4 depending on the position of the flow control valve 6, another part flows through a first economizer heating surface 10 and then another economizer heating surface 14.
  • the flow medium is at the outlet of the economizer heating surface 14 at a mixing point 12 from the bypass line 4 and the economizer heating surface 14 before it enters the downstream evaporator 16.
  • the economizer heating surfaces 10, 14 and the evaporator 16 are possible on the flue gas side.
  • the economizer heating surfaces 10, 14 are connected downstream of the evaporator 16 on the flue gas side, since the economizers carry the comparatively coldest flow medium and should use the residual heat in the flue gas duct, not shown in detail.
  • there should be sufficient subcooling at the evaporator inlet i.e. a sufficient difference from the current temperature to the saturation temperature in the evaporator, so that an exclusively liquid flow medium is present. This is the only way to ensure that the flow medium is reliably distributed over the individual evaporator tubes in the evaporator 16.
  • a pressure measuring device 20 and a temperature measuring device 22 are provided at this point.
  • a subcooling setpoint 26 is initially specified at the evaporator inlet. This can be, for example, 3 K, ie the temperature at the evaporator inlet should be 3 K below the saturation temperature in the evaporator 16.
  • a saturation temperature 28 of the evaporator 16 is determined from the pressure determined at the pressure measuring device 20, since this is a direct function of the pressure prevailing in the evaporator 16.
  • the flow rate of the bypass line 4 is controlled or regulated as a function of a heat energy characteristic parameter 30 supplied to the waste heat steam generator and as a function of a subcooling setpoint 26 at the inlet of the evaporator 16 and also as a function of a superheating setpoint 110 at the outlet of the evaporator 16.
  • the superheating setpoint 110 specifies a setpoint for an outlet temperature of the flow medium at the evaporator 16.
  • a pressure measuring device 121 and a temperature measuring device 131 are provided at this point extended regulating and control device 100 'are processed accordingly.
  • FIG 1 another feedwater control device SWS for controlling the main feedwater valve 141 is outlined.
  • the control takes place here with a corresponding feedwater control device SWS, as it is, for example, already from the WO 2009/150055 A2 is known.
  • the pressures ⁇ PS> and ⁇ PD> as well as the temperatures ⁇ TS> and ⁇ TD> before and after the evaporator are tapped, processed accordingly by the feed water control device SWS and then passed on as a control signal ⁇ S> to the motor 142 of the feed water main valve.
  • this feed water control is not the subject of the present invention, the controls of the flow control valve 6 of the bypass line and the main feed water valve 141 must be coordinated in their respective control behavior in order to ensure reliable operation of the waste heat steam generator in all load ranges.
  • the evaporator flow rate can be temporarily reduced by reducing the evaporator inlet temperature (opening the flow control valve 6 of the bypass line 4) and thus the outlet temperature can be supported.
  • the evaporator inlet temperature must be increased (closing the flow control valve 6 of the bypass line 4) in order to counteract an increase in the evaporator outlet temperature by temporarily increasing the evaporator flow rate.
  • the maximum evaporator inlet temperature should not be exceeded or the minimum required inlet subcooling should not be undercut.
  • the method according to the invention presupposes that the extended regulating and control device 100 ′ is actually able to influence the evaporator inlet temperature in the desired direction. Specifically, this means that for a further reduction in the evaporator inlet temperature, the flow control valve 6 must not already be fully open, while it should not be fully closed for an increase.
  • FIG 2 now shows a further detailing of the in FIG 1 shown principle control concept.
  • a difference is first formed between the determined overheating at the evaporator outlet and an overheating setpoint 110 and then a change in this difference over time is calculated.
  • This is done optimally by using an additional first-order differentiator 151, the input of which is connected to the difference between the setpoint and actual overheating.
  • the output of this differentiating element 151 is advantageously multiplied by the time-delayed value 152 of the parameter 30 characteristic of a supplied thermal energy and added to the setpoint value 26 for subcooling. In order not to fall below the required minimum subcooling at the evaporator inlet, this total must also be secured with the desired minimum subcooling 154 via a max selection element 155.
  • FIG 3 shows a further embodiment in which the feedwater control valve 141 is arranged in front of the first economizer heating surface 10 and the integration 12 'of the bypass line 4 between the two economizer heating surfaces 10 and 14 is provided.
  • the extended regulating and control device 100 now also takes into account in the sense of a classic two-circuit control in comparison to the exemplary embodiment in FIG 2 the time-delayed value 157 of the temperature at the inlet of the economizer 14 determined with the aid of a further measuring device 156.

Description

Die Erfindung betrifft ein Verfahren zum Betreiben eines Abhitzedampferzeugers gemäß dem Oberbegriff des Anspruchs 1, insbesondere zur lastabhängigen Regelung eines nach dem Zwangdurchlaufprinzip ausgebildeten Abhitzedampferzeugers.The invention relates to a method for operating a waste heat steam generator according to the preamble of claim 1, in particular for load-dependent control of a waste heat steam generator designed according to the forced flow principle.

