EP0091352B1 - Manufacturing method of a wave-guide for an emitting-receiving apparatus of electromagnetic waves, and wave guide manufactured by this method - Google Patents

Manufacturing method of a wave-guide for an emitting-receiving apparatus of electromagnetic waves, and wave guide manufactured by this method Download PDF

Info

Publication number
EP0091352B1
EP0091352B1 EP83400635A EP83400635A EP0091352B1 EP 0091352 B1 EP0091352 B1 EP 0091352B1 EP 83400635 A EP83400635 A EP 83400635A EP 83400635 A EP83400635 A EP 83400635A EP 0091352 B1 EP0091352 B1 EP 0091352B1
Authority
EP
European Patent Office
Prior art keywords
layer
core
copper
brass
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83400635A
Other languages
German (de)
French (fr)
Other versions
EP0091352A1 (en
Inventor
Christian Beau
André Ormières
Raymond Gueuret
Pierre-Louis Cuvier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Thomson Faisceaux Hertziens SA
Original Assignee
Alcatel Thomson Faisceaux Hertziens SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Thomson Faisceaux Hertziens SA filed Critical Alcatel Thomson Faisceaux Hertziens SA
Publication of EP0091352A1 publication Critical patent/EP0091352A1/en
Application granted granted Critical
Publication of EP0091352B1 publication Critical patent/EP0091352B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • H01P11/001Manufacturing waveguides or transmission lines of the waveguide type
    • H01P11/002Manufacturing hollow waveguides

