EP3455565A1 - Insert for a thermostatic expansion valve, thermostatic expansion valve and method for assembling a thermostatic expansion valve - Google Patents

Insert for a thermostatic expansion valve, thermostatic expansion valve and method for assembling a thermostatic expansion valve

Info

Publication number
EP3455565A1
EP3455565A1 EP17722785.7A EP17722785A EP3455565A1 EP 3455565 A1 EP3455565 A1 EP 3455565A1 EP 17722785 A EP17722785 A EP 17722785A EP 3455565 A1 EP3455565 A1 EP 3455565A1
Authority
EP
European Patent Office
Prior art keywords
valve
insert
expansion valve
thermostatic expansion
thermostatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP17722785.7A
Other languages
German (de)
French (fr)
Inventor
Ole Mortensen
Erik Thomas Bonde
Jens Erik Rasmussen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Danfoss AS
Original Assignee
Danfoss AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Danfoss AS filed Critical Danfoss AS
Publication of EP3455565A1 publication Critical patent/EP3455565A1/en
Ceased legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/36Valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/52Means for additional adjustment of the rate of flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/02Construction of housing; Use of materials therefor of lift valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0603Multiple-way valves
    • F16K31/0624Lift valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0655Lift valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0675Electromagnet aspects, e.g. electric supply therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/126Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a diaphragm, bellows, or the like
    • F16K31/1262Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a diaphragm, bellows, or the like one side of the diaphragm being spring loaded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/325Expansion valves having two or more valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/33Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
    • F25B41/335Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant via diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0683Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas

