EP3469062A1 - Utilisation d'un article de dose unique hydrosolublre, destinée à améliorer l'expérience consommateur de dosage de détergent - Google Patents
Utilisation d'un article de dose unique hydrosolublre, destinée à améliorer l'expérience consommateur de dosage de détergentInfo
- Publication number
- EP3469062A1 EP3469062A1 EP17731769.0A EP17731769A EP3469062A1 EP 3469062 A1 EP3469062 A1 EP 3469062A1 EP 17731769 A EP17731769 A EP 17731769A EP 3469062 A1 EP3469062 A1 EP 3469062A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- water
- film
- polyvinyl alcohol
- soluble film
- unit dose
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 239000003599 detergent Substances 0.000 title claims abstract description 61
- 239000000203 mixture Substances 0.000 claims description 93
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 74
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 56
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 56
- 229920005989 resin Polymers 0.000 claims description 30
- 239000011347 resin Substances 0.000 claims description 30
- 125000000129 anionic group Chemical group 0.000 claims description 27
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 claims description 26
- 239000000178 monomer Substances 0.000 claims description 25
- 229920001519 homopolymer Polymers 0.000 claims description 24
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 16
- 238000003860 storage Methods 0.000 claims description 15
- 238000005406 washing Methods 0.000 claims description 14
- -1 alkyl sulfonic acid Chemical compound 0.000 claims description 10
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 7
- XVOUMQNXTGKGMA-OWOJBTEDSA-N (E)-glutaconic acid Chemical compound OC(=O)C\C=C\C(O)=O XVOUMQNXTGKGMA-OWOJBTEDSA-N 0.000 claims description 6
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims description 6
- 229910052783 alkali metal Inorganic materials 0.000 claims description 6
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 claims description 6
- 150000002148 esters Chemical class 0.000 claims description 6
- NKHAVTQWNUWKEO-UHFFFAOYSA-N fumaric acid monomethyl ester Natural products COC(=O)C=CC(O)=O NKHAVTQWNUWKEO-UHFFFAOYSA-N 0.000 claims description 6
- 239000011976 maleic acid Substances 0.000 claims description 6
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 claims description 6
- HNEGQIOMVPPMNR-NSCUHMNNSA-N mesaconic acid Chemical compound OC(=O)C(/C)=C/C(O)=O HNEGQIOMVPPMNR-NSCUHMNNSA-N 0.000 claims description 6
- 230000002028 premature Effects 0.000 claims description 6
- AYKYXWQEBUNJCN-UHFFFAOYSA-N 3-methylfuran-2,5-dione Chemical compound CC1=CC(=O)OC1=O AYKYXWQEBUNJCN-UHFFFAOYSA-N 0.000 claims description 4
- 229940018560 citraconate Drugs 0.000 claims description 4
- LDCRTTXIJACKKU-ARJAWSKDSA-N dimethyl maleate Chemical compound COC(=O)\C=C/C(=O)OC LDCRTTXIJACKKU-ARJAWSKDSA-N 0.000 claims description 4
- 238000010348 incorporation Methods 0.000 claims description 4
- NKHAVTQWNUWKEO-IHWYPQMZSA-N methyl hydrogen fumarate Chemical compound COC(=O)\C=C/C(O)=O NKHAVTQWNUWKEO-IHWYPQMZSA-N 0.000 claims description 4
- NLVXSWCKKBEXTG-UHFFFAOYSA-N vinylsulfonic acid Chemical compound OS(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-N 0.000 claims description 4
- 230000002829 reductive effect Effects 0.000 claims description 3
- DZSVIVLGBJKQAP-UHFFFAOYSA-N 1-(2-methyl-5-propan-2-ylcyclohex-2-en-1-yl)propan-1-one Chemical compound CCC(=O)C1CC(C(C)C)CC=C1C DZSVIVLGBJKQAP-UHFFFAOYSA-N 0.000 claims description 2
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 claims description 2
- DMSRIHVZKOZKRV-UHFFFAOYSA-N 2-methyl-1-(2-methylprop-2-enoylamino)propane-1-sulfonic acid Chemical compound CC(C)C(S(O)(=O)=O)NC(=O)C(C)=C DMSRIHVZKOZKRV-UHFFFAOYSA-N 0.000 claims description 2
- GQTFHSAAODFMHB-UHFFFAOYSA-N 2-prop-2-enoyloxyethanesulfonic acid Chemical compound OS(=O)(=O)CCOC(=O)C=C GQTFHSAAODFMHB-UHFFFAOYSA-N 0.000 claims description 2
- SYIUWAVTBADRJG-UHFFFAOYSA-N 2H-pyran-2,6(3H)-dione Chemical compound O=C1CC=CC(=O)O1 SYIUWAVTBADRJG-UHFFFAOYSA-N 0.000 claims description 2
- DMLOUIGSRNIVFO-UHFFFAOYSA-N 3-(prop-2-enoylamino)butane-2-sulfonic acid Chemical compound OS(=O)(=O)C(C)C(C)NC(=O)C=C DMLOUIGSRNIVFO-UHFFFAOYSA-N 0.000 claims description 2
- OFNISBHGPNMTMS-UHFFFAOYSA-N 3-methylideneoxolane-2,5-dione Chemical compound C=C1CC(=O)OC1=O OFNISBHGPNMTMS-UHFFFAOYSA-N 0.000 claims description 2
- OIYTYGOUZOARSH-UHFFFAOYSA-N 4-methoxy-2-methylidene-4-oxobutanoic acid Chemical compound COC(=O)CC(=C)C(O)=O OIYTYGOUZOARSH-UHFFFAOYSA-N 0.000 claims description 2
- 125000005250 alkyl acrylate group Chemical group 0.000 claims description 2
- PVEOYINWKBTPIZ-UHFFFAOYSA-N but-3-enoic acid Chemical compound OC(=O)CC=C PVEOYINWKBTPIZ-UHFFFAOYSA-N 0.000 claims description 2
- 229940018557 citraconic acid Drugs 0.000 claims description 2
- ZWWQRMFIZFPUAA-UHFFFAOYSA-N dimethyl 2-methylidenebutanedioate Chemical compound COC(=O)CC(=C)C(=O)OC ZWWQRMFIZFPUAA-UHFFFAOYSA-N 0.000 claims description 2
- LDCRTTXIJACKKU-ONEGZZNKSA-N dimethyl fumarate Chemical compound COC(=O)\C=C\C(=O)OC LDCRTTXIJACKKU-ONEGZZNKSA-N 0.000 claims description 2
- 229960004419 dimethyl fumarate Drugs 0.000 claims description 2
- 229940050411 fumarate Drugs 0.000 claims description 2
- 239000001530 fumaric acid Substances 0.000 claims description 2
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 claims description 2
- HNEGQIOMVPPMNR-UHFFFAOYSA-N methylfumaric acid Natural products OC(=O)C(C)=CC(O)=O HNEGQIOMVPPMNR-UHFFFAOYSA-N 0.000 claims description 2
- NKHAVTQWNUWKEO-NSCUHMNNSA-N monomethyl fumarate Chemical compound COC(=O)\C=C\C(O)=O NKHAVTQWNUWKEO-NSCUHMNNSA-N 0.000 claims description 2
- 229940005650 monomethyl fumarate Drugs 0.000 claims description 2
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 39
- 229920000642 polymer Polymers 0.000 description 29
- 238000012360 testing method Methods 0.000 description 28
- 239000007788 liquid Substances 0.000 description 22
- 239000000975 dye Substances 0.000 description 17
- 238000004519 manufacturing process Methods 0.000 description 12
- 239000002304 perfume Substances 0.000 description 12
- 239000003795 chemical substances by application Substances 0.000 description 8
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 6
- 239000007844 bleaching agent Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 239000004744 fabric Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 229940088598 enzyme Drugs 0.000 description 4
- 239000000049 pigment Substances 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000004094 surface-active agent Substances 0.000 description 4
- 238000009864 tensile test Methods 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 239000003945 anionic surfactant Substances 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 3
- 150000002191 fatty alcohols Chemical class 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000003094 microcapsule Substances 0.000 description 3