Definitions

  • the present invention relates to a waveguide for an electromagnetic wave transceiver operating in the microwave range and to the method of manufacturing such a waveguide.
  • An electromagnetic waveguide is formed by a dielectric medium, generally air, surrounded by a metal envelope of generally circular or rectangular section.
  • Waveguides are often used in the field of so-called microwave electromagnetic waves to provide the link between the transmitting antenna or the receiving antenna and the amplifier stage of the transmitter or receiver.
  • the structures of these waveguides are very diverse, some waveguides have a metallic envelope of stainless steel or brass and are silver inside, others have an internal metallic envelope conducting microwave waves, covered externally by a material. insulating to thermally insulate the interior metallic envelope from the exterior environment.
  • the choice of a structure depends on the transmission problem which is to be solved.
  • the thermally isolated waveguides are preferred to those which do not have this characteristic, because in this case , the designer seeks to achieve the most perfect possible thermal insulation between the ambient air and the low noise amplifier which receives the signals from the antenna via the reception waveguide.
  • the object of the invention is to overcome the aforementioned drawbacks using an electromagnetic waveguide having a metal envelope covered with a thermally insulating material and whose thickness does not exceed a few tens of microns. Thanks to the invention, the thermal resistance of the waveguide thus obtained is satisfactory so as not to increase the noise level of the parametric reception amplifiers. The geometry of the waveguide obtained is also satisfactory to allow correct transmission of the electromagnetic waves.
  • Document EP-A-18 885 describes a process making it possible to fabricate a cavity and the integral parts it contains by electroforming at one time.
  • an adhesion underlayment an underlayment
  • Document FR-A-1 462 893 describes a process for manufacturing parts and assemblies with multiple walls and channels, in particular waveguides, consisting in forming by electroplating the deposit of metals on the non-insulated metal surfaces of mandrels, to wrap the layer thus formed of a plastic material and to mechanically remove the mandrels from the finished part.
  • the subject of the invention is a waveguide for a parametric amplifier comprising a metal envelope for guiding electromagnetic waves consisting of a layer of silver (8) surrounded by a layer of copper (11), characterized in that '' It comprises two flanges (9, 10) connected to each other by the metal envelope, and which are held in position by the copper layer (11) whose thickness is of the order of 40 microns, the thickness of layer silver (8) not exceeding 7 microns and in that the copper layer (11) is surrounded by a coating layer (12) of plastic, thermally insulating material placed in the space between the two flanges (9, 10).
  • the subject of the invention is also a method of manufacturing a waveguide consisting in producing a metal core (1) of electroforming in light alloy whose external dimensions correspond substantially to the internal dimensions of said waveguide to be produced, electrolytically depositing a thin layer of brass on the surface of said core, electrolytically depositing said silver layer (8) above the brass layer (7) then said copper layer (11) above above the silver layer (8), dissolving the electro-forming core (1) and the brass layer (7) so as to reveal the silver layer (8), characterized in that, prior to the dissolution of the core (1) and of the brass layer, said copper layer (11) is covered with said coating layer (12).
  • FIGS. 1a to 1g illustrate the different steps of the method according to the invention.
  • the electro-forming core used is shown in FIG. 1a, it consists of an elongated body 1 made of light aluminum alloy of the AU4G type containing 4% copper and 1% magnesium.
  • the core 1 is machined so as to have a constant rectangular or circular section corresponding to the shape of the desired waveguide and whose dimensions are approximately those inside the envelope of the waveguide to achieve.
  • the core 1 is optionally pierced with a hole 2 passing through it over its entire length.
  • the ends of the core are formed by two plane faces 3 and 4 perpendicular to the longitudinal axis of the core.
  • plastic plates are applied to the end faces 3 and 4 of the core 1 to protect them from attack by the chemical agents used in the rest of the process.
  • a first layer 7 of brass is deposited electrochemically on the core 1.
  • This operation is carried out after having previously formed on the core 1 an adhesion layer zinc, obtained for example by immersion of the nucleus 1 in a bath at 25 ° C, OHNA soda at 450g per liter, zinc oxide ZnO at 50g per liter and iron chloride at 1g per liter.
  • the deposition of the brass can be obtained using an electrolyte composed of copper cyanide CN CU at 52 g / liter, cyanide of CN 2 Zn at 12 g / liter, sodium cyanide CN Na at 85 g / liter, sodium carbonate C0 3 Na 2 at 30g / liter, ammonia chloride NH 4 CI at 28g / liter and free cyanide at 5g / liter.
  • the fourth step of the process represented in FIG. 1d consists in depositing a silver layer 8 of approximately 7 microns thick.
  • This deposition is carried out electrolytically using an electrolyte at 20 ° C consisting for example of a silver salt Ag (CN) 2 K at 55 g / liter, potassium cyanide CNK at 125 g / liter, potassium carbonate at 20g / liter.
  • an electrolyte at 20 ° C consisting for example of a silver salt Ag (CN) 2 K at 55 g / liter, potassium cyanide CNK at 125 g / liter, potassium carbonate at 20g / liter.
  • the fifth step of the process represented in FIG. 1c consists in positioning two brass flanges 9 and 10 on the previously obtained silver layer, each being in contact with the protective plates 5 and 6 and to make them integral with the silver layer by an electrolytic deposition of a copper layer above the silver layer, about 40 microns thick.
  • a solution composed of copper sulphate SO 4 Cu at 100 g / liter, sulphiric acid H 2 S0 4 at 180 g / liter, and chlorine at 0.05 g / liter may be used as the electrolyte for depositing the copper.
  • the protective plates 5 and 6 are removed and the space between the flanges 9 and 10 is filled with a thermally insulating plastic material 12 consisting, for example, of a polyurethane resin the thickness of which must be determined, depending on the applications, as a function of the thermal insulation sought.
  • a thermally insulating plastic material 12 consisting, for example, of a polyurethane resin the thickness of which must be determined, depending on the applications, as a function of the thermal insulation sought.
  • the final step of the process consists in dissolving the core 1 using a first solution constituted, for example, by caustic soda OH NA at 100g / liter, at a temperature of 70 ° C then to remove the brass layer 7 using a solution, composed of sulfuric acid H 2 S0 4 at 75% and nitric acid HN0 3 at 25% to reveal the silver layer 8.
  • a first solution constituted, for example, by caustic soda OH NA at 100g / liter, at a temperature of 70 ° C then to remove the brass layer 7 using a solution, composed of sulfuric acid H 2 S0 4 at 75% and nitric acid HN0 3 at 25% to reveal the silver layer 8.
  • an additional silvering of the silver layer can be carried out so as to improve the surface condition of the metallic layer used for the propagation of the waves. electromagnetic.
  • the waveguide obtained by the process which has just been described is represented in FIG. 1 g, it is constituted by two flanges 9 and 10, a metallic envelope, serving for the propagation of the electromagnetic wave, connects the two flanges 9 and 10 and is constituted by a layer of silver 8 having approximately 2 microns thick and by a layer of copper having approximately 5 microns thick surrounding the layer of silver to hold in place the two flanges.
  • the space between the two flanges 9 and 10 is filled with plastic material 12 which provides both the desired thermal insulation and the rigidity of the waveguide thus formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Waveguides (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

La présente invention concerne un guide d'onde pour émetteur-récepteur d'ondes électomagnétiques fonctionnant dans la gamme des hyperfréquences et le procédé de fabrication d'un tel guide d'onde.The present invention relates to a waveguide for an electromagnetic wave transceiver operating in the microwave range and to the method of manufacturing such a waveguide.

Un guide d'onde électromagnétique est constitué par un milieu diélectrique, en général de l'air, entouré par une enveloppe métallique de section généralement circulaire ou rectangulaire.An electromagnetic waveguide is formed by a dielectric medium, generally air, surrounded by a metal envelope of generally circular or rectangular section.