Definitions

  • thermostatic expansion valve Insert for a thermostatic expansion valve, thermostatic expansion valve and method for assembling a thermostatic expansion valve
  • the invention relates to an insert for a thermostatic expansion valve comprising an expansion valve element and an expansion valve seat, wherein the expansion valve element is held inside the insert by a biasing member, wherein the insert is structured and arranged to be inserted into a valve housing.
  • the invention further relates to a thermostatic expansion valve comprising an insert of the above kind as well as to a method for assembling a thermostatic expansion valve.
  • Thermostatic expansion valves regulate the flow of a refrigerant in a cooling or heating system, for example air conditioning systems.
  • Such thermostatic expansion valves often comprise a diaphragm separating pressure chambers.
  • One of the pressure chambers is, for example, connected to a temperature sensing bulb via a capillary tube, see e.g. JPS 6 241 481 A, or for example a rod, see e.g. US 6 375 085 B1 .
  • the temperature of the refrigerant coming from the evaporator can be probed to automatically readjust the position of the expansion valve element relative to the expansion valve seat to increase or decrease the flow of refrigerant towards the evaporator.
  • thermostatic expansion valve element and a corresponding biasing member as well as the solenoid valve and intermediately arranged main and pilot valve elements need to be inserted and connected to the valve housing one after another.
  • the task of the present invention is therefore to provide an insert for a thermostatic expansion valve that allows a simplified assembly.
  • the insert further comprises a control valve, wherein the control valve is located in the same main flow path through the insert as the expansion valve seat.
  • the assembly is simplified since both the control valve as well as the expansion valve element and the expansion valve seat are arranged in the same insert to be installed in a valve housing.
  • the insert can then be inserted and connected to the valve housing with a reduced number of assembly steps.
  • the thermal expansion valve has an improved functionality over simple inserts as shown in Fig. 1 a and 1 b.
  • the insert now also includes a control valve which allows to directly regulate the flow of refrigerant through the cooling or heating system.
  • the control valve comprises a solenoid valve.
  • the solenoid valve may either be a main valve or a part of a piloted valve.
  • the control valve further comprises a main valve, wherein the solenoid valve is a pilot valve controlling the opening and closing of the main valve.
  • the pilot valve element and the main valve element are arranged adjacent to one another.
  • the pilot valve seat may be arranged in the main valve element.
  • the control valve is located upstream of the expansion valve seat in the main flow path. The control valve ensures that no liquid passes the expansion valve, for example during a compressor standstill, by closing the control valve. In this case the control valve will usually be located between the condenser and the expansion valve when the insert is installed into the thermostatic expansion valve used in a refrigeration system.
  • the insert comprises an insert inlet from which the main flow path leads to the control valve. It is furthermore preferred if the main flow path continues from the control valve to the expansion valve seat, wherein the expansion valve seat also forms the insert outlet.
  • the expansion valve element comprises an engagement surface that is arranged to be engaged by an actuator that is external to the insert.
  • the engagement surface can, for example, be a flat surface to be engaged by a pin or a stem of an actuator of the expansion valve.
  • thermostatic expansion valve comprising an insert according to any of the preceding embodiments, as well as a valve housing, wherein the valve housing comprises a valve inlet and a valve outlet.
  • the main flow path through the thermostatic expansion valve can start from the valve inlet lead to the insert inlet, through the control valve, to the expansion valve seat and the insert outlet and then towards the valve outlet.
  • thermostatic expansion valve further comprises an expansion valve actuator to engage the expansion valve element.
  • the expansion valve actuator is preferably connected to the valve housing.
  • the expansion valve actuator comprises a stem to engage the engagement surface of the expansion valve element.
  • the stem is then brought into engagement with the engagement surface of the expansion valve element and then the insert is fixed to the valve housing.
  • the actuator comprises two pressure chambers separated by a diaphragm, wherein a first pressure chamber is connected to a pressure port of the valve housing and a second pressure chamber is connected to a temperature sensing bulb. This way, one may adjust the pressure in the first pressure chamber to control the opening behavior of the expansion valve beyond a simple control via the temperature sensing bulb which responds to the state of the refrigerant in the system, preferably after the refrigerant has exited the evaporator.
  • valve housing comprising a valve inlet, a valve outlet as well as an expansion valve actuator