Aus der EP 2 224 164 A1 ist ein Verfahren zum Betreiben eines Abhitzedampferzeugers mit einem Verdampfer, einem Economizer mit einer Anzahl von Economizerheizflächen, und einer zu einer Anzahl von Economizerheizflächen strömungsmediumsseitig parallel geschalteten Bypassleitung bekannt. Zur Erhöhung der betrieblichen Sicherheit und Zuverlässigkeit des Abhitzedampferzeugers wird hier ein Verfahren offenbart mit dem in allen Lastzuständen eine Bildung eines Wasser-Dampf-Gemischs am Eintritt des Verdampfers zuverlässig vermieden werden soll. Dazu wurde vorgesehen, dass eine für diese dem Abhitzedampferzeuger zugeführte Wärmeenergie charakteristische Kenngröße zur Steuerung oder Regelung der Durchflussmenge der Bypassleitung herangezogen wird, um damit bei einer Erhöhung der Kenngröße die Durchflussmenge der Bypassleitung zu vermindern. Dadurch kann bereits bei einer Erhöhung der dem Abhitzedampferzeuger zugeführten Wärmeenergie und damit noch vor der Messung einer tatsächlichen Änderung der Temperatur bzw. Unterkühlung am Eintritt des Verdampfers die Durchflussmenge der Bypassleitung entsprechend angepasst werden. Erhöht sich nämlich bei heutiger Betriebsweise des Abhitzedampferzeugers die dem Abhitzedampferzeuger zugeführte Wärmemenge, so ist dies mit einer Vergrößerung weiterer thermodynamischer Zustandsgrößen des Strömungsmediums (wie beispielsweise Speisewassermassenstrom, Druck, Mediumstemperaturen) verknüpft, was aufgrund physikalischer Gesetzmäßigkeiten unmittelbar mit einer Erhöhung der Eintrittsunterkühlung einhergeht. Daher soll in einem solchen Fall die Durchflussmenge der Bypassleitung verringert werden, so dass die Temperatur am Austritt des Economizers erhöht und so die Unterkühlung am Verdampfereintritt verringert wird. Entsprechend umgekehrt wird bei einer Verringerung der Kenngröße vorteilhafterweise die Durchflussmenge der Bypassleitung erhöht, um so die Austrittstemperatur des Economizers zielgerichtet anzupassen. Die Regelung der Durchflussmenge kann dabei auch in Abhängigkeit eines vorgegebenen Unterkühlungssollwertes erfolgen Auch US 2011/023487 A1 offenbart ein ähnliches Verfahren zum Betreiben eines Abhitzedampferzeugers.From the EP 2 224 164 A1 discloses a method for operating a waste heat steam generator with an evaporator, an economizer with a number of economizer heating surfaces, and a bypass line connected in parallel to a number of economizer heating surfaces on the flow medium side. In order to increase the operational safety and reliability of the waste heat steam generator, a method is disclosed here with which the formation of a water-steam mixture at the inlet of the evaporator is to be reliably avoided in all load conditions. For this purpose, it was provided that a characteristic parameter for this heat energy supplied to the waste heat steam generator is used to control or regulate the flow rate of the bypass line in order to reduce the flow rate of the bypass line when the parameter increases. As a result, the flow rate of the bypass line can be adjusted accordingly when the heat energy supplied to the waste heat steam generator is increased and thus before the measurement of an actual change in temperature or subcooling at the inlet of the evaporator. If, in the current operating mode of the waste heat steam generator, the amount of heat supplied to the waste heat steam generator increases, this is linked to an increase in further thermodynamic state variables of the flow medium (such as feed water mass flow, pressure, medium temperatures), which, due to physical principles, is directly associated with an increase in inlet subcooling. Therefore, in such a case, the flow rate of the bypass line should be reduced so that the temperature at the exit of the economizer increases and so the subcooling at the evaporator inlet is decreased. Conversely, when the parameter is reduced, the flow rate of the bypass line is advantageously increased in order to adjust the outlet temperature of the economizer in a targeted manner. The flow rate can also be regulated as a function of a predetermined subcooling setpoint US 2011/023487 A1 discloses a similar method of operating a heat recovery steam generator.

Bei der Regelung bzw. Steuerung der Speisewassermenge eines nach dem Zwangdurchlaufprinzip ausgebildeten Abhitzedampferzeugers hat sich herausgestellt, dass sich lastabhängige instationäre Temperaturschwankungen des aus dem Verdampfer austretenden Strömungsmediums ausschließlich mit dem aus der beispielsweise WO 2009/150055 A2 bekannten Verfahren nicht immer optimal vermeiden lassen.When regulating or controlling the amount of feed water of a waste heat steam generator designed according to the forced flow principle, it has been found that load-dependent, transient temperature fluctuations of the flow medium exiting the evaporator are exclusively with that from the, for example WO 2009/150055 A2 known processes can not always be optimally avoided.