Les guides d'onde sont souvent utilisés dans le domaine des ondes électromagnétiques dites hyperfréquences pour assurer la liaison entre l'antenne d'émission ou l'antenne de réception et l'étage amplificateur de l'émetteur ou du récepteur. Les structures de ces guides d'ondes sont très diverses, certains guides d'ondes ont une enveloppe métallique en acier inoxydable ou en laiton et sont argentés intérieurement, d'autres ont une enveloppe métallique intérieure conductrice des ondes hyperfréquences, recouverte extérieurement par une matière isolante pour isoler thermiquement l'enveloppe métallique intérieure du milieu extérieur.Waveguides are often used in the field of so-called microwave electromagnetic waves to provide the link between the transmitting antenna or the receiving antenna and the amplifier stage of the transmitter or receiver. The structures of these waveguides are very diverse, some waveguides have a metallic envelope of stainless steel or brass and are silver inside, others have an internal metallic envelope conducting microwave waves, covered externally by a material. insulating to thermally insulate the interior metallic envelope from the exterior environment.

Le choix d'une structure dépend du problème de transmission qui est à résoudre. Dans le cas par exemple d'une réception d'ondes électromagnétiques provenant de satellites ou plus généralement de signaux provenant de l'espace, les guides d'ondes isolés thermiquement sont préférés à ceux qui n'ont pas cette caractéristique, car dans ce cas, le concepteur cherche à réaliser une isolation thermique la plus parfaite possible entre l'air ambiant et l'amplificateur à faible bruit qui reçoit les signaux de l'antenne par l'intermédiaire du guide d'onde de réception.The choice of a structure depends on the transmission problem which is to be solved. In the case for example of reception of electromagnetic waves coming from satellites or more generally of signals coming from space, the thermally isolated waveguides are preferred to those which do not have this characteristic, because in this case , the designer seeks to achieve the most perfect possible thermal insulation between the ambient air and the low noise amplifier which receives the signals from the antenna via the reception waveguide.

Un problème se pose cependant pour l'utilisation des guides d'ondes isolés thermiquement par une gaine isolante extérieure lorsque l'amplificateur à faible bruit du récepteur est un amplificateur paramétrique dont l'enceinte est maintenue à une température basse, de l'ordre de -20° C.A problem arises, however, for the use of waveguides thermally insulated by an external insulating sheath when the low noise amplifier of the receiver is a parametric amplifier whose enclosure is maintained at a low temperature, of the order of -20 ° C.

On constate en effet, dans ce cas, que les calories du milieu extérieur sont transportées à l'intérieur de l'enceinte par la partie métallique du guide intérieur à la gaine isolante. L'épaisseur relativement importante (2 mm) de la partie métallique contribue à une résistance thermique de celle-ci qui est faible. Dans ces conditions, des variations brutales de température du milieu extérieur provoquent quasi instantanément les mêmes variations de température à l'intérieur de l'enceinte et par voie de conséquence font apparaître à la sortie de l'amplificateur paramétrique un niveau de bruit correspondant important. Comme ces perturbations peuvent être difficilement absorbées par les groupes de régulation de température de l'enceinte qui ont des temps de réponse trop importants, on a cherché à augmenter la résistance thermique de la partie métallique interne du guide d'onde en ramenant l'épaisseur des parois à quelques dizaines de micron. Une structure connue de ces guides d'ondes est constituée par des tuyaux rigides en matière plastique, séparés en deux parties dans le sens de leur longueur et dont la partie interne est métallisée pour permettre la propagation des ondes électromagnétiques.In fact, in this case, it can be seen that the calories from the external medium are transported inside the enclosure by the metal part of the internal guide to the insulating sheath. The relatively large thickness (2 mm) of the metal part contributes to a low thermal resistance thereof. Under these conditions, sudden variations in the temperature of the external environment almost instantaneously cause the same temperature variations inside the enclosure and consequently cause the appearance of a significant corresponding noise level at the output of the parametric amplifier. As these disturbances can hardly be absorbed by the temperature regulation groups of the enclosure which have too long response times, we have sought to increase the thermal resistance of the internal metal part of the waveguide by reducing the thickness walls a few tens of microns. A known structure of these waveguides consists of rigid plastic pipes, separated into two parts in the direction of their length and whose internal part is metallized to allow the propagation of electromagnetic waves.