  • Fig. 1 A shows a thermostatic expansion valve according to the state of the art
  • Fig. 1 B shows an insert as used in the thermostatic expansion valve according to Fig. 1 A
  • Fig. 2 shows an insert according to the invention with closed main and pilot valves
  • Fig. 3 shows a thermostatic expansion valve comprising an insert according to Fig. 2 with a closed main and pilot valve
  • Fig. 4 shows a detail of a thermostatic expansion valve according to
  • Fig. 5 + 6 show the thermostatic expansion valve according to Fig. 3 and
  • Fig. 1 A and 1 B show for comparison the state of the art of an insert 101 as well as a thermostatic expansion valve 102 comprising such an insert 101 .
  • the insert 101 comprises an expansion valve element 103 as well as an expansion valve seat 104.
  • the expansion valve element 103 is biased by a biasing member 105 against the expansion valve seat 104, in this case a spring.
  • the insert 101 furthermore comprises an insert inlet 106 as well as an insert outlet 107.
  • the expansion valve seat 104 is in this embodiment arranged at the insert outlet 107.
  • a strainer 131 is arranged at the insert inlet 106 .
  • the thermostatic expansion valve 102 furthermore comprises a valve housing 108 in which a valve inlet 109 as well as a valve outlet 1 10 is arranged.
  • the thermostatic expansion valve 102 also comprises an actuator 1 1 1 to actuate the expansion valve element 103.
  • the insert 101 furthermore comprises a strainer 131 arranged near the insert inlet 106.
  • Fig. 2 to 6 show the same preferred embodiment of the invention, where Fig. 2 to 4 show the insert and the expansion valve comprising the insert with a closed control valve while Fig. 5 and 6 show the same embodiment with an open control valve. Corresponding features will be denoted with the same reference signs.
  • the insert 1 to be inserted into a thermostatic expansion valve 2 comprises an expansion valve element 3 as well as an expansion valve seat 4.
  • the expansion valve element 3 is biased against the expansion valve seat 4 by a biasing member 5.
  • the insert 1 further comprises an insert inlet 6 as well as an insert outlet 7.
  • the insert outlet 7 here is arranged in the same opening in which the expansion valve seat 4 is arranged.
  • a strainer 31 is arranged at the insert inlet 6 .
  • a thermostatic expansion valve 2 comprising a valve housing 8.
  • the valve housing 8 comprises a valve inlet 9 as well as a valve outlet 10. Fluid coming from the valve inlet 9 flows to the insert inlet 6 towards a control valve 12.
  • the control valve 12 comprises a solenoid valvel 3, which in this case acts as a pilot valve.
  • the solenoid valvel 3 comprises a coil 14, an anchor core 15 as well as an armature 1 6.
  • the armature 1 6 is connected to a pilot valve element 17 which in all Fig. 2 to 6 engages a pilot valve seat 18.
  • the control valve 12 furthermore comprises a main valve, comprising a main valve element 19 as well as a main valve seat 20.
  • the pilot valve seat 18 is arranged on one end of a channel leading through the main valve element 19.
  • a servo piston 32 is arranged coaxially around the main valve element 19.
  • the fluid can then flow through the expansion valve towards the valve outlet 10 and, for example, towards an external evaporator.
  • the thermostatic expansion valve 2 furthermore comprises an actuator 1 1 , which in this case takes the form of a capsule.
  • the actuator 1 1 comprises a diaphragm 22 which is at its radial outer ends fixed to the valve housing 8.
  • the diaphragm 22 separates a first pressure chamber 23 from a second pressure chamber 24.
  • the first pressure chamber 23 is connected to a pressure port 25 which allows to change the pressure in the first pressure chamber 23 to adjust the opening behavior of the thermostatic expansion valve 2.
  • the second pressure chamber 24 is connected to a temperature sensing bulb 26.
  • the temperature sensing bulb 26 can be connected, for example, to an outlet of an external evaporator to readjust the opening degree of the thermostatic expansion valve 2 according to the state of the refrigerant exiting the evaporator.
  • the actuator 1 1 furthermore comprises a spring 27 which acts as a biasing member inside the first pressure chamber 23.
  • the diaphragm 22 is connected both to the spring 27 as well as to a stem 28.
  • the stem 28 engages the expansion valve element 3 at an engagement surface 29.
  • the insert 1 When the insert 1 is introduced into the valve housing 8 the expansion valve element 3 is brought into contact with the actuator 1 1 , in particular at the end of the stem 28. At the same time the insert 1 is fixed to the valve housing 8 by a connection geometry 30, for example a screw connection.
  • the insert 1 according to the invention consequently allows to assemble a thermostatic expansion valve 2 in a simplified manner while still providing the functionality of a thermostatic expansion valve as well as of a control valve 12 which provides a direct control of the flow through the thermostatic expansion valve 2.
  • the invention also provides a simplified method of assembly of a thermostatic expansion valve.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Electromagnetism (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