Aufgabe der Erfindung ist es daher, ein optimiertes Verfahren zum Betreiben eines Abhitzedampferzeugers bereit zu stellen.The object of the invention is therefore to provide an optimized method for operating a waste heat steam generator.

Diese Aufgabe wird mit dem Verfahren mit den Merkmalen des Anspruchs 1 gelöst.This object is achieved with the method having the features of claim 1.

Mit dem erfindungsgemäßen Verfahren können, ohne größeren zusätzlichen Aufwand, auch während eines instationären Betriebs des Abhitzedampferzeugers auftretende Schwankungen der Verdampferaustrittstemperatur effektiv minimiert werden. Konkret bedeutet dies, dass die Bauteilbelastung des Abhitzedampferzeugers bei gegebenen transienten Anforderungen weiter reduziert werden kann oder bei vergleichsweise gleicher Bauteilbelastung die Anlagenflexibilität weiter gesteigert werden kann. Dazu sind bei der aus der EP 2 224 164 A1 bekannten Vorrichtung somit im Wesentlichen Anpassungen des zugrunde liegenden Verfahrens zur Steuerung bzw. Regelung der Durchflussmenge des Strömungsmediums durch die Bypassleitung erforderlich.With the method according to the invention, fluctuations in the evaporator outlet temperature that occur even during transient operation of the waste-heat steam generator can be effectively minimized without major additional effort. Specifically, this means that the component load of the waste heat steam generator can be further reduced with given transient requirements or the system flexibility can be further increased with comparatively the same component load. These are from the EP 2 224 164 A1 known device thus essentially requires adaptations of the underlying method for controlling or regulating the flow rate of the flow medium through the bypass line.

Vorteilhafte Weiterbildungen des erfindungsgemäßen Verfahrens sind den Unteransprüchen zu entnehmen.Advantageous further developments of the method according to the invention can be found in the subclaims.

Die Erfindung soll nun anhand der nachfolgenden Figuren beispielhaft erläutert werden. Es zeigen:

FIG 1
schematisch eine erste Ausbildung zur optimierten Regelung,
FIG 2
schematisch eine Detaillierung des in FIG 1 gezeigten Ausführungsbeispiels,
FIG 3
schematisch ein zweites Ausführungsbeispiel.
The invention will now be explained by way of example with reference to the following figures. Show it:
FIG 1
a schematic of an initial training for optimized control,
FIG 2
schematically a detailing of the in FIG 1 shown embodiment,
FIG 3
schematically a second embodiment.

FIG 1 zeigt zunächst schematisch eine erste Ausbildung mit einer Regelung für einen Abhitzedampferzeuger. Ein Strömungsmedium S strömt, getrieben durch eine nicht näher dargestellte Pumpe, zunächst in eine erste Vorwärmerheizfläche bzw. Economizerheizfläche 10. Zuvor zweigt aber bereits eine Bypassleitung 4 ab. Zur Regelung des Durchflusses der Bypassleitung 4 ist ein Durchflussregelventil 6 vorgesehen, welches durch einen steuerbaren Motor 8 regelbar ist. Es kann auch ein einfaches Steuerventil vorgesehen sein, jedoch ist durch ein schnell reagierendes Regelventil eine bessere Einstellung der Unterkühlung am Verdampfereintritt möglich. Ein Teil des Strömungsmediums S strömt somit abhängig von der Stellung des Durchflussregelventils 6 in die Bypassleitung 4, ein anderer Teil durchströmt eine erste Economizerheizfläche 10 und anschließend eine weitere Economizerheizfläche 14. In der vorliegenden Ausführung wird am Austritt der Economizerheizfläche 14 an einer Mischstelle 12 das Strömungsmedium aus der Bypassleitung 4 und der Economizerheizfläche 14 vermischt, bevor es in den nachgeschalteten Verdampfer 16 eintritt. FIG 1 initially shows schematically a first embodiment with a control for a waste heat steam generator. A flow medium S, driven by a pump (not shown in detail), initially flows into a first preheater heating surface or economizer heating surface 10. Before that, however, a bypass line 4 branches off. To regulate the flow through the bypass line 4, a flow control valve 6 is provided, which can be regulated by a controllable motor 8. A simple control valve can also be provided, but a fast-reacting control valve enables better adjustment of the subcooling at the evaporator inlet. Part of the flow medium S thus flows into the bypass line 4 depending on the position of the flow control valve 6, another part flows through a first economizer heating surface 10 and then another economizer heating surface 14. In the present embodiment, the flow medium is at the outlet of the economizer heating surface 14 at a mixing point 12 from the bypass line 4 and the economizer heating surface 14 before it enters the downstream evaporator 16.