Malheureusement la propagation des ondes électromagnétiques dans ce type de guides d'ondes ne s'effectue pas correctement car les procédés de moulage, de métallisation et de collage pour assembler les deux parties du guide d'onde ne permettent pas d'obtenir une géométrie et un état de surface satisfaisants. En effet, le moulage de la matière plastique laisse des angles de dépouille qui font que la section du guide d'onde n'est pas constante sur toute sa longueur, la métallisation de la matière plastique est délicate et le collage des deux parties du guide provoque des discontinuités de surface.Unfortunately, the propagation of electromagnetic waves in this type of waveguides is not carried out correctly because the molding, metallization and bonding processes to assemble the two parts of the waveguide do not make it possible to obtain a geometry and a satisfactory surface finish. Indeed, the molding of the plastic leaves clearance angles which make that the section of the waveguide is not constant over its entire length, the metallization of the plastic is delicate and the bonding of the two parts of the guide causes surface discontinuities.

Le but de l'invention est de pallier les inconvénients précités à l'aide d'un guide d'onde électromagnétique ayant une enveloppe métallique recouverte d'une matière thermiquement isolante et dont l'épaisseur ne dépasse pas quelques dizaines de microns. Grâce à l'invention, la résistance thermique du guide d'onde ainsi obtenu est satisfaisante pour ne pas augmenter le niveau du bruit des amplificateurs paramétriques de réception. La géométrie du guide d'onde obtenu est également satisfaisante pour permettre une transmission correcte des ondes électromagnétiques.The object of the invention is to overcome the aforementioned drawbacks using an electromagnetic waveguide having a metal envelope covered with a thermally insulating material and whose thickness does not exceed a few tens of microns. Thanks to the invention, the thermal resistance of the waveguide thus obtained is satisfactory so as not to increase the noise level of the parametric reception amplifiers. The geometry of the waveguide obtained is also satisfactory to allow correct transmission of the electromagnetic waves.

Le document EP-A-18 885 décrit un procédé permettant de fabriquer en une seule fois, par électroformage, une cavité et les pièces intégrantes qu'elle contient. Dans ce procédé on dépose successivement sur un noyau, dont la surface externe reproduit la surface interne de la cavité à réaliser et dans lequel sont creusés des trous correspondant aux pièces intégrantes à réaliser dans la cavité, une sous-couche d'adhérence, une sous-couche conductrice en haute fréquence, et une couche de cuivre, le noyau étant alors dégagé de la cavité par simple extraction pour les éléments dont la position et la forme le permettent, par dissolution pour les autres éléments.Document EP-A-18 885 describes a process making it possible to fabricate a cavity and the integral parts it contains by electroforming at one time. In this process, an adhesion underlayment, an underlayment, is successively deposited on a core, the external surface of which reproduces the internal surface of the cavity to be produced and in which holes corresponding to the integral parts to be produced in the cavity are dug. -high frequency conductive layer, and a layer of copper, the core then being released from the cavity by simple extraction for the elements whose position and shape allow it, by dissolution for the other elements.

Le document FR-A-1 462 893 décrit un procédé de fabrication de pièces et d'ensembles à parois multiples et à canaux, notamment de guides d'ondes, consistant à former par galvanoplastie le dépôt de métaux sur les surfaces métalliques non isolées de mandrins, à envelopper la couche ainsi formée d'une matière plastique et à retirer mécaniquement les mandrins de la pièce finie.Document FR-A-1 462 893 describes a process for manufacturing parts and assemblies with multiple walls and channels, in particular waveguides, consisting in forming by electroplating the deposit of metals on the non-insulated metal surfaces of mandrels, to wrap the layer thus formed of a plastic material and to mechanically remove the mandrels from the finished part.

L'invention a pour objet un guide d'onde pour amplificateur paramétrique comportant une enveloppe métallique pour le guidage des ondes électromagnétiques constituée d'une couche d'argent (8) entourée d'une couche de cuivre (11), caractérisé en ce qu'il comprend deux brides (9, 10) reliées entre elles par l'enveloppe métallique, et qui sont maintenues en position par la couche de cuivre (11) dont l'épaisseur est de l'ordre de 40 microns, l'épaisseur de la couche d'argent (8) n'excédant pas 7 microns et en ce que la couche de cuivre (11) est entourée d'une couche d'enrobage (12) en matière plastique, thermiquement isolante placée dans l'espace situé entre les deux brides (9, 10).The subject of the invention is a waveguide for a parametric amplifier comprising a metal envelope for guiding electromagnetic waves consisting of a layer of silver (8) surrounded by a layer of copper (11), characterized in that '' It comprises two flanges (9, 10) connected to each other by the metal envelope, and which are held in position by the copper layer (11) whose thickness is of the order of 40 microns, the thickness of layer silver (8) not exceeding 7 microns and in that the copper layer (11) is surrounded by a coating layer (12) of plastic, thermally insulating material placed in the space between the two flanges (9, 10).