The invention relates to an insert (1) for a thermostatic expansion valve as a thermostatic expansion valve (2) comprising such an insert and to a method of assembling such a thermostatic expansion valve (2). The insert (1) comprises an expansion valve element (3) and an expansion valve seat (4). The expansion valve element (3) is held inside the insert (1) by a biasing member (5), wherein the insert (1) is structured and arranged to be inserted into a valve housing (8). The task of the invention is to provide an insert for a thermostatic expansion valve that allows a simple assembly of the valve and also provides an improved functionality. The task is solved in that the insert (1) further comprises a control valve (12), wherein the control valve (12) is located in the same flow path through the insert (1) as the expansion valve seat (4).

Description

Insert for a thermostatic expansion valve, thermostatic expansion valve and method for assembling a thermostatic expansion valve
The invention relates to an insert for a thermostatic expansion valve comprising an expansion valve element and an expansion valve seat, wherein the expansion valve element is held inside the insert by a biasing member, wherein the insert is structured and arranged to be inserted into a valve housing. The invention further relates to a thermostatic expansion valve comprising an insert of the above kind as well as to a method for assembling a thermostatic expansion valve.
Thermostatic expansion valves regulate the flow of a refrigerant in a cooling or heating system, for example air conditioning systems. Such thermostatic expansion valves often comprise a diaphragm separating pressure chambers. One of the pressure chambers is, for example, connected to a temperature sensing bulb via a capillary tube, see e.g. JPS 6 241 481 A, or for example a rod, see e.g. US 6 375 085 B1 . In both cases the temperature of the refrigerant coming from the evaporator can be probed to automatically readjust the position of the expansion valve element relative to the expansion valve seat to increase or decrease the flow of refrigerant towards the evaporator. To simplify the assembly it is furthermore known to combine the expansion valve element and the expansion valve seat in an insert that can be connected to the valve housing. An actuator connected to the diaphragm can then engage the expansion valve element arranged in the insert. Such a system is, for example, shown for comparison in Fig. 1 A and 1 B. However, the functionality of such a thermostatic expansion valve is limited since there is no direct control of the refrigerant flow possible without an additional control valve arranged in the cooling or heating system. Consequently, it is known to use an additional solenoid valve to influence the pressure in the pressure chambers of the capsule as, for example known, from JPS 6 241 481 A. Alternatively, the additional solenoid valve can be used in a flow control valve placed upstream of the thermal expansion valve seat as known, for example, from US 6 375 085 B1 .
Both solutions are however relatively complicated to assemble since the thermostatic expansion valve element and a corresponding biasing member, as well as the solenoid valve and intermediately arranged main and pilot valve elements need to be inserted and connected to the valve housing one after another. The task of the present invention is therefore to provide an insert for a thermostatic expansion valve that allows a simplified assembly.
The above task is solved in an insert of the kind mentioned in the outset in that the insert further comprises a control valve, wherein the control valve is located in the same main flow path through the insert as the expansion valve seat.
With the above solution the assembly is simplified since both the control valve as well as the expansion valve element and the expansion valve seat are arranged in the same insert to be installed in a valve housing. The insert can then be inserted and connected to the valve housing with a reduced number of assembly steps. At the same time the thermal expansion valve has an improved functionality over simple inserts as shown in Fig. 1 a and 1 b. In particular, the insert now also includes a control valve which allows to directly regulate the flow of refrigerant through the cooling or heating system.
It is preferred if the control valve comprises a solenoid valve. The solenoid valve may either be a main valve or a part of a piloted valve. Preferably, the control valve further comprises a main valve, wherein the solenoid valve is a pilot valve controlling the opening and closing of the main valve. Preferably, the pilot valve element and the main valve element are arranged adjacent to one another. In this case, the pilot valve seat may be arranged in the main valve element. It is preferred if the control valve is located upstream of the expansion valve seat in the main flow path. The control valve ensures that no liquid passes the expansion valve, for example during a compressor standstill, by closing the control valve. In this case the control valve will usually be located between the condenser and the expansion valve when the insert is installed into the thermostatic expansion valve used in a refrigeration system.