- 239000002736 nonionic surfactant Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000010561 standard procedure Methods 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- 238000003856 thermoforming Methods 0.000 description 3
- 108010065511 Amylases Proteins 0.000 description 2
- 102000013142 Amylases Human genes 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical group C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- DBVJJBKOTRCVKF-UHFFFAOYSA-N Etidronic acid Chemical compound OP(=O)(O)C(O)(C)P(O)(O)=O DBVJJBKOTRCVKF-UHFFFAOYSA-N 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 2
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 108090001060 Lipase Proteins 0.000 description 2
- 102000004882 Lipase Human genes 0.000 description 2
- 239000004367 Lipase Substances 0.000 description 2
- 229920000877 Melamine resin Polymers 0.000 description 2
- 108090000854 Oxidoreductases Proteins 0.000 description 2
- 102000004316 Oxidoreductases Human genes 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 125000003158 alcohol group Chemical group 0.000 description 2
- 150000004996 alkyl benzenes Chemical class 0.000 description 2
- 235000019418 amylase Nutrition 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 239000013522 chelant Substances 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 108010005400 cutinase Proteins 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- IVJISJACKSSFGE-UHFFFAOYSA-N formaldehyde;1,3,5-triazine-2,4,6-triamine Chemical group O=C.NC1=NC(N)=NC(N)=N1 IVJISJACKSSFGE-UHFFFAOYSA-N 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 239000000976 ink Substances 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 235000019421 lipase Nutrition 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 229920000768 polyamine Polymers 0.000 description 2
- 229920002689 polyvinyl acetate Polymers 0.000 description 2
- 239000011118 polyvinyl acetate Substances 0.000 description 2
- 238000002203 pretreatment Methods 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000007666 vacuum forming Methods 0.000 description 2
- 239000001096 (4-ethenyl-1-azabicyclo[2.2.2]octan-7-yl)-(6-methoxyquinolin-4-yl)methanol hydrochloride Substances 0.000 description 1
- NNKXWRRDHYTHFP-HZQSTTLBSA-N (r)-[(2s,4s,5r)-5-ethenyl-1-azabicyclo[2.2.2]octan-2-yl]-(6-methoxyquinolin-4-yl)methanol;hydron;dichloride Chemical compound Cl.Cl.C([C@H]([C@H](C1)C=C)C2)CN1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OC)C=C21 NNKXWRRDHYTHFP-HZQSTTLBSA-N 0.000 description 1
- FRASJONUBLZVQX-UHFFFAOYSA-N 1,4-naphthoquinone Chemical compound C1=CC=C2C(=O)C=CC(=O)C2=C1 FRASJONUBLZVQX-UHFFFAOYSA-N 0.000 description 1
- OSSNTDFYBPYIEC-UHFFFAOYSA-N 1-ethenylimidazole Chemical compound C=CN1C=CN=C1 OSSNTDFYBPYIEC-UHFFFAOYSA-N 0.000 description 1
- BCHZICNRHXRCHY-UHFFFAOYSA-N 2h-oxazine Chemical compound N1OC=CC=C1 BCHZICNRHXRCHY-UHFFFAOYSA-N 0.000 description 1
- 239000001606 7-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-2-yl]oxy-5-hydroxy-2-(4-hydroxyphenyl)chroman-4-one Substances 0.000 description 1
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical group CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 1
- 239000004382 Amylase Substances 0.000 description 1
- 108700038091 Beta-glucanases Proteins 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 108010059892 Cellulase Proteins 0.000 description 1
- 108010084185 Cellulases Proteins 0.000 description 1
- 102000005575 Cellulases Human genes 0.000 description 1
- 102000011413 Chondroitinases and Chondroitin Lyases Human genes 0.000 description 1
- 108010023736 Chondroitinases and Chondroitin Lyases Proteins 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 101710121765 Endo-1,4-beta-xylanase Proteins 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- 108090000371 Esterases Proteins 0.000 description 1
- 108010003272 Hyaluronate lyase Proteins 0.000 description 1
- 102000001974 Hyaluronidases Human genes 0.000 description 1
- 108010029541 Laccase Proteins 0.000 description 1
- 102000003820 Lipoxygenases Human genes 0.000 description 1
- 108090000128 Lipoxygenases Proteins 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 150000001204 N-oxides Chemical class 0.000 description 1
- 239000006057 Non-nutritive feed additive Substances 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108700020962 Peroxidase Proteins 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 108010064785 Phospholipases Proteins 0.000 description 1
- 102000015439 Phospholipases Human genes 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 108010059820 Polygalacturonase Proteins 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 1
- 241000251737 Raja Species 0.000 description 1
- 108091007187 Reductases Proteins 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 239000002262 Schiff base Substances 0.000 description 1
- 150000004753 Schiff bases Chemical class 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- ZIJKGAXBCRWEOL-SAXBRCJISA-N Sucrose octaacetate Chemical compound CC(=O)O[C@H]1[C@H](OC(C)=O)[C@@H](COC(=O)C)O[C@@]1(COC(C)=O)O[C@@H]1[C@H](OC(C)=O)[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1 ZIJKGAXBCRWEOL-SAXBRCJISA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 102000003425 Tyrosinase Human genes 0.000 description 1
- 108060008724 Tyrosinase Proteins 0.000 description 1
- 239000001344 [(2S,3S,4R,5R)-4-acetyloxy-2,5-bis(acetyloxymethyl)-2-[(2R,3R,4S,5R,6R)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxyoxolan-3-yl] acetate Substances 0.000 description 1
- AHWXCYJGJOLNFA-UHFFFAOYSA-N [1,4]benzoxazino[2,3-b]phenoxazine Chemical compound O1C2=CC=CC=C2N=C2C1=CC1=NC3=CC=CC=C3OC1=C2 AHWXCYJGJOLNFA-UHFFFAOYSA-N 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 150000008051 alkyl sulfates Chemical class 0.000 description 1
- 108090000637 alpha-Amylases Proteins 0.000 description 1
- 108010084650 alpha-N-arabinofuranosidase Proteins 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229940025131 amylases Drugs 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000000987 azo dye Substances 0.000 description 1
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 1
- 229940077388 benzenesulfonate Drugs 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229920006317 cationic polymer Polymers 0.000 description 1
- 239000012682 cationic precursor Substances 0.000 description 1
- 229940106157 cellulase Drugs 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 229920013750 conditioning polymer Polymers 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- VWTINHYPRWEBQY-UHFFFAOYSA-N denatonium Chemical compound [O-]C(=O)C1=CC=CC=C1.C=1C=CC=CC=1C[N+](CC)(CC)CC(=O)NC1=C(C)C=CC=C1C VWTINHYPRWEBQY-UHFFFAOYSA-N 0.000 description 1
- 229960001610 denatonium benzoate Drugs 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 239000000982 direct dye Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000007922 dissolution test Methods 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 108010093305 exopolygalacturonase Proteins 0.000 description 1
