EP3465815B1 - Waveguide comprising a thick conductive layer - Google Patents

Waveguide comprising a thick conductive layer Download PDF

Info

Publication number
EP3465815B1
EP3465815B1 EP17728662.2A EP17728662A EP3465815B1 EP 3465815 B1 EP3465815 B1 EP 3465815B1 EP 17728662 A EP17728662 A EP 17728662A EP 3465815 B1 EP3465815 B1 EP 3465815B1
Authority
EP
European Patent Office
Prior art keywords
core
layer
thickness
conductive
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17728662.2A
Other languages
German (de)
French (fr)
Other versions
EP3465815A1 (en
Inventor
Emile De Rijk
Mirko Favre
Mathieu BILLOD
Alexandre DIMITRIADES
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swissto12 SA
Original Assignee
Swissto12 SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swissto12 SA filed Critical Swissto12 SA
Publication of EP3465815A1 publication Critical patent/EP3465815A1/en
Application granted granted Critical
Publication of EP3465815B1 publication Critical patent/EP3465815B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • H01P11/001Manufacturing waveguides or transmission lines of the waveguide type
    • H01P11/002Manufacturing hollow waveguides

Definitions

  • the present invention relates to a waveguide device, a method for manufacturing said waveguide and an information medium for manufacturing said waveguide.
  • Radio frequency (RF) signals can propagate either in free space or in waveguide devices. These waveguide devices are used to channel RF signals or to manipulate them in the spatial or frequency domain.
  • the present invention relates in particular to the first category above, hereinafter collectively referred to as guides. of waves.
  • guides. of waves include waveguides as such, filters, antennas, mode converters, etc. They can be used for signal routing, frequency filtering, signal separation or recombination, transmission or reception of signals in or from free space, etc.
  • FIG. 1 An example of a conventional waveguide is shown on the figure 1 . It consists of a hollow device, the shape and proportions of which determine the propagation characteristics for a given wavelength of the electromagnetic signal.
  • Conventional waveguides used for radiofrequency signals have internal openings of rectangular or circular section. They make it possible to propagate electromagnetic modes corresponding to different distributions of electromagnetic field along their section.
  • the waveguide has a height B along the y axis and a width A along the x axis.
  • the figure 2 schematically illustrates the electric E and magnetic H field lines in such a waveguide.
  • the dominant mode of propagation is in this case the electric transverse mode called TE 10 .
  • the index 1 indicates the number of half wavelengths across the width of the guide, and 0 the number of half wavelengths along the height.
  • the figures 3 and 4 illustrate a circular section waveguide. Circular transmission modes can propagate in such a waveguide. Arrows on the figure 4 illustrate the TE11 transmission mode; the more or less vertical arrows show the electric field, the more horizontal arrows the magnetic field. The orientation of the field changes across the waveguide section.
  • waveguide openings Apart from these examples of rectangular or circular waveguide openings, other forms of opening have been imagined or can be imagined within the framework of the invention and which allow to maintain an electromagnetic mode at a given signal frequency in order to transmit an electromagnetic signal. Examples of possible waveguide apertures are shown on the figure 5 .
  • the illustrated surface corresponds to the section of the opening of the waveguide, delimited by electrically conductive surfaces. The shape and the area of the section may further vary along the main direction of the waveguide device.
  • waveguides with complex sections are difficult and expensive.
  • Recent work, however, has demonstrated the possibility of making waveguide components, including antennas, waveguides, filters, converters, etc., using additive manufacturing methods, e.g. 3d printing.
  • the additive manufacturing of waveguides comprising both non-conductive materials, such as polymers or ceramics, and conductive metals is known.
  • Waveguides comprising ceramic or polymer walls manufactured by an additive method and then covered with a metal plating have in particular been suggested.
  • the internal surfaces of the waveguide must indeed be electrically conductive to operate.
  • the use of a non-conductive core makes it possible on the one hand to reduce the weight and the cost of the device, on the other hand to implement 3D printing methods adapted to polymers or ceramics and making it possible to produce parts. high precision with low roughness.
  • the document WO2016030490 describes a method for making articles by additive manufacturing.
  • the surface pores generated by additive manufacturing are covered with a non-stick coating, which prevents the adhesion of any substances that come into contact with the surface.
  • a non-stick coating which prevents the adhesion of any substances that come into contact with the surface.
  • a waveguide 1 produced by additive manufacturing is illustrated on the figure 6 . It comprises a non-conductive core 3, for example of polymer or ceramic, which is manufactured for example by stereolithography, by selective laser melting or by another additive process and which defines an internal opening 2 for the propagation of the RF signal.
  • the window has a rectangular section of width a and height b.
  • the internal walls of this core around the opening 2 are coated with an electrically conductive coating 4, for example with a metal plating.
  • the outer walls of the waveguide are also coated with a metal cladding 5 which may be of the same metal and of the same thickness. This external coating reinforces the waveguide against external mechanical or chemical stresses.
  • the figure 7 illustrates a waveguide variant similar to that of the figure 6 , but without the conductive coating on the outer faces.
  • waveguides are known formed by assembling previously machined metal plates, which make it possible to manufacture waveguides capable of operating in hostile environments.
  • the manufacture of these waveguides is often difficult, expensive and difficult to adapt to the manufacture of light waveguides with complex shapes.
  • existing techniques do not allow the manufacture of waveguides that are sufficiently resistant to operate in hostile environments.
  • the existing waveguides manufactured by additive manufacturing of a polymer core whose internal surface is covered with metal, do not exhibit mechanical and structural characteristics which allow satisfactory use in hostile environments where the waveguides. Exposed to significant variations in pressure or temperature, the structure of these waveguides is unstable and tends to degrade which disturbs the transmission of the RF signal.
  • the existing waveguides, manufactured by additive manufacturing of a conductive material, such as a metallic material have surface states of too low quality, in particular too much roughness, which degrades the RF performance of the waveguide. wave and makes additive manufacturing difficult to use for this application.
  • An aim of the present invention is to provide a waveguide device free from or minimizing the limitations of known devices.
  • Another object of the invention is to provide a waveguide device by additive manufacturing which can be used in hostile conditions.
  • the conductive layer having a thickness at least five times equal to said skin depth ⁇ , preferably at least equal to twenty times said skin depth.
  • waveguides assembled by additive manufacturing according to existing methods the structural, mechanical, thermal and chemical properties depend essentially on the properties of the core.
  • waveguides are known in which the conductive layer deposited on the core is very thin, less than the skin depth of the metal constituting the conductive layer.
  • the inventors have discovered that by increasing the thickness of the conductive layer so that the latter reaches a thickness at at least five times equal to the skin depth ⁇ of the metal of the conductive layer, preferably at least equal to twenty times this depth, the structural, mechanical, thermal and chemical properties of the waveguide depend mainly, or even almost exclusively, on the conductive layer. This surprising behavior is observed although the thickness of the conductive layer remains significantly less than the thickness of the core.
  • the resistance of the device chosen from the resistance in traction, in torsion, in bending or a combination of these resistances is conferred mainly by the conductive layer.
  • the conductive layer is made of metal and is thinner than the core and yet it is the metal layer which provides most of the rigidity of the device. Thus, it is possible to reduce the thickness of the core, and thus its dimensions, while improving the tensile, torsional and bending resistance of the device (cf. figure 12 ).
  • the resistance of the device chosen from the resistance in traction, in torsion, in bending or a combination of these resistances being conferred mainly by the conductive layer over the operating temperature range of the device.
  • operating temperatures we mean temperatures between -150 ° C and + 150 ° C. This temperature range makes it possible to cover the majority of temperatures where the device according to the invention is liable to change (space, desert, deep water, etc.).
  • the conductive layer has a thickness between twenty times and sixty times the skin depth ⁇ . This embodiment makes it possible to reduce, or even eliminate, the roughness of the conductive surface. This also makes it possible to reinforce the tensile, torsional and bending resistance of the device, for example the rigidity of the waveguide.
  • the conductive layer has a thickness of between sixty times and a thousand times the skin depth ⁇ . Such a thickness of conductive layer makes it possible in particular to reinforce the tensile, torsional and bending resistance of the device, for example the rigidity of the waveguide.
  • the device comprises a smoothing layer between the core and the conductive layer.
  • the additive manufacturing process creates a strong roughness (for example hollows and bumps), in particular on the edges and surface of the core, in particular on slanted edges.
  • These hollows and bumps can take the form of stair treads, with each tread representing the addition of a layer of non-conductive material during additive manufacturing.
  • the roughness of the core persisted so that the surface after metallization still exhibited a roughness which disturbed the transmission of the RF signal.
  • the addition of a smoothing layer between the core and the conductive layer makes it possible to reduce, or even eliminate, this roughness, which improves the transmission of the RF signal.
  • the smoothing layer can be of a conductive or non-conductive material.
  • the thickness of this smoothing layer is preferably between 5 and 500 microns, preferably between 10 and 150 microns, preferably between 20 and 150 microns. In the case of manufacturing the core by stereolithography or by selective laser melting, this thickness makes it possible to effectively smooth the surface irregularities due to the printing process.
  • the thickness of said smoothing layer is greater than or equal to the roughness (Ra) of the core.
  • the thickness of said smoothing layer is preferably greater than or equal to the resolution of the process for manufacturing the core.
  • the smoothing layer comprises a weakly conductive material, for example nickel
  • the transmission of the RF signal is ensured essentially by the outer metallic conductive layer, the influence of the smoothing layer is negligible, and in this case the outer conductive layer must have a thickness at least five times equal to said skin depth ⁇ , preferably at least 20 times equal to this skin depth.
  • the resistance of the device chosen from the resistance in traction, in torsion, in bending or a combination of these resistances is conferred mainly by the conductive layer comprising the smoothing layer.
  • the resistance of the device chosen from the resistance in traction, in torsion, in bending or a combination of these resistances is conferred mainly by the conductive layer comprising the smoothing layer over the operating temperature range of the device.
  • a conductive layer thicker than what would be required by the skin thickness also helps to smooth the roughness of the core due to the resolution of the 3D printer.
  • the conductive layer also makes it possible to reduce, or even eliminate, the roughness of the core.
  • This smoothing layer also improves the structural, mechanical, thermal and chemical properties of the waveguide device.
  • the device comprises a tie (or primer) layer between the core and the conductive layer.
  • the tie layer is on the inner surface of the core.
  • the bonding layer can be made of a conductive or non-conductive material.
  • the tie layer improves the adhesion of the conductor to the core. Its thickness is preferably less than the roughness Ra of the core, and less than the resolution of the additive manufacturing process of the core.
  • the device successively comprises a non-conductive core produced by additive manufacturing, a tie layer, a smoothing layer and a conductive layer.
  • the bonding layer and the smoothing layer make it possible to reduce the roughness of the surface of the waveguide channel.
  • the bonding layer makes it possible to improve the adhesion of the core, conductive or non-conductive, with the smoothing layer and the conductive layer.
  • the metallic layer comprises several sublayers of metals.
  • the conductive layer comprises several successive layers of highly conductive metals, for example Cu, Au, Ag, the skin depth ⁇ is determined by the properties of the materials of all the layers in which the skin current is concentrated.
  • the skin depth ⁇ of the weakly conductive sublayer is negligible in the calculation of the thickness of the conductive layer, the main part of the transmission of the RF signal being ensured by the sublayers of highly conductive metals deposited over the sublayer of weakly conductive materials.
  • the conductive metal layer also covers the outer surface of the core.
  • the rigidity of the device is improved.
  • the core comprises at least one layer of polymer and / or ceramic.
  • the core is formed from a metal or an alloy.
  • the metal or alloy is selected from Cu, Au, Ag, Ni, Al, stainless steel, brass or a combination of these choices.
  • the metallic layer comprises a metal selected from Cu, Au, Ag, Ni, Al, stainless steel, brass.
  • the bonding layer optionally comprises a metal chosen from Cu, Au, Ag, Ni, Al, stainless steel, brass, a non-conductive material, for example a polymer or a ceramic, or a combination of these choices.
  • the smoothing layer optionally comprises a metal chosen from Cu, Au, Ag, Ni, Al, stainless steel, brass, a non-conductive material, for example a polymer or a ceramic or a combination of these choices.
  • the device successively comprises a core, a bonding layer, a smoothing layer of nickel, and said metallic conductive layer.
  • the device successively comprises a non-conductive core, a first layer of copper, a layer of nickel, a second layer of copper.
  • the tie layer comprises the first layer of copper.
  • the smoothing layer includes the Ni layer.
  • the metallic layer comprises the second layer of Cu.
  • the invention also relates to a method of manufacturing a waveguide device for guiding a radiofrequency signal at a determined frequency f, the method comprising steps according to claim 12.
  • the deposition of the conductive layer on the core is carried out by electrolytic or electroplating deposition, chemical deposition, vacuum deposition, physical vapor deposition (PVD), deposition by printing, deposition by sintering.
  • electrolytic or electroplating deposition chemical deposition
  • vacuum deposition vacuum deposition
  • PVD physical vapor deposition
  • the conductive layer comprises several layers of metals and / or non-metals deposited successively.
  • the manufacture of said core comprises an additive manufacturing step.
  • additive manufacturing means any process for manufacturing parts by adding material, according to computer data stored on a computer medium and defining a model of the part.
  • the expression also designates other manufacturing methods by hardening or coagulation of liquid or powder in particular, including without limitation methods based on jets ink (binder jetting), DED (Direct Energy Deposition), EBFF (Electron beam freeform fabrication), FDM (fused deposition modeling), PFF (plastic freeforming), by aerosols, BPM (ballistic particle manufacturing), powder bed, SLS (Selective Laser Sintering), ALM (additive Layer Manufacturing), polyjet, EBM (electron beam melting), photopolymerization, etc.
  • Manufacturing by stereolithography or by selective laser melting is however preferred because it makes it possible to obtain parts with relatively clean surface states, with low roughness, which reduces the stresses on the smoothing layer.
  • the dimensions of the waveguide channel are determined as a function of the frequency of the wave to be transmitted. It is necessary that know the thickness of the conductive layers and the thickness of the walls of the core to calculate the dimensions (width and height) of the waveguide channel. In the method according to the invention, the thickness of the core which is manufactured is calculated taking into account the unusual thickness of the conductive layer which will be deposited subsequently on the core to obtain a guide channel of waves to the required dimensions.
  • the invention also relates to a computer data medium containing data intended to be read by an additive manufacturing device in order to manufacture an object, said data representing the shape of a core for a waveguide device, said core comprising walls. sides with outer and inner surfaces, the inner surfaces defining a waveguide channel.
  • the computer data medium can consist, for example, of a hard disk, a flash memory, a virtual disk, a USD key, an optical disk, a storage medium in a network or of cloud type, etc.
  • the embodiments of the waveguide device apply mutatis mutandis to the manufacturing methods and to the data medium according to the invention and vice versa.
  • conductive layer In the context of the invention, the terms “conductive layer”, “conductive coating”, “metallic conductive layer” and “metallic layer” are synonymous and interchangeable.
  • the figures 9 and 10 show two embodiments of a waveguide device 1 according to the invention, each time with two sub-variants.
  • the waveguide 1 comprises a core 3, for example a core made of metal (aluminum, titanium or steel), or optionally of polymer, epoxy, ceramic, or organic material.
  • the core 3 is manufactured by additive manufacturing, preferably by stereolithography or by selective laser melting in order to reduce the roughness of the surface.
  • the material of the core can be non-conductive or conductive.
  • the thickness of the walls of the core is for example between 0.5 and 3 mm, preferably between 0.8 and 1.5 mm.
  • the shape of the core can be determined by a computer file stored in a computer data medium.
  • the core can also be made up of several parts formed by stereolithography or by selective laser melting and assembled together before plating, for example by bonding or thermal fusion or mechanical assembly.
  • This core 3 delimits an internal channel 2 intended for guiding waves, and the section of which is determined according to the frequency of the electromagnetic signal to be transmitted.
  • the dimensions of this internal channel a, b and its shape are determined as a function of the operational frequency of the device 1, that is to say the frequency of the electromagnetic signal for which the device is manufactured and for which a stable mode of transmission and optionally with a minimum of attenuation is obtained.
  • the core 3 has an internal surface 7 and an external surface 8, the internal surface 7 covering the walls of the opening of rectangular section 2.
  • the internal surface 7 of the polymer core 3 is covered with a conductive metallic layer 4, for example of copper, silver, gold, nickel, etc., plated by chemical deposition without electric current.
  • the thickness of this layer is for example between 1 and 20 micrometers, for example between 4 and 10 micrometers.
  • this conductive coating 4 must be sufficient for the surface to be electrically conductive at the chosen radio frequency. This is typically obtained using a conductive layer whose thickness is greater than the skin depth ⁇ .
  • This thickness is substantially constant on all internal surfaces in order to obtain a finished part with precise dimensional tolerances for the channel.
  • the thickness of this layer 4 is at least twenty times greater than the skin depth in order to improve the structural, mechanical, thermal and chemical properties of the device.
  • the outer surface 8 of the core is bare.
  • this external surface is also covered with a conductive layer 5, which also contributes to improving the structural, mechanical, thermal and chemical properties of the device.
  • the deposition of conductive metal 4,5 on the internal 7 and possibly external 8 faces is carried out by immersing the core 3 in a series of successive baths, typically 1 to 15 baths. Each bath involves a fluid with one or more reagents. The deposition does not require applying a current to the core to be covered. Stirring and regular deposition are obtained by stirring the fluid, for example by pumping the fluid in the transmission channel and / or around the device or by vibrating the core 3 and / or the fluid tank, for example with a device ultrasonic vibrating to create ultrasonic waves.
  • the internal surface 7 of the polymer core 3 is covered with a smoothing layer 9, for example an Ni layer.
  • the thickness of the smoothing layer 9 is at least equal to the roughness Ra of the internal surface 7, or at least equal to the resolution of the 3D printing process used to manufacture the core (the resolution of the printing process 3D determining the roughness Ra of the surface). In one embodiment, the thickness of this layer is between 5 and 500 micrometers, preferably between 10 and 150 micrometers, preferably between 20 and 150 micrometers.
  • This smoothing layer also determines the mechanical and thermal properties of the device 1.
  • the Ni layer 9 is then covered with the conductive layer 4, for example made of copper, silver, gold, etc.
  • the smoothing layer makes it possible to smooth the surface of the core and therefore to reduce the transmission losses due to the roughness of the internal surface.
  • the core 3 is therefore covered with a metal layer 4 + 9 formed by a smoothing layer 9 and a conductive layer 4.
  • the total thickness of this layer 4 + 9 is greater or equal to five times, preferably twenty times the skin depth ⁇ .
  • the value of the Young's modulus of the device 1 is mainly conferred by this conductive layer 4 + 9.
  • the thickness of the conductive layer 4 may also alone be greater than or equal to twenty times the depth of skin ⁇ .
  • the most conductive layer is preferably deposited last, at the periphery.
  • the internal surface 7 of the non-conductive polymer core 3 is covered with a smoothing layer 9 of Ni, deposited by chemical deposition.
  • the Ni layer 9 is then covered by chemical deposition with a conductive Cu layer 4, the thickness of which is at least equal to twenty skin thicknesses at the nominal transmission frequency of the waveguide.
  • the outer surface 8 of the core 3 is also coated by chemical deposition with a smoothing layer 6 of nickel, which also serves as a structural support.
  • a conductive layer 5, for example copper, can be deposited over this smoothing layer.
  • the waveguide 1 comprises a tie layer 11, for example a Cu layer, over the internal surface 7 of the core 3; this bonding layer facilitates the subsequent deposition of the smoothing layer 9 if such a layer is provided, or of the conductive layer 4.
  • the thickness of this layer is advantageously less than 30 micrometers.
  • the waveguide 1 comprises a tie layer 12, for example a Cu layer, over the outer surface 8 of the core 3; this bonding layer facilitates the subsequent deposition of the smoothing layer 6.
  • the figure 11 is a diagram showing a longitudinal section of a portion of the internal surface 7 of the core 3 of a waveguide device 1 comprising a waveguide channel 2. It can be seen that this internal surface is very irregular or rough due to the additive manufacturing process.
  • the waveguide 1 comprises a tie layer 11, for example a Cu layer between 1 and 10 micrometers thick.
  • the thickness of this smoothing layer is at least greater than the resolution of the additive printing system and therefore the roughness of Ra of the surface; in one embodiment, the thickness of the smoothing layer 9 is between 5 and 500 micrometers, preferably between 20 and 150 micrometers.
  • a third conductive layer 4 made of copper or silver is deposited by chemical deposition on the smoothing layer 9; its thickness is preferably greater than or equal to twenty times the skin thickness at the nominal frequency f of the waveguide, so that the surface currents are concentrated mainly, or even almost exclusively, in this layer.
  • the relatively large thickness of this conductive layer 4 also makes it possible to reinforce the mechanical rigidity of the device.
  • the thickness of this layer is between 5 and 50 micrometers, preferably between 5 and 15 micrometers.
  • the table of the figure 12 compares the Young's modulus of an all-Al waveguide 1 with the Young's modulus of a device waveguide 1 according to the invention.
  • the waveguide according to the prior art used for this comparison consists of an Al sheet 500 micrometer thick having a Young's modulus of 72,500 N / mm 2 .
  • the waveguide 1 according to the invention used in this example comprises a core 3 of 1 mm thick polymer, a 5 micrometer Cu bond layer 11, a 90 micrometer Ni smoothing layer 9 and a conductive layer 4 of 5 micrometer Cu.
  • the overall thickness of the coating is thus 100 microns for a Young's modulus of 214,000 N / mm 2 .
  • the influence of tie layers on Young's modulus is negligible.
  • flexural strength (flexural rigidity) of the waveguide according to the invention is greater than that of the waveguide entirely made of aluminum according to the prior art, for a reduced weight.
  • Reference numbers used in the figures ⁇ /b> 1 Waveguide device at Waveguide height b Waveguide width 2 Waveguide channel 3 Soul 4 Internal conductive coating 5 External conductive coating 6 Smoothing or structural layer 7 Internal surface of the core 8 External surface of the web 9 Smoothing layer 11 Internal tack layer 12 External tack layer