It is preferred if the insert comprises an insert inlet from which the main flow path leads to the control valve. It is furthermore preferred if the main flow path continues from the control valve to the expansion valve seat, wherein the expansion valve seat also forms the insert outlet.
It is preferred if the expansion valve element comprises an engagement surface that is arranged to be engaged by an actuator that is external to the insert. The engagement surface can, for example, be a flat surface to be engaged by a pin or a stem of an actuator of the expansion valve. When the insert is introduced and connected to an expansion valve housing the engagement surface will then be brought into engagement with an actuator arranged in the valve housing of the thermostatic expansion valve.
The above task is also solved by a thermostatic expansion valve comprising an insert according to any of the preceding embodiments, as well as a valve housing, wherein the valve housing comprises a valve inlet and a valve outlet. In this case the main flow path through the thermostatic expansion valve can start from the valve inlet lead to the insert inlet, through the control valve, to the expansion valve seat and the insert outlet and then towards the valve outlet.
It is preferred if the thermostatic expansion valve further comprises an expansion valve actuator to engage the expansion valve element. The expansion valve actuator is preferably connected to the valve housing.
In a preferred embodiment the expansion valve actuator comprises a stem to engage the engagement surface of the expansion valve element. When the insert is introduced into the valve housing the stem is then brought into engagement with the engagement surface of the expansion valve element and then the insert is fixed to the valve housing.
It is preferred if the actuator comprises two pressure chambers separated by a diaphragm, wherein a first pressure chamber is connected to a pressure port of the valve housing and a second pressure chamber is connected to a temperature sensing bulb. This way, one may adjust the pressure in the first pressure chamber to control the opening behavior of the expansion valve beyond a simple control via the temperature sensing bulb which responds to the state of the refrigerant in the system, preferably after the refrigerant has exited the evaporator.
The above task is also solved by a method for assembling a thermostatic expansion valve comprising the following steps:
- Providing a valve housing comprising a valve inlet, a valve outlet as well as an expansion valve actuator,
- Providing an insert according to any of claims 1 to 7, - Inserting the insert into a predetermined opening of the valve housing, such that the expansion valve actuator comes into engagement with the expansion valve element in the insert,
- Fixing the insert to the valve housing.
With this solution the assembly of a thermostatic expansion valve comprising a control valve is particularly simple. It is no longer necessary to introduce the individual elements of the expansion valve and the control valve one after another into the valve housing or to install the control valve and the expansion valve separately. On the contrary, it is now possible to use a single connection step to connect the insert comprising the expansion valve element and the expansion valve seat as well as the control valve to the valve housing.
Preferred embodiments of the invention will now be described with reference to the Figures, wherein:
Fig. 1 A shows a thermostatic expansion valve according to the state of the art,
Fig. 1 B shows an insert as used in the thermostatic expansion valve according to Fig. 1 A,
Fig. 2 shows an insert according to the invention with closed main and pilot valves,
Fig. 3 shows a thermostatic expansion valve comprising an insert according to Fig. 2 with a closed main and pilot valve, Fig. 4 shows a detail of a thermostatic expansion valve according to
Fig. 3,
Fig. 5 + 6 show the thermostatic expansion valve according to Fig. 3 and
4 with open main and pilot valves.
Fig. 1 A and 1 B show for comparison the state of the art of an insert 101 as well as a thermostatic expansion valve 102 comprising such an insert 101 . The insert 101 comprises an expansion valve element 103 as well as an expansion valve seat 104. The expansion valve element 103 is biased by a biasing member 105 against the expansion valve seat 104, in this case a spring. The insert 101 furthermore comprises an insert inlet 106 as well as an insert outlet 107. The expansion valve seat 104 is in this embodiment arranged at the insert outlet 107. At the insert inlet 106 a strainer 131 is arranged.