L'invention a également pour objet un procédé de fabrication d'un guide d'onde consistant à réaliser un noyau métallique (1) d'électroformage en alliage léger dont les dimensions extérieures correspondent sensiblement aux dimensions internes dudit guide d'onde à réaliser, à déposer par voie électrolytique une fine couche de laiton sur la surface dudit noyau, à déposer par voie électrolytique ladite couche d'argent (8) au-dessus de la couche de laiton (7) puis ladite couche de cuivre (11) au-dessus de la couche d'argent (8), à dissoudre le noyau d'électro-formage (1) et la couche de laiton (7) de manière à faire apparaître la couche d'argent (8), caractérisé en ce que, préalablement à la dissolution du noyau (1) et de la couche de laiton, on recouvre ladite couche de cuivre (11) de ladite couche d'enrobage (12).The subject of the invention is also a method of manufacturing a waveguide consisting in producing a metal core (1) of electroforming in light alloy whose external dimensions correspond substantially to the internal dimensions of said waveguide to be produced, electrolytically depositing a thin layer of brass on the surface of said core, electrolytically depositing said silver layer (8) above the brass layer (7) then said copper layer (11) above above the silver layer (8), dissolving the electro-forming core (1) and the brass layer (7) so as to reveal the silver layer (8), characterized in that, prior to the dissolution of the core (1) and of the brass layer, said copper layer (11) is covered with said coating layer (12).

D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la description faite au regard des dessins annexés donnés uniquement à titre d'exemple et dans lesquels les figures la à 1g illustrent les différentes étapes du procédé selon l'invention.Other characteristics and advantages of the invention will appear during the description made with regard to the appended drawings given solely by way of example and in which FIGS. 1a to 1g illustrate the different steps of the method according to the invention.

Le noyau d'électro-formage utilisé est représenté à la figure 1a, il se compose d'un corps allongé 1 en alliage léger d'aluminium du type AU4G renfermant 4 % de cuivre et 1 % de magnésium. Dans une première étape, le noyau 1 est usiné de manière à présenter une section constante rectangulaire ou circulaire correspondant à la forme du guide d'onde souhaité et dont les dimensions sont à peu près celles intérieures de l'enveloppe du guide d'onde à réaliser. Le noyau 1 est éventuellement percé d'un trou 2 le traversant sur toute sa longueur. Les extrémités du noyau sont formées par deux faces planes 3 et 4 perpendiculaires à l'axe longitudinal du noyau.The electro-forming core used is shown in FIG. 1a, it consists of an elongated body 1 made of light aluminum alloy of the AU4G type containing 4% copper and 1% magnesium. In a first step, the core 1 is machined so as to have a constant rectangular or circular section corresponding to the shape of the desired waveguide and whose dimensions are approximately those inside the envelope of the waveguide to achieve. The core 1 is optionally pierced with a hole 2 passing through it over its entire length. The ends of the core are formed by two plane faces 3 and 4 perpendicular to the longitudinal axis of the core.

Dans une deuxième étape représentée à la figure 1b des plaques en matière plastique sont appliquées sur les faces d'extrémités 3 et 4 du noyau 1 pour les préserver de l'attaque des agents chimiques utilisés dans la suite du procédé.In a second step shown in FIG. 1b, plastic plates are applied to the end faces 3 and 4 of the core 1 to protect them from attack by the chemical agents used in the rest of the process.

Dans une troisième étape représentée à la figure 1 une première couche 7 de laiton, d'environ 2 microns, est déposée par voie électrochimique sur le noyau 1. Cette opération est effectuée après avoir au préalable constitué sur le noyau 1 une couche d'adhérence de zinc, obtenue par exemple par immersion du noyau 1 dans un bain à 25°C, de soude OHNA à 450g par litre, d'oxyde de zinc ZnO à 50g par litre et de chlorure de fer à 1g par litre.In a third step represented in FIG. 1, a first layer 7 of brass, of about 2 microns, is deposited electrochemically on the core 1. This operation is carried out after having previously formed on the core 1 an adhesion layer zinc, obtained for example by immersion of the nucleus 1 in a bath at 25 ° C, OHNA soda at 450g per liter, zinc oxide ZnO at 50g per liter and iron chloride at 1g per liter.

Le dépôt du laiton pourra être obtenu en utilisant un électrolyte composé de cyanure de cuivre CN CU à 52g/litre, de cyanure de zync CN2Zn à 12g/litre, de cyanure de sodium CN Na à 85g/litre, de carbonate de sodium C03 Na2 à 30g/litre, de chlorure d'amoniac NH4 CI à 28g/litre et de cyanure libre à 5g/litre.The deposition of the brass can be obtained using an electrolyte composed of copper cyanide CN CU at 52 g / liter, cyanide of CN 2 Zn at 12 g / liter, sodium cyanide CN Na at 85 g / liter, sodium carbonate C0 3 Na 2 at 30g / liter, ammonia chloride NH 4 CI at 28g / liter and free cyanide at 5g / liter.

