EP3469302B1 - Method for optically measuring the welding-in depth - Google Patents

Method for optically measuring the welding-in depth Download PDF

Info

Publication number
EP3469302B1
EP3469302B1 EP18740759.8A EP18740759A EP3469302B1 EP 3469302 B1 EP3469302 B1 EP 3469302B1 EP 18740759 A EP18740759 A EP 18740759A EP 3469302 B1 EP3469302 B1 EP 3469302B1
Authority
EP
European Patent Office
Prior art keywords
measuring
machining
measuring light
workpiece
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18740759.8A
Other languages
German (de)
French (fr)
Other versions
EP3469302A1 (en
Inventor
Matthias STREBEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Precitec GmbH and Co KG
Original Assignee
Precitec GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=62916626&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3469302(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Precitec GmbH and Co KG filed Critical Precitec GmbH and Co KG
Priority to EP21169144.9A priority Critical patent/EP3901570B1/en
Priority to PL18740759T priority patent/PL3469302T3/en
Publication of EP3469302A1 publication Critical patent/EP3469302A1/en
Application granted granted Critical
Publication of EP3469302B1 publication Critical patent/EP3469302B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/22Measuring arrangements characterised by the use of optical techniques for measuring depth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/12Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to investigating the properties, e.g. the weldability, of materials
    • B23K31/125Weld quality monitoring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/303Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces using photoelectric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • G01B9/02091Tomographic interferometers, e.g. based on optical coherence

Definitions

  • the invention relates to a method for the optical measurement of the welding depth during welding by means of laser beams.
  • measuring light is split into a measuring light beam, hereinafter also referred to as measurement beam for short, and a reference light beam, hereinafter also referred to as reference beam for short becomes.
  • the measuring and reference light beams reflected back from a measuring arm and a reference arm are superimposed on one another in order to determine the desired distance information from the path differences between the measuring and reference arm.
  • the optimal position of the measuring light beam relative to the machining beam for reliable welding depth measurement depends on different process parameters - such as the feed speed and the material of the weld metal - and can therefore not be determined with sufficient accuracy using the indirect method for determining the position.
  • the DE 101 55 203 A1 describes a laser processing device with an observation device, which is designed as a short-coherence interferometer for the acquisition of surface measurement data.
  • a measurement at the processing point can also be used to monitor and regulate the depth of focus, for example. How the measuring point, that is to say the point of impact of the measuring beam, is to be aligned relative to the processing point in order to obtain a reliable and precise measurement of the focus or keyhole depth is not described.
  • the DE 10 2015 012 565 B3 relates to a device and method for increasing the accuracy of an OCT measuring system for laser material processing and describes the positioning of a measuring beam generated by an optical coherence tomograph relative to the position of the laser beam during processing with the aid of a spatially resolving sensor such as a camera. In doing so, taking into account a measuring beam position on a workpiece, a relative offset between the processing beam and the measuring beam is determined from the spatially resolved information provided by the sensor. A positioning of the measuring beam relative to the vapor capillary, i.e. to the keyhole, is not described.
  • the DE 10 2013 015 656 B4 relates to a method for measuring the welding depth in which two measuring beams are guided through processing optics.
  • a first measuring beam is directed onto the bottom of the keyhole in order to measure the distance to the keyhole bottom, and a second measuring beam is directed onto the surface of the component in order to measure the distance from the component surface.
  • the welding depth can then be determined from these two distances. It is not described how the measurement beam is aligned with the position of the keyhole.
  • US 2016/0039045 A1 discloses a method for measuring a depth of a keyhole using short coherence interferometry.
  • DE 10 2014 0007 887 A1 discloses a measuring device for acquiring surface data such as a keyhole depth of a workpiece to be processed by a laser processing device using an optical coherence tomograph.
  • EP 1 977 850 A1 discloses a method for material processing using a high-energy processing beam and an optical coherence tomograph for determining a surface topography of a workpiece. Based on this, the object of the invention is to provide a method for optical measurement of the welding depth, which enables the measuring light beam to be precisely positioned at the position of the keyhole and thus enables a reliable measurement of the welding depth during laser processing.
  • a measuring light beam of a sensor system in particular an OCT-based sensor system, is coupled into a processing beam path of the working laser beam in a laser processing head.
  • the measuring light beam is bundled or focused on the surface of a workpiece by focusing optics of the machining beam path in order to form a measuring light spot there.
  • the measuring light beam reflected on the surface of the workpiece in the measuring light spot is fed back to a measuring and evaluation unit of the sensor system in order to obtain information about the distance of the surface of the workpiece from any reference position, in particular from the laser processing head.
  • the position of the measuring light spot on the surface of the workpiece is guided over the vapor capillary both in the welding direction and across it.
  • the position of the steam capillary relative to the point of impact of the working laser beam is determined from the surface profile of the workpiece in the area of the steam capillary.
  • the measuring light spot is then moved into the determined position of the vapor capillary to measure the welding depth, so that the measurement light beam is precisely aligned with the vapor capillary, i.e. the keyhole, whereby a reliable and precise measurement of the keyhole depth and thus the welding depth is ensured.
  • the lowest point of the steam capillary is determined as the position of the steam capillary relative to the point of impact of the working laser beam. This further increases the accuracy of the welding depth measurement, since the depth of the vapor capillary, i.e. the keyhole, essentially corresponds to the depth of the weld pool in the interaction zone between the working laser beam and the workpiece.
  • the measuring light spot is guided on linear paths over the vapor capillary, the surface profile being determined from the measurement data along the linear paths by adapting the curve. This results in a particularly simple and quick determination.
  • the surface profile is determined from the measurement data along the linear path transverse to the welding direction by curve fitting according to a Gaussian distribution, while the surface profile is determined from the measurement data along the linear path in the welding direction by curve fitting according to a Maxwell-Boltzmann distribution.
  • An alternative embodiment of the invention is characterized in that the measuring light spot is guided on spiral paths over the vapor capillary in order to then determine the optimal measuring spot position from the distance measuring data.
  • the present invention enables not only high-quality laser processing, in particular welds, but also reliable documentation of the welding depth over the entire weld seam for quality control and assurance.
  • the respective position of the vapor capillary relative to the point of impact of the working laser beam is determined for specified process parameters of various machining processes during test machining and is stored as measuring spot positions for these machining processes.
  • the measurement spot position stored for the corresponding process parameters is adapted to the respective feed direction.
  • a corresponding actuator system can adapt the previously determined and stored ideal positions for the measuring light beam for the welding depth measurement to the feed direction.
  • the method according to the invention is expediently carried out with a device for measuring the welding depth, in particular during welding, drilling or ablation by means of a working laser beam, which has the following: a laser processing head through which a processing beam path with focusing optics is guided to focus the working laser beam on a workpiece, a sensor system for generating a measuring light beam which can be coupled into the machining beam path in the laser machining head and which is bundled or bundled into a measuring light spot on a surface of the workpiece by the focusing optics of the machining beam path can be focused, and an actuator which has a deflection unit for the measuring light beam.
  • the sensor system and the actuator are configured in such a way that they can carry out a method according to the invention for measuring the welding depth.
  • the device for measuring the welding depth comprises a sensor system 10 which operates on the principle of optical coherence tomography, which makes use of the coherence properties of light with the aid of an interferometer.
  • the sensor system 10 comprises a measurement and evaluation unit 12 which has a broadband light source (superluminescent diode, SLD; swept source light sources (spectrally tunable light sources) or the like), the measurement light of which is coupled into an optical waveguide 14.
  • SLD superluminescent diode
  • swept source light sources spectrally tunable light sources
  • the measuring light is split in a reference arm 18 and a measuring arm 20, which comprises an optical waveguide 22 and a measuring light beam path 24 which runs through a laser processing head 26.
  • the measuring light beam path 24 comprises an optical system for coupling a measuring light beam 28 into a processing beam path 30 in the laser processing head 26.
  • the optical system for coupling the measuring light beam 28 into the processing beam path 30 comprises, as in particular in FIG Figure 2 What can be seen is a collimator optics 32 which collimates the measuring light beam 28 emerging from the optical waveguide 22 so that it can be coupled into the processing beam path 30 in the laser processing head 26 via a partially transparent mirror 34 and superimposed on a working laser beam 36.
  • the working laser beam 36 which is fed to the laser processing head 26 via a corresponding optical waveguide 38, for example, is collimated by collimator optics 40 and directed via the partially transparent mirror 34 to focusing optics 42, which bundle the working laser beam 36 together with the measuring light beam 28 onto the surface of a workpiece 44 or focused.
  • a protective glass 46 is arranged between the focusing optics 42 and the workpiece 44.
  • an actuator with a deflection unit 48 which divides the measuring light beam 28 into two intersecting ones Directions, e.g. B. can move in the x and y directions over the surface of the workpiece in order to scan a surface contour of the workpiece 44 and detect a corresponding surface profile.
  • the deflection unit 48 can be used as a galvano scanner with two mutually essentially perpendicular scanning directions with reflective optics or with transmissive optics, for example Be formed prisms.
  • the deflection unit 48 is a device with optics that can be displaced in two directions.
  • the deflection unit 48 is controlled by a control unit 50 in such a way that it moves the measuring light beam 28 over the surface of the workpiece 44 to detect a surface profile during a test or measuring welding run, or during a production welding process, the measuring light beam 38 and thus the measuring light spot on the one for the process parameters Keyhole position determined during the welding process.
  • the control unit 50 can be provided as an independent unit which is connected to the sensor system 10, in particular to its measuring and evaluation unit 12, as indicated schematically by the inputs and outputs A of the measuring and evaluation unit 12 and control unit 50, or in the sensor system 10 can be integrated.
  • the interaction zone between the working laser beam 36 and the workpiece 44 has an area of liquid melt 52, i.e. a weld pool, which surrounds a vapor capillary 54 which is located in the impingement area 56 of the working laser beam 36 on the workpiece 44.
  • the depth of the steam capillary 54 essentially corresponds to the depth of the weld pool, except for a correction factor.
  • the feed direction feed direction V in Figure 3 ; x-direction in Figure 4
  • Behind the interaction zone between the laser beam 36 and the workpiece 44 is then the solidified melt 58 of the finished weld seam.
  • the measuring light spot generated thereby on the workpiece 44 during the welding process on a linear path 60 is determined during a test or measuring welding run with the aid of the deflection unit 48, 62 moved both in the welding direction and perpendicular thereto over the vapor capillary 54, that is to say over the keyhole.
  • the measuring light beam 28, which is in the processing beam path 30 is coupled, bundled or focused by the focusing optics 42 into a measuring light spot on the surface of a work back 44 and guided over the surface of the workpiece 44 by the deflection unit 48 in accordance with the selected scanning paths.
  • the measuring light beam 28 reflected on the surface of the workpiece 44 is superimposed in the beam splitter 16, which includes a fiber coupler, with the reference light beam from the reference arm 18 and fed back to the measuring and evaluation unit 20, which is based on the information about the path differences in the reference arm 18 and measuring arm 20 information about the distance of the surface of the workpiece 44 from any reference position above the workpiece 44, for example from the position of the laser processing head 26 or the position of the focusing optics 42 therein.
  • the surface profile of the workpiece 44 along the path 62, that in the area of the vapor capillary 54, the depth profile of which is perpendicular to the feed direction V, is symmetrical.
  • the distance data are used to create a symmetrical curve for curve adaptation.
  • the curve adaptation can expediently be carried out by means of a Gaussian distribution.
  • y is the position of the measuring light spot on the workpiece in the y direction, i.e. perpendicular to the feed direction V (see Figure 3 ), where ⁇ is the expected value and ⁇ 2 is the variance of the distribution.
  • the depth profile of the steam capillary 54 in the feed direction is as in FIG Figure 5b can be seen, asymmetrical and corresponds roughly to the course of a Maxwell-Boltzmann distribution.
  • f x k 1 ⁇ x 2 ⁇ e - k 2 ⁇ x 2
  • x reflects the position of the measuring beam 28 on the workpiece surface in the feed direction and k1 and k2 are parameters of the distribution. The maximum of the distribution can be determined from the parameters.
  • the position of the lowest point of the vapor capillary 54 relative to the impingement area 56 of the working laser beam 36 is known, so that the subsequent machining of workpieces 44 with a laser machining process, which is carried out with the same process parameters as the measurement welding run, the measurement light beam 28 exactly into the keyhole, i.e. can be directed into the vapor capillary 54 in order to enable a reliable and accurate measurement of the welding depth.
  • the position of the keyhole 54 is stored relative to the impingement area 56 of the working laser beam 36 together with the associated process parameters. This process, i.e. the determination of the position of the vapor capillary 54, is always carried out when a welding process with process parameters is to be carried out with the laser processing head 26 for which an optimal positioning of the measuring light spot relative to the vapor capillary 54 has not yet been determined.
  • the position of the keyhole is saved together with the process parameters each time, so that over time the positions of the keyhole are known for a large number of different laser machining processes, so that a new test weld is required when switching from one laser machining process to another when this laser machining process has never been performed by the laser machining head.
  • the determination of the position of the steam capillary has to be carried out repeatedly, even if this has already been carried out and stored with the given welding parameters.
  • external disturbances such as temperature changes can lead to a Drift, that is to say to a change in the scanning position of the deflection unit 48, that is to say the position of the measuring light spot, so that the measuring light beam 28 no longer strikes the vapor capillary 54.
  • Drift that is to say to a change in the scanning position of the deflection unit 48, that is to say the position of the measuring light spot, so that the measuring light beam 28 no longer strikes the vapor capillary 54. Because of this drift, it may be necessary to repeatedly determine the position of the steam capillary 54 at specific time intervals, for example once a day or once a week.
  • the positions of the vapor capillary for the various laser machining processes are advantageously stored in a memory integrated in the control unit 50 or in a memory in the sensor system 10.
  • the control unit 50 can also be an integral part of the sensor system 10; This means that welds with different process parameters can be carried out one after the other on a system, the measuring light spot, that is to say the measuring light beam 28, being set to the previously determined positions of the vapor capillary 54 by the deflection unit 48.
  • the previously determined and saved ideal positions for the measuring light spot are adapted to the changed feed direction.
  • the approximate position of the vapor capillary 54 can first be determined from a three-dimensional funnel-shaped surface or depth profile, in order to then determine the surface or depth profile in a second measuring step by means of a narrow spiral-shaped path in the area of the impact area 56 of the To determine the working laser beam 36, from which the exact position of the vapor capillary 54 can then be determined.