Rauchgasseitig sind verschiedene Anordnungen der Economizerheizflächen 10, 14 und des Verdampfers 16 möglich. Üblicherweise sind jedoch die Economizerheizflächen 10, 14 dem Verdampfer 16 rauchgasseitig nachgeschaltet, da die Economizer das vergleichsweise kälteste Strömungsmedium führen und die Restwärme im nicht näher dargestellten Rauchgaskanal nutzen sollen. Um einen reibungslosen Betrieb des Abhitzedampferzeugers zu gewährleisten, sollte am Verdampfereintritt eine ausreichende Unterkühlung, das heißt eine ausreichende Differenz von aktueller Temperatur zur Sättigungstemperatur im Verdampfer vorliegen, so dass ein ausschließlich flüssiges Strömungsmedium vorliegt. Nur so kann sichergestellt werden, dass eine zuverlässige Verteilung des Strömungsmediums auf die einzelnen Verdampferrohre im Verdampfer 16 erfolgt. Zur Regelung der Unterkühlung am Verdampfereintritt sind an dieser Stelle eine Druckmesseinrichtung 20 sowie eine Temperaturmesseinrichtung 22 vorgesehen. Regelungsseitig wird zunächst ein Unterkühlungssollwert 26 am Verdampfereintritt vorgegeben. Dieser kann beispielsweise 3 K betragen, d. h., die Temperatur am Verdampfereintritt soll 3 K unterhalb der Sättigungstemperatur im Verdampfer 16 liegen. Aus dem an der Druckmesseinrichtung 20 ermittelten Druck wird eine Sättigungstemperatur 28 des Verdampfers 16 ermittelt, da diese eine direkte Funktion des im Verdampfer 16 herrschenden Drucks ist. Die aus der EP 2 224 164 A1 bekannte Regel- und Steuereinrichtung 100 zieht diese Werte heran und bewertet sie in Abhängigkeit von einer zugeführten Wärmeenergie charakteristischen Kenngröße 30 sowie von dem voreingestellten bzw. im Voraus definierten Unterkühlungssollwerts 26, der am Eintritt des Verdampfers 4 vorliegen sollte. Daraus ergibt sich dann ein geeigneter Regelwert für eine Steuerung des Durchflussregelventils 6 der Bypassleitung 4.Various arrangements of the economizer heating surfaces 10, 14 and the evaporator 16 are possible on the flue gas side. Usually, however, the economizer heating surfaces 10, 14 are connected downstream of the evaporator 16 on the flue gas side, since the economizers carry the comparatively coldest flow medium and should use the residual heat in the flue gas duct, not shown in detail. To ensure smooth operation of the waste heat steam generator, there should be sufficient subcooling at the evaporator inlet, i.e. a sufficient difference from the current temperature to the saturation temperature in the evaporator, so that an exclusively liquid flow medium is present. This is the only way to ensure that the flow medium is reliably distributed over the individual evaporator tubes in the evaporator 16. To regulate the subcooling at the evaporator inlet, a pressure measuring device 20 and a temperature measuring device 22 are provided at this point. On the control side, a subcooling setpoint 26 is initially specified at the evaporator inlet. This can be, for example, 3 K, ie the temperature at the evaporator inlet should be 3 K below the saturation temperature in the evaporator 16. A saturation temperature 28 of the evaporator 16 is determined from the pressure determined at the pressure measuring device 20, since this is a direct function of the pressure prevailing in the evaporator 16. The ones from the EP 2 224 164 A1 Known regulating and control device 100 draws on these values and evaluates them as a function of a supplied thermal energy characteristic parameter 30 as well as the preset or predefined setpoint value 26 that should be present at the inlet of the evaporator 4. This then results in a suitable control value for controlling the flow control valve 6 of the bypass line 4.

Erfindungsgemäß ist nun eine, gegenüber der aus der EP 2 224 164 A1 bekannten Regel- und Steuereinrichtung 100, erweiterte Regel- und Steuereinrichtung 100' vorgesehen. Hier erfolgt nun die Steuerung bzw. Regelung der Durchflussmenge der Bypassleitung 4 in Abhängigkeit von einer dem Abhitzedampferzeuger zugeführten Wärmeenergie charakteristischen Kenngröße 30 und in Abhängigkeit von einem Unterkühlungssollwert 26 am Eintritt des Verdampfers 16 und zudem in Abhängigkeit von einem Überhitzungssollwert 110 am Austritt des Verdampfers 16. Der Überhitzungssollwert 110 gibt dabei einen Sollwert für eine Austrittstemperatur des Strömungsmediums am Verdampfer 16 vor. Zur Regelung der Überhitzung am Verdampferaustritt sind an dieser Stelle eine Druckmesseinrichtung 121 sowie eine Temperaturmesseinrichtung 131 vorgesehen, die in der erweiterten Regel- und Steuereinrichtung 100' entsprechend verarbeitet werden.According to the invention is now one, compared to the EP 2 224 164 A1 known regulation and control device 100, extended regulation and control device 100 'is provided. Here, the flow rate of the bypass line 4 is controlled or regulated as a function of a heat energy characteristic parameter 30 supplied to the waste heat steam generator and as a function of a subcooling setpoint 26 at the inlet of the evaporator 16 and also as a function of a superheating setpoint 110 at the outlet of the evaporator 16. The superheating setpoint 110 specifies a setpoint for an outlet temperature of the flow medium at the evaporator 16. To regulate the overheating at the evaporator outlet, a pressure measuring device 121 and a temperature measuring device 131 are provided at this point extended regulating and control device 100 'are processed accordingly.