Description

Domaine techniqueTechnical area

La présente invention concerne un dispositif à guide d'ondes, un procédé fabrication dudit guide d'ondes et un support d'information pour la fabrication dudit guide d'ondes.The present invention relates to a waveguide device, a method for manufacturing said waveguide and an information medium for manufacturing said waveguide.

Etat de la techniqueState of the art

Les signaux radiofréquence (RF) peuvent se propager soit dans un espace libre, soit dans des dispositifs guide d'onde. Ces dispositifs guide d'onde sont utilisés pour canaliser les signaux RF ou pour les manipuler dans le domaine spatial ou fréquentiel.Radio frequency (RF) signals can propagate either in free space or in waveguide devices. These waveguide devices are used to channel RF signals or to manipulate them in the spatial or frequency domain.

La présente invention concerne en particulier les dispositifs RF passifs qui permettent de propager et de manipuler des signaux radiofréquence sans utiliser de composants électroniques actifs. Les guides d'onde passifs peuvent être répartis en trois catégories distinctes :

  • Les dispositifs basés sur le guidage d'ondes à l'intérieur de canaux métalliques creux, couramment appelés guides d'ondes.
  • Les dispositifs basés sur le guidage d'ondes à l'intérieur de substrats diélectriques.
  • Les dispositifs basés sur le guidage d'ondes au moyen d'ondes de surface sur des substrats métalliques tels que des circuits imprimés PCB, des microstrips, etc.
In particular, the present invention relates to passive RF devices which enable radio frequency signals to be propagated and manipulated without the use of active electronic components. Passive waveguides can be divided into three distinct categories:
  • Devices based on guiding waves inside hollow metal channels, commonly called waveguides.
  • Devices based on guiding waves inside dielectric substrates.
  • Devices based on waveguiding by means of surface waves on metal substrates such as PCB printed circuits, microstrips, etc.