Description

Die Erfindung betrifft ein Verfahren zur optischen Messung der Einschweißtiefe beim Schweißen mittels Laserstrahlen.The invention relates to a method for the optical measurement of the welding depth during welding by means of laser beams.

Es ist bekannt zur optischen Messung der Einschweißtiefe optische Sensoren zur Abstandsmessung einzusetzen, die nach dem Prinzip der optische Kurzkohärenz Interferometrie arbeiten, bei dem Messlicht in einen Messlichtstrahl, im Folgenden auch kurz Messstrahl genannt, und einen Referenzlichtstrahl, im Folgenden auch kurz Referenzstrahl genannt, aufgespalten wird. Die aus einem Messarm und einem Referenzarm zurückreflektierten Mess- und Referenzlichtstrahlen werden einander überlagert, um aus den Wegunterschieden zwischen Mess- und Referenzarm die gewünschte Abstandsinformation zu ermitteln.It is known to optically measure the welding depth to use optical sensors for distance measurement that work according to the principle of optical short-coherence interferometry, in which the measuring light is split into a measuring light beam, hereinafter also referred to as measurement beam for short, and a reference light beam, hereinafter also referred to as reference beam for short becomes. The measuring and reference light beams reflected back from a measuring arm and a reference arm are superimposed on one another in order to determine the desired distance information from the path differences between the measuring and reference arm.

Der Einsatzbereich erstreckt sich dabei auf Bearbeitungsprozesse, die eine genaue und automatisierte Positionierung des Messlichtstrahls auf eine Position im Bereich der Wechselwirkungszone zwischen Arbeitslaserstrahl und Werkstück, insbesondere auf die vom Arbeitslaserstrahl in seinem Auftreffpunkt erzeugte Dampfkapillare, das sogenannte Keyhole erfordern, wie z.B. Laserschweißen mit in-line Überwachung der Einschweißtiefe zu deren Regelung.The area of application extends to machining processes that require an exact and automated positioning of the measuring light beam to a position in the area of the interaction zone between the working laser beam and the workpiece, in particular to the vapor capillary generated by the working laser beam at its point of impact, the so-called keyhole, such as laser welding with in- line Monitoring of the welding depth to regulate it.

Bekannte technische Lösungen zur genauen Positionierung eines optischen Messlichtstrahls beim Laserschweißen basieren auf kamerabasierten Verfahren zur Ermittlung der Messstrahlposition relativ zum Arbeitslaserstrahl. Diese Verfahren beruhen auf einer indirekten Ermittlung der Position des Messlichtstrahls auf der Werkstückoberfläche, die für die Einschweißtiefenmessung benötigt wird.Known technical solutions for the precise positioning of an optical measuring light beam during laser welding are based on camera-based methods for determining the measuring beam position relative to the working laser beam. These methods are based on an indirect determination of the position of the measuring light beam on the workpiece surface, which is required for the welding depth measurement.

Die optimale Position des Messlichtstrahls relativ zum Bearbeitungsstrahl für eine zuverlässige Einschweißtiefenmessung ist jedoch von unterschiedlichen Prozessparametern - wie z.B. der Vorschubgeschwindigkeit und dem Material des Schweißguts - abhängig und kann daher mit den indirekten Verfahren zur Positionsermittlung nicht hinreichend genau bestimmt werden.The optimal position of the measuring light beam relative to the machining beam for reliable welding depth measurement, however, depends on different process parameters - such as the feed speed and the material of the weld metal - and can therefore not be determined with sufficient accuracy using the indirect method for determining the position.

Die DE 101 55 203 A1 beschreibt eine Laserbearbeitungsvorrichtung mit einer Beobachtungsvorrichtung, die als Kurzkohärenzinterferometer zur Erfassung von Oberflächenmessdaten ausgebildet ist. Durch eine Messung an der Bearbeitungsstelle kann z.B. auch die Fokustiefe überwacht und geregelt werden. Wie die Messstelle, also der Auftreffpunkt des Messstrahls relativ zur Bearbeitungsstelle auszurichten ist, um eine verlässliche und genaue Messung der Fokus- oder Keyholetiefe zu erhalten, ist nicht beschrieben.The DE 101 55 203 A1 describes a laser processing device with an observation device, which is designed as a short-coherence interferometer for the acquisition of surface measurement data. A measurement at the processing point can also be used to monitor and regulate the depth of focus, for example. How the measuring point, that is to say the point of impact of the measuring beam, is to be aligned relative to the processing point in order to obtain a reliable and precise measurement of the focus or keyhole depth is not described.