Der Vollständigkeit halber ist in FIG 1 noch eine Speisewassersteuereinrichtung SWS zur Steuerung des Speisewasserhauptventils 141 skizziert. Die Steuerung erfolgt hier mit einer entsprechenden Speisewassersteuereinrichtung SWS so wie sie beispielsweise bereits aus der WO 2009/150055 A2 bekannt ist. Die Drücke <PS> und <PD> sowie die Temperaturen <TS> und <TD> vor und nach dem Verdampfer werden abgegriffen, von der Speisewassersteuereinrichtung SWS entsprechend verarbeitet und dann als Steuersignal <S> an den Motor 142 des Speisewasserhauptventils weitergegen. Diese Speisewasserregelung ist zwar nicht Gegenstand der vorliegenden Erfindung, die Steuerungen des Durchflussregelventils 6 der Bypassleitung und des Speisewasserhauptventils 141 sind in ihrem jeweiligen Regelverhalten aber aufeinander abzustimmen, um einen sicheren Betrieb des Abhitzedampferezeugers in allen Lastbereichen zu gewährleisten.For the sake of completeness, in FIG 1 another feedwater control device SWS for controlling the main feedwater valve 141 is outlined. The control takes place here with a corresponding feedwater control device SWS, as it is, for example, already from the WO 2009/150055 A2 is known. The pressures <PS> and <PD> as well as the temperatures <TS> and <TD> before and after the evaporator are tapped, processed accordingly by the feed water control device SWS and then passed on as a control signal <S> to the motor 142 of the feed water main valve. Although this feed water control is not the subject of the present invention, the controls of the flow control valve 6 of the bypass line and the main feed water valve 141 must be coordinated in their respective control behavior in order to ensure reliable operation of the waste heat steam generator in all load ranges.