Après le dépôt de la couche de laiton, la quatrième étape du procédé représentée à la figure 1d consiste à déposer une couche d'argent 8 d'environ 7 microns d'épaisseur. Ce dépôt est effectué par voie électrolytique en utilisant un électrolyte à 20°C constitué par exemple par un sel d'argent Ag(CN)2K à 55g/litre, du cyanure de potassium CNK à 125g/litre, du carbonate de potassium à 20g/litre.After the deposition of the brass layer, the fourth step of the process represented in FIG. 1d consists in depositing a silver layer 8 of approximately 7 microns thick. This deposition is carried out electrolytically using an electrolyte at 20 ° C consisting for example of a silver salt Ag (CN) 2 K at 55 g / liter, potassium cyanide CNK at 125 g / liter, potassium carbonate at 20g / liter.

Après le dépôt de la couche d'argent, la cinquième etape du procédé représenté à la figure le consiste à positionner deux brides de laiton 9 et 10 sur la couche d'argent précédemment obtenue, chacune étant en contact avec les plaques de protection 5 et 6 et à les rendre solidaires de la couche d'argent par un dépôt électrolytique d'une couche de cuivre au-dessus de la couche d'argent, de 40 microns environ d'épaisseur.After the deposition of the silver layer, the fifth step of the process represented in FIG. 1c consists in positioning two brass flanges 9 and 10 on the previously obtained silver layer, each being in contact with the protective plates 5 and 6 and to make them integral with the silver layer by an electrolytic deposition of a copper layer above the silver layer, about 40 microns thick.

On pourra utiliser comme électrolyte pour effectuer le dépôt du cuivre une solution composée de sulfate de cuivre S04 Cu à 100g/litre, d'acide sulfirique H2 S04 à 180g/litre, et de chlore à 0,05g/litre.A solution composed of copper sulphate SO 4 Cu at 100 g / liter, sulphiric acid H 2 S0 4 at 180 g / liter, and chlorine at 0.05 g / liter may be used as the electrolyte for depositing the copper.

A la sixième étape, représentée à la figure 1f, les plaques 5 et 6 de protection sont retirées et l'espace entre les brides 9 et 10 est rempli par une matière plastique thermiquement isolante 12 constituée, par exemple, d'une résine en polyuréthane dont l'épaisseur doit être déterminée, suivant les applications, en fonction de l'isolement thermique recherché.In the sixth step, shown in FIG. 1f, the protective plates 5 and 6 are removed and the space between the flanges 9 and 10 is filled with a thermally insulating plastic material 12 consisting, for example, of a polyurethane resin the thickness of which must be determined, depending on the applications, as a function of the thermal insulation sought.

Enfin, lorsque la polymérisation de la résine est terminée, l'étape finale du procédé, représentée à la figure 1g, consiste à dissoudre le noyau 1 à l'aide d'une première solution constituée, par exemple, par de la soude caustique OH NA à 100g/litre, à la température de 70° C puis à éliminer la couche de laiton 7 à l'aide d'une solution, composée d'acide sulfurique H2 S04 à 75% et d'acide nitrique HN03 à 25 % pour faire apparaître la couche d'argent 8. On pourra à la fin de cette étape procéder à une argenture supplémentaire de la couche d'argent de façon à améliorer l'état de surface de la couche métallique servant à la propagation des ondes électromagnétiques.Finally, when the polymerization of the resin is complete, the final step of the process, represented in FIG. 1g, consists in dissolving the core 1 using a first solution constituted, for example, by caustic soda OH NA at 100g / liter, at a temperature of 70 ° C then to remove the brass layer 7 using a solution, composed of sulfuric acid H 2 S0 4 at 75% and nitric acid HN0 3 at 25% to reveal the silver layer 8. At the end of this step, an additional silvering of the silver layer can be carried out so as to improve the surface condition of the metallic layer used for the propagation of the waves. electromagnetic.

Le guide d'onde obtenu par le procédé qui vient d'être décrit est représenté à la figure 1 g, il est constitué par deux brides 9 et 10, une enveloppe métallique, servant à la propagation de l'onde électromagnetique, relie les deux brides 9 et 10 et est constituée par une couche d'argent 8 ayant à peu près 2 microns d'épaisseur et par une couche de cuivre ayant à peu près 5 microns d'épaisseur entourant la couche d'argent pour maintenir en place les deux brides. L'espace entre les deux brides 9 et 10 est rempli par la matière plastique 12 qui assure à la fois l'isolation thermique recherchée et la rigidité du guide d'onde ainsi constitué.The waveguide obtained by the process which has just been described is represented in FIG. 1 g, it is constituted by two flanges 9 and 10, a metallic envelope, serving for the propagation of the electromagnetic wave, connects the two flanges 9 and 10 and is constituted by a layer of silver 8 having approximately 2 microns thick and by a layer of copper having approximately 5 microns thick surrounding the layer of silver to hold in place the two flanges. The space between the two flanges 9 and 10 is filled with plastic material 12 which provides both the desired thermal insulation and the rigidity of the waveguide thus formed.