Die DE 10 2015 012 565 B3 betrifft eine Vorrichtung und Verfahren zur Erhöhung der Genauigkeit eines OCT-Messsystems für die Lasermaterialbearbeitung und beschreibt die Positionierung eines von einem optischen Kohärenztomographen erzeugten Messstrahls relativ zur Position des Laserstrahls bei der Bearbeitung mit Hilfe eines ortsauflösenden Sensors, wie einer Kamera. Dabei wird unter Berücksichtigung einer Messstrahlposition auf einem Werkstück ein Relativversatz zwischen dem Bearbeitungsstrahl und dem Messstrahl aus der vom Sensor bereitgestellten ortsaufgelösten Information bestimmt. Eine Positionierung des Messstrahls relativ zur Dampfkapillare, also zum Keyhole ist nicht beschrieben.The DE 10 2015 012 565 B3 relates to a device and method for increasing the accuracy of an OCT measuring system for laser material processing and describes the positioning of a measuring beam generated by an optical coherence tomograph relative to the position of the laser beam during processing with the aid of a spatially resolving sensor such as a camera. In doing so, taking into account a measuring beam position on a workpiece, a relative offset between the processing beam and the measuring beam is determined from the spatially resolved information provided by the sensor. A positioning of the measuring beam relative to the vapor capillary, i.e. to the keyhole, is not described.

Die DE 10 2013 015 656 B4 betrifft ein Verfahren zur Messung der Einschweißtiefe, bei dem zwei Messstrahlen durch eine Bearbeitungsoptik geführt werden. Ein erster Messstrahl wird auf den Grund des Keyholes gerichtet, um den Abstand zum Keyholeboden zu messen, und ein zweiter Messstrahl wird auf die Oberfläche des Bauteils gerichtet, um den Abstand zur Bauteiloberfläche zu messen. Aus diesen beiden Abständen kann dann die Einschweißtiefe bestimmt werden. Wie die Ausrichtung des Messstrahls auf die Position des Keyholes erfolgt, ist nicht beschrieben.The DE 10 2013 015 656 B4 relates to a method for measuring the welding depth in which two measuring beams are guided through processing optics. A first measuring beam is directed onto the bottom of the keyhole in order to measure the distance to the keyhole bottom, and a second measuring beam is directed onto the surface of the component in order to measure the distance from the component surface. The welding depth can then be determined from these two distances. It is not described how the measurement beam is aligned with the position of the keyhole.

Alle bekannten Verfahren beruhen wie oben beschrieben auf einer indirekten Ermittlung der Position des Messstrahls auf dem Werkstück für die Einschweißtiefenmessung. Auf diese Weise kann jedoch nicht die genaue Lage relativ zur Dampfkapillare, also zum Keyhole bestimmt werden, da es schwierig ist mit bildgebenden Verfahren die genaue Lage des Keyholes im Bearbeitungsbereich, also im Auftreffbereich des Arbeitslaserstrahls zu erfassen.As described above, all known methods are based on an indirect determination of the position of the measuring beam on the workpiece for the welding depth measurement. In this way, however, the exact position relative to the vapor capillary, i.e. the keyhole, cannot be determined, since it is difficult to use imaging methods to detect the exact position of the keyhole in the processing area, i.e. in the area of impact of the working laser beam.

US 2016/0039045 A1 offenbart ein Verfahren zur Messung einer Tiefe eines Keyholes mittels Kurzkohärenz-Interferometrie. US 2016/0039045 A1 discloses a method for measuring a depth of a keyhole using short coherence interferometry.

DE 10 2014 0007 887 A1 offenbart eine Messvorrichtung zum Erfassen von Oberflächendaten wie einer Keyhole-Tiefe eines durch eine Laserbearbeitungsvorrichtung zu bearbeitenden Werkstücks unter Verwendung eines optischen Kohärenztomographen. DE 10 2014 0007 887 A1 discloses a measuring device for acquiring surface data such as a keyhole depth of a workpiece to be processed by a laser processing device using an optical coherence tomograph.

EP 1 977 850 A1 offenbart ein Verfahren zu Materialbearbeitung unter Verwendung eines hochenergetischen Bearbeitungsstrahls und eines optischen Kohärenztomographen zum Ermitteln einer Oberflächentopographie eines Werkstücks.Davon ausgehend liegt der Erfindung die Aufgabe zugrunde, ein Verfahren zur optischen Messung der Einschweißtiefe bereitzustellen, das eine genaue Positionierung des Messlichtstrahls auf die Position des Keyholes und damit eine zuverlässige Messung der Einschweißtiefe bei der Laserbearbeitung ermöglicht. EP 1 977 850 A1 discloses a method for material processing using a high-energy processing beam and an optical coherence tomograph for determining a surface topography of a workpiece. Based on this, the object of the invention is to provide a method for optical measurement of the welding depth, which enables the measuring light beam to be precisely positioned at the position of the keyhole and thus enables a reliable measurement of the welding depth during laser processing.

Diese Aufgabe wird durch das Verfahren nach Patentanspruch 1 gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind in den Unteransprüchen beschrieben.This object is achieved by the method according to claim 1. Advantageous refinements and developments of the invention are described in the subclaims.

Erfindungsgemäß wird also zur Messung der Einschweißtiefe beim Schweißen mittels eines Arbeitslaserstrahls ein Messlichtstrahl eines Sensorsystems, insbesondere eines auf OCT Basis arbeitenden Sensorsystems in einen Bearbeitungsstrahlengang des Arbeitslaserstrahls in einem Laserbearbeitungskopf eingekoppelt. Der Messlichtstrahl wird von einer Fokussieroptik des Bearbeitungsstrahlengangs auf die Oberfläche eines Werkstücks gebündelt oder fokussiert, um dort einen Messlichtfleck zu bilden. Der an der Oberfläche des Werkstücks im Messlichtfleck reflektierte Messlichtstrahl wird zu einer Mess- und Auswerteeinheit des Sensorsystems zurückgeführt, um Information über den Abstand der Oberfläche des Werkstücks von einer beliebigen Referenzposition, insbesondere vom Laserbearbeitungskopf zu erhalten. Um ein Oberflächenprofil des Werkstücks im Bereich der Dampfkapillare zu erhalten, wird die Position des Messlichtflecks auf der Oberfläche des Werkstücks sowohl in Schweißrichtung als auch quer dazu über die Dampfkapillare geführt. Aus dem Oberflächenprofil des Werkstücks im Bereich der Dampfkapillare wird die Position der Dampfkapillare relativ zum Auftreffpunkt des Arbeitslaserstrahls ermittelt. Bei einem anschließend durchgeführten Laserbearbeitungsprozess wird dann der Messlichtfleck zur Messung der Einschweißtiefe in die ermittelte Position der Dampfkapillare bewegt, so dass der Messlichtstrahl präzise auf die Dampfkapillare, also das Keyhole ausgerichtet ist, wodurch eine zuverlässige und genaue Messung der Keyholetiefe und damit der Einschweißtiefe sichergestellt wird.According to the invention, to measure the welding depth during welding by means of a working laser beam, a measuring light beam of a sensor system, in particular an OCT-based sensor system, is coupled into a processing beam path of the working laser beam in a laser processing head. The measuring light beam is bundled or focused on the surface of a workpiece by focusing optics of the machining beam path in order to form a measuring light spot there. The measuring light beam reflected on the surface of the workpiece in the measuring light spot is fed back to a measuring and evaluation unit of the sensor system in order to obtain information about the distance of the surface of the workpiece from any reference position, in particular from the laser processing head. In order to obtain a surface profile of the workpiece in the area of the vapor capillary, the position of the measuring light spot on the surface of the workpiece is guided over the vapor capillary both in the welding direction and across it. The position of the steam capillary relative to the point of impact of the working laser beam is determined from the surface profile of the workpiece in the area of the steam capillary. In a subsequent laser machining process, the measuring light spot is then moved into the determined position of the vapor capillary to measure the welding depth, so that the measurement light beam is precisely aligned with the vapor capillary, i.e. the keyhole, whereby a reliable and precise measurement of the keyhole depth and thus the welding depth is ensured.

Bei einer vorteilhaften Ausgestaltung vorgesehen, dass als Position der Dampfkapillare relativ zum Auftreffpunkt des Arbeitslaserstrahls der tiefste Punkt der Dampfkapillare ermittelt wird. Hierdurch wird die Genauigkeit der Einschweißtiefenmessung weiter erhöht, da die Tiefe der Dampfkapillare, also des Keyholes im Wesentlichen der Tiefe des Schweißbads in der Wechselwirkungszone zwischen Arbeitslaserstrahl und Werkstück entspricht.In an advantageous embodiment it is provided that the lowest point of the steam capillary is determined as the position of the steam capillary relative to the point of impact of the working laser beam. This further increases the accuracy of the welding depth measurement, since the depth of the vapor capillary, i.e. the keyhole, essentially corresponds to the depth of the weld pool in the interaction zone between the working laser beam and the workpiece.

Zweckmäßiger Weise ist vorgesehen, dass der Messlichtfleck auf linearen Bahnen über die Dampfkapillare geführt wird, wobei das Oberflächenprofil aus den Messdaten entlang der linearen Bahnen durch Kurvenanpassung bestimmt wird. Hierdurch ergibt sich eine besonders einfache und schnelle Bestimmung.It is expediently provided that the measuring light spot is guided on linear paths over the vapor capillary, the surface profile being determined from the measurement data along the linear paths by adapting the curve. This results in a particularly simple and quick determination.

Insbesondere wird das Oberflächenprofil aus den Messdaten entlang der linearen Bahn quer zur Schweißrichtung durch eine Kurvenanpassung gemäß einer Gaußverteilung bestimmt während das Oberflächenprofil aus den Messdaten entlang der linearen Bahn in Schweißrichtung durch eine Kurvenanpassung gemäß einer Maxwell-Boltzmann-Verteilung bestimmt wird.In particular, the surface profile is determined from the measurement data along the linear path transverse to the welding direction by curve fitting according to a Gaussian distribution, while the surface profile is determined from the measurement data along the linear path in the welding direction by curve fitting according to a Maxwell-Boltzmann distribution.