Vor dem Hintergrund physikalischer Grundlagen resultieren bei einem nach dem Zwangdurchlaufprinzip ausgebildeten Abhitzedampferzeuger schwankende Eintrittstemperaturen in Schwankungen der Austrittstemperatur. Dabei münden fallende Eintrittstemperaturen aufgrund sinkender spezifischer Volumina und dem damit unmittelbar verknüpften Rückgang des Verdampferdurchflusses in steigende Temperaturen beziehungsweise Überhitzungen am Verdampferaustritt. Umgekehrt gilt entsprechendes. Im Allgemeinen ist dies ein unerwünschter Effekt während des instationären Betriebs, der durch geeignet implementierte Gegenmaßnahmen im Regelungskonzept für das Speisewasserhauptventil 141 möglichst kompensiert werden sollte. Aufgrund der heute üblich zur Anwendung kommenden hohen Lastgradienten ist dies allerdings nicht immer ausschließlich durch die Speisewasserregelung möglich. Für eine Verbesserung dieser Situation wird die vorliegende Erfindung herangezogen, die nun aber genau den umgekehrten Weg geht und sich diesen zuvor beschriebenen unerwünschten physikalischen Effekt zu Nutze macht. Dabei wird durch gezielte Manipulation beziehungsweise Veränderung der Verdampfereintrittstemperatur in geeigneter Art und Weise auf Abweichungen der Verdampferaustrittstemperatur zum vorgegebenen Sollwert reagiert, um so Schwankungen der Austrittstemperatur möglichst gering zu halten. Sinkt im instationären Fall beispielsweise die Verdampferaustrittstemperatur unerwünscht stark ab, so kann durch eine Reduzierung der Verdampfereintrittstemperatur (Öffnen des Durchflussregelventils 6 der Bypassleitung 4) der Verdampferdurchfluss temporär reduziert werden und somit die Austrittstemperatur gestützt werden. Für den umgekehrten Fall ist die Verdampfereintrittstemperatur zu erhöhen (Schließen des Durchflussregelventils 6 der Bypassleitung 4), um durch eine temporäre Erhöhung des Verdampferdurchflusses einem Anstieg der Verdampferaustrittstemperatur entgegen zu wirken. Hierbei gilt es jedoch zu beachten, dass vor dem Hintergrund thermohydraulischer Gesichtspunkte eine maximale Verdampfereintrittstemperatur nicht überschritten- bzw. eine minimal geforderte Eintrittsunterkühlung nicht unterschritten werden sollte. Darüber hinaus setzt das erfindungsgemäße Verfahren voraus, dass die erweiterte Regel- und Steuereinrichtung 100' auch tatsächlich in der Lage ist, die Verdampfereintrittstemperatur in die gewünschte Richtung zu beeinflussen. Konkret bedeutet dies, dass für eine weitere Reduzierung der Verdampfereintrittstemperatur das Durchflussregelventil 6 nicht schon bereits vollständig geöffnet sein darf, während es für eine Erhöhung nicht vollständig geschlossen sein sollte. Darüber hinaus ist es besonders vorteilhaft für das hier vorgestellte Verfahren, wenn der um die Economizerheizflächen herumgeführte Nebenstrom nicht bereits vor der letzten Economizerstufe, sondern direkt am Verdampfereintritt dem Hauptstrom des Strömungsmediums wieder beigemischt wird, da nur auf diesem Weg die unter Umständen erforderliche schnelle Änderung der Verdampfereintrittstemperatur gewährleistet werden kann. Die Gefahr einer Einbindung des Bypass Stroms am Verdampfereintritt liegt allerdings in einer möglichen Dampfbildung in der letzten Economizerstufe, was es zu vermeiden gilt. Eine Verlagerung des Speisewasserregelventils vom Eintritt der ersten Economizerstufe (so wie in FIG 3 dargestellt) an den Eintritt des Verdampfers (so wie in FIG 1 und 2 dargestellt) kann hier für geeignete Abhilfe sorgen. Durch den damit verbundenen höheren Systemdruck in den Economizerheizflächen findet eine unerwünschte Dampfbildung in der letzten Economizerheizfläche physikalisch bedingt nicht statt.Against the background of physical principles, fluctuating inlet temperatures result in fluctuations in the outlet temperature in a waste heat steam generator designed according to the forced flow principle. Falling inlet temperatures lead to rising temperatures or overheating at the evaporator outlet due to falling specific volumes and the associated decrease in the evaporator flow. The same applies vice versa. In general, this is an undesirable effect during transient operation, which should be compensated as far as possible by appropriately implemented countermeasures in the control concept for the main feed water valve 141. Due to the high load gradients that are commonly used today, however, this is not always possible exclusively through the feed water control. The present invention is used to improve this situation, but it now goes exactly the opposite way and makes use of the undesired physical effect described above makes. In this case, through targeted manipulation or changing of the evaporator inlet temperature, a suitable response is made to deviations in the evaporator outlet temperature from the specified setpoint, in order to keep fluctuations in the outlet temperature as low as possible. If, for example, the evaporator outlet temperature drops undesirably sharply in the transient case, the evaporator flow rate can be temporarily reduced by reducing the evaporator inlet temperature (opening the flow control valve 6 of the bypass line 4) and thus the outlet temperature can be supported. In the opposite case, the evaporator inlet temperature must be increased (closing the flow control valve 6 of the bypass line 4) in order to counteract an increase in the evaporator outlet temperature by temporarily increasing the evaporator flow rate. It should be noted, however, that, in view of the thermohydraulic aspects, the maximum evaporator inlet temperature should not be exceeded or the minimum required inlet subcooling should not be undercut. In addition, the method according to the invention presupposes that the extended regulating and control device 100 ′ is actually able to influence the evaporator inlet temperature in the desired direction. Specifically, this means that for a further reduction in the evaporator inlet temperature, the flow control valve 6 must not already be fully open, while it should not be fully closed for an increase. In addition, it is particularly advantageous for the method presented here if the secondary flow passed around the economizer heating surfaces is mixed back into the main flow of the flow medium not before the last economizer stage, but directly at the evaporator inlet, since only in this way can the rapid change in the under certain circumstances required Evaporator inlet temperature can be guaranteed. The risk of integrating the bypass flow at the evaporator inlet, however, lies in the possible formation of steam in the last economizer stage, which must be avoided. Relocating the feed water control valve from the inlet the first economizer stage (as in FIG 3 shown) to the inlet of the evaporator (as in FIG 1 and 2 shown) can provide a suitable remedy here. Due to the associated higher system pressure in the economizer heating surfaces, undesired steam formation does not take place in the last economizer heating surface for physical reasons.

FIG 2 zeigt nun eine weitere Detaillierung des in FIG 1 gezeigten prinzipiellen Regelungskonzepts. Hier wird zuerst eine Differenz zwischen der ermittelten Überhitzung am Verdampferaustritt und einem Überhitzungssollwert 110 gebildet und anschließend eine zeitliche Änderung dieser Differenz errechnet. Dies geschieht optimalerweise über die Nutzung eines zusätzlichen Differenzierglieds erster Ordnung 151, dessen Eingang mit der Differenz aus Soll- und Istüberhitzung beschaltet wird. Vorteilhafterweise wird der Ausgang dieses Differenzierglieds 151 noch mit dem zeitlich verzögerten Wert 152 der einer zugeführten Wärmeenergie charakteristischen Kenngröße 30 multipliziert und zum Unterkühlungssollwert 26 addiert. Um eine geforderte Mindestunterkühlung am Verdampfereintritt nicht zu unterschreiten, ist diese Summe zusätzlich über ein Max-Auswahl-Element 155 mit der gewünschten Minimalunterkühlung 154 abzusichern. FIG 2 now shows a further detailing of the in FIG 1 shown principle control concept. Here, a difference is first formed between the determined overheating at the evaporator outlet and an overheating setpoint 110 and then a change in this difference over time is calculated. This is done optimally by using an additional first-order differentiator 151, the input of which is connected to the difference between the setpoint and actual overheating. The output of this differentiating element 151 is advantageously multiplied by the time-delayed value 152 of the parameter 30 characteristic of a supplied thermal energy and added to the setpoint value 26 for subcooling. In order not to fall below the required minimum subcooling at the evaporator inlet, this total must also be secured with the desired minimum subcooling 154 via a max selection element 155.