- 239000002979 fabric softener Substances 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000000892 gravimetry Methods 0.000 description 1
- 108010002430 hemicellulase Proteins 0.000 description 1
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical class NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 1
- 229960002773 hyaluronidase Drugs 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 239000003752 hydrotrope Substances 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 108010011519 keratan-sulfate endo-1,4-beta-galactosidase Proteins 0.000 description 1
- QDLAGTHXVHQKRE-UHFFFAOYSA-N lichenxanthone Natural products COC1=CC(O)=C2C(=O)C3=C(C)C=C(OC)C=C3OC2=C1 QDLAGTHXVHQKRE-UHFFFAOYSA-N 0.000 description 1
- 108010062085 ligninase Proteins 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- NYGZLYXAPMMJTE-UHFFFAOYSA-M metanil yellow Chemical compound [Na+].[O-]S(=O)(=O)C1=CC=CC(N=NC=2C=CC(NC=3C=CC=CC=3)=CC=2)=C1 NYGZLYXAPMMJTE-UHFFFAOYSA-M 0.000 description 1
- 125000001434 methanylylidene group Chemical group [H]C#[*] 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- DFPMSGMNTNDNHN-ZPHOTFPESA-N naringin Chemical compound O[C@@H]1[C@H](O)[C@@H](O)[C@H](C)O[C@H]1O[C@H]1[C@H](OC=2C=C3O[C@@H](CC(=O)C3=C(O)C=2)C=2C=CC(O)=CC=2)O[C@H](CO)[C@@H](O)[C@@H]1O DFPMSGMNTNDNHN-ZPHOTFPESA-N 0.000 description 1
- 229940052490 naringin Drugs 0.000 description 1
- 229930019673 naringin Natural products 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 239000003605 opacifier Substances 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 150000004965 peroxy acids Chemical class 0.000 description 1
- QQBPIHBUCMDKFG-UHFFFAOYSA-N phenazopyridine hydrochloride Chemical group Cl.NC1=NC(N)=CC=C1N=NC1=CC=CC=C1 QQBPIHBUCMDKFG-UHFFFAOYSA-N 0.000 description 1
- 239000001007 phthalocyanine dye Substances 0.000 description 1
- 229920002006 poly(N-vinylimidazole) polymer Polymers 0.000 description 1
- 229920005646 polycarboxylate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 229960001811 quinine hydrochloride Drugs 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 239000006254 rheological additive Substances 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 238000007655 standard test method Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 150000001629 stilbenes Chemical class 0.000 description 1
- 235000021286 stilbenes Nutrition 0.000 description 1
- 229940013883 sucrose octaacetate Drugs 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 108010038851 tannase Proteins 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 150000004961 triphenylmethanes Chemical class 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/04—Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
- C11D17/041—Compositions releasably affixed on a substrate or incorporated into a dispensing means
- C11D17/042—Water soluble or water disintegrable containers or substrates containing cleaning compositions or additives for cleaning compositions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D65/00—Wrappers or flexible covers; Packaging materials of special type or form
- B65D65/38—Packaging materials of special type or form
- B65D65/46—Applications of disintegrable, dissolvable or edible materials
Definitions
- the present invention relates to the use of water-soluble unit dose article to improve the consumer detergent dosing experience.
- Water-soluble detergent unit dose articles are preferred by consumers as they are a convenient, efficient and clean way of dosing detergent during the wash process.
- the water- soluble unit dose form means that the consumer does not need to measure the dose themselves nor do they suffer from accidental spillage of the detergent which some consumers find messy and inconvenient.
- water-soluble unit dose articles can suffer from premature rupture during handling.
- the consumer transfers the water-soluble unit dose article from the storage receptacle to an automatic washing machine, preferably to the drum of an automatic washing machine the water-soluble film could tear, or rip, resulting in premature release of the contents onto the hand of the consumer. This negatively affects the dosing experience as the consumer will find the operation 'messy' and inconvenient.
- the present invention discloses the use of a unit dose article comprising at least a first water-soluble film, a second water-soluble film and a detergent composition, wherein the first water-soluble film and the second water-soluble film are chemically different to one another, in order to improve the consumer detergent dosing experience; wherein the first water soluble film has a first elongation modulus, the second water soluble film has a second elongation modulus, the first elongation modulus is greater than the second elongation modulus, and the difference between the first elongation modulus and the second elongation modulus is from a 0.5 MPa to 10 MPa.
- FIG. 1 shows a schematic illustration of the basic configuration of the unit dose article strength test and seal failure test.
- FIG. 2 shows a side cross-sectional view of a pouch.
- FIG. 3 shows a multi-compartment pouch.
- the present invention is to the use of a unit dose article comprising at least a first water- soluble film, a second water-soluble film and a detergent composition, wherein the first water- soluble film and the second water-soluble film are chemically different to one another, in order to improve the consumer detergent dosing experience.
- the unit dose article, the first water-soluble film, the second water-soluble film and the detergent composition are described in more detail below.
- the consumer detergent dosing experience comprises the consumer transferring at least one water-soluble unit dose article from a storage receptacle to an automatic washing machine, preferably to the drum of an automatic washing machine.
- the water-soluble unit dose article may be added to the drawer of an automatic washing machine.
- the water-soluble unit dose article may be added to the washing machine by hand.
- the water-soluble unit dose article may be added to the drum by hand. Alternatively it may be dispensed from a storage receptacle into the washing machine, preferably the drum.
- a storage receptacle into the washing machine, preferably the drum.
- automatic washing machines comprise a drum and a drawer and will be able to locate said drum or drawer and add both the fabrics and the water- soluble unit dose article thereto accordingly.
- the storage receptacle is a flexible, preferably resealable, bag, a rigid, preferably recloseable, tub or a mixture thereof, preferably, wherein the storage receptacle comprises a child resistant closure.
- suitable child resistant closures Those skilled in the art will be aware of suitable child resistant closures.