Eine alternative Ausführungsform der Erfindung zeichnet sich dadurch aus, dass der Messlichtfleck auf spiralförmigen Bahnen über die Dampfkapillare geführt wird, um anschließend aus den Abstandsmessdaten die optimale Messfleckposition zu ermitteln. Grundsätzlich ist es auch möglich, die Einschweißtiefe entlang einer Schweißnaht während des Schweißprozesses aus den Oberflächenprofilen zu ermitteln. Die würde jedoch zu einer diskontinuierlichen Überwachung der Einschweißtiefe entlang einer Schweißnaht führen. Daher ist es erfindungsgemäß vorgesehen, dass die Position der Dampfkapillare relativ zum Auftreffpunkt des Arbeitslaserstrahls für vorgegebene Prozessparameter eines Bearbeitungsprozesses während einer Testbearbeitung ermittelt und als Messfleckposition für diesen Bearbeitungsprozess gespeichert wird. Auf diese Weise wird erreicht, dass bei Bearbeitungsprozessen, die durch die Prozessparameter klassifiziert sind, für die die Messfleckposition bestimmt wurde, die Einschweißtiefe quasi-kontinuierlich überwacht und gegebenenfalls nachgeregelt werden kann. Somit ermöglicht die vorliegende Erfindung durch die Nachregelung der Einschweißtiefe nicht nur qualitativ hochwertige Laserbearbeitungen, insbesondere Schweißungen, sondern auch eine zuverlässige Dokumentation der Einschweißtiefe über die gesamte Schweißnaht zur Qualitätskontrolle und -sicherung.An alternative embodiment of the invention is characterized in that the measuring light spot is guided on spiral paths over the vapor capillary in order to then determine the optimal measuring spot position from the distance measuring data. In principle, it is also possible to determine the welding depth along a weld seam from the surface profiles during the welding process. However, this would lead to discontinuous monitoring of the welding depth along a weld seam. It is therefore provided according to the invention that the position of the vapor capillary relative to the point of impact of the working laser beam for predetermined process parameters of a machining process is determined during a test machining and is stored as the measurement spot position for this machining process. In this way it is achieved that in machining processes that are classified by the process parameters, the measuring spot position for has been determined, the welding depth can be monitored quasi-continuously and readjusted if necessary. Thus, by readjusting the welding depth, the present invention enables not only high-quality laser processing, in particular welds, but also reliable documentation of the welding depth over the entire weld seam for quality control and assurance.

Die jeweilige Position der Dampfkapillare relativ zum Auftreffpunkt des Arbeitslaserstrahls wird für vorgegebene Prozessparameter verschiedener Bearbeitungsprozesse während Testbearbeitungen ermittelt und als Messfleckpositionen für diese Bearbeitungsprozesse gespeichert.The respective position of the vapor capillary relative to the point of impact of the working laser beam is determined for specified process parameters of various machining processes during test machining and is stored as measuring spot positions for these machining processes.

Erfindungsgemäß erfolgt also die Vermessung der idealen Messstrahlposition für verschiedene Prozesse und mit anschließender Speicherung der Positionen z.B. direkt in dem Sensorsystem. Damit können nun an einer Anlage Schweißungen mit unterschiedlichen Prozessparametern nacheinander durchgeführt werden, wobei jeweils die zuvor ermittelten Positionen durch eine entsprechende Aktorik angefahren werden.According to the invention, the ideal measuring beam position is measured for various processes and with subsequent storage of the positions, e.g. directly in the sensor system. This means that welds with different process parameters can now be carried out one after the other on a system, with the previously determined positions being approached by a corresponding actuator.

Bei einer vorteilhaften Weiterbildung der Erfindung ist vorgesehen, dass für einen Bearbeitungsprozess, bei dem sich die Vorschubrichtung entlang des Bearbeitungsverlaufs ändert, die für die entsprechenden Prozessparameter gespeicherte Messfleckposition an die jeweilige Vorschubrichtung angepasst wird. Bei einem Schweißprozess, bei dem sich die Vorschubrichtung entlang des Schweißnahtverlaufs ändert, kann also eine entsprechende Aktorik die zuvor ermittelten und gespeicherten idealen Positionen für den Messlichtstrahl zur Einschweißtiefenmessung an die Vorschubrichtung anpassen.In an advantageous development of the invention, it is provided that for a machining process in which the feed direction changes along the machining process, the measurement spot position stored for the corresponding process parameters is adapted to the respective feed direction. In a welding process in which the feed direction changes along the course of the weld seam, a corresponding actuator system can adapt the previously determined and stored ideal positions for the measuring light beam for the welding depth measurement to the feed direction.

Zweckmäßiger Weise wird das erfindungsgemäße Verfahren mit einer Vorrichtung zur Messung der Einschweißtiefe, insbesondere beim Schweißen, Bohren oder Abtragen mittels eines Arbeitslaserstrahls ausgeführt, die Folgendes aufweist: einen Laserbearbeitungskopf, durch den ein Bearbeitungsstrahlengang mit einer Fokussieroptik zur Fokussierung des Arbeitslaserstrahls auf ein Werkstück geführt ist, ein Sensorsystem zur Erzeugung eines Messlichtstrahl, der in den Bearbeitungsstrahlengang im Laserbearbeitungskopf einkoppelbar ist und der von der Fokussieroptik des Bearbeitungsstrahlengangs in einen Messlichtfleck auf einer Oberfläche des Werkstücks gebündelt oder fokussiert werden kann, und eine Aktorik, die eine Ablenkeinheit für den Messlichtstrahl aufweist. Das Sensorsystems und die Aktorik sind dabei so konfiguriert, dass sie ein erfindungsgemäßes Verfahren zur Messung der Einschweißtiefe ausführen können.The method according to the invention is expediently carried out with a device for measuring the welding depth, in particular during welding, drilling or ablation by means of a working laser beam, which has the following: a laser processing head through which a processing beam path with focusing optics is guided to focus the working laser beam on a workpiece, a sensor system for generating a measuring light beam which can be coupled into the machining beam path in the laser machining head and which is bundled or bundled into a measuring light spot on a surface of the workpiece by the focusing optics of the machining beam path can be focused, and an actuator which has a deflection unit for the measuring light beam. The sensor system and the actuator are configured in such a way that they can carry out a method according to the invention for measuring the welding depth.

Die Erfindung wird im Folgenden beispielsweise anhand der Zeichnung näher erläutert. Es zeigen:

  • Figur 1 eine vereinfachte schematische Darstellung einer Vorrichtung zur Messung der Einschweißtiefe gemäß der vorliegenden Erfindung;
  • Figur 2 eine vereinfachte schematische Darstellung eines Laserbearbeitungskopfes mit einem optischen System zum Einkoppeln eines Messlichtstrahls von einem Sensorsystem zur Einschweißtiefenmessung;
  • Figur 3 eine schematische Schnittansicht eines Werkstücks zur Darstellung einer Dampfkapillare (keyhole) beim Schweißen;
  • Figur 4 eine schematische Draufsicht auf die Oberfläche eines Werkstücks im Bereich einer Wechselwirkungszone zwischen Arbeitslaserstrahl und Werkstück zur Darstellung linearer Abtastlinien zur Erfassung eines Oberflächenprofils;
  • Figur 5a Abstandsmessdaten einer Schweißfahrt auf einer linearen Bahn quer zur Schweißrichtung;
  • Figur 5b Abstandsmessdaten einer Schweißfahrt auf einer linearen Bahn in Schweißrichtung; und
  • Figur 6 eine schematische Draufsicht auf die Oberfläche eines Werkstücks im Bereich einer Wechselwirkungszone zwischen Arbeitslaserstrahl und Werkstück zur Darstellung spiralförmiger Abtastlinien zur Erfassung eines Oberflächenprofils.
The invention is explained in more detail below, for example with reference to the drawing. Show it:
  • Figure 1 a simplified schematic representation of a device for measuring the welding depth according to the present invention;
  • Figure 2 a simplified schematic representation of a laser processing head with an optical system for coupling in a measuring light beam from a sensor system for welding depth measurement;
  • Figure 3 a schematic sectional view of a workpiece to show a vapor capillary (keyhole) during welding;
  • Figure 4 a schematic plan view of the surface of a workpiece in the area of an interaction zone between the working laser beam and the workpiece to show linear scan lines for detecting a surface profile;
  • Figure 5a Distance measurement data of a welding run on a linear path transverse to the welding direction;
  • Figure 5b Distance measurement data of a welding run on a linear path in the welding direction; and
  • Figure 6 a schematic plan view of the surface of a workpiece in the area of an interaction zone between the working laser beam and the workpiece to illustrate spiral scan lines for detecting a surface profile.

In den verschiedenen Figuren der Zeichnung sind einander entsprechende Bauteile und Elemente mit gleichen Bezugszeichen versehen.In the various figures of the drawing, components and elements that correspond to one another are provided with the same reference symbols.