La présente invention concerne en particulier la première catégorie ci-dessus, collectivement désignée par la suite comme guides d'ondes. Des exemples de tels dispositifs incluent des guides d'ondes en tant que tels, des filtres, des antennes, des convertisseurs de mode, etc. Ils peuvent être utilisés pour le routage de signal, le filtrage fréquentiel, la séparation ou recombinaison de signaux, l'émission ou la réception de signaux dans ou depuis l'espace libre, etc.The present invention relates in particular to the first category above, hereinafter collectively referred to as guides. of waves. Examples of such devices include waveguides as such, filters, antennas, mode converters, etc. They can be used for signal routing, frequency filtering, signal separation or recombination, transmission or reception of signals in or from free space, etc.

Un exemple de guide d'ondes conventionnel est illustré sur la figure 1. Il est constitué par un dispositif creux, dont la forme et les proportions déterminent les caractéristiques de propagation pour une longueur d'onde donnée du signal électromagnétique. Les guides d'onde classiques utilisés pour les signaux radiofréquence ont des ouvertures internes de section rectangulaire ou circulaire. Ils permettent de propager des modes électromagnétiques correspondant à différentes distributions de champ électromagnétique le long de leur section. Dans l'exemple illustré le guide d'ondes a une hauteur B le long de l'axe y et une largeur A le long de l'axe x.An example of a conventional waveguide is shown on the figure 1 . It consists of a hollow device, the shape and proportions of which determine the propagation characteristics for a given wavelength of the electromagnetic signal. Conventional waveguides used for radiofrequency signals have internal openings of rectangular or circular section. They make it possible to propagate electromagnetic modes corresponding to different distributions of electromagnetic field along their section. In the example illustrated the waveguide has a height B along the y axis and a width A along the x axis.

La figure 2 illustre schématiquement les lignes de champ électrique E et magnétique H dans un tel guide d'ondes. Le mode de propagation dominant est dans ce cas le mode transversal électrique appelé TE10. L'indice 1 indique le nombre de demi-longueurs d'onde à travers la largeur du guide, et 0 le nombre de demi longueur d'onde le long de la hauteur.The figure 2 schematically illustrates the electric E and magnetic H field lines in such a waveguide. The dominant mode of propagation is in this case the electric transverse mode called TE 10 . The index 1 indicates the number of half wavelengths across the width of the guide, and 0 the number of half wavelengths along the height.

Les figures 3 et 4 illustrent un guide d'ondes à section circulaire. Des modes de transmission circulaires peuvent se propager dans un tel guide d'onde. Les flèches sur la figure 4 illustrent le mode de transmission TE11 ; les flèches sensiblement verticales montrent le champ électrique, les flèches davantage horizontales le champ magnétique. L'orientation du champ change à travers la section du guide d'ondes.The figures 3 and 4 illustrate a circular section waveguide. Circular transmission modes can propagate in such a waveguide. Arrows on the figure 4 illustrate the TE11 transmission mode; the more or less vertical arrows show the electric field, the more horizontal arrows the magnetic field. The orientation of the field changes across the waveguide section.

Mis à part ces exemples d'ouvertures de guide d'ondes rectangulaires ou circulaires, d'autres formes d'ouverture ont été imaginées ou peuvent être imaginées dans le cadre de l'invention et qui permettent de maintenir un mode électromagnétique à une fréquence de signal donnée afin de transmettre un signal électromagnétique. Des exemples d'ouverture de guide d'ondes possibles sont illustrés sur la figure 5. La surface illustrée correspond à la section de l'ouverture du guide d'ondes, délimitée par des surfaces conductrices électriquement. La forme et la surface de la section peuvent en outre varier le long de la direction principale du dispositif à guide d'ondes.Apart from these examples of rectangular or circular waveguide openings, other forms of opening have been imagined or can be imagined within the framework of the invention and which allow to maintain an electromagnetic mode at a given signal frequency in order to transmit an electromagnetic signal. Examples of possible waveguide apertures are shown on the figure 5 . The illustrated surface corresponds to the section of the opening of the waveguide, delimited by electrically conductive surfaces. The shape and the area of the section may further vary along the main direction of the waveguide device.

La fabrication de guides d'ondes avec des sections complexes est difficile et coûteuse. Des travaux récents ont cependant démontré la possibilité de réaliser des composants guide d'ondes, y compris des antennes, des guides d'ondes, des filtres, des convertisseurs, etc, à l'aide de méthodes de fabrication additives, par exemple d'impression 3D. On connait en particulier la fabrication additive de guides d'ondes comportant à la fois des matériaux non conducteurs, tels que des polymères ou des céramiques, et des métaux conducteurs.The manufacture of waveguides with complex sections is difficult and expensive. Recent work, however, has demonstrated the possibility of making waveguide components, including antennas, waveguides, filters, converters, etc., using additive manufacturing methods, e.g. 3d printing. In particular, the additive manufacturing of waveguides comprising both non-conductive materials, such as polymers or ceramics, and conductive metals is known.

Des guides d'ondes comportant des parois céramiques ou polymères fabriquées par une méthode additive puis recouvertes d'un placage métallique ont notamment été suggérés. Les surfaces internes du guide d'ondes doivent en effet être conductrices électriquement pour opérer. L'utilisation d'une âme non conductrice permet d'une part de réduire le poids et le coût du dispositif, d'autre part de mettre en œuvre des méthodes d'impression 3D adaptées aux polymères ou aux céramiques et permettant de produire des pièces de haute précision avec une faible rugosité.Waveguides comprising ceramic or polymer walls manufactured by an additive method and then covered with a metal plating have in particular been suggested. The internal surfaces of the waveguide must indeed be electrically conductive to operate. The use of a non-conductive core makes it possible on the one hand to reduce the weight and the cost of the device, on the other hand to implement 3D printing methods adapted to polymers or ceramics and making it possible to produce parts. high precision with low roughness.

A titre d'exemple, l'article de Mario D'Auria et al, "3-D PRINTED METAL-PIPE RECTANGULAR WAVEGUIDES", 21 août 2015, IEEE Transactions on components, packaging and manufacturing technologies, Vol. 5, No 9, pages 1339-1349 , décrit au paragraphe III un procédé de fabrication de l'âme d'un guide d'onde par dépôt de fil en fusion (FDM, Fused déposition modeling). Ce document reconnaît que la résolution obtenue par ce procédé est limitée par le diamètre de la buse d'extrusion, qui est de 400 micromètres. Il produit ainsi une âme relativement rugueuse. Une couche d'amorçage de 3 micromètres est déposée sur cette âme ; l'épaisseur de cette couche, par rapport à la résolution du procédé d'impression de l'âme et par rapport à la rugosité Ra de l'âme, est insuffisante pour produire un lissage significatif. Une couche conductrice de 27 micromètre de cuivre est ensuite déposée sur cette couche d'amorçage.For example, the article by Mario D'Auria et al, "3-D PRINTED METAL-PIPE RECTANGULAR WAVEGUIDES", August 21, 2015, IEEE Transactions on components, packaging and manufacturing technologies, Vol. 5, No 9, pages 1339-1349 , describes in paragraph III a process for manufacturing the core of a waveguide by deposition of molten wire (FDM, Fused deposition modeling). This document recognizes that the resolution obtained by this process is limited by the diameter of the extrusion nozzle, which is 400 micrometers. It thus produces a relatively rough core. A 3 micron primer layer is deposited on this core; the thickness of this layer, relative to the resolution of the core printing process and relative to the roughness Ra of the core, is insufficient to produce significant smoothness. A conductive layer of 27 micrometers of copper is then deposited on this priming layer.

Le document WO2016030490 décrit une méthode pour fabriquer des articles par fabrication additive. Dans ce document, les pores de la surface générés par la fabrication additive sont recouverts par un revêtement antiadhésif, qui empêche l'adhérence de toutes substances qui entre en contact avec la surface. Ainsi, il n'est pas possible de déposer une couche supplémentaire sur ce revêtement, par exemple une couche conductrice.The document WO2016030490 describes a method for making articles by additive manufacturing. In it, the surface pores generated by additive manufacturing are covered with a non-stick coating, which prevents the adhesion of any substances that come into contact with the surface. Thus, it is not possible to deposit an additional layer on this coating, for example a conductive layer.

Le document US 3195079 décrit un guide d'onde comprenant une âme en résine époxy recouverte d'une mono couche métallique, sans couche d'amorçage ni couche de lissage.The document US 3,195,079 describes a waveguide comprising an epoxy resin core covered with a single metal layer, without an initiating layer or smoothing layer.

Un exemple de guide d'ondes 1 réalisé par fabrication additive est illustré sur la figure 6. Il comporte une âme 3 non conductrice, par exemple en polymère ou céramique, qui est fabriquée par exemple par stéréolithographie, par selective laser melting ou par un autre procédé additif et qui définit une ouverture interne 2 pour la propagation du signal RF. Dans cet exemple, la fenêtre a une section rectangulaire de largeur a et de hauteur b. Les parois internes de cette âme autour de l'ouverture 2 sont revêtues d'un revêtement électriquement conducteur 4, par exemple d'un placage métallique. Dans cet exemple, les parois externes du guide d'onde sont également revêtues d'un placage métallique 5 qui peut être du même métal et de la même épaisseur. Ce revêtement externe renforce le guide d'ondes face aux sollicitations mécaniques ou chimiques externes.An example of a waveguide 1 produced by additive manufacturing is illustrated on the figure 6 . It comprises a non-conductive core 3, for example of polymer or ceramic, which is manufactured for example by stereolithography, by selective laser melting or by another additive process and which defines an internal opening 2 for the propagation of the RF signal. In this example, the window has a rectangular section of width a and height b. The internal walls of this core around the opening 2 are coated with an electrically conductive coating 4, for example with a metal plating. In this example, the outer walls of the waveguide are also coated with a metal cladding 5 which may be of the same metal and of the same thickness. This external coating reinforces the waveguide against external mechanical or chemical stresses.

La figure 7 illustre une variante de guide d'ondes similaire à celui de la figure 6, mais sans le revêtement conducteur sur les faces externes.The figure 7 illustrates a waveguide variant similar to that of the figure 6 , but without the conductive coating on the outer faces.

Les guides d'ondes sont typiquement utilisés à l'extérieur, par exemple dans l'aérospatial (avion, hélicoptère, drone) pour équiper un engin spatial dans l'espace, sur un bateau en mer ou sur un engin sous-marin, sur des engins évoluant dans le désert ou en haute montagne, à chaque fois dans des conditions hostiles voire extrêmes. Dans ces milieux, les guides d'ondes sont notamment exposés à :

  • des pressions et des températures extrêmes qui varient de façon importante ce qui induit des chocs thermiques répétés;
  • un stress mécanique, le guide d'ondes étant intégré dans un engin qui subit des chocs, des vibrations et des charges qui impactent le guide d'ondes;
  • des conditions météorologiques et environnementales hostiles dans lesquels évoluent les engins équipés de guide d'ondes (vent, gel, humidités, sable, sels, champignons/bactéries) ;
Waveguides are typically used outdoors, for example in aerospace (airplane, helicopter, drone) to equip a spacecraft in space, on a ship at sea or on an underwater vehicle, on machines moving in the desert or in high mountains, each time in hostile or even extreme conditions. In these environments, waveguides are particularly exposed to:
  • extreme pressures and temperatures which vary considerably, which induces repeated thermal shocks;
  • mechanical stress, the waveguide being integrated into a device which is subjected to shocks, vibrations and loads which impact the waveguide;
  • hostile meteorological and environmental conditions in which devices equipped with waveguides operate (wind, frost, humidity, sand, salts, fungi / bacteria);

Pour répondre à ces contraintes, on connait des guides d'ondes formés par assemblage de plaques métallique préalablement usinées, qui permettent de fabriquer des guides d'ondes aptes à évoluer dans des environnements hostiles. En revanche, la fabrication de ces guides d'ondes est souvent difficile, coûteuse et difficilement adaptable à la fabrication de guide d'ondes légers et aux formes complexes.To meet these constraints, waveguides are known formed by assembling previously machined metal plates, which make it possible to manufacture waveguides capable of operating in hostile environments. On the other hand, the manufacture of these waveguides is often difficult, expensive and difficult to adapt to the manufacture of light waveguides with complex shapes.