- the improved consumer dosing experience comprises reduced instances of premature rupture of the water-soluble unit dose articles in the hand of the consumer whilst transferring them from the storage receptacle to the drum.
- unit dose article improved the consumer dosing experience.
- unit dose articles made from the specific choice of two water-soluble films exhibited reduced instances of premature rupture during or just prior to dosing so providing a less messy and more convenient dosing experience.
- the unit dose article according to the present invention comprises at least a first water- soluble film, a second water-soluble film and a detergent composition, wherein the first water- soluble film and the second water-soluble film are chemically different to one another.
- the water-soluble unit dose article comprises the first water-soluble film and the second water-soluble film shaped such that the unit-dose article comprises at least one internal compartment surrounded by the water-soluble films.
- the water-soluble films are sealed to one another such to define the internal compartment and such that that the detergent composition does not leak out of the compartment during storage.
- the water-soluble film dissolves and releases the contents of the internal compartment into the wash liquor.
- the compartment should be understood as meaning a closed internal space within the unit dose article, which holds the detergent composition.
- the first water-soluble film according to the present invention may be shaped to comprise an open compartment into which the detergent composition is added.
- the second water-soluble film according to the present invention is then laid over the first film in such an orientation as to close the opening of the compartment.
- the first and second films are then sealed together along a seal region.
- the unit dose article may comprise more than one compartment, even at least two compartments, or even at least three compartments.
- the compartments may be arranged in superposed orientation, i.e. one positioned on top of the other. In such an orientation the unit dose article will comprise three films, top, middle and bottom.
- the middle film will correspond to the second water-soluble film according to the present invention and top and bottom films will correspond to the first water-soluble film according to the present invention.
- the compartments may be positioned in a side-by-side orientation, i.e. one orientated next to the other.
- the compartments may even be orientated in a 'tyre and rim' arrangement, i.e.
- a first compartment is positioned next to a second compartment, but the first compartment at least partially surrounds the second compartment, but does not completely enclose the second compartment.
- one compartment may be completely enclosed within another compartment.
- the first water-soluble film according to the present invention may be shaped to comprise an open compartment into which the detergent composition is added.
- the second water-soluble film according to the present invention is then laid over the first film in such an orientation as to close the opening of the compartment.
- the unit dose article comprises at least two compartments, one of the compartments may be smaller than the other compartment.
- the unit dose article comprises at least three compartments, two of the compartments may be smaller than the third compartment, and preferably the smaller compartments are superposed on the larger compartment.
- the superposed compartments preferably are orientated side-by-side.
- the detergent composition according to the present invention may be comprised in at least one of the compartments. It may for example be comprised in just one compartment, or may be comprised in two compartments, or even in three compartments.
- Each compartment may comprise the same or different compositions.
- the different compositions could all be in the same form, or they may be in different forms.
- the water-soluble unit dose article may comprise at least two internal compartments, wherein the liquid laundry detergent composition is comprised in at least one of the compartments, preferably wherein the unit dose article comprises at least three compartments, wherein the detergent composition is comprised in at least one of the compartments.
- the water-soluble unit dose article comprises a first water-soluble film and a second water-soluble film and the first water-soluble film and the second water-soluble film are chemically different to one another.
- 'chemically different' herein means where the 'virgin films', i.e. films received from the supplier/manufacture and prior to unwinding on a unit dose article making unit, having at least one substance present in at least one of the film compositions that differentiates the first from the second film composition and impacts at least the water capacity, per the test method described herein, rendering this at least one physical film property different between the first and second films.
- Varying chemical compositions of films due to natural making processes i.e. batch to batch variations are as such not considered chemically different films within the scope of this invention.
- Non limiting examples of chemically differentiating substances include use of different polymer target resins and or content, different plasticizer composition and or content or different surfactant and or content.
- Water soluble unit dose articles comprising films solely differing in physical properties but having the same substance content such as films solely differing in film thickness are considered outside the scope of this invention.
- Unit dose articles made from films being solely differentiated through the presence versus the absence of a coating layer are also considered outside the scope of the invention.
- the first water soluble film has a first elongation modulus
- the second water soluble film has a second elongation modulus
- the first elongation modulus is greater than the second elongation modulus
- the difference between the first elongation modulus and the second elongation modulus is from a 0.5 MPa to 10 MPa, preferably from 1 MPa to 8 MPa, more preferably from 2 MPa to 7 MPa.
- 'difference' we herein mean the difference in the value of the first elongation modulus and the value of the second elongation modulus.
- 'elongation modulus' we herein mean the ability of the film to be elongated when a stress is applied. The method for measuring elongation modulus is described in more detail below.
- the first elongation modulus is from 1 MPa to 20 MPa, more preferably from 3MPa to 20 MPa.
- the second elongation modulus is from 1 MPa to 15 MPa, more preferably from 3 MPa to 15MPa.
- the first water-soluble film has a first tensile strain at break
- the second water- soluble film has a second tensile strain at break, wherein the first tensile strain at break is greater than the second tensile strain at break.
- 'difference in tensile strain at break we herein mean the difference in the value of the first tensile strain at break and the second tensile strain at break. The method to determine tensile strain at break is described in more detail below.
- the difference between the first tensile strain at break and the second tensile strain at break is from 10% to 1000%, preferably from 100 % to 750%, more preferably from 200% to 500%.
- 'difference in tensile strain at break' we herein mean the difference in the value of the first tensile strain at break and the second tensile strain at break.
- the first tensile strain at break is from 300% to 1600 %, more preferably from 400% to 1200%, most preferably from 700% to 1200%.
- the second tensile strain at break is from 300% to 1200%, more preferably from 500% to 1000%.
- the first water-soluble film is thermoformed during manufacture of the unit dose article.
- thermoforming we herein mean that the film is heated prior to deformation, i.e. by passing the film under an infrared lamp, the deformation step preferably being enabled by laying the water soluble film over a cavity and applying vacuum or an under pressure inside the cavity under the film.
- the second water-soluble film may be thermoformed during manufacture of the unit dose article.
- the second water-soluble film may not be thermoformed during manufacture of the unit dose article.
- the first water-soluble film is thermoformed during manufacture of the unit dose article and the second water-soluble film is not thermoformed during manufacture of the unit dose article.
- the first water-soluble film, the second water-soluble film or a mixture thereof independently may have a thickness before incorporation into the unit dose article of between 40 microns and 100 microns, preferably between 60 microns and 90 microns, more preferably between 70 microns and 80 microns.
- the difference in thickness before incorporation into the unit dose article between the first water-soluble film and the second water-soluble film is less than 50%, preferably less than 30%, more preferably less than 20%, even more preferably less than 10%, or the thicknesses may be equal.
- the first water-soluble film and the second water-soluble film according to the invention are preferably single layer films, more preferably manufactured via solution casting.
- the first water-soluble film has a first water capacity and the second water- soluble film has a second water capacity wherein the first water capacity is less than the second water capacity and wherein the difference between the water capacity of the first water soluble film and the second water-soluble film is between 0.01% and 1%, preferably from 0.03% to 0.5%, more preferably from 0.05% to 0.3%.