Bien que les principes de la présente invention aient été décrits ci-dessus en relation avec un exemple particulier de réalisation, il faut comprendre que la description n'a été faite qu'à titre d'exemple et ne limite pas la portée de l'invention.Although the principles of the present invention have been described above in connection with a particular embodiment, it should be understood that the description has been made by way of example and does not limit the scope of the invention.

Claims (11)

1. A waveguide for a transmitter-receiver of magnetic waves comprising a metallic envelope for guiding the electromagnetic waves, constituted by a silver layer (8) surrounded by a copper layer (11), characterized in that it comprises two flanges (9, 10) which are interconnected by the metallic envelope and which are maintained in position by the copper layer (11), the thickness of which is about 40 µm, whereas the thickness of the silver layer (8) does not exceed 7 µm, and that the copper layer (11) is surrounded by a sheath layer (12) made of plastic and thermally insulating material located in the interspace between the two flanges (9, 10).
2. A method for manufacturing a waveguide according to claim 1, consisting in realising a metallic light alloy core by electroforming, the outer dimensions of which correspond substantially to the inner dimensions of said waveguide to be manufactured, to deposit by electrolytical means a thin brass layer on the surface of that core, to deposit by electrolytical means said silver layer (8) onto the brass layer (7), then said copper layer (11) onto the silver layer (8), to dissolve the electroformed core (1) and the brass layer (7) such that the silver layer (8) appears, characterized in that prior to dissolving the core (1) and the brass layer, said copper layer (11) is covered by said sheath layer (12).
3. A method according to claim 2, characterized in that the electroformed core (1) is constituted by an elongated body of light aluminium alloy.
4. A method according to claim 3, characterized in that the light aluminium alloy includes 4 % of copper and 1 % of magnesium.
5. A method according to any one of claims 2 to 4, characterized in that the brass layer (7) is deposited after having first deposited an adhesion layer made of zinc.
6. A method according to claim 5, characterized in that the zinc layer is deposited chemically by dipping the core into a bath composed of 450 g/I of caustic soda, of 50 g/l of zinc oxide, of 1 g/I of iron chloride.
7. A method according to one of claims 2 to 6, characterized in that the brass is deposited by using an electrolyte composed of 52 g/I of copper cyanide, 12 g/I of zinc cyanide, 85 g/l of sodium cyanide, 30 g/I of sodium carbonate, 28 g/I ammonia chloride and 5 g/I free cyanide.
8. A method according to one of claims 2 to 7, characterized in that the silver layer (8) is deposited by using an electrolyte constituted by a silver salt, potassium cyanide and potassium carbonate.
9. A method according to one of claims 2 to 8, characterized in that the copper layer (11) is deposited by using an electrolyte composed of 100 g/I copper sulfate, 180 g/i sulfuric acid and 0,05 g/I chlorine.
10. A method according to one of claims 2 to 9, characterized in that the electroformed core (1) is dissolved by means of a solution constituted by 100 g/I of caustic soda, and at the temperature of 70° C.
11. A method according to one of claims 2 to 10, characterized in that the brass layer (7) is dissolved by means of a solution composed of 75 % sulfuric acid and 25 % nitric acid.
EP83400635A 1982-04-06 1983-03-25 Manufacturing method of a wave-guide for an emitting-receiving apparatus of electromagnetic waves, and wave guide manufactured by this method Expired EP0091352B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8205968 1982-04-06
FR8205968A FR2524718B1 (en) 1982-04-06 1982-04-06 METHOD FOR MANUFACTURING A WAVEGUIDE FOR ELECTRO-MAGNETIC WAVE TRANSCEIVER AND WAVEGUIDE OBTAINED BY THIS METHOD

Publications (2)

Publication Number Publication Date
EP0091352A1 EP0091352A1 (en) 1983-10-12
EP0091352B1 true EP0091352B1 (en) 1988-11-02

Family

ID=9272803

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83400635A Expired EP0091352B1 (en) 1982-04-06 1983-03-25 Manufacturing method of a wave-guide for an emitting-receiving apparatus of electromagnetic waves, and wave guide manufactured by this method

Country Status (3)

Country Link
EP (1) EP0091352B1 (en)
DE (1) DE3378394D1 (en)
FR (1) FR2524718B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019137972A1 (en) 2018-01-12 2019-07-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for producing a component having a cavity
DE102018209157A1 (en) * 2018-06-08 2019-12-12 Siemens Aktiengesellschaft Stranded conductor, coil device and manufacturing process