En ce qui concerne les guides d'ondes assemblés par fabrication additive, les techniques existantes ne permettent pas la fabrication de guides d'ondes suffisamment résistants pour évoluer en milieux hostiles. Les guides d'ondes existants, fabriqués par fabrication additive d'une âme en polymère dont la surface interne est recouverte de métal, ne présentent pas des caractéristiques mécaniques et structurelles qui permettent une utilisation satisfaisante dans les milieux hostiles où l'on utilise généralement les guides d'ondes. Exposés à des variations importantes de pressions ou de températures, la structure de ces guides d'ondes est instable et tend à se dégrader ce qui perturbe la transmission du signal RF. De plus, les guides d'ondes existants, fabriqués par fabrication additive d'un matériel conducteur, comme un matériel métallique, présentent des états de surface de trop faible qualité, notamment une rugosité trop importante, ce qui dégrade les performances RF du guide d'onde et rend la fabrication additive difficilement utilisable pour cette application.As regards waveguides assembled by additive manufacturing, existing techniques do not allow the manufacture of waveguides that are sufficiently resistant to operate in hostile environments. The existing waveguides, manufactured by additive manufacturing of a polymer core whose internal surface is covered with metal, do not exhibit mechanical and structural characteristics which allow satisfactory use in hostile environments where the waveguides. Exposed to significant variations in pressure or temperature, the structure of these waveguides is unstable and tends to degrade which disturbs the transmission of the RF signal. In addition, the existing waveguides, manufactured by additive manufacturing of a conductive material, such as a metallic material, have surface states of too low quality, in particular too much roughness, which degrades the RF performance of the waveguide. wave and makes additive manufacturing difficult to use for this application.

Bref résumé de l'inventionBrief summary of the invention

Un but de la présente invention est de proposer un dispositif à guide d'onde exempt ou minimisant les limitations des dispositifs connus.An aim of the present invention is to provide a waveguide device free from or minimizing the limitations of known devices.

Un autre but de l'invention est de fournir un dispositif à guide d'ondes par fabrication additive qui puissent être utilisé dans des conditions hostiles.Another object of the invention is to provide a waveguide device by additive manufacturing which can be used in hostile conditions.

Selon l'invention, ces buts sont atteints notamment au moyen d'un dispositif à dispositif à guide d'ondes pour guider un signal radiofréquence à une fréquence f déterminée, le dispositif comprenant:

  • une âme fabriquée par fabrication additive en matériau conducteur ou de préférence non conducteur, comprenant des parois latérales avec des surfaces externes et internes, les surfaces internes délimitant un canal de guide d'ondes les surfaces internes de l'âme comprenant des irrégularités qui définissent un valeur de rugosité,
  • une couche de lissage recouvrant la surface interne de l'âme, réalisée de manière à lisser au moins partiellement les irrégularités de la couche de la surface interne de l'âme l'épaisseur de ladite couche de lissage étant supérieure ou égale à la rugosité de l'âme,
  • une couche conductrice métallique recouvrant la couche de lissage, ladite couche conductrice étant formée d'un métal caractérisé par une profondeur de peau δ à la fréquence f,
According to the invention, these aims are achieved in particular by means of a device with a waveguide device for guiding a radiofrequency signal at a determined frequency f, the device comprising:
  • a core made by additive manufacturing of a conductive or preferably non-conductive material, comprising side walls with external and internal surfaces, the internal surfaces delimiting a waveguide channel the internal surfaces of the core comprising irregularities which define a roughness value,
  • a smoothing layer covering the internal surface of the core, produced so as to at least partially smooth the irregularities of the layer of the internal surface of the core, the thickness of said smoothing layer being greater than or equal to the roughness of blade,
  • a metallic conductive layer covering the smoothing layer, said conductive layer being formed of a metal characterized by a skin depth δ at the frequency f,

la couche conductrice ayant une épaisseur au moins cinq fois égale à ladite profondeur de peau δ, de préférence au moins égale à vingt fois ladite profondeur de peau.the conductive layer having a thickness at least five times equal to said skin depth δ, preferably at least equal to twenty times said skin depth.

La profondeur de peau δ est définie comme: δ = 2 μ 2 πf σ

Figure imgb0001
dans laquelle µ est la perméabilité magnétique du métal plaqué, f est la fréquence radio du signal à transmettre et σ est la conductivité électrique du métal plaqué. Intuitivement, il s'agit de l'épaisseur de la zone où se concentre le courant dans le conducteur, à une fréquence donnée.The skin depth δ is defined as: δ = 2 μ 2 πf σ
Figure imgb0001
where µ is the magnetic permeability of the plated metal, f is the radio frequency of the signal to be transmitted and σ is the electrical conductivity of the plated metal. Intuitively, this is the thickness of the area where the current is concentrated in the conductor, at a given frequency.

Cette solution présente notamment l'avantage par rapport à l'art antérieur de fournir des guides d'ondes assemblés par fabrication additive qui sont plus résistants aux contraintes auxquelles ils sont exposés (contraintes thermiques, mécaniques, météorologiques et environnementales).This solution has the particular advantage over the prior art of providing waveguides assembled by additive manufacturing which are more resistant to the stresses to which they are exposed (thermal, mechanical, meteorological and environmental stresses).

Dans les guides d'ondes assemblés par fabrication additive selon les méthodes existantes, les propriétés structurelles, mécaniques, thermiques et chimiques dépendent essentiellement des propriétés de l'âme. Typiquement, on connait des guides d'ondes dans lequel la couche conductrice déposée sur l'âme est très mince, inférieure à la profondeur de peau du métal constituant la couche conductrice. Ainsi, il était généralement admis que pour améliorer les propriétés structurelles et mécaniques des guides d'ondes il fallait augmenter l'épaisseur et/ou la rigidité de l'âme. Il était aussi admis qu'il faut réduire l'épaisseur de la couche pelliculaire conductrice, afin d'alléger la structure.In waveguides assembled by additive manufacturing according to existing methods, the structural, mechanical, thermal and chemical properties depend essentially on the properties of the core. Typically, waveguides are known in which the conductive layer deposited on the core is very thin, less than the skin depth of the metal constituting the conductive layer. Thus, it was generally accepted that in order to improve the structural and mechanical properties of waveguides it was necessary to increase the thickness and / or the rigidity of the core. It was also recognized that it is necessary to reduce the thickness of the conductive film layer, in order to lighten the structure.

Les inventeurs ont découvert qu'en augmentant l'épaisseur de la couche conductrice pour que cette dernière atteigne une épaisseur au moins cinq fois égale à la profondeur de peau δ du métal de la couche conductrice, de préférence au moins égale à vingt fois cette profondeur, les propriétés structurelles, mécaniques, thermiques et chimiques du guide d'onde dépendent majoritairement, voire quasi exclusivement, de la couche conductrice. Ce comportement surprenant est observé bien que l'épaisseur de la couche conductrice reste significativement inférieure à l'épaisseur de l'âme.The inventors have discovered that by increasing the thickness of the conductive layer so that the latter reaches a thickness at at least five times equal to the skin depth δ of the metal of the conductive layer, preferably at least equal to twenty times this depth, the structural, mechanical, thermal and chemical properties of the waveguide depend mainly, or even almost exclusively, on the conductive layer. This surprising behavior is observed although the thickness of the conductive layer remains significantly less than the thickness of the core.

Dans un mode de réalisation, la résistance du dispositif choisi parmi la résistance en traction, en torsion, en flexion ou une combinaison de ces résistances est conférée majoritairement par la couche conductrice. Par exemple, un moyen de caractériser la résistance d'un dispositif est de mesurer le module de Young. Il est admis que pour un matériau, plus le module de Young est élevé, plus le matériau est rigide. Par exemple, l'acier a un module de Young plus élevé que le caoutchouc. Selon un mode de réalisation, la couche conductrice est constituée de métal et est moins épaisse que l'âme et pourtant c'est la couche métallique qui assure l'essentielle de la rigidité du dispositif. Ainsi, il est possible de diminuer l'épaisseur de l'âme, et ainsi ses dimensions, tout en améliorant la résistance en traction, en torsion, en flexion du dispositif (cf. figure 12). Il est avantageux de pouvoir diminuer l'épaisseur des parois, et ainsi les dimensions du guide d'ondes, tout en augmentant la résistance en traction (par exemple la rigidité), en torsion, en flexion du guide d'ondes, notamment pour des engins spatiaux ou sous-marin ou lorsque l'espace disponible pour chaque composant est restreint.In one embodiment, the resistance of the device chosen from the resistance in traction, in torsion, in bending or a combination of these resistances is conferred mainly by the conductive layer. For example, one way to characterize the resistance of a device is to measure Young's modulus. It is accepted that for a material, the higher the Young's modulus, the more rigid the material. For example, steel has a higher Young's modulus than rubber. According to one embodiment, the conductive layer is made of metal and is thinner than the core and yet it is the metal layer which provides most of the rigidity of the device. Thus, it is possible to reduce the thickness of the core, and thus its dimensions, while improving the tensile, torsional and bending resistance of the device (cf. figure 12 ). It is advantageous to be able to reduce the thickness of the walls, and thus the dimensions of the waveguide, while increasing the tensile strength (for example the rigidity), in torsion, in bending of the waveguide, in particular for spacecraft or submarine or when the space available for each component is limited.

Dans un mode de réalisation, la résistance du dispositif choisi parmi la résistance en traction, en torsion, en flexion ou une combinaison de ces résistances étant conférée majoritairement par la couche conductrice sur la plage de températures opérationnelles du dispositif. Par températures opérationnelles, on entend des températures entre -150°C et +150°C. Cette plage de températures permet de couvrir la majorité des températures ou le dispositif selon l'invention est susceptible d'évoluer (espace, désert, eaux profondes, etc...).In one embodiment, the resistance of the device chosen from the resistance in traction, in torsion, in bending or a combination of these resistances being conferred mainly by the conductive layer over the operating temperature range of the device. By operating temperatures, we mean temperatures between -150 ° C and + 150 ° C. This temperature range makes it possible to cover the majority of temperatures where the device according to the invention is liable to change (space, desert, deep water, etc.).

Dans un mode de réalisation, la couche conductrice a une épaisseur comprise entre vingt fois et soixante fois la profondeur de peau δ. Ce mode de réalisation permet de diminuer, voire de supprimer, la rugosité de la surface conductrice. Cela permet également de renforcer la résistance en traction, en torsion, en flexion du dispositif, par exemple la rigidité du guide d'ondes.In one embodiment, the conductive layer has a thickness between twenty times and sixty times the skin depth δ. This embodiment makes it possible to reduce, or even eliminate, the roughness of the conductive surface. This also makes it possible to reinforce the tensile, torsional and bending resistance of the device, for example the rigidity of the waveguide.

Dans un mode de réalisation, la couche conductrice a une épaisseur comprise entre soixante fois et mille fois la profondeur de peau δ. Une telle épaisseur de couche conductrice permet particulièrement de renforcer la résistance en traction, en torsion, en flexion du dispositif, par exemple la rigidité du guide d'ondes.In one embodiment, the conductive layer has a thickness of between sixty times and a thousand times the skin depth δ. Such a thickness of conductive layer makes it possible in particular to reinforce the tensile, torsional and bending resistance of the device, for example the rigidity of the waveguide.

Le dispositif comprend une couche de lissage entre l'âme et la couche conductrice. A l'issue de la fabrication additive de l'âme, il a été observé que le processus de fabrication additive créé une forte rugosité (par exemple des creux et des bosses), notamment sur les bords et surface de l'âme, notamment sur les bords en biais. Ces creux et bosses peuvent prendre la forme de marches d'escalier, chaque marche représentant l'ajout d'une couche de matériau non conducteur lors de la fabrication additive. Il a été observé qu'après recouvrement de l'âme par une couche conductrice fine, la rugosité de l'âme persistaient de sorte que la surface après métallisation présentait encore une rugosité qui perturbait la transmission du signal RF. Dans ce cas, l'ajout d'une couche de lissage entre l'âme et la couche conductrice permet de diminuer, voire de supprimer, cette rugosité ce qui améliore la transmission du signal RF. La couche de lissage peut être en matériau conducteur ou non conducteur.The device comprises a smoothing layer between the core and the conductive layer. At the end of the additive manufacturing of the core, it has been observed that the additive manufacturing process creates a strong roughness (for example hollows and bumps), in particular on the edges and surface of the core, in particular on slanted edges. These hollows and bumps can take the form of stair treads, with each tread representing the addition of a layer of non-conductive material during additive manufacturing. It was observed that after covering the core with a thin conductive layer, the roughness of the core persisted so that the surface after metallization still exhibited a roughness which disturbed the transmission of the RF signal. In this case, the addition of a smoothing layer between the core and the conductive layer makes it possible to reduce, or even eliminate, this roughness, which improves the transmission of the RF signal. The smoothing layer can be of a conductive or non-conductive material.