- difference' we herein mean the difference in the value of the first water capacity and the value of the second water capacity.
- water capacity' we herein mean the capacity of the film to absorb water over a fixed period of time at a particular relative humidity, measured as a mass increase of the film being tested. The method for measuring water capacity is described in more detail below.
- the first water-soluble film has a water capacity from 1% to 10%, more preferably from 2% to 8%, most preferably from 3 % to 6 % and the second water-soluble film has a water capacity from 1.5% to 12%, preferably from 2.5% to 10%, more preferably from 3.5% to 8%.
- the first water soluble film comprises a first water soluble resin and the second water soluble film comprises a second water soluble resin.
- the first water soluble resin comprises at least one polyvinyl alcohol homopolymer or at least one polyvinylalcohol copolymer or a blend thereof and the second water soluble resin comprises at least one polyvinyl alcohol homopolymer or at least one polyvinylalcohol copolymer or a blend thereof.
- the first water soluble resin may comprise a blend of a polyvinyl alcohol homopolymer and a polyvinyl alcohol copolymer comprising an anionic monomer unit, preferably wherein the blend comprises from 0% to 70% by weight of the first water soluble resin of the polyvinyl alcohol copolymer comprising an anionic monomer unit and from 30% to about 100% by weight of the first water soluble resin of the polyvinyl alcohol homopolymer, more preferably wherein the blend comprises from 10% to 70%, even more preferably from 15% to less than 65%, even more preferably from 20% to 50%, most preferably from 30% to 40% of the polyvinyl alcohol copolymer comprising an anionic monomer unit and from 30% to 90%, or greater than 35% to 85%, or from 50% to 80%, or from 60 wt% to 70 wt% by weight of the first water soluble resin of the polyvinyl alcohol homopolymer, based on the total weight of the first water soluble resin.
- the polyvinyl alcohol copolymer can
- Polyvinyl alcohol homopolymer means polyvinyl alcohol comprising polyvinyl alcohol units and optionally but preferably polyvinylacetate units.
- Polyvinyl alcohol copolymer means a polymer comprising polyvinyl alcohol units, optionally but prefereably polyvinyl acetate units and anionically modified polyvinylalcohol units.
- the second water soluble resin may comprise a blend of a polyvinyl alcohol
- the blend comprises from 0% to 70% of the polyvinyl alcohol copolymer comprising an anionic monomer unit and from 30% to 100% of the polyvinyl alcohol homopolymer, based on the total weight of the second water soluble resin in the film, more preferably wherein the blend comprises from 10% to 70%, even more preferably from 15% to
- the polyvinyl alcohol copolymer can be present at a concentration which, together with the concentration of the polyvinyl alcohol homopolymer, sums to 100%.
- the anionic monomer unit present in the polyvinyl alcohol copolymer of the first resin, present in the polyvinyl alcohol copolymer of the second resin, or a mixture thereof may independently be selected from the group consisting of anionic monomers derived from of vinyl acetic acid, alkyl acrylates, maleic acid, monoalkyl maleate, dialkyl maleate, monomethyl maleate, dimethyl maleate, maleic anhydride, fumaric acid, monoalkyl fumarate, dialkyl fumarate, monomethyl fumarate, dimethyl fumarate, fumaric anhydride, itaconic acid, monomethyl itaconate, dimethyl itaconate, itaconic anhydride, citraconic acid, monoalkyl citraconate, dialkyl citraconate, citraconic anhydride, mesaconic acid, monoalkyl mesaconate, dialkyl mesaconate, mesaconic anhydride, glutaconic acid, monoalkyl glutaconate
- anionic monomer unit is selected from the group consisting of anionic monomers derived from maleic acid, monoalkyl maleate, dialkyl maleate, maleic anhydride, alkali metal salts thereof, esters thereof, and combinations thereof;
- anionic monomer unit is selected from the group consisting of anionic monomers derived from maleic acid, monomethyl maleate, dimethyl maleate, maleic anyhydride, alkali metal salts thereof, esters thereof, and combinations thereof.
- the first and second polyvinyl alcohol copolymers independently comprise from 1 mol% to 8 mol% more preferably from 2 mol% to 5 mol%, most preferably from 3 mol% to 4 mol% of the anionic monomer unit with respect to total polyvinyl alcohol copolymer present.
- the first polyvinyl alcohol homopolymer and second polyvinyl alcohol homopolymer and the first polyvinyl alcohol copolymer and second polyvinyl alcohol copolymer independently have a degree of hydrolysis of from 80% to 99% preferably from 85% to 95% more preferably from 86% and 93%.
- the first polyvinyl alcohol homopolymers and second polyvinyl alcohol homopolymer and first polyvinyl alcohol copolymer and second polyvinyl alcohol copolymer independently have a 4% solution viscosity in demineralized water at 25 °C in a range of 4 cP to 40cP, preferably of lOcP to 30 cP, more preferably of 12 cP to 25 cP.
- the first water-soluble film and the second water-soluble film independently have a water soluble resin content of between 30% and 90%, more preferably between 40% and 80%, even more preferably between 50% and 75%, most preferably between 60% and 70% by weight of the film.
- the water-soluble unit dose article exhibits a dissolution profile, according to the unit dose article dose article machine wash dissolution test method described below of less than 6.2 preferably less than 6 more preferably less than 5.8.
- the first and or second film may independently be opaque, transparent or translucent.
- the first and or second film may independently comprise a printed area.
- the printed area may cover between 10 and 80% of the surface of the film; or between 10 and 80% of the surface of the film that is in contact with the internal space of the compartment; or between 10 and 80% of the surface of the film and between 10 and 80% of the surface of the compartment.
- the area of print may cover an uninterrupted portion of the film or it may cover parts thereof, i.e. comprise smaller areas of print, the sum of which represents between 10 and 80% of the surface of the film or the surface of the film in contact with the internal space of the compartment or both.
- the area of print may comprise inks, pigments, dyes, blueing agents or mixtures thereof.
- the area of print may be opaque, translucent or transparent.
- the area of print may comprise a single colour or maybe comprise multiple colours, even three colours.
- the area of print may comprise white, black, blue, red colours, or a mixture thereof.
- the print may be present as a layer on the surface of the film or may at least partially penetrate into the film.
- the film will comprise a first side and a second side.
- the area of print may be present on either side of the film, or be present on both sides of the film. Alternatively, the area of print may be at least partially comprised within the film itself.
- the area of print may be achieved using standard techniques, such as flexographic printing or inkjet printing.
- the area of print is achieved via flexographic printing, in which a film is printed, then moulded into the shape of an open compartment. This compartment is then filled with a detergent composition and a second film placed over the compartment and sealed to the first film.
- the area of print may be on either or both sides of the film.
- an ink or pigment may be added during the manufacture of the film such that all or at least part of the film is coloured.
- the first and or second film may independently comprise an aversive agent, for example a bittering agent.
- aversive agent for example a bittering agent.