Wie in Figur 1 dargestellt, umfasst die Vorrichtung zur Messung der Einschweißtiefe ein Sensorsystem 10, das nach dem Prinzip der optischen Kohärenztomographie arbeitet, die sich unter Zuhilfenahme eines Interferometers die Kohärenzeigenschaften von Licht zunutze macht. Das Sensorsystem 10 umfasst eine Mess- und Auswerteeinheit 12, die eine breitbandige Lichtquelle (Superlumineszensdiode, SLD; SweptSource Lichtquellen (spektral durchstimmbare Lichtquellen) oder dergleichen) aufweist, deren Messlicht in einen Lichtwellenleiter 14 eingekoppelt wird. In einem Strahlteiler 16, der vorzugsweise einen Faserkoppler aufweist, wird das Messlicht in einem Referenzarm 18 und einen Messarm 20 aufgespalten, der einen Lichtwellenleiter 22 und einen Messlichtstrahlengang 24 umfasst, der durch einen Laserbearbeitungskopf 26 läuft. Der Messlichtstrahlengang 24 umfasst ein optisches System zum Einkoppeln eines Messlichtstrahls 28 in einen Bearbeitungsstrahlengang 30 im Laserbearbeitungskopf 26. Das optische System zum Einkoppeln des Messlichtstrahls 28 in den Bearbeitungsstrahlengang 30 umfasst, wie insbesondere in Figur 2 zu erkennen ist, eine Kollimatoroptik 32, die den aus dem Lichtwellenleiter 22 austretenden Messlichtstrahl 28 kollimiert, damit er im Laserbearbeitungskopf 26 über einen teildurchlässigen Spiegel 34 in den Bearbeitungsstrahlengang 30 eingekoppelt und einem Arbeitslaserstrahl 36 überlagert werden kann. Der Arbeitslaserstrahl 36, der beispielsweise über einen entsprechenden Lichtwellenleiter 38 dem Laserbearbeitungskopf 26 zugeführt wird, wird von einer Kollimatoroptik 40 kollimiert und über den teildurchlässigen Spiegel 34 zur Fokussieroptik 42 gelenkt, die den Arbeitslaserstrahl 36 zusammen mit dem Messlichtstrahl 28 auf die Oberfläche eines Werkstücks 44 bündelt oder fokussiert. Zum Schutz der Fokussieroptik 42 vor Spritzern und dergleichen aus der Wechselwirkungszone zwischen Arbeitslaserstrahl 36 und Werkstück 44 ist ein Schutzglas 46 zwischen Fokussieroptik 42 und Werkstück 44 angeordnet.As in Figure 1 As shown, the device for measuring the welding depth comprises a sensor system 10 which operates on the principle of optical coherence tomography, which makes use of the coherence properties of light with the aid of an interferometer. The sensor system 10 comprises a measurement and evaluation unit 12 which has a broadband light source (superluminescent diode, SLD; swept source light sources (spectrally tunable light sources) or the like), the measurement light of which is coupled into an optical waveguide 14. In a beam splitter 16, which preferably has a fiber coupler, the measuring light is split in a reference arm 18 and a measuring arm 20, which comprises an optical waveguide 22 and a measuring light beam path 24 which runs through a laser processing head 26. The measuring light beam path 24 comprises an optical system for coupling a measuring light beam 28 into a processing beam path 30 in the laser processing head 26. The optical system for coupling the measuring light beam 28 into the processing beam path 30 comprises, as in particular in FIG Figure 2 What can be seen is a collimator optics 32 which collimates the measuring light beam 28 emerging from the optical waveguide 22 so that it can be coupled into the processing beam path 30 in the laser processing head 26 via a partially transparent mirror 34 and superimposed on a working laser beam 36. The working laser beam 36, which is fed to the laser processing head 26 via a corresponding optical waveguide 38, for example, is collimated by collimator optics 40 and directed via the partially transparent mirror 34 to focusing optics 42, which bundle the working laser beam 36 together with the measuring light beam 28 onto the surface of a workpiece 44 or focused. To protect the focusing optics 42 from splashes and the like from the interaction zone between the working laser beam 36 and the workpiece 44, a protective glass 46 is arranged between the focusing optics 42 and the workpiece 44.

Um den Messlichtstrahl 28 und damit den vom Messlichtstrahl 28 auf der Oberfläche des Werkstücks 44 erzeugten Messlichtfleck sowohl in Schweißrichtung als auch quer dazu über die Oberfläche des Werkstücks führen zu können, ist eine Aktorik mit Ablenkeinheit 48 vorgesehen, die den Messlichtstrahl 28 in zwei sich schneidenden Richtungen, z. B. in x- und y-Richtung über die Oberfläche des Werkstücks bewegen kann, um eine Oberflächenkontur des Werkstücks 44 abzutasten und ein entsprechendes Oberflächenprofil zu erfassen. Die Ablenkeinheit 48 kann als Galvano-Scanner mit zwei zueinander im Wesentlichen senkrechten Abtastrichtungen mit reflektiven Optiken oder mit transmissiven Optiken, z.B. Prismen ausgebildet sein. Eine weitere mögliche Ausbildung der Ablenkeinheit 48 ist eine Vorrichtung mit einer in zwei Richtungen verschiebbaren Optik. Die Ablenkeinheit 48 wird von einer Steuereinheit 50 so gesteuert, dass sie den Messlichtstrahl 28 zur Erfassung eines Oberflächenprofils während einer Test- oder Messschweißfahrt über die Oberfläche des Werkstücks 44 bewegt oder während eines Fertigungsschweißprozesses den Messlichtstrahl 38 und damit den Messlichtfleck auf die für die Prozessparameter eines Schweißprozesses ermittelte Keyhole-Position lenkt. Die Steuereinheit 50 kann als selbstständige Einheit vorgesehen sein, die mit dem Sensorsystem 10, insbesondere mit dessen Mess- und Auswerteeinheit 12 verbunden ist, wie schematisch durch die Ein- und Ausgänge A von Mess- und Auswerteeinheit 12 und Steuereinheit 50 angedeutet ist, oder in das Sensorsystem 10 integriert sein.In order to be able to guide the measuring light beam 28 and thus the measuring light spot generated by the measuring light beam 28 on the surface of the workpiece 44 both in the welding direction and across the surface of the workpiece, an actuator with a deflection unit 48 is provided which divides the measuring light beam 28 into two intersecting ones Directions, e.g. B. can move in the x and y directions over the surface of the workpiece in order to scan a surface contour of the workpiece 44 and detect a corresponding surface profile. The deflection unit 48 can be used as a galvano scanner with two mutually essentially perpendicular scanning directions with reflective optics or with transmissive optics, for example Be formed prisms. Another possible embodiment of the deflection unit 48 is a device with optics that can be displaced in two directions. The deflection unit 48 is controlled by a control unit 50 in such a way that it moves the measuring light beam 28 over the surface of the workpiece 44 to detect a surface profile during a test or measuring welding run, or during a production welding process, the measuring light beam 38 and thus the measuring light spot on the one for the process parameters Keyhole position determined during the welding process. The control unit 50 can be provided as an independent unit which is connected to the sensor system 10, in particular to its measuring and evaluation unit 12, as indicated schematically by the inputs and outputs A of the measuring and evaluation unit 12 and control unit 50, or in the sensor system 10 can be integrated.

Wie in Figur 3 und 4 dargestellt ist, weißt die Wechselwirkungszone zwischen Arbeitslaserstrahl 36 und Werkstück 44 einen Bereich von flüssiger Schmelze 52, also ein Schweißbad auf, das eine Dampfkapillare 54 umgibt, die sich im Auftreffbereich 56 des Arbeitslaserstrahls 36 auf dem Werkstück 44 befindet. Wie in Figur 3 zu erkennen ist, entspricht die Tiefe der Dampfkapillare 54 bis auf einen Korrekturfaktor im Wesentlichen der Tiefe des Schweißbads. In Vorschubrichtung (Vorschubrichtung V in Figur 3; x-Richtung in Figur 4) hinter der Wechselwirkungszone zwischen Laserstrahl 36 und Werkstück 44 befindet sich dann die erstarrte Schmelze 58 der fertigten Schweißnaht.As in Figures 3 and 4 As shown, the interaction zone between the working laser beam 36 and the workpiece 44 has an area of liquid melt 52, i.e. a weld pool, which surrounds a vapor capillary 54 which is located in the impingement area 56 of the working laser beam 36 on the workpiece 44. As in Figure 3 As can be seen, the depth of the steam capillary 54 essentially corresponds to the depth of the weld pool, except for a correction factor. In the feed direction (feed direction V in Figure 3 ; x-direction in Figure 4 ) Behind the interaction zone between the laser beam 36 and the workpiece 44 is then the solidified melt 58 of the finished weld seam.

Um für einen bestimmten Laserbearbeitungsprozess, der durch seine Prozessparameter, wie Vorschubgeschwindigkeit, Laserleistung, Fokuslage des Arbeitslaserstrahls 36 in z-Richtung, also in Richtung senkrecht zur Werkstückoberfläche, Material des Schweißguts, also des Werkstücks 44 und/oder die Nahtgeometrie klassifiziert werden kann, die relative Lage der Dampfkapillare 54 zum Auftreffbereich 56 des Arbeitslaserstrahls 36 zu ermitteln, wird während einer Test- oder Messschweißfahrt mit Hilfe der Ablenkeinheit 48 die Position des Messlichtstrahls 28, also des dadurch erzeugten Messlichtflecks auf dem Werkstück 44 während des Schweißprozesses auf einer linearen Bahn 60, 62 sowohl in Schweißrichtung als auch senkrecht dazu über die Dampfkapillare 54, also über das Keyhole bewegt.In order for a certain laser machining process, which can be classified by its process parameters, such as feed speed, laser power, focus position of the working laser beam 36 in the z-direction, i.e. in the direction perpendicular to the workpiece surface, the material of the weld metal, i.e. the workpiece 44 and / or the seam geometry, the To determine the relative position of the vapor capillary 54 to the impingement area 56 of the working laser beam 36, the position of the measuring light beam 28, i.e. the measuring light spot generated thereby on the workpiece 44 during the welding process on a linear path 60, is determined during a test or measuring welding run with the aid of the deflection unit 48, 62 moved both in the welding direction and perpendicular thereto over the vapor capillary 54, that is to say over the keyhole.