L'épaisseur de cette couche de lissage est de préférence comprise entre 5 et 500 microns, de préférence entre 10 et 150 microns, de préférence entre 20 et 150 microns. Dans le cas d'une fabrication de l'âme par stéréolithographie ou par selective laser melting, cette épaisseur permet de lisser efficacement les irrégularités de surface dues au procédé d'impression.The thickness of this smoothing layer is preferably between 5 and 500 microns, preferably between 10 and 150 microns, preferably between 20 and 150 microns. In the case of manufacturing the core by stereolithography or by selective laser melting, this thickness makes it possible to effectively smooth the surface irregularities due to the printing process.

L'épaisseur de ladite couche de lissage est supérieure ou égale à la rugosité (Ra) de l'âme.The thickness of said smoothing layer is greater than or equal to the roughness (Ra) of the core.

L'épaisseur de ladite couche de lissage est de préférence supérieure ou égale à la résolution du procédé de fabrication de l'âme.The thickness of said smoothing layer is preferably greater than or equal to the resolution of the process for manufacturing the core.

Lorsque la couche de lissage comprend un matériau faiblement conducteur, par exemple le Nickel, la transmission du signal RF est assurée essentiellement par la couche conductrice métallique externe, l'influence de la couche de lissage est négligeable, et dans ce cas la couche conductrice externe doit avoir une épaisseur au moins cinq fois égale à ladite profondeur de peau δ, de préférence au moins 20 fois égale à cette profondeur de peau.When the smoothing layer comprises a weakly conductive material, for example nickel, the transmission of the RF signal is ensured essentially by the outer metallic conductive layer, the influence of the smoothing layer is negligible, and in this case the outer conductive layer must have a thickness at least five times equal to said skin depth δ, preferably at least 20 times equal to this skin depth.

Dans un mode de réalisation, la résistance du dispositif choisi parmi la résistance en traction, en torsion, en flexion ou une combinaison de ces résistances est conférée majoritairement par la couche conductrice comprenant la couche de lissage.In one embodiment, the resistance of the device chosen from the resistance in traction, in torsion, in bending or a combination of these resistances is conferred mainly by the conductive layer comprising the smoothing layer.

Dans un mode de réalisation, la résistance du dispositif choisi parmi la résistance en traction, en torsion, en flexion ou une combinaison de ces résistances est conférée majoritairement par la couche conductrice comprenant la couche de lissage sur la plage de températures opérationnelles du dispositif.In one embodiment, the resistance of the device chosen from the resistance in traction, in torsion, in bending or a combination of these resistances is conferred mainly by the conductive layer comprising the smoothing layer over the operating temperature range of the device.

L'utilisation d'une couche conductrice plus épaisse que ce qui serait exigé par l'épaisseur de peau contribue également à lisser les rugosités de l'âme dues à la résolution de l'imprimante 3D. Ainsi, la couche conductrice permet également de diminuer, voire de supprimer, la rugosité de l'âme.The use of a conductive layer thicker than what would be required by the skin thickness also helps to smooth the roughness of the core due to the resolution of the 3D printer. Thus, the conductive layer also makes it possible to reduce, or even eliminate, the roughness of the core.

Cette couche de lissage améliore aussi les propriétés structurelles, mécaniques, thermiques et chimiques du dispositif à guide d'ondes.This smoothing layer also improves the structural, mechanical, thermal and chemical properties of the waveguide device.

Dans un mode de réalisation, le dispositif comprend une couche d'accrochage (ou d'amorçage) entre l'âme et la couche conductrice. De préférence, la couche d'accrochage est sur la surface interne de l'âme. La couche d'accrochage peut être en matériau conducteur ou non conducteur. La couche d'accrochage permet d'améliorer l'adhésion de la conductrice sur l'âme. Son épaisseur est de préférence inférieure à la rugosité Ra de l'âme, et inférieure à la résolution du procédé de fabrication additive de l'âme.In one embodiment, the device comprises a tie (or primer) layer between the core and the conductive layer. Preferably, the tie layer is on the inner surface of the core. The bonding layer can be made of a conductive or non-conductive material. The tie layer improves the adhesion of the conductor to the core. Its thickness is preferably less than the roughness Ra of the core, and less than the resolution of the additive manufacturing process of the core.

Dans un mode de réalisation, le dispositif comprend successivement une âme non conductrice réalisée en fabrication additive, une couche d'accrochage, une couche de lissage et une couche conductrice. Ainsi, la couche d'accrochage et la couche de lissage permettent de diminuer la rugosité de la surface du canal guide d'ondes. La couche d'accrochage permet d'améliorer l'adhésion de l'âme, conductrice ou non conductrice, avec la couche de lissage et la couche conductrice.In one embodiment, the device successively comprises a non-conductive core produced by additive manufacturing, a tie layer, a smoothing layer and a conductive layer. Thus, the bonding layer and the smoothing layer make it possible to reduce the roughness of the surface of the waveguide channel. The bonding layer makes it possible to improve the adhesion of the core, conductive or non-conductive, with the smoothing layer and the conductive layer.

Dans un mode de réalisation, la couche métallique comprend plusieurs sous-couches de métaux. Lorsque la couche conductrice comprend plusieurs couches successives de métaux fortement conducteurs, par exemple Cu, Au, Ag, la profondeur de peau δ est déterminée par les propriétés des matériaux de toutes les couches dans lesquelles se concentre le courant pelliculaire.In one embodiment, the metallic layer comprises several sublayers of metals. When the conductive layer comprises several successive layers of highly conductive metals, for example Cu, Au, Ag, the skin depth δ is determined by the properties of the materials of all the layers in which the skin current is concentrated.

Lorsque la couche conductrice comprend plusieurs sous couches successives de métaux dont au moins un est un faible conducteur, par exemple Ni, la profondeur de peau δ de la sous-couche faiblement conductrice est négligeable dans le calcul de l'épaisseur de la couche conductrice, l'essentiel de la transmission du signal RF étant assurée par les sous couches en métaux fortement conducteurs déposés par-dessus la sous couche de matériaux faiblement conducteurs.When the conductive layer comprises several successive sublayers of metals, at least one of which is a weak conductor, for example Ni, the skin depth δ of the weakly conductive sublayer is negligible in the calculation of the thickness of the conductive layer, the main part of the transmission of the RF signal being ensured by the sublayers of highly conductive metals deposited over the sublayer of weakly conductive materials.

Dans un mode de réalisation, la couche métallique conductrice recouvre également la surface externe de l'âme. Lorsque le dispositif est recouvert d'une couche métallique, la rigidité du dispositif est améliorée.In one embodiment, the conductive metal layer also covers the outer surface of the core. When the device is covered with a metal layer, the rigidity of the device is improved.

Selon un mode de réalisation, l'âme comprend au moins une couche de polymère et/ou de céramique.According to one embodiment, the core comprises at least one layer of polymer and / or ceramic.

Dans un mode de réalisation, l'âme est formée d'un métal ou d'un alliage. Par exemple, le métal ou l'alliage est choisi parmi Cu, Au, Ag, Ni, Al, acier inoxydable, laiton ou une combinaison de ces choix.In one embodiment, the core is formed from a metal or an alloy. For example, the metal or alloy is selected from Cu, Au, Ag, Ni, Al, stainless steel, brass or a combination of these choices.

Dans un mode de réalisation, la couche métallique comprend un métal choisi parmi Cu, Au, Ag, Ni, Al, acier inoxydable, laiton.In one embodiment, the metallic layer comprises a metal selected from Cu, Au, Ag, Ni, Al, stainless steel, brass.

Dans un mode de réalisation, la couche d'accrochage comprend au choix un métal choisi parmi Cu, Au, Ag, Ni, Al, acier inoxydable, laiton, un matériau non conducteur par exemple un polymère ou une céramique ou une combinaison de ces choix.In one embodiment, the bonding layer optionally comprises a metal chosen from Cu, Au, Ag, Ni, Al, stainless steel, brass, a non-conductive material, for example a polymer or a ceramic, or a combination of these choices. .

Dans un mode de réalisation, la couche de lissage comprend au choix un métal choisi parmi Cu, Au, Ag, Ni, Al, acier inoxydable, laiton, un matériau non conducteur, par exemple un polymère ou une céramique ou une combinaison de ces choix.In one embodiment, the smoothing layer optionally comprises a metal chosen from Cu, Au, Ag, Ni, Al, stainless steel, brass, a non-conductive material, for example a polymer or a ceramic or a combination of these choices. .

Dans un mode de réalisation, le dispositif comprend successivement une âme, une couche d'accrochage, une couche de lissage en nickel, et ladite couche conductrice métallique.In one embodiment, the device successively comprises a core, a bonding layer, a smoothing layer of nickel, and said metallic conductive layer.

Selon un mode de réalisation, le dispositif comprend successivement une âme non conductrice, une première couche de cuivre, une couche de nickel, une deuxième couche de cuivre. La couche d'accrochage comprend la première couche de cuivre. La couche de lissage comprend la couche de Ni. La couche métallique comprend la deuxième couche de Cu.According to one embodiment, the device successively comprises a non-conductive core, a first layer of copper, a layer of nickel, a second layer of copper. The tie layer comprises the first layer of copper. The smoothing layer includes the Ni layer. The metallic layer comprises the second layer of Cu.

L'invention concerne également un procédé de fabrication d'un dispositif à guide d'ondes pour guider un signal radiofréquence à une fréquence f déterminée, le procédé comprenant des étapes selon la revendication 12.The invention also relates to a method of manufacturing a waveguide device for guiding a radiofrequency signal at a determined frequency f, the method comprising steps according to claim 12.

Selon un mode de réalisation, le dépôt de la couche conductrice sur l'âme est effectué par dépôt électrolytique ou galvanoplastie, dépôt chimique, dépôt sous vide, dépôt physique par phase vapeur (PVD), dépôt par impression, dépôt par frittage.According to one embodiment, the deposition of the conductive layer on the core is carried out by electrolytic or electroplating deposition, chemical deposition, vacuum deposition, physical vapor deposition (PVD), deposition by printing, deposition by sintering.

Dans un mode de réalisation du procédé, la couche conductrice comprend plusieurs couches de métaux et/ou de non métaux déposées successivement.In one embodiment of the method, the conductive layer comprises several layers of metals and / or non-metals deposited successively.

Dans un mode de réalisation, la fabrication de ladite âme comporte une étape de fabrication additive. On entend par « fabrication additive » tout procédé de fabrication de pièces par ajout de matière, selon des données informatiques stockées sur un support informatique et définissant un modèle de la pièce. Outre la stéréolithographie et le selective laser melting, l'expression désigne aussi d'autres méthodes de fabrication par durcissement ou coagulation de liquide ou de poudre notamment, y compris sans limitation des méthodes basées sur des jets d'encre (binder jetting), DED (Direct Energy Déposition), EBFF (Electron beam freeform fabrication), FDM (fused déposition modeling), PFF (plastic freeforming), par aérosols, BPM (ballistic particle manufacturing), lit de poudre, SLS (Selective Laser Sintering), ALM (additive Layer Manufacturing), polyjet, EBM (electron beam melting), photopolymerisation, etc. La fabrication par stéréolithographie ou par selective laser melting est cependant préférée car elle permet d'obtenir des pièces avec des états de surface relativement propres, à faible rugosité, ce qui réduit les contraintes sur la couche de lissage.In one embodiment, the manufacture of said core comprises an additive manufacturing step. The term “additive manufacturing” means any process for manufacturing parts by adding material, according to computer data stored on a computer medium and defining a model of the part. In addition to stereolithography and selective laser melting, the expression also designates other manufacturing methods by hardening or coagulation of liquid or powder in particular, including without limitation methods based on jets ink (binder jetting), DED (Direct Energy Deposition), EBFF (Electron beam freeform fabrication), FDM (fused deposition modeling), PFF (plastic freeforming), by aerosols, BPM (ballistic particle manufacturing), powder bed, SLS (Selective Laser Sintering), ALM (additive Layer Manufacturing), polyjet, EBM (electron beam melting), photopolymerization, etc. Manufacturing by stereolithography or by selective laser melting is however preferred because it makes it possible to obtain parts with relatively clean surface states, with low roughness, which reduces the stresses on the smoothing layer.