FIG 3 zeigt ein weiteres Ausführungsbeispiel bei dem das Speisewasserregelventil 141 vor der ersten Economizerheizfläche 10 angeordnet ist und die Einbindung 12' der Bypassleitung 4 zwischen den zwei Economizerheizflächen 10 und 14 vorgesehen ist. Die erweiterte Regel- und Steuereinrichtung 100' berücksichtigt im Sinne einer klassischen Zweikreisregelung nun zusätzlich noch im Vergleich zu dem Ausführungsbeispiel in FIG 2 den zeitlich verzögerten Wert 157 der mit Hilfe einer weiteren Meßeinrichtung 156 ermittelte Temperatur am Eintritt des Economizers 14. Dadurch wird gewährleistet, dass trotz des durch den Economizer 14 bedingten zeitlich verzögerten Verhaltens der Temperatur des Strömungsmediums am Verdampfereintritt bei instationärem Anlagenverhalten die Eco-Bypass Regelungeinrichtung 100' möglichst schnell und dennoch gleichzeitig stabil agieren kann. FIG 3 shows a further embodiment in which the feedwater control valve 141 is arranged in front of the first economizer heating surface 10 and the integration 12 'of the bypass line 4 between the two economizer heating surfaces 10 and 14 is provided. The extended regulating and control device 100 'now also takes into account in the sense of a classic two-circuit control in comparison to the exemplary embodiment in FIG 2 the time-delayed value 157 of the temperature at the inlet of the economizer 14 determined with the aid of a further measuring device 156. This ensures that, despite the time-delayed behavior of the temperature of the flow medium at the evaporator inlet caused by the economizer 14, the eco-bypass occurs in the case of transient system behavior Control device 100 'can act as quickly as possible and yet at the same time stably.

Kommt bei einem nach dem Zwangdurchlaufprinzip ausgebildeten Abhitzedampferzeuger das erfindungsgemäße Verfahren zur Anwendung, lassen sich Schwankungen der Überhitzung am Verdampferaustritt wirkungsvoll reduzieren, wie Simulationen eines unterkritischen Verdampferssystems eines solchen zwangdurchströmten Abhitzedampferzeugers gezeigt haben. Die Schwankungen der Verdampferaustrittsüberhitzung belaufen sich dabei ohne Anwendung des hier aufgezeigten Verfahrens auf circa 90K während diese Schwankungen bei Anwendung des erfindungsgemäßen Konzepts auf circa 50K reduziert werden können.If the method according to the invention is used in a waste heat steam generator designed according to the forced flow principle, fluctuations in overheating at the evaporator outlet can be effectively reduced, as simulations of a subcritical evaporator system of such a forced flow waste heat steam generator have shown. The fluctuations in the superheating of the evaporator outlet amount to approximately 90K without using the method shown here, while these fluctuations can be reduced to approximately 50K when using the inventive concept.

Claims (3)

  1. Method for operating a waste heat steam generator, in particular one designed according to the forced flow principle, comprising an evaporator (16) through which a flow medium flows, an economizer with a number of economizer heating surfaces (10, 14), and a bypass line (4) connected in parallel with a number of economizer heating surfaces (10, 14) on the flow medium side, in which a variable (30) that is characteristic of the heat energy supplied to the waste heat steam generator (1) is used for controlling or regulating the flow rate of the bypass line (4), and wherein the regulation or control of the flow rate of the flow medium through the bypass line (4) is carried out as a function of a supercooling setpoint (26) at the inlet of the evaporator (16),
    wherein the regulation or control of the flow rate of the flow medium through the bypass line (4) is additionally carried out as a function of a superheating setpoint (110) at the outlet of the evaporator (16), characterized in that the flow rate of the flow medium through the bypass line (4) is increased when the superheating setpoint (110) is undershot, and the flow rate of the flow medium through the bypass line (4) is lowered when the superheating setpoint (110) is exceeded.
  2. Method according to Claim 1,
    wherein the superheating setpoint (110) is predefined as a setpoint for an outlet temperature of the flow medium at the evaporator (16).
  3. Method according to one of Claims 1 to 2, wherein the supercooling setpoint (26) is predefined as a setpoint for an inlet temperature of the flow medium at the evaporator (16).
EP16753305.8A 2016-08-05 2016-08-05 Method for operating a waste heat steam generator Active EP3472514B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2016/068732 WO2018024340A1 (en) 2016-08-05 2016-08-05 Method for operating a waste heat steam generator

Publications (2)

Publication Number Publication Date
EP3472514A1 EP3472514A1 (en) 2019-04-24
EP3472514B1 true EP3472514B1 (en) 2021-02-24