Dabei werden Abstandsdaten entlang der Abtastbahnen mit Hilfe des Sensorsystems 10 aufgenommen. Dazu wird der Messlichtstrahl 28, der in den Bearbeitungsstrahlengang 30 eingekoppelt ist, von der Fokussieroptik 42 in einen Messlichtfleck auf die Oberfläche eines Werksrücks 44 gebündelt oder fokussiert und von der Ablenkeinheit 48 entsprechend den gewählten Abtastbahnen über die Oberfläche des Werkstücks 44 geführt. Der an der Oberfläche des Werkstücks 44 reflektierte Messlichtstrahl 28 wird im Strahlteiler 16, der einen Faserkoppler umfasst, mit dem Referenzlichtstrahl aus dem Referenzarm 18 überlagert und an die Mess- und Auswerteeinheit 20 zurückgeführt, die aus der Information über die Wegunterschiede im Referenzarm 18 und Messarm 20 Information über den Abstand der Oberfläche des Werkstücks 44 von einer beliebigen Referenzposition über dem Werkstück 44, also beispielsweise von der Position des Laserbearbeitungskopfes 26 oder der Position der Fokussieroptik 42 darin ermittelt. Um die optimale Positionierung des Messlichtflecks bei der Messung der Einschweißtiefe zu ermitteln, wird aus den in Figur 5a und 5b als Punktwolken entlang der jeweiligen Bahnen dargestellten Abstandsdatenverteilungen der Verlauf der Oberflächenkontur des Werkstücks 44 im Bereich der Wechselwirkungszone zwischen Arbeitslaserstrahl 36 und Werkstück 44 entlang der Bahnen 60, 62 durch entsprechende Kurvenanpassung ermittelt.In this case, distance data along the scanning paths are recorded with the aid of the sensor system 10. For this purpose, the measuring light beam 28, which is in the processing beam path 30 is coupled, bundled or focused by the focusing optics 42 into a measuring light spot on the surface of a work back 44 and guided over the surface of the workpiece 44 by the deflection unit 48 in accordance with the selected scanning paths. The measuring light beam 28 reflected on the surface of the workpiece 44 is superimposed in the beam splitter 16, which includes a fiber coupler, with the reference light beam from the reference arm 18 and fed back to the measuring and evaluation unit 20, which is based on the information about the path differences in the reference arm 18 and measuring arm 20 information about the distance of the surface of the workpiece 44 from any reference position above the workpiece 44, for example from the position of the laser processing head 26 or the position of the focusing optics 42 therein. In order to determine the optimal positioning of the measuring light spot when measuring the welding depth, the in Figures 5a and 5b The course of the surface contour of the workpiece 44 in the area of the interaction zone between the working laser beam 36 and the workpiece 44 along the paths 60, 62 is determined by corresponding curve adaptation as point clouds along the respective paths.

Das Oberflächenprofil des Werkstücks 44 entlang der Bahn 62, das in Bereich der Dampfkapillare 54, deren Tiefenprofil senkrecht zur Vorschubrichtung V darstellt, ist dabei symmetrisch. Für die Ermittlung der Lage des tiefsten Punktes der Dampfkapillare 54, die die ideale Position für den Messlichtfleck, also für den Auftreffpunkt des Messlichtstrahls 28 auf dem Werkstück 44 darstellt, wird durch die Abstandsdaten eine symmetrische Kurve zur Kurvenanpassung gelegt. Zweckmäßigerweise lässt sich die Kurvenanpassung dabei mittels einer Gauß-Verteilung durchführen. f y = 1 σ 2 π e 1 2 y μ / σ 2

Figure imgb0001
The surface profile of the workpiece 44 along the path 62, that in the area of the vapor capillary 54, the depth profile of which is perpendicular to the feed direction V, is symmetrical. To determine the position of the lowest point of the vapor capillary 54, which represents the ideal position for the measuring light spot, i.e. for the point of impact of the measuring light beam 28 on the workpiece 44, the distance data are used to create a symmetrical curve for curve adaptation. The curve adaptation can expediently be carried out by means of a Gaussian distribution. f y = 1 σ 2 π e - 1 2 y - μ / σ 2
Figure imgb0001

Dabei ist y die Position des Messlichtflecks auf dem Werkstück in y-Richtung, also senkrecht zur Vorschubrichtung V (siehe Figur 3), wobei µ den Erwartungswert und σ2 die Varianz der Verteilung angeben.Here y is the position of the measuring light spot on the workpiece in the y direction, i.e. perpendicular to the feed direction V (see Figure 3 ), where µ is the expected value and σ 2 is the variance of the distribution.

Das Tiefenprofil der Dampfkapillare 54 in Vorschubrichtung ist, wie in Figur 5b zu erkennen ist, asymmetrisch und entspricht in etwa dem Verlauf einer Maxwell-Boltzmann-Verteilung. f x = k 1 x 2 e k 2 x 2

Figure imgb0002
The depth profile of the steam capillary 54 in the feed direction is as in FIG Figure 5b can be seen, asymmetrical and corresponds roughly to the course of a Maxwell-Boltzmann distribution. f x = k 1 x 2 e - k 2 x 2
Figure imgb0002

Wobei x die Position des Messstrahls 28 auf der Werkstückoberfläche in Vorschubrichtung widergibt und k1 und k2 Parameter der Verteilung sind. Aus den Parametern lässt sich das Maximum der Verteilung bestimmen.Where x reflects the position of the measuring beam 28 on the workpiece surface in the feed direction and k1 and k2 are parameters of the distribution. The maximum of the distribution can be determined from the parameters.

Somit ist die Lage des tiefsten Punktes der Dampfkapillare 54 relativ zum Auftreffbereich 56 des Arbeitslaserstrahls 36 bekannt, so dass die nachfolgende Bearbeitung von Werkstücken 44 mit einem Laserbearbeitungsprozess, der mit denselben Prozessparametern durchgeführt wird wie die Messschweißfahrt, der Messlichtstrahl 28 genau in das Keyhole, also in die Dampfkapillare 54 gerichtet werden kann, um eine zuverlässige und genaue Messung der Einschweißtiefe zu ermöglichen.Thus, the position of the lowest point of the vapor capillary 54 relative to the impingement area 56 of the working laser beam 36 is known, so that the subsequent machining of workpieces 44 with a laser machining process, which is carried out with the same process parameters as the measurement welding run, the measurement light beam 28 exactly into the keyhole, i.e. can be directed into the vapor capillary 54 in order to enable a reliable and accurate measurement of the welding depth.

Die Lage des Keyholes 54 wird relativ zum Auftreffbereich 56 des Arbeitslaserstrahls 36 zusammen mit den dazu gehörigen Prozessparametern gespeichert. Dieser Vorgang, also die Ermittlung der Position der Dampfkapillare 54 wird immer dann durchgeführt, wenn mit dem Laserbearbeitungskopf 26 ein Schweißprozess mit Prozessparametern durchgeführt werden soll, für die noch keine optimale Positionierung des Messlichtflecks relativ zur Dampfkapillare 54 ermittelt wurde. Dabei wird jedes Mal die Lage des Keyholes zusammen mit den Prozessparametern gespeichert, so dass im Laufe der Zeit die Positionen des Keyholes für eine Vielzahl von verschiedenen Laserbearbeitungsprozessen bekannt sind, so dass bei der Umstellung von einem Laserbearbeitungsprozess auf einen anderen eine erneute Testschweißung dann erforderlich ist, wenn dieser Laserbearbeitungsprozess von dem Laserbearbeitungskopf noch nie durchgeführt wurde.The position of the keyhole 54 is stored relative to the impingement area 56 of the working laser beam 36 together with the associated process parameters. This process, i.e. the determination of the position of the vapor capillary 54, is always carried out when a welding process with process parameters is to be carried out with the laser processing head 26 for which an optimal positioning of the measuring light spot relative to the vapor capillary 54 has not yet been determined. The position of the keyhole is saved together with the process parameters each time, so that over time the positions of the keyhole are known for a large number of different laser machining processes, so that a new test weld is required when switching from one laser machining process to another when this laser machining process has never been performed by the laser machining head.

Je nach der in der Ablenkeinheit 48 verwendeten Scanner-Optik kann es nötig sein, dass die Ermittlung der Position der Dampfkapillare wiederholt durchgeführt werden muss, auch wenn dies mit den gegebenen Schweißparametern schon durchgeführt und gespeichert wurde. Insbesondere äußere Störeinflüsse wie z.B. Temperaturänderungen können zu einer Drift, also zu einer Veränderung der Abtastposition der Ablenkeinheit 48, also der Messlichtfleckposition führen, sodass der Messlichtstrahl 28 nicht mehr in die Dampfkapillare 54 trifft. Aufgrund dieser Drift kann es erforderlich sein, die Lage der Dampfkapillare 54 in bestimmten Zeitabständen, z.B. einmal am Tag oder einmal in der Woche wiederholt zu ermitteln.Depending on the scanner optics used in the deflection unit 48, it may be necessary that the determination of the position of the steam capillary has to be carried out repeatedly, even if this has already been carried out and stored with the given welding parameters. In particular, external disturbances such as temperature changes can lead to a Drift, that is to say to a change in the scanning position of the deflection unit 48, that is to say the position of the measuring light spot, so that the measuring light beam 28 no longer strikes the vapor capillary 54. Because of this drift, it may be necessary to repeatedly determine the position of the steam capillary 54 at specific time intervals, for example once a day or once a week.

Die Speicherung der Positionen der Dampfkapillare für die verschiedenen Laserbearbeitungsprozesse erfolgt vorteilhafterweise in einem in der Steuereinheit 50 integrierten Speicher oder in einem Speicher im Sensorsystem 10. Die Steuereinheit 50 kann auch integraler Bestandteil des Sensorsystems 10 sein; somit können an einer Anlage Schweißungen mit unterschiedlichen Prozessparametern nacheinander durchgeführt werden, wobei jeweils der Messlichtfleck, also der Messlichtstrahl 28 auf die zuvor ermittelten Positionen der Dampfkapillare 54 durch die Ablenkeinheit 48 eingestellt wird.The positions of the vapor capillary for the various laser machining processes are advantageously stored in a memory integrated in the control unit 50 or in a memory in the sensor system 10. The control unit 50 can also be an integral part of the sensor system 10; This means that welds with different process parameters can be carried out one after the other on a system, the measuring light spot, that is to say the measuring light beam 28, being set to the previously determined positions of the vapor capillary 54 by the deflection unit 48.