Un exemple qui ne fais pas partie de l'invention montre un procédé de fabrication comprenant:

  1. 1) l'introduction de données représentant la forme d'une âme pour dispositif à guide d'ondes, l'âme comportant des parois latérales avec des surfaces externes et internes,
  2. 2) l'utilisation de ces données pour réaliser par fabrication additive une âme de dispositif à guide d'ondes,
  3. 3) la déposition d'une couche conductrice sur ladite âme, la couche conductrice étant caractérisée par une profondeur de peau δ à la fréquence f, de manière à recouvrir les surfaces internes de l'âme pour définir un canal guide d'ondes,
  4. 4) caractérisé en ce que lesdites données représentant la forme d'une âme sont déterminée en tenant compte de l'épaisseur de la couche conductrice de manière à ce que le guide d'onde soit optimisé pour la transmission de signal RF à la fréquence f, la couche conductrice ayant une épaisseur d'au moins cinq fois, de préférence vingt fois, la profondeur de peau δ.
An example which does not form part of the invention shows a manufacturing process comprising:
  1. 1) input of data representing the shape of a core for a waveguide device, the core having side walls with outer and inner surfaces,
  2. 2) the use of these data to achieve by additive manufacturing a core of a waveguide device,
  3. 3) the deposition of a conductive layer on said core, the conductive layer being characterized by a skin depth δ at the frequency f, so as to cover the internal surfaces of the core to define a waveguide channel,
  4. 4) characterized in that said data representing the shape of a core is determined taking into account the thickness of the conductive layer so that the waveguide is optimized for RF signal transmission at the frequency f , the conductive layer having a thickness of at least five times, preferably twenty times, the skin depth δ.

Les dimensions du canal guide d'ondes sont déterminées en fonction de la fréquence de l'onde à transmettre. Il est nécessaire de connaitre l'épaisseur des couches conductrice et l'épaisseur des parois de l'âme pour calculer les dimensions (largeur et hauteur) du canal guide d'ondes. Dans le procédé selon l'invention, l'épaisseur de l'âme qui est fabriquée est calculée en tenant compte de l'épaisseur inhabituelle de la couche conductrice qui sera déposée dans un second temps sur l'âme pour obtenir un canal guide d'ondes aux dimensions requises.The dimensions of the waveguide channel are determined as a function of the frequency of the wave to be transmitted. It is necessary that know the thickness of the conductive layers and the thickness of the walls of the core to calculate the dimensions (width and height) of the waveguide channel. In the method according to the invention, the thickness of the core which is manufactured is calculated taking into account the unusual thickness of the conductive layer which will be deposited subsequently on the core to obtain a guide channel of waves to the required dimensions.

L'invention concerne également un support de données informatique contenant des données destinées à être lues par un dispositif de fabrication additive pour fabriquer un objet, lesdites données représentant la forme d'une âme pour dispositif à guide d'ondes, ladite âme comportant des parois latérales avec des surfaces externes et internes, les surfaces internes définissant un canal de guide d'ondes.The invention also relates to a computer data medium containing data intended to be read by an additive manufacturing device in order to manufacture an object, said data representing the shape of a core for a waveguide device, said core comprising walls. sides with outer and inner surfaces, the inner surfaces defining a waveguide channel.

Le support de données informatique peut être constitué par exemple par un disque dur, une mémoire flash, un disque virtuel, une clé USD, un disque optique, un support de stockage dans un réseau ou de type cloud, etc.The computer data medium can consist, for example, of a hard disk, a flash memory, a virtual disk, a USD key, an optical disk, a storage medium in a network or of cloud type, etc.

Les modes de réalisation du dispositif de guide d'onde s'appliquent mutatis mutandis aux procédés de fabrication et au support de données selon l'invention et vice versa.The embodiments of the waveguide device apply mutatis mutandis to the manufacturing methods and to the data medium according to the invention and vice versa.

Dans le contexte de l'invention, les termes « couche conductrice », « revêtement conducteur », « couche conductrice métallique » et « couche métallique » sont synonymes et interchangeables.In the context of the invention, the terms “conductive layer”, “conductive coating”, “metallic conductive layer” and “metallic layer” are synonymous and interchangeable.

Brève description des figuresBrief description of the figures

Des exemples de mise en œuvre de l'invention sont indiqués dans la description illustrée par les figures annexées dans lesquelles :

  • La figure 1 illustre une vue en perspective tronquée d'un dispositif guide d'onde conventionnel à section rectangulaire.
  • La figure 2 illustre les lignes de champ magnétiques et électriques dans le dispositif de la figure 1.
  • La figure 3 illustre une vue en perspective tronquée d'un dispositif guide d'ondes conventionnel à section circulaire.
  • La figure 4 illustre les lignes de champ magnétiques et électriques dans le dispositif de la figure 3.
  • La figure 5 illustre différentes sections possibles de canaux de transmission dans des dispositifs à guide d'ondes.
  • La figure 6 illustre une vue en perspective tronquée d'un dispositif guide d'onde à section rectangulaire produit par fabrication additive et dont les parois internes et externes sont toutes deux recouvertes d'une déposition de matériau électrique conducteur.
  • La figure 7 illustre une vue en perspective tronquée d'un dispositif guide d'ondes à section rectangulaire produit par fabrication additive et dont seules les parois internes sont recouvertes d'une déposition de matériau électrique conducteur.
  • Les figures 8A et 8B illustrent un dispositif selon un exemple qui ne fait pas partie de l'invention dans lequel l'âme est recouverte d'une seule couche conductrice sur la face interne et, respectivement, sur la face interne et externe.
  • Les figures 9A et 9B illustrent un dispositif selon un mode de réalisation dans lequel l'âme est recouverte d'une couche de lissage puis d'une couche conductrice sur la face interne et, respectivement, sur la face interne et externe.
  • Les figures 10A et 10B illustre un dispositif selon un autre mode de réalisation dans lequel l'âme est recouverte d'une couche d'accrochage, d'une couche de lissage puis d'une couche conductrice sur la face interne et, respectivement, sur la face interne et externe.
  • La figure 11 représente une vue en coupe longitudinale d'une portion de la surface rugueuse de l'âme de la couche de lissage et conductrice sur cette âme.
  • La figure 12 est un tableau comparatif des modules de Young pour un guide d'ondes selon l'art antérieur et un guide d'onde selon la présente invention.
Examples of implementation of the invention are indicated in the description illustrated by the appended figures in which:
  • The figure 1 illustrates a cutaway perspective view of a conventional rectangular section waveguide device.
  • The figure 2 illustrates the magnetic and electric field lines in the device of the figure 1 .
  • The figure 3 illustrates a cutaway perspective view of a conventional circular section waveguide device.
  • The figure 4 illustrates the magnetic and electric field lines in the device of the figure 3 .
  • The figure 5 illustrates different possible sections of transmission channels in waveguide devices.
  • The figure 6 illustrates a cutaway perspective view of a rectangular section waveguide device produced by additive manufacturing and both inner and outer walls of which are coated with a deposit of electrically conductive material.
  • The figure 7 illustrates a cutaway perspective view of a waveguide device with a rectangular section produced by additive manufacturing and only the internal walls of which are covered with a deposit of electrically conductive material.
  • The figures 8A and 8B illustrate a device according to an example which does not form part of the invention in which the core is covered with a single conductive layer on the inner face and, respectively, on the inner and outer face.
  • The figures 9A and 9B illustrate a device according to an embodiment in which the core is covered with a layer of then smoothing a conductive layer on the inner face and, respectively, on the inner and outer face.
  • The figures 10A and 10B illustrates a device according to another embodiment in which the core is covered with a tie layer, a smoothing layer and then a conductive layer on the internal face and, respectively, on the internal and external face .
  • The figure 11 represents a view in longitudinal section of a portion of the rough surface of the core of the smoothing and conductive layer on this core.
  • The figure 12 is a comparative table of Young's moduli for a waveguide according to the prior art and a waveguide according to the present invention.

Exemple(s) de mode de réalisation de l'inventionExample (s) of embodiment of the invention

Les figures 9 et 10 représentent deux modes de réalisation d'un dispositif à guide d'ondes 1 selon l'invention, avec à chaque fois deux sous-variantes. Le guide d'ondes 1 comporte une âme 3, par exemple une âme en métal (aluminium, Titane ou acier), ou éventuellement en polymère, en époxy, en céramique, ou en matériau organique.The figures 9 and 10 show two embodiments of a waveguide device 1 according to the invention, each time with two sub-variants. The waveguide 1 comprises a core 3, for example a core made of metal (aluminum, titanium or steel), or optionally of polymer, epoxy, ceramic, or organic material.

L'âme 3 est fabriquée par fabrication additive, de préférence par stéréolithographie ou par selective laser melting afin de réduire la rugosité de la surface. Le matériau de l'âme peut être non conducteur ou conducteur. L'épaisseur des parois de l'âme est par exemple entre 0,5 et 3 mm, de préférence entre 0,8 et 1,5mm.The core 3 is manufactured by additive manufacturing, preferably by stereolithography or by selective laser melting in order to reduce the roughness of the surface. The material of the core can be non-conductive or conductive. The thickness of the walls of the core is for example between 0.5 and 3 mm, preferably between 0.8 and 1.5 mm.

La forme de l'âme peut être déterminée par un fichier informatique stocké dans un support de données informatique.The shape of the core can be determined by a computer file stored in a computer data medium.

L'âme peut aussi être constituée de plusieurs parties formées par stéréolithographie ou par selective laser melting et assemblées entre elles avant le plaquage, par exemple par collage ou fusion thermique ou assemblage mécanique.The core can also be made up of several parts formed by stereolithography or by selective laser melting and assembled together before plating, for example by bonding or thermal fusion or mechanical assembly.

Cette âme 3 délimite un canal interne 2 destiné au guidage d'ondes, et dont la section est déterminée selon la fréquence du signal électromagnétique à transmettre. Les dimensions de ce canal interne a, b et sa forme sont déterminées en fonction de la fréquence opérationnelle du dispositif 1, c'est-à-dire la fréquence du signal électromagnétique pour lequel le dispositif est fabriqué et pour laquelle un mode de transmission stable et optionnellement avec un minimum d'atténuation est obtenu.This core 3 delimits an internal channel 2 intended for guiding waves, and the section of which is determined according to the frequency of the electromagnetic signal to be transmitted. The dimensions of this internal channel a, b and its shape are determined as a function of the operational frequency of the device 1, that is to say the frequency of the electromagnetic signal for which the device is manufactured and for which a stable mode of transmission and optionally with a minimum of attenuation is obtained.

L'âme 3 présente une surface interne 7 et une surface externe 8, la surface interne 7 recouvrant les parois de l'ouverture de section rectangulaire 2.The core 3 has an internal surface 7 and an external surface 8, the internal surface 7 covering the walls of the opening of rectangular section 2.

Dans un exemple qui ne fait pas partie de l'invention illustré sur la figure 8A, la surface interne 7 de l'âme 3 en polymère est recouverte d'une couche métallique 4 conductrice, par exemple de cuivre, d'argent, d'or, de nickel etc, plaqué par déposition 25 chimique sans courant électrique. L'épaisseur de cette couche est par exemple comprise entre 1 et 20 micromètres, par exemple entre 4 et 10 micromètres.In an example which does not form part of the invention illustrated on figure 8A , the internal surface 7 of the polymer core 3 is covered with a conductive metallic layer 4, for example of copper, silver, gold, nickel, etc., plated by chemical deposition without electric current. The thickness of this layer is for example between 1 and 20 micrometers, for example between 4 and 10 micrometers.

L'épaisseur de ce revêtement conducteur 4 doit être suffisante pour que la surface soit conductrice électriquement à la fréquence radio choisie. Ceci est typiquement obtenu à l'aide d'une couche conductrice dont l'épaisseur est supérieure à la profondeur de peau δ.The thickness of this conductive coating 4 must be sufficient for the surface to be electrically conductive at the chosen radio frequency. This is typically obtained using a conductive layer whose thickness is greater than the skin depth δ.