Family

ID=56694118

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16753305.8A Active EP3472514B1 (en) 2016-08-05 2016-08-05 Method for operating a waste heat steam generator

Country Status (8)

Country Link
US (1) US10948178B2 (en)
EP (1) EP3472514B1 (en)
JP (1) JP2019527808A (en)
KR (1) KR102245954B1 (en)
CN (1) CN109563985B (en)
CA (1) CA3032784C (en)
ES (1) ES2870673T3 (en)
WO (1) WO2018024340A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3647657A1 (en) * 2018-10-29 2020-05-06 Siemens Aktiengesellschaft Feed water control for forced throughput by-product steam generator

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3818872A (en) * 1973-06-29 1974-06-25 Combustion Eng Economizer bypass for increased furnace wall protection
JPS56165204U (en) 1980-05-12 1981-12-08
JPS6291703A (en) 1985-10-16 1987-04-27 株式会社日立製作所 Steaming preventive device for fuel economizer
JPH0275802A (en) * 1988-09-13 1990-03-15 Toshiba Corp Waste heat recovery boiler
WO2003024559A1 (en) * 2001-09-14 2003-03-27 Alstom Technology Ltd Method and device for thermal de-gassing
EP2255076B1 (en) * 2008-02-26 2015-10-07 Alstom Technology Ltd Method for regulating a boiler and control circuit for a boiler
EP2194320A1 (en) 2008-06-12 2010-06-09 Siemens Aktiengesellschaft Method for operating a once-through steam generator and once-through steam generator
EP2224164A1 (en) * 2008-11-13 2010-09-01 Siemens Aktiengesellschaft Method of operating a waste heat steam generator
DE102010028426A1 (en) * 2010-04-30 2011-11-03 Siemens Aktiengesellschaft steam generator
US10132492B2 (en) * 2013-10-02 2018-11-20 General Electric Company System and method for drum level control in a drum of a heat recovery steam generator
MX2016014151A (en) * 2014-04-28 2017-02-15 General Electric Technology Gmbh System and method for fluid medium preheating.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP2019527808A (en) 2019-10-03
KR102245954B1 (en) 2021-04-30
US20190338944A1 (en) 2019-11-07
CA3032784C (en) 2020-08-18
WO2018024340A1 (en) 2018-02-08
EP3472514A1 (en) 2019-04-24
KR20190031557A (en) 2019-03-26
CN109563985A (en) 2019-04-02
US10948178B2 (en) 2021-03-16
ES2870673T3 (en) 2021-10-27
CN109563985B (en) 2021-06-25
CA3032784A1 (en) 2018-02-08

Similar Documents

Publication Publication Date Title
EP2359058B1 (en) Method of operating a waste heat steam generator
DE2753673C2 (en)
DE2853919A1 (en) POWER PLANT WITH AT LEAST ONE STEAM TURBINE, A GAS TURBINE AND A HEAT RECOVERY STEAM GENERATOR
DE1147239B (en) Steam generator with at least two combustion chamber systems
DE102010041964A1 (en) Method for regulating a short-term increase in output of a steam turbine
EP3472514B1 (en) Method for operating a waste heat steam generator
DE968350C (en) Procedure for commissioning a steam generator
CH621855A5 (en) Method for regulating turbo-compressors
CH682185A5 (en)
DE2923288C2 (en)
EP2676072B1 (en) Method for operating a once-through steam generator
DE102010030944A1 (en) Gas oven operating method, involves adjusting additive gas flow in addition to normal gas flow, and performing heating operation at beginning of heating process where gas flows are supplied to burner
EP3280884B1 (en) Method for cooling a steam turbine
DE1242633B (en) Procedure for starting up a once-through steam generator from a warm state
EP0622586B1 (en) Method of operating a pipe and apparatus for carrying out the method
DE102009005639B4 (en) Method for controlling the heating power of a vehicle heater
DE4342531C1 (en) Method and apparatus for regulating the flow in a distant-heating transfer station
DE102013226551A1 (en) Control device and method comprising a steam turbine
DE102022003809A1 (en) Method for reducing space heating costs and space heating system therefor
EP2909535B1 (en) Method for operating a gas cooking appliance and gas cooker
DE928381C (en) Method for regulating a gas turbine system operating with constant pressure combustion in the sliding pressure method
DE3249437C2 (en) Output control supercritical-pressure steam generator-turbine
CH248086A (en) Steam power plant with feed water storage and multi-stage preheating of the feed water.
DE102017204043A1 (en) A sectional boiler
DE102013224297A1 (en) Gas oxidation plant and method for its operation

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190109

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201027

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1364918

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016012453

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210525

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210524

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210624

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210624

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2870673

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20211027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016012453

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

26N No opposition filed

Effective date: 20211125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210624

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210805

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210805

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1364918

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160805

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230825

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230822

Year of fee payment: 8

Ref country code: ES

Payment date: 20230914

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230828

Year of fee payment: 8

Ref country code: BE

Payment date: 20230825

Year of fee payment: 8