- Suitable bittering agents include, but are not limited to, naringin, sucrose octaacetate, quinine hydrochloride, denatonium benzoate, or mixtures thereof.
- Any suitable level of aversive agent may be used in the film. Suitable levels include, but are not limited to, 1 to 5000ppm, or even 100 to 2500ppm, or even 250 to 2000ppm.
- the first and or second film may also comprise other actives typically known by a skilled person in the art including water, plasticizer and surfactant.
- the detergent composition may be in the form of free flowing powder, a liquid, a compacted solid, a gel or a mixture thereof.
- the detergent composition may be in the form of a free flowing powder.
- a free flowing powder may have an average particle size diameter of between 100 microns and 1500 microns, preferably between 100 microns and 1000 microns, more preferably between 100 microns and 750 microns.
- the detergent composition may be a free flowing laundry detergent composition.
- the detergent composition may be a liquid.
- the term 'liquid' encompasses forms such as dispersions, gels, pastes and the like.
- the liquid composition may also include gases in suitably subdivided form.
- the liquid composition excludes forms which are non-liquid overall, such as tablets or granules.
- the detergent composition may be a liquid laundry detergent composition.
- liquid laundry detergent composition refers to any laundry detergent composition comprising a liquid capable of wetting and treating fabric e.g., cleaning clothing in a domestic washing machine.
- the laundry detergent composition is used during the main wash process but may also be used as pre-treatment or soaking compositions.
- Laundry detergent compositions include fabric detergents, fabric softeners, 2-in-l detergent and softening, pre-treatment compositions and the like.
- the laundry detergent composition may comprise an ingredient selected from bleach, bleach catalyst, dye, hueing dye, brightener, cleaning polymers including alkoxylated polyamines and polyethyleneimines, soil release polymer, surfactant, solvent, dye transfer inhibitors, chelant, builder, enzyme, perfume, encapsulated perfume, polycarboxylates, rheology modifiers, structurant, hydrotropes, pigments and dyes, opacifiers, preservatives, anti-oxidants, processing aids, conditioning polymers including cationic polymers, antibacterial agents, pH trimming agents such as hydroxides and alkanolamines, suds suppressors, and mixtures thereof.
- Surfactants can be selected from anionic, cationic, zwitterionic, non-ionic, amphoteric or mixtures thereof.
- the fabric care composition comprises anionic, non-ionic or mixtures thereof.
- the anionic surfactant may be selected from linear alkyl benzene sulfonate, alkyl ethoxylate sulphate and combinations thereof.
- Suitable anionic surfactants useful herein can comprise any of the conventional anionic surfactant types typically used in liquid detergent products. These include the alkyl benzene sulfonic acids and their salts as well as alkoxylated or non-alkoxylated alkyl sulfate materials.
- the non-ionic surfactant may be selected from fatty alcohol alkoxylate, an oxo- synthesised fatty alcohol alkoxylate, Guerbet alcohol alkoxylates, alkyl phenol alcohol alkoxylates or a mixture thereof.
- Suitable nonionic surfactants for use herein include the alcohol alkoxylate nonionic surfactants.
- Alcohol alkoxylates are materials which correspond to the general formula: R 1 (C m H2mO) n OH wherein R 1 is a Cs-Ci6 alkyl group, m is from 2 to 4, and n ranges from about 2 to 12.
- R 1 is an alkyl group, which may be primary or secondary, that comprises from about 9 to 15 carbon atoms, or from about 10 to 14 carbon atoms.
- the alkoxylated fatty alcohols will also be ethoxylated materials that contain on average from about 2 to 12 ethylene oxide moieties per molecule, or from about 3 to 10 ethylene oxide moieties per molecule.
- the shading dyes employed in the present laundry detergent compositions may comprise polymeric or non-polymeric dyes, pigments, or mixtures thereof.
- the shading dye comprises a polymeric dye, comprising a chromophore constituent and a polymeric constituent.
- the chromophore constituent is characterized in that it absorbs light in the wavelength range of blue, red, violet, purple, or combinations thereof upon exposure to light.
- the chromophore constituent exhibits an absorbance spectrum maximum from about 520 nanometers to about 640 nanometers in water and/or methanol, and in another aspect, from about 560 nanometers to about 610 nanometers in water and/or methanol.
- the dye chromophore is preferably selected from benzodifuranes, methine, triphenylmethanes, napthalimides, pyrazole, napthoquinone, anthraquinone, azo, oxazine, azine, xanthene, triphenodioxazine and phthalocyanine dye chromophores.
- Mono and di-azo dye chromophores are preferred.
- the dye may be introduced into the detergent composition in the form of the unpurified mixture that is the direct result of an organic synthesis route.
- the dye polymer therefore, there may also be present minor amounts of un-reacted starting materials, products of side reactions and mixtures of the dye polymers comprising different chain lengths of the repeating units, as would be expected to result from any polymerisation step.
- the laundry detergent compositions can comprise one or more detergent enzymes which provide cleaning performance and/or fabric care benefits.
- suitable enzymes include, but are not limited to, hemicellulases, peroxidases, proteases, cellulases, xylanases, lipases, phospholipases, esterases, cutinases, pectinases, keratanases, reductases, oxidases, phenoloxidases, lipoxygenases, ligninases, pullulanases, tannases, pentosanases, malanases, ⁇ - glucanases, arabinosidases, hyaluronidase, chondroitinase, laccase, and amylases, or mixtures thereof.
- a typical combination is a cocktail of conventional applicable enzymes like protease, lipase, cutinase and/or cellulase in conjunction with amylase.
- the laundry detergent compositions of the present invention may comprise one or more bleaching agents.
- Suitable bleaching agents other than bleaching catalysts include photobleaches, bleach activators, hydrogen peroxide, sources of hydrogen peroxide, pre-formed peracids and mixtures thereof..
- the composition may comprise a brightener.
- Suitable brighteners are stilbenes, such as brightener 15.
- Other suitable brighteners are hydrophobic brighteners, and brightener 49.
- the brightener may be in micronized particulate form, having a weight average particle size in the range of from 3 to 30 micrometers, or from 3 micrometers to 20 micrometers, or from 3 to 10 micrometers.
- the brightener can be alpha or beta crystalline form.
- compositions herein may also optionally contain one or more copper, iron and/or manganese chelating agents.
- the chelant may comprise 1-hydroxyethanediphosphonic acid (HEDP) and salts thereof; N,N-dicarboxymethyl-2-aminopentane-l,5-dioic acid and salts thereof; 2-phosphonobutane-l,2,4-tricarboxylic acid and salts thereof; and any combination thereof.
- HEDP 1-hydroxyethanediphosphonic acid
- compositions of the present invention may also include one or more dye transfer inhibiting agents.
- Suitable polymeric dye transfer inhibiting agents include, but are not limited to, polyvinylpyrrolidone polymers, polyamine N-oxide polymers, copolymers of N- vinylpyrrolidone and N-vinylimidazole, polyvinyloxazolidones and polyvinylimidazoles or mixtures thereof.