Ändert sich bei einem Schweißprozess die Vorschubrichtung entlang des Schweißnahtverlaufs, weicht also die Vorschubrichtung von der ursprünglichen, als x-Richtung angenommenen Vorschubrichtung ab, so werden die zuvor ermittelten und gespeicherten idealen Positionen für den Messlichtfleck an die geänderte Vorschubrichtung angepasst.If the feed direction changes along the course of the weld seam during a welding process, i.e. if the feed direction deviates from the original feed direction assumed as the x-direction, the previously determined and saved ideal positions for the measuring light spot are adapted to the changed feed direction.

Anstelle der Ermittlung der Position der Dampfkapillare 54, also der Position des tiefsten Punktes der Dampfkapillare 54 mithilfe von Abstandsdaten, die entlang von zwei sich schneidenden linearen Bahnen 60 und 62 erhalten wurden, ist es auch möglich, den Messlichtfleck auf einer spiralförmigen Bahn 64 in der Wechselwirkungszone zwischen Arbeitslaserstrahl 36 und dem Werkstück 44 zu führen, um die Lage der Dampfkapillare 54 relativ zum Auftreffbereich 56 des Arbeitslaserstrahls 36 zu ermitteln. Hierbei kann entlang einer relativ weiten spiralförmigen Bahn 64 zunächst die ungefähre Position der Dampfkapillare 54 aus einem dreidimensionalen trichterförmigen Oberflächen- bzw. Tiefenprofil ermittelt werden, um dann in einem zweiten Messschritt das Oberflächen- oder Tiefenprofil mittels einer engen spiralförmigen Bahn im Bereich des Auftreffbereichs 56 des Arbeitslaserstrahls 36 zu bestimmen, aus dem dann die genaue Position der Dampfkapillare 54 bestimmt werden kann.Instead of determining the position of the steam capillary 54, i.e. the position of the lowest point of the steam capillary 54 with the aid of distance data obtained along two intersecting linear paths 60 and 62, it is also possible to measure the measuring light spot on a spiral path 64 in FIG To guide the interaction zone between the working laser beam 36 and the workpiece 44 in order to determine the position of the vapor capillary 54 relative to the impingement area 56 of the working laser beam 36. Here, along a relatively wide spiral-shaped path 64, the approximate position of the vapor capillary 54 can first be determined from a three-dimensional funnel-shaped surface or depth profile, in order to then determine the surface or depth profile in a second measuring step by means of a narrow spiral-shaped path in the area of the impact area 56 of the To determine the working laser beam 36, from which the exact position of the vapor capillary 54 can then be determined.

Ferner ist es auch denkbar, die Oberfläche des Werkstücks 44 in der Wechselwirkungszone zwischen Arbeitslaserstrahl 36 und Werkstück 44 zeilenförmig zu erfassen, wobei die Zeilen oder Bahnen jeweils senkrecht zu ihrer Längserstreckung über das Werkstück verschoben werden, um aus dem so erfassten Oberflächen- oder Tiefenprofile die genaue Lage des Keyholes zu ermitteln.Furthermore, it is also conceivable to record the surface of the workpiece 44 in the interaction zone between the working laser beam 36 and the workpiece 44 in the form of a line, the lines or paths being shifted across the workpiece perpendicular to their longitudinal extension in order to derive the to determine the exact location of the keyhole.

Claims (10)

  1. Process for measuring the welding depth during welding by means of a working laser beam (36), in which process
    - a measuring light beam (28) from a sensor system (10) is coupled into a machining beam path (30) of the working laser beam (36) in a laser machining head (26) and is bundled or focused by focusing optics (42) of the machining beam path (30) into a measuring light spot on a surface of a workpiece (44),
    - the measuring light beam (28) reflected on the surface of the workpiece (44) is returned to a measuring and evaluation unit (12) of the sensor system (10) so that information is obtained about the distance between the surface of the workpiece (44) and the laser machining head (26),
    - the position of the measuring light spot on the surface of the workpiece (44) is guided over the vapor capillary (54) both in the welding direction and transversely thereto so that a surface profile of the workpiece (44) in the region of the vapor capillary (54) is obtained,
    - the position of the vapor capillary (54) relative to the point of incidence (56) of the working laser beam (36) is determined from the surface profile of the workpiece in the region of the vapor capillary (54), and
    - the measuring light spot for measuring the welding depth during laser machining is moved into the determined position of the vapor capillary (54),
    characterized in that
    the position of the vapor capillary (54) relative to the point of incidence (56) of the working laser beam (36) is determined for predetermined process parameters of a machining process during a machining test and is stored as the measuring spot position for this machining process.
  2. Process according to claim 1, characterized in that the lowest point of the vapor capillary (54) is determined as the position of the vapor capillary (54) relative to the point of incidence (45) of the working laser beam (36).
  3. Process according to claim 1 or 2, characterized in that the measuring light spot is guided on linear paths (60, 62) over the vapor capillary (54).
  4. Process according to claim 3, characterized in that the surface profile is determined from the measurement data along the linear paths (60, 62) by curve fitting.
  5. Process according to claim 4, characterized in that the surface profile is determined from the measurement data along the linear path (62) transversely to the welding direction by curve fitting according to a Gaussian distribution.
  6. Process according to claim 4 or 5, characterized in that the surface profile is determined from the measurement data along the linear path (60) in the welding direction by curve fitting according to a Maxwell-Boltzmann distribution.
  7. Process according to claim 1 or 2, characterized in that the measuring light spot is guided on spiral paths (64) over the vapor capillary (54).
  8. Process according to any of the preceding claims, characterized in that the respective positions of the vapor capillary (54) relative to the point of incidence (56) of the working laser beam (36) are determined for predetermined process parameters of various machining processes during machining tests and are stored as the measuring spot positions for these machining processes.
  9. Process according to any of the preceding claims, characterized in that, for a machining process in which the feed direction changes along the course of machining, the measuring spot position stored for the corresponding process parameters is adapted to the relevant feed direction.
  10. Device for measuring the welding depth during welding by means of a working laser beam (36), comprising
    - a laser machining head (26) having focusing optics (42) for focusing the working laser beam (36), by means of which head a machining beam path (30) having the focusing optics (42) is guided onto a workpiece (44),
    - a sensor system (10) for generating a measuring light beam (28), and an optical system for coupling the measuring light beam (28) into the machining beam path (30) in the laser machining head (26), wherein the measuring light beam (28) can be bundled or focused into a measuring light spot on a surface of the workpiece (44) by the focusing optics (42) of the machining beam path (30), and
    - an actuating system which has a deflection unit (48) for the measuring light beam (28),
    - wherein the sensor system (10) and the actuating system are configured to carry out a process for measuring the welding depth according to any of the preceding claims.
EP18740759.8A 2017-08-01 2018-07-05 Method for optically measuring the welding-in depth Active EP3469302B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21169144.9A EP3901570B1 (en) 2017-08-01 2018-07-05 Method for optical measurement of weld depth
PL18740759T PL3469302T3 (en) 2017-08-01 2018-07-05 Method for optically measuring the welding-in depth

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017117413.3A DE102017117413B4 (en) 2017-08-01 2017-08-01 Method for optical measurement of the welding depth
PCT/EP2018/068277 WO2019025118A1 (en) 2017-08-01 2018-07-05 Method for optically measuring the welding-in depth

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP21169144.9A Division EP3901570B1 (en) 2017-08-01 2018-07-05 Method for optical measurement of weld depth

Publications (2)

Publication Number Publication Date
EP3469302A1 EP3469302A1 (en) 2019-04-17
EP3469302B1 true EP3469302B1 (en) 2021-05-19

Family

ID=62916626

Family Applications (2)

Application Number Title Priority Date Filing Date
EP21169144.9A Active EP3901570B1 (en) 2017-08-01 2018-07-05 Method for optical measurement of weld depth
EP18740759.8A Active EP3469302B1 (en) 2017-08-01 2018-07-05 Method for optically measuring the welding-in depth

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP21169144.9A Active EP3901570B1 (en) 2017-08-01 2018-07-05 Method for optical measurement of weld depth

Country Status (8)