Cette épaisseur est sensiblement constante sur toutes les surfaces internes afin d'obtenir une pièce finie avec des tolérances dimensionnelles pour le canal précises. Selon l'invention, l'épaisseur de cette couche 4 est au moins vingt fois supérieure à la profondeur de peau afin d'améliorer les propriétés structurelles, mécaniques, thermiques et chimiques du dispositif.This thickness is substantially constant on all internal surfaces in order to obtain a finished part with precise dimensional tolerances for the channel. According to the invention, the thickness of this layer 4 is at least twenty times greater than the skin depth in order to improve the structural, mechanical, thermal and chemical properties of the device.

Sur l'exemple de la figure 8A, la surface externe 8 de l'âme est nue. Afin de la protéger, sur l'exemple de la figure 8B, cette surface externe est également recouverte d'une couche conductrice 5, qui contribue également à améliorer les propriétés structurelles, mécaniques, thermiques et chimiques du dispositif.On the example of figure 8A , the outer surface 8 of the core is bare. In order to protect it, following the example of the figure 8B , this external surface is also covered with a conductive layer 5, which also contributes to improving the structural, mechanical, thermal and chemical properties of the device.

La déposition de métal conducteur 4,5 sur les faces internes 7 et éventuellement externes 8 se fait en immergeant l'âme 3 dans une série de bains successifs, typiquement 1 à 15 bains. Chaque bain implique un fluide avec un ou plusieurs réactifs. La déposition ne nécessite pas d'appliquer un courant sur l'âme à recouvrir. Un brassage et une déposition régulière sont obtenus en brassant le fluide, par exemple en pompant le fluide dans le canal de transmission et/ou autour du dispositif ou en vibrant l'âme 3 et/ou le bac de fluide, par exemple avec un dispositif vibrant à ultrasons pour créer des vagues ultrasoniques.The deposition of conductive metal 4,5 on the internal 7 and possibly external 8 faces is carried out by immersing the core 3 in a series of successive baths, typically 1 to 15 baths. Each bath involves a fluid with one or more reagents. The deposition does not require applying a current to the core to be covered. Stirring and regular deposition are obtained by stirring the fluid, for example by pumping the fluid in the transmission channel and / or around the device or by vibrating the core 3 and / or the fluid tank, for example with a device ultrasonic vibrating to create ultrasonic waves.

Dans le mode de réalisation illustré sur la figure 9A, la surface interne 7 de l'âme de polymère 3 est recouverte d'une couche de lissage 9, par exemple une couche en Ni. L'épaisseur de la couche de lissage 9 est au moins égale à la rugosité Ra de la surface interne 7, ou au moins égale à la résolution du procédé d'impression 3D utilisé pour fabriquer l'âme (la résolution du procédé d'impression 3D déterminant la rugosité Ra de la surface). Dans un mode de réalisation, l'épaisseur de cette couche est comprise entre 5 et 500 micromètres, de préférence entre 10 et 150 micromètres, de préférence entre 20 et 150 micromètres. Cette couche de lissage détermine également les propriétés mécaniques et thermiques du dispositif 1. La couche de Ni 9 est ensuite recouverte de la couche conductrice 4, par exemple en cuivre, en argent, en or etc.In the embodiment illustrated in figure 9A , the internal surface 7 of the polymer core 3 is covered with a smoothing layer 9, for example an Ni layer. The thickness of the smoothing layer 9 is at least equal to the roughness Ra of the internal surface 7, or at least equal to the resolution of the 3D printing process used to manufacture the core (the resolution of the printing process 3D determining the roughness Ra of the surface). In one embodiment, the thickness of this layer is between 5 and 500 micrometers, preferably between 10 and 150 micrometers, preferably between 20 and 150 micrometers. This smoothing layer also determines the mechanical and thermal properties of the device 1. The Ni layer 9 is then covered with the conductive layer 4, for example made of copper, silver, gold, etc.

La couche de lissage permet de lisser la surface de l'âme et donc de réduire les pertes de transmission dues à la rugosité de la surface interne.The smoothing layer makes it possible to smooth the surface of the core and therefore to reduce the transmission losses due to the roughness of the internal surface.

Dans ce mode de réalisation, l'âme 3 est donc recouverte d'une couche métallique 4+9 formée d'une couche de lissage 9 et d'une couche conductrice 4. L'épaisseur totale de cette couche 4+9 est supérieure ou égale à cinq fois, de préférence vingt fois la profondeur de peau δ. La valeur du module de Young du dispositif 1 est conférée majoritairement par cette couche conductrice 4+9. L'épaisseur de la couche conductrice 4 peut aussi à être seule être supérieure ou égale à vingt fois la profondeur de peau δ. La couche la plus conductrice est de préférence déposée en dernier, à la périphérie.In this embodiment, the core 3 is therefore covered with a metal layer 4 + 9 formed by a smoothing layer 9 and a conductive layer 4. The total thickness of this layer 4 + 9 is greater or equal to five times, preferably twenty times the skin depth δ. The value of the Young's modulus of the device 1 is mainly conferred by this conductive layer 4 + 9. The thickness of the conductive layer 4 may also alone be greater than or equal to twenty times the depth of skin δ. The most conductive layer is preferably deposited last, at the periphery.

De la même façon, sur la figure 9B, la surface interne 7 de l'âme non conductrice de polymère 3 est recouverte d'une couche de lissage 9 en Ni, déposée par déposition chimique. La couche de Ni 9 est ensuite recouverte par déposition chimique d'une couche conductrice 4 en Cu, dont l'épaisseur est au moins égale à vingt épaisseurs de peau à la fréquence de transmission nominale du guide d'ondes. La surface externe 8 de l'âme 3 est également recouverte par déposition chimique d'une couche de lissage 6 en nickel, qui sert aussi de support structurel. Une couche conductrice 5, par exemple du cuivre, peut être déposée par-dessus cette couche de lissage.Likewise, on the figure 9B , the internal surface 7 of the non-conductive polymer core 3 is covered with a smoothing layer 9 of Ni, deposited by chemical deposition. The Ni layer 9 is then covered by chemical deposition with a conductive Cu layer 4, the thickness of which is at least equal to twenty skin thicknesses at the nominal transmission frequency of the waveguide. The outer surface 8 of the core 3 is also coated by chemical deposition with a smoothing layer 6 of nickel, which also serves as a structural support. A conductive layer 5, for example copper, can be deposited over this smoothing layer.

Dans le mode de réalisation illustré sur la figure 10A, le guide d'onde 1 comprend une couche d'accrochage 11, par exemple une couche en Cu, par-dessus la surface interne 7 de l'âme 3 ; cette couche d'accrochage facilite la déposition ultérieure de la couche de lissage 9 si une telle couche est prévue, ou de la couche conductrice 4. L'épaisseur de cette couche est avantageusement inférieure à 30 micromètres.In the embodiment illustrated in figure 10A , the waveguide 1 comprises a tie layer 11, for example a Cu layer, over the internal surface 7 of the core 3; this bonding layer facilitates the subsequent deposition of the smoothing layer 9 if such a layer is provided, or of the conductive layer 4. The thickness of this layer is advantageously less than 30 micrometers.

De la même façon, sur la figure 10B, le guide d'onde 1 comprend une couche d'accrochage 12, par exemple une couche en Cu, par-dessus la surface externe 8 de l'âme 3; cette couche d'accrochage facilite la déposition ultérieure de la couche de lissage 6.Likewise, on the figure 10B , the waveguide 1 comprises a tie layer 12, for example a Cu layer, over the outer surface 8 of the core 3; this bonding layer facilitates the subsequent deposition of the smoothing layer 6.

La figure 11 est un schéma représentant une coupe longitudinale d'une portion de la surface interne 7 de l'âme 3 d'un dispositif guide d'onde 1 comportant un canal de guide d'onde 2. On voit que cette surface interne est très irrégulière ou rugueuse en raison du procédé de fabrication additive.The figure 11 is a diagram showing a longitudinal section of a portion of the internal surface 7 of the core 3 of a waveguide device 1 comprising a waveguide channel 2. It can be seen that this internal surface is very irregular or rough due to the additive manufacturing process.

Par-dessus l'âme 3, le guide d'onde 1 comprend une couche d'accrochage 11, par exemple une couche en Cu entre 1 et 10 micromètres d'épaisseur.Above the core 3, the waveguide 1 comprises a tie layer 11, for example a Cu layer between 1 and 10 micrometers thick.

Une couche de lissage 9, par exemple une couche en Ni, est déposée par déposition chimique et permet de lisser partiellement les irrégularités de la couche de la surface de l'âme 3. L'épaisseur de cette couche de lissage est au moins supérieure à la résolution du système d'impression additif et donc à la rugosité de Ra de la surface; dans un mode de réalisation, l'épaisseur de la couche de lissage 9 est comprise entre 5 et 500 micromètres, de préférence entre 20 et 150 micromètres.A smoothing layer 9, for example an Ni layer, is deposited by chemical deposition and makes it possible to partially smooth the irregularities of the layer of the surface of the core 3. The thickness of this smoothing layer is at least greater than the resolution of the additive printing system and therefore the roughness of Ra of the surface; in one embodiment, the thickness of the smoothing layer 9 is between 5 and 500 micrometers, preferably between 20 and 150 micrometers.

Une troisième couche conductrice 4 en cuivre ou en argent est déposée par déposition chimique sur la couche de lissage 9; son épaisseur est de préférence supérieure ou égale à vingt fois l'épaisseur de peau à la fréquence f nominale du guide d'ondes, de manière à ce que les courants superficiels se concentrent majoritairement, voire presque exclusivement, dans cette couche. L'épaisseur relativement importante de cette couche conductrice 4 permet en outre de renforcer la rigidité mécanique du dispositif. Dans un mode de réalisation, l'épaisseur de cette couche est comprise entre 5 et 50 micromètres, de préférence entre 5 et 15 micromètres.A third conductive layer 4 made of copper or silver is deposited by chemical deposition on the smoothing layer 9; its thickness is preferably greater than or equal to twenty times the skin thickness at the nominal frequency f of the waveguide, so that the surface currents are concentrated mainly, or even almost exclusively, in this layer. The relatively large thickness of this conductive layer 4 also makes it possible to reinforce the mechanical rigidity of the device. In one embodiment, the thickness of this layer is between 5 and 50 micrometers, preferably between 5 and 15 micrometers.

Ces dépositions peuvent être appliquées mutatis mutandis à la surface externe 8.These depositions can be applied mutatis mutandis to the external surface 8.