- the laundry detergent composition may comprise one or more polymers.
- Suitable polymers include carboxylate polymers, polyethylene glycol polymers, polyester soil release polymers such as terephthalate polymers, amine polymers, cellulosic polymers, dye transfer inhibition polymers, dye lock polymers such as a condensation oligomer produced by condensation of imidazole and epichlorhydrin, optionally in ratio of 1:4:1, hexamethylenediamine derivative polymers, and any combination thereof.
- Other suitable cellulosic polymers may have a degree of substitution (DS) of from 0.01 to 0.99 and a degree of blockiness (DB) such that either DS+DB is of at least 1.00 or DB+2DS-DS 2 is at least 1.20.
- DS degree of substitution
- DB degree of blockiness
- the substituted cellulosic polymer can have a degree of substitution (DS) of at least 0.55.
- the substituted cellulosic polymer can have a degree of blockiness (DB) of at least 0.35.
- the substituted cellulosic polymer can have a DS + DB, of from 1.05 to 2.00.
- a suitable substituted cellulosic polymer is carboxymethylcellulose.
- Another suitable cellulosic polymer is cationically modified hydroxyethyl cellulose.
- Suitable perfumes include perfume microcapsules, polymer assisted perfume delivery systems including Schiff base perfume/polymer complexes, starch-encapsulated perfume accords, perfume-loaded zeolites, blooming perfume accords, and any combination thereof.
- a suitable perfume microcapsule is melamine formaldehyde based, typically comprising perfume that is encapsulated by a shell comprising melamine formaldehyde. It may be highly suitable for such perfume microcapsules to comprise cationic and/or cationic precursor material in the shell, such as polyvinyl formamide (PVF) and/or cationically modified hydroxyethyl cellulose (catHEC).
- PVF polyvinyl formamide
- catHEC cationically modified hydroxyethyl cellulose
- Suitable suds suppressors include silicone and/or fatty acid such as stearic acid.
- the laundry detergent composition maybe coloured.
- the colour of the liquid laundry detergent composition may be the same or different to any printed area on the film of the article.
- Each compartment of the unit dose article may have a different colour.
- the liquid laundry detergent composition comprises a non- substantive dye having an average degree of alkoxylation of at least 16.
- At least one compartment of the unit dose article may comprise a solid. If present, the solid may be present at a concentration of at least 5% by weight of the unit dose article.
- Standard forming processes including but not limited to thermoforming and vacuum forming techniques may be used.
- a preferred method of making the water-soluble unit dose article according to the present invention comprises the steps of moulding the first water-soluble film in a mould to form an open cavity, filling the cavity with the detergent composition, laying the second film over the first film to close the cavity, and sealing the first and second films together preferably through solvent sealing, the solvent preferably comprising water, to produce the water-soluble unit dose article.
- This test method describes the practice for determining the unit dose article strength using the Instron Universal Materials Testing instrument (Instron Industrial Products, 825 University Ave., Norwood, MA 02062-2643) with a load cell of maximum 100 kN (kilo Newton). Via compression of a unit dose article, this method determines the overall strength (in Newtons) of the unit dose article by putting pressure on the film and seal regions. Unit dose article strength (in Newtons) is defined as the maximum load a unit dose article can support before it breaks. Unit dose articles opening at the seal area at a pressure lower than 250N are reported as seal failures, and are not taken into account when determining average unit dose article strength.
- FIG. 1. shows a schematic illustration of the basic configuration of the unit dose article strength test.
- a unit dose article 510 was enclosed in a plastic de-aerated bag 500 (150 mm by 124 mm with closure, 60 micron thick - e.g. Raja grip RGP6B) to prevent contamination of working environment upon unit dose article rupture.
- the unit dose article 510 was centered between two compression plates 520, 530 of the instrument.
- the unit dose article 510 was placed in an upright position, so that the width seal dimension 540 (e.g. smallest dimension within a defined rectangular plane just encompassing the seal area, 41mm in actual unit dose articles tested) was between the compression plates (x-direction) such that the stress was applied on the width seal.
- the speed of decreasing the distance between the plates 520 and 530 is set at 60 rnrn/min.
- Ten replicates were conducted per test leg, and average unit dose article strength data, excluding seal failures as defined above, are reported.
- Tensile Strain (TS) Test and e-modulus (elongation modulus or tensile stress) according to the Modulus (MOD) Test was analyzed as follows. The procedure includes the determination of tensile strain and the determination of e-modulus according to ASTM D 882 ("Standard Test Method for Tensile Properties of Thin Plastic Sheeting"). An INSTRON tensile testing apparatus (Model 5544 Tensile Tester or equivalent - Instron Industrial Products, 825 University Ave., Norwood, MA 02062-2643) was used for the collection of film data. A minimum of three test specimens, each cut with reliable cutting tools (e.g. JDC precision sample cutter, Model 1-10, from Thwing Albert Instrument Company, Philadelphia, PA U.S.A.
- reliable cutting tools e.g. JDC precision sample cutter, Model 1-10, from Thwing Albert Instrument Company, Philadelphia, PA U.S.A.
- MD machine direction
- water soluble films were pre-conditioned to testing environmental conditions for a minimum of 48h. Tests were conducted in the standard laboratory atmosphere of 23 + 2.0°C and 35 + 5 % relative humidity. For tensile strain or modulus determination, l"-wide (2.54 cm) samples of a single film sheet having a thickness of 3.0 ⁇ 0.15 mil (or 76.2 ⁇ 3.8 ⁇ ) are prepared. For e-modulus testing virgin films were tested. For tensile strain testing test films were first pre-immersed in testing detergent according to the protocol described below.
- the sample was then transferred to the INSTRON tensile testing machine to proceed with testing.
- the tensile testing machine was prepared according to manufacturer instructions, equipped with a 500 N load cell, and calibrated. The correct grips and faces were fitted (INSTRON grips having model number 2702-032 faces, which are rubber coated and 25 mm wide, or equivalent).
- the samples were mounted into the tensile testing machine, elongated at a rate of lN/min, and analyzed to determine the e- modulus (i.e., slope of the stress-strain curve in the elastic deformation region) and tensile strain at break (i.e., % elongation achieved at the film break, i.e. 100% reflects starting length, 200% reflects a film that has been lengthened 2 times at film break). The average of minimum three test specimens was calculated and reported.
- Film pre-immersion protocol A film sample measuring 11 cm by 12 cm was prepared of both films intended to be used to form a sealed compartment enclosing a liquid household detergent composition. A total of 750 ml of the household liquid detergent composition intended to be enclosed within a sealed compartment comprising the test films, was required for each test film. The bottom of a clean inert glass recipient was covered with a thin layer of liquid and the film to be tested was spread on the liquid; air bubbles trapped under the film were gently pushed towards the sides. The remaining liquid was then gently poured on top of the film, in such a way that the film was fully immersed into the liquid. The film should remain free of wrinkles and no air bubbles should be in contact with the film.