The thermostatic expansion valve 102 furthermore comprises a valve housing 108 in which a valve inlet 109 as well as a valve outlet 1 10 is arranged.
The thermostatic expansion valve 102 also comprises an actuator 1 1 1 to actuate the expansion valve element 103. The insert 101 furthermore comprises a strainer 131 arranged near the insert inlet 106. Fig. 2 to 6 show the same preferred embodiment of the invention, where Fig. 2 to 4 show the insert and the expansion valve comprising the insert with a closed control valve while Fig. 5 and 6 show the same embodiment with an open control valve. Corresponding features will be denoted with the same reference signs. According to the invention the insert 1 to be inserted into a thermostatic expansion valve 2 comprises an expansion valve element 3 as well as an expansion valve seat 4. The expansion valve element 3 is biased against the expansion valve seat 4 by a biasing member 5.
The insert 1 further comprises an insert inlet 6 as well as an insert outlet 7. The insert outlet 7 here is arranged in the same opening in which the expansion valve seat 4 is arranged. At the insert inlet 6 a strainer 31 is arranged.
In Fig. 3 to 5 the insert 1 is arranged in a thermostatic expansion valve 2 comprising a valve housing 8. The valve housing 8 comprises a valve inlet 9 as well as a valve outlet 10. Fluid coming from the valve inlet 9 flows to the insert inlet 6 towards a control valve 12. The control valve 12 comprises a solenoid valvel 3, which in this case acts as a pilot valve. The solenoid valvel 3 comprises a coil 14, an anchor core 15 as well as an armature 1 6. The armature 1 6 is connected to a pilot valve element 17 which in all Fig. 2 to 6 engages a pilot valve seat 18. The control valve 12 furthermore comprises a main valve, comprising a main valve element 19 as well as a main valve seat 20. The pilot valve seat 18 is arranged on one end of a channel leading through the main valve element 19. A servo piston 32 is arranged coaxially around the main valve element 19.
When the solenoid valve 13 is activated the armature 1 6 as well as the pilot valve element 17 will be moved downwards and away from the main valve element 19. Thereby a fluid path through the main valve element 19 is opened. Furthermore, a pressure difference is created across the top and bottom side of the servo piston 32. This results in a pressure force that moves the servo piston 32 towards the solenoid valve 13 until the servo piston 32 abuts the main valve element 19 and pulls the main valve element 19 also towards the solenoid valve 13. Thereby, the main valve of the control valve 12 is opened. This situation can be seen in Fig. 5 and 6.
If the expansion valve element 3 does not engage the expansion valve seat 4 the fluid can then flow through the expansion valve towards the valve outlet 10 and, for example, towards an external evaporator.
The thermostatic expansion valve 2 furthermore comprises an actuator 1 1 , which in this case takes the form of a capsule. The actuator 1 1 comprises a diaphragm 22 which is at its radial outer ends fixed to the valve housing 8. The diaphragm 22 separates a first pressure chamber 23 from a second pressure chamber 24. The first pressure chamber 23 is connected to a pressure port 25 which allows to change the pressure in the first pressure chamber 23 to adjust the opening behavior of the thermostatic expansion valve 2.
The second pressure chamber 24 is connected to a temperature sensing bulb 26. The temperature sensing bulb 26 can be connected, for example, to an outlet of an external evaporator to readjust the opening degree of the thermostatic expansion valve 2 according to the state of the refrigerant exiting the evaporator.
The actuator 1 1 furthermore comprises a spring 27 which acts as a biasing member inside the first pressure chamber 23. The diaphragm 22 is connected both to the spring 27 as well as to a stem 28. The stem 28 engages the expansion valve element 3 at an engagement surface 29.
When the insert 1 is introduced into the valve housing 8 the expansion valve element 3 is brought into contact with the actuator 1 1 , in particular at the end of the stem 28. At the same time the insert 1 is fixed to the valve housing 8 by a connection geometry 30, for example a screw connection. The insert 1 according to the invention consequently allows to assemble a thermostatic expansion valve 2 in a simplified manner while still providing the functionality of a thermostatic expansion valve as well as of a control valve 12 which provides a direct control of the flow through the thermostatic expansion valve 2. Moreover, the invention also provides a simplified method of assembly of a thermostatic expansion valve.