Le tableau de la figure 12 compare le module de Young d'un guide d'onde 1 entièrement en Al avec le module de Young d'un dispositif guide d'onde 1 selon l'invention. Le guide d'onde selon l'art antérieur utilisé pour cette comparaison est constitué d'une feuille d'Al de 500 micromètre d'épaisseur ayant un module de Young de 72500 N/mm2. Le guide d'onde 1 selon l'invention utilisé dans cet exemple comprend une âme 3 en polymère de 1mm d'épaisseur, une couche d'accrochage 11 de Cu de 5 micromètre, une couche de lissage 9 en Ni de 90 micromètre et une couche conductrice 4 de Cu de 5 micromètre. L'épaisseur globale du revêtement est ainsi de 100 micromètre pour un module de Young de 214000 N/mm2. L'influence des couches d'accrochage sur le module de Young est négligeable. On remarque que la résistance en flexion (rigidité en flexion) du guide d'onde selon l'invention est supérieure à celle du guide d'onde entièrement en aluminium selon l'art antérieur, pour un poids réduit. Numéros de référence employés sur les figures 1 Dispositif guide d'ondes a Hauteur du guide d'ondes b Largeur du guide d'ondes 2 Canal guide d'onde 3 Âme 4 Revêtement conducteur interne 5 Revêtement conducteur externe 6 Couche de lissage ou structurelle 7 Surface interne de l'âme 8 Surface externe de l'âme 9 Couche de lissage 11 Couche d'accrochage interne 12 Couche d'accrochage externe The table of the figure 12 compares the Young's modulus of an all-Al waveguide 1 with the Young's modulus of a device waveguide 1 according to the invention. The waveguide according to the prior art used for this comparison consists of an Al sheet 500 micrometer thick having a Young's modulus of 72,500 N / mm 2 . The waveguide 1 according to the invention used in this example comprises a core 3 of 1 mm thick polymer, a 5 micrometer Cu bond layer 11, a 90 micrometer Ni smoothing layer 9 and a conductive layer 4 of 5 micrometer Cu. The overall thickness of the coating is thus 100 microns for a Young's modulus of 214,000 N / mm 2 . The influence of tie layers on Young's modulus is negligible. Note that the flexural strength (flexural rigidity) of the waveguide according to the invention is greater than that of the waveguide entirely made of aluminum according to the prior art, for a reduced weight. <b> Reference numbers used in the figures </b> 1 Waveguide device at Waveguide height b Waveguide width 2 Waveguide channel 3 Soul 4 Internal conductive coating 5 External conductive coating 6 Smoothing or structural layer 7 Internal surface of the core 8 External surface of the web 9 Smoothing layer 11 Internal tack layer 12 External tack layer

Claims (15)

  1. Waveguiding device (1) for guiding a radiofrequency signal at a set frequency f, the device (1) comprising:
    - a core (3) manufactured by additive manufacturing and comprising sidewalls with external (8) and internal (7) surfaces, the internal surfaces (7) bounding a waveguide channel (2), the internal surfaces (7) of the core (3) comprising irregularities that define a roughness value (Ra),
    - a smoothing layer (9) covering the internal surface (7) of the core (3), which is produced so as to at least partially smooth the irregularities of the layer of the internal surface of the core, the thickness of said smoothing layer (9) being greater than or equal to the roughness (Ra) of the core,
    - a conductive metal layer (4) covering the smoothing layer, said conductive metal layer (4) being formed from a metal characterized by a skin depth δ at the frequency f, the conductive metal layer (4) having a thickness at least equal to five times said skin depth δ.
  2. Waveguiding device (1) according to Claim 1, the thickness of said smoothing layer (9) being comprised between 5 and 500 microns, preferably between 10 and 150 microns, preferably between 20 and 150 microns.
  3. Waveguiding device (1) according to either of Claims 1 and 2, the thickness of said smoothing layer (9) being greater than or equal to the resolution of the process for manufacturing the core.
  4. Waveguiding device (1) according to one of Claims 1 to 3, the core being formed from a metal or from an alloy.
  5. Waveguiding device (1) according to one of Claims 1 to 4, the core (3) being produced by stereolithography or by selective laser melting.
  6. Waveguiding device (1) according to one of Claims 1 to 5, the metal layer (4) comprising any metal selected from Cu, Au, Ag, Ni, Al, stainless steel, brass or a combination of these metals.
  7. Waveguiding device (1) according to one of Claims 1 to 6, the thickness of said conductive metal layer (4) being at least equal to twenty times said skin depth δ.
  8. Waveguiding device according to one of Claims 1 to 7, furthermore comprising a bond layer (11) between said core and said smoothing layer.
  9. Waveguiding device (1) according to Claim 1 to 8, the strength of the device (1), which strength is chosen from tensile strength, torsional strength, flexural strength or a combination of these strengths, being mainly conferred by the conductive layer (4).
  10. Waveguiding device (1) according to Claim 9, the strength of the device (1), which is chosen from tensile strength, torsional strength, flexural strength or a combination of these strengths, being mainly conferred by the conductive layer (4) and by the smoothing layer (9) .
  11. Waveguiding device (1) according to one of Claims 1 to 10, comprising a metal layer (5) covering the external surface (8) of the core (3).
  12. Process for manufacturing a waveguiding device (1) for guiding a radiofrequency signal at a set frequency f, the process comprising:
    - manufacturing a core (3) comprising sidewalls with external (8) and internal (7) surfaces, the internal surfaces (7) bounding a waveguide channel (2), the internal surfaces (7) of the core (3) comprising irregularities that define a roughness value (Ra),
    - depositing, on the internal surface (7) of the core (3), in succession, a smoothing layer (9) and a conductive layer (4), the thickness of the smoothing layer being greater than or equal to the roughness (Ra) of the core (3) so as to at least partially smooth the irregularities of the layer of the internal surface of the core, said conductive layer (4) being formed from a metal characterized by a skin depth δ at the frequency f, said conductive layer (4) having a thickness at least equal to five times said skin depth δ.
  13. Process according to Claim 12, the manufacture of the core comprising a step of additive manufacturing by stereolithography or by selective laser melting.
  14. Process according to Claim 13, comprising depositing a bond layer between said core and said smoothing layer.
  15. Computational data medium for an additive-manufacturing device, the medium comprising instructions that, when they are executed by the additive-manufacturing device, implement the steps of a method according to one of Claims 12-14.
EP17728662.2A 2016-05-30 2017-05-30 Waveguide comprising a thick conductive layer Active EP3465815B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1600865A FR3051924B1 (en) 2016-05-30 2016-05-30 WAVEGUIDE INCLUDING A THICK CONDUCTIVE LAYER
PCT/IB2017/053178 WO2017208153A1 (en) 2016-05-30 2017-05-30 Waveguide comprising a thick conductive layer

Publications (2)

Publication Number Publication Date
EP3465815A1 EP3465815A1 (en) 2019-04-10
EP3465815B1 true EP3465815B1 (en) 2021-04-21

Family

ID=57233501

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17728662.2A Active EP3465815B1 (en) 2016-05-30 2017-05-30 Waveguide comprising a thick conductive layer

Country Status (7)

Country Link
US (1) US10862186B2 (en)
EP (1) EP3465815B1 (en)
CN (1) CN109196715B (en)
ES (1) ES2881828T3 (en)
FR (1) FR3051924B1 (en)
IL (1) IL263297B (en)
WO (1) WO2017208153A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11482793B2 (en) 2017-12-20 2022-10-25 Optisys, Inc. Integrated tracking antenna array
FR3075483B1 (en) * 2017-12-20 2019-12-27 Swissto12 Sa PASSIVE RADIO FREQUENCY DEVICE, AND MANUFACTURING METHOD
FR3075482B1 (en) * 2017-12-20 2020-09-18 Swissto12 Sa PROCESS FOR MANUFACTURING A WAVEGUIDE DEVICE
EP3758938A4 (en) 2018-03-02 2021-12-08 Optisys, LLC Mass customization of antenna assemblies using metal additive manufacturing
WO2020102543A1 (en) * 2018-11-14 2020-05-22 Optisys, LLC Hollow metal waveguides having irregular hexagonal cross-sections and methods of fabricating same
WO2020106774A1 (en) 2018-11-19 2020-05-28 Optisys, LLC Irregular hexagon cross-sectioned hollow metal waveguide filters
FR3095081B1 (en) 2019-04-09 2022-04-01 Swissto12 Sa Arrangement of a set of waveguides and method of manufacturing the same
FR3095082B1 (en) 2019-04-11 2021-10-08 Swissto12 Sa Oval section waveguide device and method of manufacturing said device
FR3110030B1 (en) * 2020-05-06 2023-11-10 Elliptika Method for manufacturing a waveguide and waveguide manufactured via the process
FR3117276A1 (en) 2020-12-03 2022-06-10 Swissto12 Sa Comb waveguide filter
KR20230118592A (en) 2020-12-08 2023-08-11 후버 앤드 주흐너 아게 antenna device
US11890676B2 (en) 2021-02-15 2024-02-06 Raytheon Missiles & Defense (RMD) Waveguide fence support
US11929818B2 (en) 2021-10-08 2024-03-12 Rtx Corporation Waveguide system
CH719745A1 (en) 2022-06-02 2023-12-15 Swissto12 Sa Comb waveguide filter with omnidirectional resonators.

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3195079A (en) * 1963-10-07 1965-07-13 Burton Silverplating Built up nonmetallic wave guide having metallic coating extending into corner joint and method of making same
US3769618A (en) * 1971-12-27 1973-10-30 Freedman J Thin film low temperature conductors and transmission lines
US3982215A (en) * 1973-03-08 1976-09-21 Rca Corporation Metal plated body composed of graphite fibre epoxy composite
WO2009082282A1 (en) * 2007-12-20 2009-07-02 Telefonaktiebolaget Lm Ericsson (Publ) A waveguide transition arrangement
JP2010252092A (en) * 2009-04-16 2010-11-04 Tyco Electronics Japan Kk Waveguide
CN102623647A (en) 2012-04-05 2012-08-01 四川虹视显示技术有限公司 Manufacturing method and substrate for organic electroluminescence device
JP2014037081A (en) * 2012-08-15 2014-02-27 Toppan Printing Co Ltd Card
JP2016511527A (en) * 2013-03-15 2016-04-14 シオン・パワー・コーポレーション Protective electrode structure and method
DE102014112509B4 (en) 2014-08-29 2020-12-17 Dyemansion Gmbh Use of an impregnating agent for impregnating molded parts produced in a 3D printing process
CN105420674A (en) * 2015-12-04 2016-03-23 济南晶正电子科技有限公司 Single-crystal film bonding body and manufacturing method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
FR3051924A1 (en) 2017-12-01
US10862186B2 (en) 2020-12-08
ES2881828T3 (en) 2021-11-30
CN109196715B (en) 2021-04-20
FR3051924B1 (en) 2020-04-10
IL263297A (en) 2018-12-31
WO2017208153A1 (en) 2017-12-07
EP3465815A1 (en) 2019-04-10
IL263297B (en) 2021-10-31
US20200127358A1 (en) 2020-04-23
CN109196715A (en) 2019-01-11

Similar Documents

Publication Publication Date Title
EP3465815B1 (en) Waveguide comprising a thick conductive layer
EP3424103A1 (en) Method for the additive manufacturing of a waveguide and waveguide devices produced according to said method
Peverini et al. Additive manufacturing of Ku/K‐band waveguide filters: a comparative analysis among selective‐laser melting and stereo‐lithography
EP3503283B1 (en) Passive radiofrequency device, and method for manufacturing same
WO2020208595A1 (en) Waveguide device and method for producing said device
EP3939115B1 (en) Method for manufacturing a waveguide device by additive manufacturing and electrodeposition, and semi-finished product
WO2020208569A1 (en) Passive radiofrequency device comprising axial attachment openings
WO2023105436A1 (en) Method for manufacturing a waveguide device by additive manufacturing and polishing
EP0129453B1 (en) Method to manufacture a high thermal resistance coaxial line
WO2021224074A1 (en) Process for manufacturing a waveguide and waveguide manufactured via the process
WO2022224190A1 (en) Corrugated passive radiofrequency device suitable for an additive manufacturing method
FR3111743A1 (en) Flexible waveguide device and method of manufacturing such a device
WO2023073567A1 (en) Radiofrequency module comprising an array of isophasic waveguides
WO2023067482A1 (en) Dual-polarised antenna array
FR2916580A1 (en) Electromagnetic wave i.e. hyper frequency wave, guiding structure for radiating plate slot antenna, has zone with element made of insulating material possessing dielectric characteristics, and dimensions and geometry equal to that of zone
Vaccaro et al. Grooved CVD diamond windows: Grooves' profiles and structural simulations
CA2988222A1 (en) Fabrication process for an ordered network of interconnected acoustics micro-channels

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181130

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201210

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017037089

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1385604

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602017037089

Country of ref document: DE

Representative=s name: BECK & ROESSIG - EUROPEAN PATENT ATTORNEYS, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602017037089

Country of ref document: DE

Owner name: SWISSTO12 SA, CH

Free format text: FORMER OWNER: SWISSTO12 SA, ECUBLENS, CH

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SWISSTO12 SA

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1385604

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210821

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210722

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210823

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2881828

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20211130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017037089

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210530

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210821

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230519

Year of fee payment: 7

Ref country code: IT

Payment date: 20230526

Year of fee payment: 7

Ref country code: FR

Payment date: 20230526

Year of fee payment: 7

Ref country code: DE

Payment date: 20230519

Year of fee payment: 7

Ref country code: CH

Payment date: 20230602

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230519

Year of fee payment: 7

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230915

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230524

Year of fee payment: 7

Ref country code: ES

Payment date: 20230727

Year of fee payment: 7