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2546333B1 (en) * 1983-05-20 1986-01-10 Thomson Csf METHOD FOR MANUFACTURING A COAXIAL LINE WITH HIGH THERMAL RESISTANCE AND COAXIAL LINE OBTAINED BY THIS PROCESS

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2146832B1 (en) 1971-09-18 1972-06-29 Gruenzweig & Hartmann Ag Process for the production of components for microwave technology
DE2165553A1 (en) 1971-12-30 1973-07-12 Licentia Gmbh PROCESS FOR PRODUCING DIELECTRICALLY ASSIGNED HOLLOW CONDUCTORS FOR THE H01 SHAFT

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6517040A (en) * 1965-12-28 1967-06-29
FR2455801A1 (en) * 1979-05-02 1980-11-28 Thomson Csf PROCESS FOR MANUFACTURING MICROWAVE CAVITES, CORES USED IN THIS PROCESS AND CAVITES OBTAINED BY THIS PROCESS

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2146832B1 (en) 1971-09-18 1972-06-29 Gruenzweig & Hartmann Ag Process for the production of components for microwave technology
DE2165553A1 (en) 1971-12-30 1973-07-12 Licentia Gmbh PROCESS FOR PRODUCING DIELECTRICALLY ASSIGNED HOLLOW CONDUCTORS FOR THE H01 SHAFT

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
W. DUGAN: "Miniature Electroformed Waveguide With Flanges Attached", PLATING, vol. 61, no. 11, November 1974 (1974-11-01), pages 1019 - 1021, XP001365818

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019137972A1 (en) 2018-01-12 2019-07-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for producing a component having a cavity
DE102018209157A1 (en) * 2018-06-08 2019-12-12 Siemens Aktiengesellschaft Stranded conductor, coil device and manufacturing process

Also Published As

Publication number Publication date
FR2524718B1 (en) 1985-08-30
FR2524718A1 (en) 1983-10-07
EP0091352A1 (en) 1983-10-12
DE3378394D1 (en) 1988-12-08

Similar Documents

Publication Publication Date Title
CN109196715B (en) Waveguide comprising thick conductive layer
JP2574625B2 (en) Manufacturing method of microwave waveguide
WO2017149423A1 (en) Method for the additive manufacturing of a waveguide and waveguide devices produced according to said method
US20160254583A1 (en) Hollow core coaxial cables and methods of making the same
KR100810971B1 (en) Method for manufacturing rf device and rf device manufactured by the method
US20120033931A1 (en) Waveguide
EP0091352B1 (en) Manufacturing method of a wave-guide for an emitting-receiving apparatus of electromagnetic waves, and wave guide manufactured by this method
EP0388290A1 (en) Optical waveguides formed from multiple layers
US3008104A (en) High temperature flexible hollow tube waveguide
EP0129453B1 (en) Method to manufacture a high thermal resistance coaxial line
US7122737B2 (en) Semi-rigid cable
US4495253A (en) Solderable plated plastic components and process for plating _
US20060251370A1 (en) Optical fiber coated with metal
US3940718A (en) Flexible wave guide and method for making same
US7063779B2 (en) Method for manufacturing metal-coated optical fiber
FR3095082A1 (en) Oval section waveguide device and method of manufacturing said device
KR100960005B1 (en) Plating Method of RF Devices and RF Devices Produced by the Method
EP0145785A1 (en) Solderable plated plastic components.
EP3939115B1 (en) Method for manufacturing a waveguide device by additive manufacturing and electrodeposition, and semi-finished product
EP0018885A1 (en) Manufacturing process for microwave cavities, cores utilised in this process and cavities obtained by this process
JPH037406A (en) Waveguide antenna
Soni DEVELOPMENT OF MICROWAVE PYRAMIDAL HORN ANTENNA BY ELECTROFORMING METHOD
FR3095080A1 (en) Passive radio frequency device comprising axial fixing openings
KR100680082B1 (en) Corrosion resistant waveguide system and method of realizing the same
CA1090893A (en) High-pass filter for millimeter waves

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE GB IT NL

17P Request for examination filed

Effective date: 19840301

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL THOMSON FAISCEAUX HERTZIENS

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT NL

REF Corresponds to:

Ref document number: 3378394

Country of ref document: DE

Date of ref document: 19881208

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: TELEFUNKEN SYSTEMTECHNIK GMBH

Effective date: 19890727

NLR1 Nl: opposition has been filed with the epo

Opponent name: TELEFUNKEN SYSTEMTECHNIK GMBH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900222

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900228

Year of fee payment: 8

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900331

Year of fee payment: 8

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19901008

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state
NLR2 Nl: decision of opposition