Claims

Claims
Insert (1 ) for a thermostatic expansion valve (2) comprising an expansion valve element (3) and an expansion valve seat (4), wherein the expansion valve element (3) is held inside the insert (1 ) by a biasing member (5), wherein the insert (1 ) is structured and arranged to be inserted into a valve housing, characterized in that the insert (1 ) further comprises a control valve (12), wherein the control valve (12) is located in the same main flow path through the insert (1 ) as the expansion valve seat (4).
The insert according to claim 1 , wherein the control valve (12) comprises a solenoid valve (13).
The insert according to claim 2, characterized in that the control valve (12) further comprises a main valve, wherein the solenoid valve (13) is a pilot valve controlling the opening and closing of the main valve.
The insert according to any of claims 1 to 3, characterized in that the control valve (12) is located upstream of the expansion valve seat (4) in the main flow path.
The insert according to claim 4, characterized in that the insert (1 ) comprises an insert inlet (6) from which the main flow path leads to the control valve (12).
The insert according to claim 5, characterized in that the main flow path continues from the control valve (12) to the expansion valve seat (4), wherein the expansion valve seat (4) also forms an insert outlet (7). -2 -
7. The insert according to any of claims 1 to 6, characterized in that the expansion valve element 3 comprises an engagement surface (29) that is arranged to be engaged by an actuator (1 1 ) that is external to the insert (1 ).
8. Thermostatic expansion valve (2) comprising an insert (1 ) according to any of the preceding claims, as well as a valve housing (8), wherein the valve housing (8) comprises a valve inlet (9) and a valve outlet (10).
9. The thermostatic expansion valve according to claim 8, characterized in that the thermostatic expansion valve (2) further comprises an actuator (1 1 ) to engage the expansion valve element (3).
10. The thermostatic expansion valve according to claim 9, characterized in that the actuator (1 1 ) comprises a stem (28) to engage the engagement surface (29) of the expansion valve element (3).
1 1 . The thermostatic expansion valve according to any of claims 8 to 10, characterized in that the actuator (1 1 ) comprises two pressure chambers (23, 24) separated by a diaphragm (22), wherein a first pressure chamber (23) is connected to a pressure port (25) of the valve housing (8) and a second pressure chamber (24) is connected to a temperature sensing bulb (26).
12. Method for assembling a thermostatic expansion valve (2)
comprising the steps:
Providing a valve housing (8) comprising a valve inlet (9), a valve outlet (10) as well as an actuator (1 1 ), -3-
Providing an insert (1 ) according to any of claims 1 to 6,
- Inserting the insert (1 ) into a predetermined opening of the valve housing (8), such that the actuator (1 1 ) comes into engagement with the expansion valve element (3) in the insert (1 ),
Fixing the insert (1 ) to the valve housing (8).
EP17722785.7A 2016-05-11 2017-05-11 Insert for a thermostatic expansion valve, thermostatic expansion valve and method for assembling a thermostatic expansion valve Ceased EP3455565A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DKPA201600288 2016-05-11
PCT/EP2017/061274 WO2017194651A1 (en) 2016-05-11 2017-05-11 Insert for a thermostatic expansion valve, thermostatic expansion valve and method for assembling a thermostatic expansion valve

Publications (1)

Publication Number Publication Date
EP3455565A1 true EP3455565A1 (en) 2019-03-20

Family

ID=58699148

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17722785.7A Ceased EP3455565A1 (en) 2016-05-11 2017-05-11 Insert for a thermostatic expansion valve, thermostatic expansion valve and method for assembling a thermostatic expansion valve

Country Status (4)

Country Link
US (1) US20190323748A1 (en)
EP (1) EP3455565A1 (en)
CN (2) CN109073294A (en)
WO (1) WO2017194651A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11879676B2 (en) 2021-07-30 2024-01-23 Danfoss A/S Thermal expansion valve for a heat exchanger and heat exchanger with a thermal expansion valve

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102171577B1 (en) * 2019-12-11 2020-10-29 최창균 Refrigerant compressor suction gas temperature control in according climate temperature of Refrigerant cycle Heat pump
CN114867973B (en) * 2019-12-20 2023-12-22 丹佛斯有限公司 Expansion valve