- the film stayed in contact with the liquid and was stored under closed vessel conditions for 6 days at 35°C and 1 night at 21°C. A separate glass recipient was used for each test film. The film was then removed from the storage vessel, and the excess liquid was removed from the film. A piece of paper was put on the film which was laid on top of a bench paper, and then the film was wiped dry thoroughly with dry paper. Films were consequently preconditioned to tensile strain environmental testing conditions as described above. When intending enclosing solid household detergent compositions, virgin films were used for tensile strain testing.
- Water capacity was measured with a DVS (Dynamic Vapor Sorption) Instrument.
- the instrument used was a SPS-DVS (model SPSx- ⁇ -High load with permeability kit) from ProUmid.
- the DVS uses gravimetry for determination of moisture sorption/desorption and is fully automated.
- the accuracy of the system is + 0.6% for the RH (relative humidity) over a range of 0-98% and + 0.3°C at a temperature of 25°C.
- the temperature can range from +5 to +60 °C.
- the microbalance in the instrument is capable of resolving 0.1 ⁇ g in mass change. 2 replicates of each film are measured and the average water capacity value is reported.
- Each pan has an aluminum ring with screws, designed to fix the films.
- a piece of film was placed onto a pan and after gentle stretching, the ring was placed on top and the film was tightly fixed with the screws and excess film removed.
- the film covering the pan surface had an 80 mm diameter.
- the temperature was fixed at 20°C.
- Relative humidity (RH) was set at 35% for 6 hours, and then gradually raised onto 50 % in 5 min. The RH remained at 50 % for 12hours. The total duration of the measurement was 18 hours.
- the water capacity (or %Dm gained over 50%RH cycle during the fixed time of 12 hours at 20°C) was calculated by difference of the value %Dm at 50%RH (last value measured at 50%RH) minus %Dm at 35%RH (last value before going up to 50%RH).
- Comparative unit dose article outside the scope of the invention have been prepared out of a single film type while example unit dose articles according to the invention have been prepared out of two different films, differing in e-modulus according to the invention.
- Table 1 below details film compositions used to prepare comparative and example unit dose articles.
- Table 2 below details key physical properties of the respective films used in the examples.
- example unit dose articles 1 and 2 made of 2 films differing in e-modulus according to the scope of the invention provide both good pouch strength, compared to respective comparative examples 1 and 2 made out of a single type film showing an inferior unit dose article strength.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Wrappers (AREA)
- Detergent Compositions (AREA)
Abstract
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662349225P | 2016-06-13 | 2016-06-13 | |
PCT/US2017/037116 WO2017218449A1 (fr) | 2016-06-13 | 2017-06-13 | Utilisation d'un article de dose unique hydrosolublre, destinée à améliorer l'expérience consommateur de dosage de détergent |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3469062A1 true EP3469062A1 (fr) | 2019-04-17 |
Family
ID=59091661
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17731769.0A Ceased EP3469062A1 (fr) | 2016-06-13 | 2017-06-13 | Utilisation d'un article de dose unique hydrosolublre, destinée à améliorer l'expérience consommateur de dosage de détergent |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3469062A1 (fr) |
JP (1) | JP6749424B2 (fr) |
CA (1) | CA2970499A1 (fr) |
WO (1) | WO2017218449A1 (fr) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
HUE059621T2 (hu) | 2016-04-13 | 2022-11-28 | Monosol Llc | Vízoldható film, a filmet hasznosító csomagolások, és eljárások ezek elõállítására és használatára |
US10745655B2 (en) | 2016-06-13 | 2020-08-18 | The Procter & Gamble Company | Water-soluble unit dose articles made from a combination of different films and containing household care compositions |
US10899518B2 (en) | 2016-06-13 | 2021-01-26 | Monosol, Llc | Water-soluble packets |
EP3469058A1 (fr) | 2016-06-13 | 2019-04-17 | Monosol, LLC | Articles en dose unitaire hydrosolubles, fabriqués à partir d'une combinaison de différents films |
EP3469060A1 (fr) | 2016-06-13 | 2019-04-17 | The Procter & Gamble Company | Articles de type dose unitaire hydrosolubles produits à partir d'une combinaison de films différents et contenant des compositions d'entretien ménager |
JP7059205B2 (ja) | 2016-06-13 | 2022-04-25 | モノソル リミテッド ライアビリティ カンパニー | 水溶性の密封強度を改善するための第1のフィルムおよび第2のフィルムの使用 |
RU2704615C1 (ru) | 2016-06-13 | 2019-10-30 | Дзе Проктер Энд Гэмбл Компани | Водорастворимые изделия с разовой дозой, изготовленные из комбинации различных пленок и содержащие композиции для бытового применения |
FR3131528B1 (fr) | 2021-12-30 | 2024-03-01 | Oreal | Article de conditionnement cosmétique comprenant une composition solide |
FR3141333A1 (fr) | 2022-10-26 | 2024-05-03 | L'oreal | Article de conditionnement cosmétique comprenant une composition solide comprenant un amidon phosphaté |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2108041A1 (fr) * | 2007-01-18 | 2009-10-14 | Reckitt Benckiser N.V. | Élément de dosage et procédé de fabrication d'un élément de dosage |
US20120070107A1 (en) * | 2010-09-20 | 2012-03-22 | Gustavo Jose Camargo-Parodi | Unit dose articles and package therefor |
WO2014151718A2 (fr) * | 2013-03-15 | 2014-09-25 | Monosol Llc | Film hydrosoluble pour une action retardée |
CA2962792C (fr) * | 2014-10-13 | 2019-08-13 | The Procter & Gamble Company | Articles comprenant un film melange de poly(alcool de vinyle) soluble dans l'eau et procedes associes |
-
2017
- 2017-06-13 JP JP2018563573A patent/JP6749424B2/ja active Active
- 2017-06-13 WO PCT/US2017/037116 patent/WO2017218449A1/fr unknown
- 2017-06-13 EP EP17731769.0A patent/EP3469062A1/fr not_active Ceased
- 2017-06-13 CA CA2970499A patent/CA2970499A1/fr not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
JP2019518675A (ja) | 2019-07-04 |
JP6749424B2 (ja) | 2020-09-02 |
WO2017218449A1 (fr) | 2017-12-21 |
CA2970499A1 (fr) | 2017-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11078451B2 (en) | Water-soluble unit dose articles made from a combination of different films and containing household care compositions | |
CA2970590C (fr) | Utilisation d'une premiere pellicule et d'une deuxieme pellicule en vue d'ameliorer la solidite d'un joint d'un article de dosage unique hydrosoluble | |
US11781094B2 (en) | Water-soluble unit dose articles made from a combination of different films and containing household care compositions | |
US10370627B2 (en) | Water-soluble unit dose articles made from a combination of different films and containing household care compositions | |
WO2017218449A1 (fr) | Utilisation d'un article de dose unique hydrosolublre, destinée à améliorer l'expérience consommateur de dosage de détergent | |
US10377980B2 (en) | Process of washing fabrics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20181206 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20200515 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R003 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 20230324 |