Country Link
US (1) US10578428B2 (en)
EP (2) EP3901570B1 (en)
JP (1) JP6808027B2 (en)
CN (1) CN109791042B (en)
CA (1) CA3036985C (en)
DE (1) DE102017117413B4 (en)
PL (1) PL3469302T3 (en)
WO (1) WO2019025118A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3753666A4 (en) * 2018-02-16 2021-05-05 Panasonic Intellectual Property Management Co., Ltd. Laser welding device and laser welding method
JP7320703B2 (en) * 2018-02-16 2023-08-04 パナソニックIpマネジメント株式会社 LASER WELDING APPARATUS AND LASER WELDING METHOD
EP3778099A4 (en) * 2018-04-13 2021-07-07 Panasonic Intellectual Property Management Co., Ltd. Laser welding method
EP3778101B1 (en) * 2018-04-13 2024-01-17 Panasonic Intellectual Property Management Co., Ltd. Laser welding device
CN115533317A (en) * 2018-04-13 2022-12-30 松下知识产权经营株式会社 Laser welding method
DE102018217526A1 (en) * 2018-10-12 2020-04-16 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Method for determining a parameter of a machining process and machine tool
DE102019103734A1 (en) * 2019-02-14 2020-08-20 Precitec Gmbh & Co. Kg Laser processing system for processing a workpiece by means of a laser beam and method for controlling a laser processing system
CN110102894A (en) * 2019-06-20 2019-08-09 中国工程物理研究院机械制造工艺研究所 A kind of vacuum laser welder and welding method
JP7386511B2 (en) * 2019-09-13 2023-11-27 株式会社片岡製作所 Laser processing equipment
DE102019127323B4 (en) * 2019-10-10 2021-05-12 Precitec Gmbh & Co. Kg Laser machining system for performing a machining process on a workpiece by means of a laser beam and method for monitoring a machining process on a workpiece by means of a laser beam
CN112304202B (en) * 2020-05-20 2022-09-23 上海达铭科技有限公司 Laser spot welding nugget geometric parameter measuring device and using method thereof
EP3928913A1 (en) * 2020-06-25 2021-12-29 Bystronic Laser AG Machining head and method for laser machining
WO2022117207A1 (en) 2020-12-04 2022-06-09 Lessmueller Lasertechnik Gmbh Method, device and machining system for monitoring a process for machining a workpiece by means of a high-energy machining beam
DE102021108662A1 (en) 2021-04-07 2022-10-13 Precitec Gmbh & Co. Kg Method for monitoring a laser processing process and associated laser processing system
DE102022101093A1 (en) 2022-01-18 2023-07-20 Trumpf Laser- Und Systemtechnik Gmbh Method for determining a geometric result variable and/or a quality feature of a weld seam on a workpiece
CN115513102B (en) * 2022-11-23 2023-04-28 广东芯粤能半导体有限公司 Etching depth monitoring system
CN116275511B (en) * 2023-05-19 2023-07-21 华中科技大学 Laser welding penetration measuring and calculating method, device and system

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4333501C2 (en) * 1993-10-01 1998-04-09 Univ Stuttgart Strahlwerkzeuge Method for determining the instantaneous penetration depth of a machining laser beam into a workpiece and device for carrying out this method
JPH10305379A (en) * 1997-05-12 1998-11-17 Nippon Steel Corp Butt welding position detecting device
DE19852302A1 (en) * 1998-11-12 2000-05-25 Fraunhofer Ges Forschung Method and device for processing workpieces with high-energy radiation
JP2001121279A (en) * 1999-10-26 2001-05-08 Ibiden Co Ltd Laser working apparatus with shape inspecting function
DE10155203A1 (en) 2001-11-09 2003-06-18 Bosch Gmbh Robert Laser processing device used for laser welding, cutting or boring has a measuring system partially connected to the laser processing unit to acquire three-dimensional surface data or oscillations
ITTO20040361A1 (en) * 2004-05-28 2004-08-28 Comau Spa METHOD AND DEVICE FOR REMOTE LASER WELDING USING A ROBOT, WITH SIMPLIFIED CONTROL OF THE FOCUSING DIRECTION OF THE LASER BEAM.
EP1618984B1 (en) * 2004-07-08 2006-09-06 TRUMPF Laser GmbH + Co. KG Laser welding process and device
JP4269322B2 (en) * 2005-01-18 2009-05-27 川崎重工業株式会社 Groove measuring method and groove measuring apparatus
DE102005024085A1 (en) * 2005-05-25 2006-11-30 Precitec Kg Laser processing step e.g. laser welding/cutting process, monitoring device for workpiece, has radiation-sensitive receiver e.g. photodiode, and camera e.g. CCD image sensor, that simultaneously supply output signals to evaluation circuit
FR2892328B1 (en) * 2005-10-21 2009-05-08 Air Liquide LASER BEAM WELDING METHOD WITH CONTROL OF METAL VAPOR CAPILLARY FORMATION
DE102007016444A1 (en) * 2007-04-05 2008-10-16 Precitec Optronik Gmbh processing device
JP5117920B2 (en) * 2008-04-28 2013-01-16 株式会社ディスコ Laser processing equipment
CN102497952B (en) * 2009-07-20 2014-12-24 普雷茨特两合公司 Laser machining head and method of compensating for the change in focal position of a laser machining head
JP4911232B2 (en) * 2010-02-25 2012-04-04 トヨタ自動車株式会社 Bead inspection method and bead inspection device
JP5252026B2 (en) * 2011-05-10 2013-07-31 パナソニック株式会社 Laser welding apparatus and laser welding method
DE102011077223B4 (en) * 2011-06-08 2013-08-14 Carl Zeiss Smt Gmbh measuring system
EP2972479B1 (en) * 2013-03-13 2020-09-09 IPG Photonics (Canada) Inc. Methods and systems for characterizing laser machining properties by measuring keyhole dynamics using interferometry
DE102013210078B4 (en) * 2013-05-29 2015-04-30 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Apparatus, method and computer program product for determining the focus position of a high energy beam
DE102013015656B4 (en) * 2013-09-23 2016-02-18 Precitec Optronik Gmbh Method for measuring the penetration depth of a laser beam into a workpiece, method for machining a workpiece and laser processing device
CN103759726B (en) * 2014-01-03 2016-08-31 西安电子科技大学 One class cyclo-stationary Poisson signal rapid simulation method and hardware system thereof
DE102014007887B4 (en) * 2014-05-26 2015-12-10 Lessmüller Lasertechnik GmbH A laser processing apparatus having a measuring device for detecting surface data and / or interfaces of a workpiece to be processed by a laser processing apparatus
CN104002051B (en) * 2014-06-03 2015-10-28 湖南大学 A kind of vertical detection device for laser weld and detection method
DE102015007142A1 (en) * 2015-06-02 2016-12-08 Lessmüller Lasertechnik GmbH Measuring device for a laser processing system and method for carrying out position measurements by means of a measuring beam on a workpiece
DE102015012565B3 (en) 2015-09-25 2016-10-27 Lessmüller Lasertechnik GmbH Device and method for increasing the accuracy of an OCT measuring system for laser material processing
DE102016109909A1 (en) * 2016-05-30 2017-11-30 Precitec Gmbh & Co. Kg Device for process monitoring during laser processing
CN106270581B (en) * 2016-08-30 2018-11-09 江苏大学 A kind of enhancing lubrication and cooling cutter and application thereof, processing method
JP2018153842A (en) * 2017-03-17 2018-10-04 トヨタ自動車株式会社 Measuring device and laser welding device

Also Published As

Publication number Publication date
CA3036985C (en) 2021-10-19
CN109791042B (en) 2022-05-27
JP6808027B2 (en) 2021-01-06
CN109791042A (en) 2019-05-21
CA3036985A1 (en) 2019-02-07
JP2019534788A (en) 2019-12-05
DE102017117413B4 (en) 2019-11-28
DE102017117413A1 (en) 2019-02-07
US20190041196A1 (en) 2019-02-07
EP3469302A1 (en) 2019-04-17
EP3901570A1 (en) 2021-10-27
US10578428B2 (en) 2020-03-03
PL3469302T3 (en) 2021-10-04
WO2019025118A1 (en) 2019-02-07
EP3901570B1 (en) 2023-04-19

Similar Documents

Publication Publication Date Title
EP3469302B1 (en) Method for optically measuring the welding-in depth
DE102013015656B4 (en) Method for measuring the penetration depth of a laser beam into a workpiece, method for machining a workpiece and laser processing device
EP3140609B1 (en) Device for measuring the depth of a weld seam in real time
EP2736700B1 (en) Device and method for carrying out and monitoring a plastic laser transmission welding process
DE102011006553B4 (en) Method for determining the focus position of a laser beam in his work area or work space
DE102017115922C5 (en) Method and device for measuring and setting a distance between a machining head and a workpiece and associated method for regulation
DE102017126867A1 (en) Laser processing system and method for laser processing
EP3463741B1 (en) Device for process monitoring during laser processing comprising an optical distance measuring device and a prism deflection unit; laser processing head comprising such a device
DE102018105877B3 (en) Device for determining an alignment of an optical device of a coherence tomograph, coherence tomograph and laser processing system
DE102014011569A1 (en) Method for measuring the distance between a workpiece and a machining head of a laser processing device
DE102012212278B4 (en) Arrangement for producing holes or welds
DE102010015023B4 (en) Method and device for quality assurance and process control in the laser machining of workpieces
EP3641980A1 (en) Device and method for distance measurement for a laser processing system and laser processing system
DE102018009524A1 (en) Method and device for performing and monitoring a machining process of a first workpiece and a second workpiece by means of a high-energy machining beam
DE102013226961B4 (en) Test device and method for computer-aided monitoring of a attached to a processing optics tool part of a device for material processing and apparatus for computer-aided material processing
DE102017010055A1 (en) Laser beam welding of geometric figures with OCT seam guide
EP3837084B1 (en) Laser processing system and method for machining a workpiece with a laser beam
DE102019120398B3 (en) Laser processing system and method for a central alignment of a laser beam in a processing head of a laser processing system
DE102018000887A1 (en) Apparatus and method for performing and monitoring a machining process on a workpiece with the possibility of OCT scanner calibration
EP2928280A2 (en) Measuring mark system for calibrating a machine
DE102020211533B3 (en) Measuring instrument for a laser tool, laser tool and workpiece processing device, and method for measuring a distance
DE202010005013U1 (en) Device for quality assurance and process control in the laser machining of workpieces
DE102021201989A1 (en) Method for monitoring a laser welding process and associated laser processing machine
EP2524762B1 (en) Method for determining the working area of a heat-producing beam

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190114

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201204

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018005345

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1394405

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 37593

Country of ref document: SK

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210920

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210819

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210820

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018005345

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210731

26N No opposition filed

Effective date: 20220222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210919

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210705

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210705

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220705

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180705

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20230623

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230623

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230731

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20230703

Year of fee payment: 6

Ref country code: FR

Payment date: 20230720

Year of fee payment: 6

Ref country code: DE

Payment date: 20230720

Year of fee payment: 6