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2663502A (en) * 1950-01-24 1953-12-22 Detroit Controls Corp Refrigeration expansion valve and adjustment mechanism therefor
US4015776A (en) * 1976-01-23 1977-04-05 The Singer Company Thermostatic expansion valve
DE2800941A1 (en) * 1977-03-14 1978-09-21 Emerson Electric Co Thermostatic expansion valve for refrigerator - has cage for holding valve elements for different capacities
US4542852A (en) * 1984-03-05 1985-09-24 The Singer Company Vibration damping device for thermostatic expansion valves
JPS6241481A (en) * 1985-08-16 1987-02-23 Saginomiya Seisakusho Inc Expansion valve with solenoid valve
US5251659A (en) * 1991-07-22 1993-10-12 Sturman Oded E High speed miniature solenoid
JP3397862B2 (en) * 1993-11-30 2003-04-21 株式会社デンソー Expansion valve with solenoid valve
US5979780A (en) * 1997-10-03 1999-11-09 Eaton Corporation Thermostatic expansion valve with integral electrically operated inlet valve
US6375085B1 (en) * 2000-05-11 2002-04-23 Parker-Hannifin Corporation Reducing noise in a thermal expansion valve
US6405743B1 (en) * 2000-11-03 2002-06-18 Eaton Corporation Dampening of solenoid operated valve
JP4243211B2 (en) * 2004-04-06 2009-03-25 株式会社テージーケー Refrigeration system
US8267329B2 (en) * 2007-01-26 2012-09-18 Fujikoki Corporation Expansion valve with noise reduction means
US7819333B2 (en) * 2008-05-20 2010-10-26 Automotive Components Holdings, Llc Air conditioning circuit control using a thermostatic expansion valve and sequence valve
CN103075565B (en) * 2011-10-26 2016-08-10 浙江三花股份有限公司 A kind of heating power expansion valve assembly method
CN103245141B (en) * 2013-05-28 2016-04-27 浙江三花制冷集团有限公司 A kind of heating power expansion valve and assembly method thereof
CN104343994A (en) * 2013-07-31 2015-02-11 浙江三花股份有限公司 Thermal expansion valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11879676B2 (en) 2021-07-30 2024-01-23 Danfoss A/S Thermal expansion valve for a heat exchanger and heat exchanger with a thermal expansion valve

Also Published As

Publication number Publication date
CN113048250A (en) 2021-06-29
CN109073294A (en) 2018-12-21
WO2017194651A1 (en) 2017-11-16
US20190323748A1 (en) 2019-10-24

Similar Documents

Publication Publication Date Title
JP4504243B2 (en) Control valve for variable displacement compressor
KR101078137B1 (en) Composite valve
US7707844B2 (en) Thermostatic expansion valve with bypass passage
US20190323748A1 (en) Insert for a thermostatic expansion valve, thermostatic expansion valve and method for assembling a thermostatic expansion valve
CN104235387B (en) expansion valve
EP2853794B1 (en) Electromagnetic valve
JP4550651B2 (en) Control valve for variable displacement compressor
JP2006242413A (en) Constant flow rate expansion valve
US7036744B2 (en) Solenoid valve-equipped expansion valve
JP4848548B2 (en) Expansion valve with solenoid valve
WO2013152139A2 (en) Pilot operated valve
EP2667119A2 (en) Control valve
JP2009068568A (en) Suck-back valve
EP3239520B1 (en) Control valve for variable displacement compressor
EP2853795B1 (en) Electromagnetic valve
WO2004079468A1 (en) Flow rate control valve
CN107750315B (en) Axial valve
KR20050054842A (en) Expansion valve
JP2009095775A (en) Suck back valve system and valve closing action control method thereof
JP4503471B2 (en) Expansion valve with integrated solenoid valve
WO2016173744A1 (en) Soft throttling valve
JP3897857B2 (en) Pilot operated solenoid valve
JP4629709B2 (en) Bidirectional solenoid valve
KR20140141432A (en) Control valve for variable displacement compressor
JP2003065633A (en) Solenoid valve integrated expansion valve

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181015

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200319

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20211127